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effects on historical data
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In financial markets, low prices are generally associated with high volatilities and
vice-versa, this well known stylized fact usually being referred to as the leverage
effect. We propose a local volatility model, given by a stochastic differential equation
with piecewise constant coefficients, which accounts for leverage and mean-reversion
effects in the dynamics of the prices. This model exhibits a regime switch in the
dynamics accordingly to a certain threshold. It can be seen as a continuous-time
version of the self-exciting threshold autoregressive (SETAR) model. We propose
an estimation procedure for the volatility and drift coefficients as well as for the
threshold level. Parameters estimated on the daily prices of 351 stocks of NYSE and
S&P 500, on different time windows, show consistent empirical evidence for leverage
effects. Mean-reversion effects are also detected, most markedly in crisis periods.
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1 Introduction
Despite the predominance of the Black-Scholes model for the dynamics of asset
prices, its deficiencies to reflect all the phenomena observed in the markets are
well documented and subject to many studies. Some stylized facts not consistent
with the Black-Scholes model are non-normality of log-returns, asymmetry, heavy
tails, varying conditional volatilities and volatility clustering (Cont 2001). Regime
switching is also consistently observed (Ang & Timmermann 2012; Salhi et al. 2016).
Besides, some assets and indices exhibit mean-reverting effects (see e.g. Meng et al.
2013; Monoyios & Sarno 2002; Lo & MacKinlay 1988; Poterba & Summers 1988;
Spierdijk, Bikker & Hoek 2012).

By considering only the asset’s price at discrete times {𝑘Δ𝑡}𝑘=0,1,2,..., the log-
returns 𝑟𝑡 = log(𝑆𝑡+1/𝑆𝑡) of the Black-Scholes model {𝑆𝑡}𝑡≥0 are nothing more
than the simple time series

𝑟𝑡+1 =
(︃

𝜇 − 𝜎2

2

)︃
Δ𝑡 + 𝜎

√
Δ𝑡𝜖𝑡 with 𝜖𝑡 ∼ 𝒩 (0, 1), independent. (1)

Several models alternative to (1) have been proposed to take some of these
stylized facts into account. Among the most popular ones, ARCH and GARCH
models and their numerous variants reproduce volatility clustering effects (Engle,
Focardi & Fabozzi 2012).

In this article, we focus on leverage effects, a term which refers to a negative
correlation between the prices and the volatility. As observed for a long time, the
lower the price, the higher the volatility. First explanations were given in Black
(1976) and Christie (1982). Processes such as the constant elasticity volatility (CEV)
were proposed to account of these phenomena (Christie 1982). One common
economic explanation of leverage effects is that when an asset price decreases, the
ratio of the company’s debt with respect to the equity value becomes larger, and
as a consequence volatility increases; another explanation is that investors tend
to become more nervous after a large negative return than after a large positive
return; anyway, the origin of leverage effects is still subject to discussion (see e.g.
Hens & Steude 2009).

In the early 1980s, H. Tong has proposed a broad class of time series, the threshold
autoregressive models (TAR), with non-linear effects reproducing cyclical data (Tong
1983; Tong 2011; Tong 2015). This class, which contains hidden Markov chains
(HMM) as well as self-exciting threshold autoregressive models (SETAR), produces
a wide range of behaviors. HMM models rely on a temporal segmentation (they
are good for crisis detection), while SETAR models rely on a spatial segmentation,
with a regime change when the price goes below or above a threshold.

Time series of SETAR type capture leverage and mean-reverting effects by defin-
ing a threshold which separates two regimes (high/low volatility, positive/negative
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trend). Unlike models such as HMM, no external nor latent randomness is used.
In finance, various aspects of SETAR like models have been considered (Yadav,

Pope & Paudyal 1994; Chen, So & Liu 2011; Meng et al. 2013; Siu 2016; Rabem-
ananjara & Zakoian 1993). An alternative form to SETAR models is provided by
threshold stochastic volatility models (Xu 2012; So, Li & Lam 2002; Chen, Liu & So
2008), where the volatility depends non-linearly on the price through a threshold
model. Thresholds can also depend on auxiliary variables, as in (Chen & So 2006).
Also other considerations such as psychological barriers (Jang et al. 2015; Kolb
2016) lead to threshold models.

Continuous-time models could be seen as the limit of time series as the time step
goes to 0. They have some advantages over time series, for allowing irregularly
sampling, the use of stochastic calculus tools and possibly analytic or semi-analytic
formulas for fast evaluation of option prices and risk estimation. Continuous-time
threshold models (or threshold diffusion) have been studied in Siu (2016) and Su
& Chan (2016) for option valuation, in Meng et al. (2013) for portfolio optimiza-
tion, etc. Self-exciting variants of Vasiček and Cox-Ingersoll-Ross continuous-time
models have also been proposed for interest rates (Decamps, Goovaerts & Schoutens
2006; Pai & Pedersen 1999). A quasi-maximum likelihood estimator for a threshold
diffusion with applications to interest-rate modelling is studied in Su & Chan (2015)
and Su & Chan (2017). In Brockwell & Williams (1997), a continuous-time equiva-
lent of an integrated SETAR model is constructed and applied to financial data.
Mota & Esquível (2014) and Esquível & Mota (2014) propose two continuous-time
models which mimic SETAR time series. In Mota & Esquível (2014), one of these
models, referred to as the delay threshold regime switching model (DTRS), is tested
on the daily prices of twenty-one companies over almost five years. For almost all
the stocks, they find a regime-change for the volatility.

Contribution of the paper. We present the geometric oscillating Brownian
motion (GOBM), a threshold local volatility model with piecewise constant volatility
and drift, as in Gairat & Shcherbakov (2016). This model is an instance of the
tiled volatility model of Lipton & Sepp (2011). We stress that the GOBM is the
solution of a one-dimensional Stochastic Differential Equation (SDE). Therefore,
it is simpler to manipulate than the DTRS of Mota & Esquível (2014), although
having similar features. For the same reason, the market is complete under the
GOBM. The GOBM can also be simulated by a standard Euler scheme (Yan
2002; Chan & Stramer 1998). Option valuation can be performed as well using
semi-analytic approaches (Lipton & Sepp 2011; Lipton 2018; Gairat & Shcherbakov
2016; Pigato 2017; Decamps, De Schepper & Goovaerts 2004), and the related
problem of estimating ex-ante volatilities from the call prices can be solved using
Sturm-Liouville theory (Lipton & Sepp 2011).
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In the GOBM model, a fixed threshold separates two regimes for the prices. Both
the volatility and the drift parameter can assume two possible values, according to
the position of the stock price, above or below the threshold. Let us write 𝜎− for
the volatility below the threshold, 𝜎+ for the volatility above the threshold, and
similarly 𝑏− and 𝑏+ for the drift. Such model accounts of the leverage effect, when
𝜎− > 𝜎+. In this case, when prices are low, volatility increases, consistently with
what is observed on empirical financial data. As in Mota & Esquível (2014), the
dynamics has two regimes, one corresponding to the bull market, with prices above
the threshold and low volatility, and one corresponding to the bear market, with
prices below the threshold and high volatility. In this sense, the model displays
an “endogenous” regime switch. A motivation for considering such price dynamics
coming from a different viewpoint is given in Ankirchner, Blanchet-Scalliet &
Jeanblanc (2017), where it is shown that the GOBM describes the price dynamics
corresponding to the optimal strategy for a manager who can control, in a stylized
setting, the volatility of the value of a firm, getting bonus payments when the value
process performs better than a reference index.

After describing and motivating the model, we consider the estimation of volatil-
ities, drifts and thresholds from discrete observations of historical stock prices. The
estimation procedures used in Mota & Esquível (2014), Esquível & Mota (2014), and
Brockwell & Williams (1997) are all derived from the ones designed for SETAR time
series. Here, we approach the problem directly, proposing an estimation procedure
based on stochastic calculus. The estimator of the volatility coefficients is inspired
by the integrated volatility/realized variance estimator; for its theoretical analysis
we refer the reader to Lejay & Pigato (2018b). Our estimator can be implemented
straightforwardly, differently from the MLE, which is very hard to implement as
there is no simple closed form for the density of the GOBM. On the other hand,
the estimator of the drift coefficient is the maximum likelihood (MLE) one. Its
implementation is also straightforward. Its asymptotic behavior is studied in Lejay
& Pigato (2018a).

In the present paper, we discuss several issues regarding the quality of the
estimation and propose a method for estimating the threshold, based on the Akaike
information principle. In addition, we provide a hypothesis test to decide whether
or not the volatility is constant. We test the performance of such methods via
numerical experiments on simulated data. These tests are conclusive.

Finally, we look at empirical financial data. We first benchmark our model
against the same dataset as Mota & Esquível (2014): twenty-one stock prices from
the NYSE, on the time window 2005-2009. We find similar results: in particular, we
consistently find leverage effects (𝜎− > 𝜎+) and mean-reverting behavior (𝑏− > 0
and 𝑏+ < 0). Then, we apply our estimators to the empirical time series of the
S&P 500, on the three separate five years windows 2003 − 2007, 2008 − 2012 and
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2013 − 2017, finding again consistent evidence of leverage effects. More specifically,
we may say, based on the hypothesis test mentioned above and on the estimated
ratios 𝜎−

𝜎+
, that the leverage effect is particularly marked in the period 2008 − 2012,

most likely because it contains the 2008 financial crisis. The mean-reverting
behavior is also quite clearly detectable in the 2008 − 2012 period, less so in the
periods 2003 − 2007 and 2013 − 2017, on which 𝑏− is always positive but 𝑏+ does
not display a predominant sign. This seems to be in agreement with the finding
that “. . . the speed at which stocks revert to their fundamental value is higher
in periods of high economic uncertainty, caused by major economic and political
events”, as was shown in Spierdijk, Bikker & Hoek (2012). We refer to the same
paper and to Section 6 for the economic interpretation of this finding.

As final consideration, we remark that the GOBM, despite its extreme simplicity
and limited number of parameters, reproduces notable stylized facts of financial
markets such as leverage effects and mean-reverting properties. Moreover, the
application of the estimators described above to empirical data confirm the presence
of such features in the dynamics of financial indices.

Outline. The GOBM is presented in Section 2. In Section 3 we consider the
estimation procedures for the volatility (Section 3.1), the drift (Section 3.2) and the
threshold (Section 3.3). In Section 4, we benchmark the GOBM model against the
DTRS model (in Section 4.1) introduced by Mota & Esquível (2014) by comparing
the estimators on the same data sets (in Section 4.2). In Section 5, we present a
hypothesis test to decide whether a leverage effect is present or not. Finally, in
Section 6 we apply our estimators to the stock prices of the S&P 500, in three
consecutive periods of five years, the second one containing the 2008 financial crisis.
The article ends with a global conclusion in Section 7.

2 A threshold model for local volatility
The model. The geometric oscillating Brownian motion (GOBM) is the solution
to the local volatility model

𝑆𝑡 = 𝑥 +
∫︁ 𝑡

0
𝜎(𝑆𝑠)𝑆𝑠 d𝐵𝑠 +

∫︁ 𝑡

0
𝜇(𝑆𝑠)𝑆𝑠 d𝑠, (2)

where 𝐵 is a Brownian motion and for a threshold 𝑚 ∈ R,

𝜎(𝑥) =

⎧⎨⎩𝜎+ if 𝑥 ≥ 𝑚,

𝜎− if 𝑥 < 𝑚
and 𝜇(𝑥) =

⎧⎨⎩𝜇+ if 𝑥 ≥ 𝑚,

𝜇− if 𝑥 < 𝑚.
(3)

We use a solution 𝑆 to (2) as a model for the price of an asset. The log-price
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𝑋 = log(𝑆) satisfies the SDE

𝑋𝑡 = 𝑥 +
∫︁ 𝑡

0
𝜎(𝑋𝑠) d𝐵𝑠 +

∫︁ 𝑡

0
𝑏(𝑋𝑠) d𝑠, (4)

with

𝜎(𝑥) =

⎧⎨⎩𝜎+ if 𝑥 ≥ 𝑟,

𝜎− if 𝑥 < 𝑟
and 𝑏(𝑥) =

⎧⎨⎩𝑏+ = 𝜇+ − 𝜎2
+/2 if 𝑥 ≥ 𝑟,

𝑏− = 𝜇− − 𝜎2
−/2 if 𝑥 < 𝑟

(5)

for a threshold 𝑟 = log(𝑚). Notice the slight abuse of notation in (3) and (5), due
to the change of the value for the threshold when taking the logarithm.

When the drift 𝑏 = 0 and 𝑟 = 0, 𝑋 is called an oscillating Brownian motion
(OBM, Keilson & Wellner (1978)), a name we keep even in presence of a two-valued
drift and a threshold 𝑟 ≠ 0. When 𝜎+ = 𝜎− and 𝑏+ = 𝑏−, the price follows the
Black-Scholes model. By extension, we still call the solution to (4) a GOBM.

The effect of the drift is discussed in Section 3.2. When 𝑏+ < 0 and 𝑏− > 0, the
process is ergodic and mean-reverting. The convergence towards equilibrium differs
from the ones in the Vašičeck and Heston models in which the drift is linear.

Existence and uniqueness. The solution to (4) is an instance of a more general
class of processes with discontinuous coefficients which was studied in Le Gall
(1984). In particular, there exists a unique strong solution to (4), hence to (2).

The (geometric)-OBM can be easily manipulated with the standard tool of
stochastic analysis, sometimes relying on the Itô-Tanaka formula instead of the
sole Itô formula (see e.g., Étoré 2006).

Properties of the market. Unlike in some regime switching models, there is no
hidden randomness leading to incomplete markets, while offering some regime
change properties.

Proposition 1. Assuming the GOBM model for the returns process with a constant
risk-free rate, the market is viable and complete.

Proof. Using the results of Le Gall (1984), the Girsanov theorem can be applied to
the equation for the log-price. Hence, as for the Black-Scholes model, it is possible
to reduce the discounted log-price to a martingale by removing the drift. Hence,
there exists an equivalent martingale measure, meaning that the market is viable
(Jeanblanc, Yor & Chesney 2009, Theorem 2.1.5.4, p. 89).

As any absolutely continuous measure could only be reached through a Girsanov
transform (Le Gall 1984), the risk neutral measure is unique, meaning that the
market is complete.
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Remark 1. The affine transform Φ(𝑥) = 𝑥/
√

𝜎−1𝑥<𝑚 + 𝑥/
√

𝜎+1𝑥>𝑚 transforms the
log-price 𝑋𝑡 into the solution 𝑌 to the SDE with local time

𝑌𝑡 = Φ(𝑋0) + 𝐵𝑡 +
∫︁ 𝑡

0

𝑏+

𝜎+
1𝑥>0(𝑌𝑠) d𝑠 +

∫︁ 𝑡

0

𝑏−

𝜎−
1𝑥<0(𝑌𝑠) d𝑠 + 𝜅𝐿0

𝑡 (𝑌 ), (6)

where (𝐿0
𝑡 (𝑌 ))𝑡≥0 is the local time of 𝑌 at position 0 and 𝜅 = (√𝜎− −√

𝜎+)/(√𝜎− +√
𝜎+). Eq. (6) is a drifted skew Brownian motion (SBM). The local time part cannot

be removed by a Girsanov transform (Le Gall 1984). For the SBM, arbitrage may
exist as shown in Rossello (2012). The GOBM may be generalized by considering a
log-price solution to d𝑋𝑡 = 𝑥+𝜎(𝑋𝑡) d𝐵𝑡 +𝑏(𝑋𝑡) d𝑡+𝜂 d𝐿𝑟

𝑡 (𝑋), where 𝐿𝑟(𝑋) is the
local time of 𝑋 at the threshold 𝑟. The effect of the coefficient 𝜂 ∈ (−1, 1) would
be to “push upward” (if 𝜂 > 0) or downward (if 𝜂 < 1) the price, which corresponds
to some directional predictability effect (Alvarez, Luis & Salminen 2017). However,
considering 𝜂 ̸= 0 radically changes the structure of the market with respect to
classical SDEs.

Monte Carlo simulation. The GOBM at times 𝑘𝑇/𝑛, 𝑘 = 0, 1, 2, . . . , 𝑛 is easily
simulated by 𝑆𝑘𝑇/𝑛 = exp(𝑋𝑘𝑇/𝑛) through the recursive equation (Chan & Stramer
1998; Yan 2002)

𝑋 (𝑘+1)𝑇
𝑛

= 𝑋 𝑘𝑇
𝑛

+
√︃

𝑇

𝑛
𝜎
(︁
𝑋 𝑘𝑇

𝑛

)︁
𝜂𝑘 + 𝑏

(︁
𝑋 𝑘𝑇

𝑛

)︁ 𝑇

𝑛
, 𝜂𝑘 ∼ 𝒩 (0, 1) independent. (7)

3 Estimation of the parameters from the
observations of the stock prices

The GOBM 𝑋 is defined by five parameters (volatility, drift and threshold, see
Table 1) which we are willing to estimate. In Sections 3.1 and 3.2 we consider
the estimation of (𝜎±, 𝑏±) for fixed threshold 𝑟, by considering the estimation of
the ex-post volatility and of the drift. Afterwards, in Section 3.3, the threshold is
chosen through a model selection principle.

The procedure presented here is simple to implement and provides good results
in practice. We stress that the estimators of 𝜎± can be implemented with no
previous knowledge of the drift, and viceversa the estimators of 𝑏± do not need the
knowledge of 𝜎± to be implemented. The estimators of 𝜎± are integrated volatility
type estimators, simple to implement and widely studied in the framework of SDEs.
One could also use a MLE for the volatility, based on discrete observations, but
this would require explicit expressions for the transition density, which are very
involved for the GOBM. Concerning the estimator for the drift, our MLE (cf. (12))
can be implemented using estimators for local and occupation times proposed in
Lejay & Pigato (2018a), which do not involve the volatility parameter.

7



𝑆 price of the stock
𝑋 = log(𝑆) log-price
𝜉 = 𝑋 − 𝑟 shifted log-price for a threshold 𝑟

𝑟 threshold of 𝑋, the log-price
𝑚 = exp(𝑟) threshold of 𝑆, the price
𝜎− volatility of 𝑋 below 𝑟
𝜎+ volatility of 𝑋 above 𝑟
𝑏− drift of 𝑋 below 𝑟
𝑏+ drift of 𝑋 above 𝑟

𝜇− = 𝑏− + 𝜎2
−
2 appreciation rate of 𝑆 below 𝑚

𝜇+ = 𝑏+ + 𝜎2
+
2 appreciation rate of 𝑆 above 𝑚

𝑑 delay (DTRS only)

Table 1: Notations for the GOBM and DTRS models.

3.1 Estimation of the ex-post volatility
In this section we consider the estimation of the ex-post volatility for prices given
by the model in (2), when the threshold 𝑟 = log(𝑚) is known. We recall the
estimators and the theoretical convergence results presented in Lejay & Pigato
(2018b), and discuss their application in the framework of volatility modeling. We
define 𝜉 := 𝑋 − 𝑟 = log(𝑆) − 𝑟 which is a OBM with a threshold at level 0.

The data. Our observations are 𝑛+1 daily data {𝜉𝑘}𝑘=0,...,𝑛 with 𝜉𝑘 = log(𝑆𝑘)−𝑟
for an a priori known threshold 𝑟.

Our aim is to estimate (𝜎+, 𝜎−) from such observations.

Occupation times. The occupation times below and above the threshold play a
central role in our study. The positive and negative occupation times 𝑄±

𝑇 up to
time 𝑇 of 𝜉 as well as their approximations Q±(𝑛) are

𝑄±
𝑇 :=

∫︁ 𝑇

0
1±𝜉𝑠≥0 d𝑠 and Q±(𝑛) := 𝑇

𝑛

𝑛∑︁
𝑖=1

1±𝜉𝑖≥0. (8)

The estimators of the volatilities. We write 𝜉+ := max{𝜉, 0} and 𝜉− :=
− min{𝜉, 0}, the positive and negative parts of 𝜉. Our estimators σ±(𝑛)2 for 𝜎2

± are

σ±(𝑛)2 := [𝜉±, 𝜉]𝑛
Q±(𝑛) , (9)
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where
[𝜉±, 𝜉]𝑛 :=

𝑛∑︁
𝑖=1

(𝜉±
𝑖 − 𝜉±

𝑖−1)(𝜉𝑖 − 𝜉𝑖−1).

These estimators are natural generalizations of the realized volatility estimators
(Barndorff-Nielsen & Shephard 2002).

Proposition 2 (Lejay & Pigato 2018b). When 𝑏+ = 𝑏− = 0, the couple (σ−(𝑛)2,σ+(𝑛)2)
is a consistent estimator of (𝜎2

−, 𝜎2
+). Besides, there exists a pair of unit Gaussian

random variables (𝐺−, 𝐺+) independent of the underlying Brownian motion 𝐵
(hence of 𝜉) such that

⎡⎢⎢⎢⎢⎣
√

𝑛

√︃
Q−(𝑛)

𝑛

(︁
σ−(𝑛)2 − 𝜎2

−

)︁
√

𝑛

√︃
Q+(𝑛)

𝑛

(︁
σ+(𝑛)2 − 𝜎2

+

)︁
⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
[𝜉−, 𝜉]𝑛 −Q−(𝑛)𝜎2

−√︁
Q−(𝑛)

[𝜉+, 𝜉]𝑛 −Q+(𝑛)𝜎2
+√︁

Q+(𝑛)

⎤⎥⎥⎥⎥⎥⎦
law−−−→

𝑛→∞

[︃√
2𝜎2

−𝐺−√
2𝜎2

+𝐺+

]︃
. (10)

Dealing with a drift. Proposition 2 is actually proved on high-frequency data
𝜉𝑘,𝑛 := 𝜉𝑘/𝑛, 𝑘 = 0, . . . , 𝑛 on the time interval [0, 1].

Using a scaling argument, for any constant 𝑐 > 0, {𝑐−1/2𝜉𝑐𝑡}𝑡≥0 is equal in
distribution to 𝜁(𝑐) solution to the SDE

d𝜁
(𝑐)
𝑡 = 𝜎(𝜁(𝑐)

𝑡 ) d𝑊𝑡 +
√

𝑐𝑏(𝜁(𝑐)
𝑡 ) d𝑡, 𝜁

(𝑐)
0 = 𝑐−1/2𝜉0 (11)

for a Brownian motion 𝑊 . With 𝑐 = 𝑛, the problem of estimating the coefficients
of {𝜉𝑘}𝑘=0,...,𝑛 is the same as the high frequency estimation of the coefficients of
{
√

𝑛𝜁
(𝑛)
𝑘,𝑛}𝑘=0,...,𝑛 on the time range [0, 1].

Without drift, observing {𝜉𝑘,𝑛}𝑘=0,...,𝑛 or {𝜉𝑘}𝑘=0,...,𝑛 leads to the same estimation.
Using the Girsanov theorem, Proposition 2 stated for the high-frequency regime,
that is on the observations {𝜁

(1)
𝑘,𝑛}𝑘=0,...,𝑛 (since all the 𝜁(𝑛) are equal in distribution),

is also valid in presence of a bounded drift.
With our data, the drift is very small compared to the ex-post volatility and the

number 𝑛 of observations is finite, so that we still apply Proposition 2.

3.2 Estimation of the drift coefficients
To estimate the values 𝑏± of the drift, we consider that the threshold 𝑟 = log 𝑚 is
known (this issue is treated in Sect. 3.3).
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Maximum likelihood estimation of the drift. Following Lejay & Pigato (2018a),
we introduce as estimators of 𝑏± the quantities

𝛽±(𝑇 ) := ±𝜉±
𝑇 − 𝜉±

0 − 𝐿𝑇 /2
𝑄±

𝑇 (𝜉) and β±(𝑛) := ±𝜉±
𝑇 − 𝜉±

0 − L(𝑛)/2
Q±(𝑛) , (12)

where 𝐿𝑇 is the symmetric local time of 𝜉 at 0 while L(𝑛) is the discrete local time
defined by

L(𝑛) :=
𝑛−1∑︁
𝑖=0

1𝜉𝑖𝜉𝑖+1<0|𝜉𝑖+1|.

The expressions of L(𝑛) and β±(𝑛) do not involve 𝜎±. Besides, β±(𝑛) converges
almost surely to 𝛽±(𝑇 ) as 𝑛 goes to infinity.

When the coefficients are constant, as for the log-price in the Black-Scholes model,
where d𝜁𝑡 = 𝜎 d𝐵𝑡 + 𝑏 d𝑡, a consistent estimator of the drift 𝑏 is 𝑏(𝑇 ) = (𝜁𝑇 − 𝜁0)/𝑇 .
Our estimator (12) generalizes this formula; the local time term appears because
of the discontinuity in the coefficients.

Asymptotic properties. The drift estimator shall be studied for a long time
horizon. The asymptotic properties of 𝛽±(𝑇 ) as 𝑇 → ∞, hence of β±(𝑛), depend
on the asymptotic behaviors of 𝑄±

𝑇 in (8). We summarize in Table 2 the different
cases that depend solely on the respective signs of 𝑏+ and 𝑏−.

𝑏+ < 0 𝑏+ = 0 𝑏+ > 0
𝑏− > 0 ergodic (E) null recurrent (N1) transient (T0)
𝑏− = 0 null recurrent (N1) null recurrent (N0) transient (T0)
𝑏− < 0 transient (T0) transient (T0) transient (T1)

Table 2: Regime of 𝜉 according to the respective signs of (𝑏−, 𝑏+).

The ergodic case, which corresponds to a mean-reverting process, is of course the
most favorable one. In the transient case, the estimators may not converge. We
briefly recall some of the results in Lejay & Pigato (2018a) (see the original paper
for detailed statements).

E The ergodic case is the mean-reverting one. In this case (𝛽−(𝑇 ), 𝛽+(𝑇 ))
converges almost surely to (𝑏−, 𝑏+), with speed

√
𝑇 .

T0 If 𝑏+ > 0, 𝑏− ≥ 0, then 𝛽+(𝑇 ) converges to 𝑏+ with speed
√

𝑇 . The estimator
𝛽−(𝑇 ) of 𝑏− does not converge to 𝑏− and is then meaningless. The case 𝑏− < 0,
𝑏+ ≤ 0 is treated by symmetry.
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T1 If 𝑏+ > 0 and 𝑏− < 0, then with probability 𝑝 := 𝜎−𝑏+/(𝜎+𝑏− + 𝜎−𝑏+), 𝛽+(𝑇 )
converges to 𝑏+ with speed

√
𝑇 , while with probability 1−𝑝, 𝛽−(𝑇 ) converges

to 𝑏− with speed
√

𝑇 . This asymptotic behavior is due to the fact that after
a given random time, the process does not cross the threshold anymore.

N0 Whatever 𝑇 > 0 the distribution of
√

𝑇 (𝛽−(𝑇 ), 𝛽+(𝑇 )) does not depend on 𝑇 .
Then 𝛽±(𝑇 ) are consistent estimators of 𝑏± = 0.

N1 If 𝑏+ = 0, 𝑏− > 0, then (𝛽−(𝑇 ), 𝛽+(𝑇 )) converges almost surely to (𝑏−, 𝑏+);
𝛽−(𝑇 ) converges to 𝑏− with speed 𝑇 1/4 and 𝛽+(𝑇 ) converges to 𝑏+ with
speed

√
𝑇 .

3.3 Estimation of the threshold
The above estimators for 𝜎 and 𝑏 assume that the value 𝑚 of the threshold is
known. Following Tong (1983) (see also Priestley 1988, p. 79), we estimate 𝑚
using a principle of model selection relying on the ideas of the Akaike information
principle (AIC) (Akaike 1973). Since the AIC involves the likelihood function, for
which we do not necessarily have closed form expressions, we will need to work
with approximations.

Approximation of the density. Given a threshold 𝑟 as well as volatility and
drift functions 𝑥 ↦→ 𝜎(𝑥) and 𝑥 ↦→ 𝑏(𝑥), we first consider the density 𝑦 ↦→
𝑝(Δ𝑡, 𝑥, 𝑦; 𝑟, 𝜎, 𝑏) of 𝑋𝑡+Δ𝑡 given 𝑋𝑡 = 𝑥 (the process is time-homogeneous so
that 𝑝 only depends on Δ𝑡, not on 𝑡). For a vanishing drift, a closed form expres-
sion for 𝑝 is known (Keilson & Wellner 1978). In presence of a drift, the expression
may become cumbersome if not intractable (Lejay, Lenôtre & Pichot 2017). How-
ever, 𝑝 can be approximated, in short time, via the related Green function, easier
to compute (see Lenôtre 2015, Chapter 2). Alternatively, we assume that the
drift is constant over the time interval [𝑡, 𝑡 + Δ𝑡] and replace 𝑝 by the density of
𝑌𝑡+Δ𝑡 + 𝑏(𝑥)Δ𝑡 given 𝑌𝑡 = 𝑥, where 𝑌 has the same volatility of 𝑋 yet with a
vanishing drift. In the implementation, we use the latter approximation of 𝑝 which
we denote by ̃︀𝑝(𝑡, 𝑥, ·; 𝑟, 𝜎, 𝑏).

Selection of the threshold. The procedure to select the “best” threshold is then
1/ We fix 𝑟(1), . . . , 𝑟(𝑘) possible thresholds in the range of the observed values

{𝑋𝑡𝑖
}𝑖=0,...,𝑇 of the log-price 𝑋.

2/ For each threshold 𝑟(𝑗), we estimate the drift and volatilities ̂︀𝜎(𝑗) and ̂︀𝑏(𝑗).
3/ We compute the approximate log-likelihood

Log-Lik(𝑗) =
𝑇 −1∑︁
𝑖=0

log ̃︀𝑝(𝑡, 𝑋𝑡𝑖
, 𝑋𝑡𝑖+1 ; 𝑟(𝑗), ̂︀𝜎(𝑗), ̂︀𝑏(𝑗)). (13)
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4/ We select as threshold ̂︀𝑟 the value 𝑟(𝚥) where 𝚥 := arg min𝑗=1,...,𝑘 Log-Lik(𝑗).

Comparison with other models. In the model selection based on the AIC, the
best model is the one for which the log-likelihood corrected by a value depending on
the number of parameters is minimized. Here, the number of parameters is fixed to
4 so that it is sufficient to use only approximations of the log-likelihoods. A similar
procedure is used in Meng et al. (2013), yet with a density estimated through
Monte Carlo, which is time-consuming. On the contrary, our procedure avoids any
simulation step. With respect to the estimation for the SETAR model (Tong 1983;
Priestley 1988), as well as the one of the DTRS model presented below, based on
least squares (Mota & Esquível 2014), there is no delay so that the dimension of
the model is reduced by 1.

4 Benchmarking the model
We apply now our estimators to empirical financial data. We benchmark our model
against the delay and threshold regime switching model (DTRS) of Mota & Esquível
(2014) by using the same data. We start this section shortly presenting the DTRS
model.

4.1 The delay and threshold regime switching model
Mota & Esquível (2014) introduce the DTRS. First, they consider two sets of
(functional) parameters (𝜎1, 𝜇1) and (𝜎2, 𝜇2), as well as a diffusion solution to the
stochastic differential equation

d𝑆𝑡 = 𝜇𝐽𝑡(𝑡, 𝑆𝑡) d𝑡 + 𝜎𝐽𝑡(𝑡, 𝑆𝑡) d𝐵𝑡 (14)

for a Brownian motion 𝐵, where 𝐽 is a non-anticipative process with values in the
set of indices {1, 2}.

The rule for 𝐽 to switch is based on a threshold 𝑚, a delay 𝑑 as well as a small
parameter 𝜖 > 0. Assume 𝑆0 ≤ 𝑚 and 𝐽0 = 1. The process evolves according to
the parameters (𝜎1, 𝜇1) until it reaches the level 𝑚 + 𝜖 at a (random) time 𝜏1. Then
it evolves according to the parameters (𝜎1, 𝜇1) up to time 𝜏1 + 𝑑 where it switches
to parameters (𝜎2, 𝜇2) (that is 𝐽𝜏1+𝑑 = 2) until it reaches the level 𝑚 at time 𝜏2.
Then it switches again to the state 1 after a delay 𝑑 (𝐽𝜏2+𝑑 = 1) and so on.

The parameter 𝜖 prevents an accumulation of “immediate” switches so that 𝑆
can be constructed on a rigorous basis (Esquível & Mota 2014). With respect to
simulation or estimation, 𝜖 is of no practical importance as 𝑆 is only observed or
simulated at discrete times.
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AAPL Apple ADBE Adobe
AMZN Amazon C CitiGroup

CA CA CSCO Cisco
GOOG Google HP Hewlett-Packard

IBM IBM JPM JP Morgan
KO Coca-cola MCD McDonalds

MON Monsanto MSFT Microsoft
MSI Motorola NYT New-York Times

PCG PG&E PFE Pfizer
PG P & G PM Philip Morris

SBUX Starbucks

Table 3: Abbreviations of the names of the stocks (in Yahoo Finance).

More specifically, the DTRS model considered in Mota & Esquível (2014) assumes
that the 𝜇𝑖 and 𝜎𝑖 (𝑖 = 1, 2) are⎧⎨⎩𝜎1(𝑡, 𝑥) = 𝜎− · 𝑥 if 𝑥 < 𝑚,

𝜎2(𝑡, 𝑥) = 𝜎+ · 𝑥 if 𝑥 ≥ 𝑚
and

⎧⎨⎩𝜇1(𝑡, 𝑥) = 𝜇− · 𝑥 if 𝑥 < 𝑚,

𝜇2(𝑡, 𝑥) = 𝜇+ · 𝑥 if 𝑥 ≥ 𝑚
(15)

for some constants 𝜎± > 0 and 𝜇±. Hence, on each regime, the price 𝑆 follows a
dynamic of Black-Scholes type. We also define 𝑏± = 𝜇± − 𝜎2

±/2 so that 𝑏± are the
possible values of the drift for the log-price.

Adapting the estimation approach for the SETAR (Tong 1983), Mota & Esquível
(2014) propose a consistent estimation procedure of the parameters, based on least
squares.

Results for the DTRS. This estimator is applied to the daily log-prices of twenty-
one stock prices of the NYSE, from January 2005 to November 2009 (presented in
Table 3). In Table 4, we report the estimated values of 𝜎±, 𝑚, 𝜇± (or 𝑏±) and 𝑑
found in Mota & Esquível (2014). These values have to be compared with the ones
in Table 5.

For most of the data, a leverage effect is observed: the ex-post volatility below
the threshold is higher than above it. In Mota & Esquível (2014), option prices of
European calls are also computed using a Monte Carlo procedure. The resulting
prices are in good agreement with the ones of the market.

Comparison between the DTRS model and the GOBM. In spirit, the GOBM
is similar to DTRS of Mota & Esquível (2014) or to the model in Esquível & Mota
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Delay threshold regime switching (DTRS) (Mota & Esquível 2014)
Index 𝑑 𝑚 [$] 𝜎− [%] 𝜎+ [%] 𝜇− [%] 𝜇+ [%] 𝑏− [%] 𝑏+ [%] signs
AAPL 8 173.5 54.1 45.6 57.5 −112.4 42.8 −122.7 +−
ADBE 1 41.5 44.0 25.1 31.8 −74.3 21.9 −77.4 +−
AMZN 1 77.7 51.4 45.4 54.2 −462.2 41.1 −472.5 +−

C 2 43.1 120.6 16.8 39.8 −3.5 −32.8 −5.0 −−
CA 1 22.1 53.0 24.6 44.4 −23.2 30.2 −26.2 +−

CSCO 1 16.3 56.0 31.3 313.5 0.0 297.6 −5.0 +−
GOOG 13 642.0 37.0 40.2 40.6 −148.7 33.8 −156.7 +−

HP 1 46.9 39.2 27.1 42.3 −78.9 34.8 −82.4 +−
IBM 1 124.3 25.1 20.3 12.9 −93.5 9.6 −95.5 +−
JPM 2 25.0 131.3 47.5 715.4 −0.3 629.2 −11.6 +−
KO 1 10.0 78.6 29.1 398.2 −5.3 367.4 −9.6 +−

MCD 1 54.6 22.4 25.7 38.8 −29.5 36.3 −32.8 +−
MON 1 112.0 47.0 49.4 57.5 −145.4 46.6 −157.5 +−

MSFT 1 22.9 54.0 25.1 81.1 6.0 66.5 3.0 ++
MSI 14 21.9 49.5 28.4 7.8 −47.9 −4.3 −51.9 −−

NYT 4 32.5 49.5 17.3 −9.8 −89.5 −22.2 −91.0 −−
PCG 6 35.3 49.4 21.6 170.1 −4.0 158.0 −6.6 +−
PFE 2 16.7 40.2 24.0 67.0 −14.6 59.0 −17.4 +−
PG 1 61.9 20.3 20.2 19.2 −28.0 17.1 −30.0 +−
PM 1 42.0 44.4 31.9 121.2 −40.3 111.4 −45.4 +−

SBUX 15 33.6 45.4 26.0 11.6 −39.8 1.3 −43.1 +−

Table 4: Estimated daily parameters in % per year found by Mota & Esquível
(2014) for the DTRS model on daily data from January 2005 to November
2009 with the notations given in Table 1 (In the original table, volatilities
and drift are expressed in % per day). The last column signs contains the
respective signs of 𝑏−, 𝑏+ (a +− indicates a mean-reversion effect).

(2014). Yet, it avoids all the difficulties related to the “gluing” and regime change
that involves a very thin layer which serves to avoid infinitely many immediate
switches. Hottovy & Stechmann (2015) discuss the asymptotic behavior of the
process as the width of the layer decreases to 0.

The GOBM has five parameters while the DTRS has six parameters because it
also involves a delay. For most of the data, the estimated delay in the DTRS is
𝑑 = 1, which means that the switching occurs without delay. Otherwise, the delay
means a slow decreasing auto-correlation, or a long memory effect. Yet, for long
delay, how to discriminate a leverage effect from sudden changes due to external
parameters such as crisis? The presence of a delay increases the possibility of
miss-specifications in the estimation procedure.
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4.2 Estimation of the parameters of the GOBM
In Table 5, we estimate the parameters for the GOBM on the same stocks as for
the DTRS. Although we use the same source (Yahoo Finance) as Mota & Esquível
(2014), it seems that KO is a different time series than in this article.

The volatilities (𝜎−, 𝜎+) are in good agreement for both models. Moreover,
𝜎− > 𝜎+ for all the stocks, the only exceptions being MCD for both models and
GOOG for the DTRS model. In the latter situation, 𝜎− is close to 𝜎+. The
respective signs of 𝑏− and 𝑏+ are consistent with the ones of Mota & Esquível (2014)
and suggest a mean-reversion effect (𝑏− > 0, 𝑏+ < 0) for most of the stock prices.
The magnitudes of 𝑏− and 𝑏+ are also consistent. As the number of data is rather
small (𝑛 = 1217) and the considered period is only five years, it is not reasonable to
aim for a more accurate description of the drift. Anyway, this indicates that below
the threshold the ex-post volatility is higher and the drift is upward oriented. The
threshold estimations are in good agreement for twelve stocks out of twenty-one.

5 Is there some leverage effect?
Our aim is to test whether or not 𝜎+ = 𝜎− when 𝑏− = 𝑏− = 0 (on daily data, 𝑏−
and 𝑏+ have small values with respect to 𝜎− and 𝜎+). Our Hypothesis test is then

(𝐻0) (null hypothesis) 𝜎− = 𝜎+ ;
(𝐻1) (alternative hypothesis) 𝜎− ̸= 𝜎+.

5.1 Construction of a confidence region
The asymptotic result (10) of Proposition 2 is rewritten as

[︃
σ−(𝑛)2

σ+(𝑛)2

]︃
≈
[︃
𝜎2

−
𝜎2

+

]︃
− 1√

𝑛
𝑀𝑇 G with 𝑀𝑇 =

√
2𝑇

⎡⎣𝜎2
−/
√︁

𝑄−
𝑇 0

0 𝜎2
+/
√︁

𝑄+
𝑇

⎤⎦ , (16)

where G ∼ 𝒩 (0, Id) is a Gaussian vector independent of the observed process 𝜉.
The limit term in (16) involves a double randomness, and 𝑀𝑇 is a measurable
function of 𝜉. We approximate 𝑀𝑇 by

M(𝑛) :=
√

2𝑇

⎡⎣σ2
−(𝑛)/

√︁
Q−(𝑛) 0

0 σ2
+(𝑛)/

√︁
Q+(𝑛)

⎤⎦ . (17)

As the Gaussian vector G is isotropic, we define for a level of confidence 𝛼 the
quantity 𝑞𝛼 by P[|G| ≤ 𝑞𝛼] = 1 − 𝛼. This quantity is easily computed since |G|2
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Index 𝑚 [$] 𝜎− [%] 𝜎+ [%] 𝜇− [%] 𝜇+ [%] 𝑏− [%] 𝑏+ [%] signs
AAPL 119.4 59.86 40.48 43.06 19.66 25.14 11.46 ++
ADBE 46.1 46.79 81.37 13.93 −136.87 2.98 −169.97 +−
AMZN 39.7 38.71 54.57 36.72 36.59 29.23 21.70 ++

C 40.1 118.58 17.35 −37.30 −7.61 −107.60 −9.11 −−
CA 21.5 51.27 25.54 40.35 −10.56 27.21 −13.82 +−

CSCO 16.9 60.48 30.70 156.08 0.05 137.79 −4.67 +−
GOOG 373.8 44.69 33.03 86.76 6.06 76.77 0.60 ++

HP 57.6 66.18 41.09 53.51 −125.14 31.61 −133.58 +−
IBM 115.2 26.04 20.21 17.86 −20.97 14.47 −23.01 +−
JPM 32.5 130.32 41.54 233.41 −2.13 148.48 −10.76 +−
KO 47.8 23.70 17.88 11.75 5.72 8.94 4.12 ++

MCD 51.4 20.23 28.02 29.42 3.54 27.37 −0.39 +−
MON 85.8 52.71 55.80 63.67 −99.35 49.78 −114.92 +−
MSFT 23.2 51.20 25.90 74.67 −6.49 61.56 −9.84 +−
MSI 14.2 66.44 25.99 −7.71 −1.10 −29.79 −4.48 −−
NYT 16.0 78.46 25.85 −7.40 −25.26 −38.18 −28.60 −−
PCG 33.3 127.09 23.29 504.83 4.24 424.06 1.53 ++
PFE 19.1 39.68 20.55 11.92 −7.54 4.05 −9.65 +−
PG 51.9 29.62 20.12 39.25 3.14 34.87 1.11 ++
PM 41.9 45.37 30.81 141.64 −45.60 131.35 −50.35 +−

SBUX 13.0 71.88 46.51 49.37 −13.51 23.54 −24.33 +−

Table 5: Estimated parameters in % per year for the GOBM model on the daily
data from January 2005 to November 2009 with the notations given in
Table 1. The last column signs contains the respective signs of 𝑏−, 𝑏+ (a
+− indicates a mean-reversion effect).

follows a 𝜒2 distribution with two degrees of freedom. Our confidence region of
level 𝛼 is the ellipsis

ℛ𝛼 =
{︃[︃
σ−(𝑛)2

σ+(𝑛)2

]︃
+ 𝑞𝛼√

𝑛
M(𝑛)

[︃
cos(𝜃)
sin(𝜃)

]︃ ⃒⃒⃒⃒
⃒ 𝜃 ∈ [0, 2𝜋)

}︃
. (18)

Our rule of decision is then: reject the Null Hypothesis (𝐻0) if the diagonal
line 𝑠 : [0, +∞) ↦→ (𝑠, 𝑠) does not cross ℛ𝛼.

5.2 Numerical simulations
We perform numerical simulations to check the reliability of the estimation of
(𝜎−, 𝜎+, 𝑟) as well the hypothesis test “𝜎+ = 𝜎−”. For this, we simulate 𝑁 = 1000
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𝜎− 𝜎+ 𝜇− 𝜇+ 𝑚

set 1 𝜎+ ≪ 𝜎− 80 %/yr 30 %/yr 0 0 1
set 2 𝜎+ ≈ 𝜎− 50 %/yr 30 %/yr 0 0 1
set 3 𝜎+ = 𝜎− 30 %/yr 30 %/yr 0 0 1

𝑆0 = 1 $

Table 6: Set of yearly parameters used for simulations.

𝜎+ ≪ 𝜎− 𝜎+ ≈ 𝜎− 𝜎+ = 𝜎−

81% 81% 14%

Table 7: Proportion of rejection of the null hypothesis (𝐻0) “𝜎+ = 𝜎−” with a
95% confidence level for the three sets of parameters of Table 6, with 1000
simulations per set.

paths with daily data over five years for the three sets of parameters given in
Table 6. The density of the estimated values of 𝜎−, 𝜎+ and 𝑟 are shown in Figure 1.
The proportion of rejection of the hypothesis test “𝜎+ = 𝜎−” are given in Table 7.
A good agreement is then observed for the parameters 𝜎−, 𝜎+ and the threshold.

The estimation of 𝜇+ and 𝜇−, not shown here, presents a large variance, as
expected, since when 𝜇+ = 𝜇− = 0 the process is only null recurrent. This is
discussed in full details in Lejay & Pigato (2018a).

5.3 Empirical result on the 2005 – 2009 data
As the drift is small, it should not affect this test. Therefore we assume through
all this section that 𝑏− = 𝑏+ = 0.

In Figure 2, we apply this rule to our data. The null hypothesis (𝐻0) “𝜎− = 𝜎+”
is rejected for all the stocks except for PCG, meaning that 𝜎− ̸= 𝜎+ should be
considered for twenty out of twenty-one stocks. The normalized occupation time 𝑂+
for PCG is close to 99 %. This may explain the elongated shape of the associated
confidence region.

In Figure 3, we plot the approximated log-likelihood Log-Lik(𝑖) against 𝑟(𝑖) =
log 𝑚(𝑖) for three stocks. We see that Log-Lik(𝑖) may have one main peak (for
CSCO), two main peaks (for GOOG) or be “flat” as for PCG. A steep peak means
that it is clear where the threshold level should be taken, and the procedure is
more stable. In these cases, 𝜎− is likely to differ from 𝜎+ and leverage effect occurs.
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Figure 1: Density of the estimated values of 𝜎−, 𝜎+ (yearly) and the threshold 𝑚
for the three sets of parameters of Table 6, with 1000 simulations per set.

5.4 Comparison with a non-parametric estimator
Non-parametric estimation assumes nothing on the underlying volatility and drift
coefficients (Kutoyants 2004; Iacus 2008). The Nadaraya-Watson estimator pro-
vides us with such an estimator (Iacus 2008). We then compare graphically our
estimations with the non-parametric estimation of the coefficients of the log-price.
For this, we use the R package sde (Iacus 2008). In Figure 4, we present the results
for the three stocks already used in Figure 3. More figures may be found in Lejay
& Pigato (2017). Most of the stocks seem to exhibit a behavior similar to the one
presented here, with a sharp variation of both the volatility and the drift. Again,
this reinforces the idea that regime switching holds for most of the stocks.
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Figure 2: Confidence regions for (𝜎−, 𝜎+): Each point is the value of the stock
in the (𝜎−, 𝜎+)-plane. Confidence regions at 95 % are the ellipsis in the
(𝜎−, 𝜎+)-plane around the points. Points marked by ⊕ are the ones for
which the Hypothesis 𝜎− = 𝜎+ is not rejected. Points marked by + are
the ones for which this Hypothesis is rejected.

6 Leverage and mean-reversion effects for the S&P
500 stocks

We apply our estimators to the S&P 500 stock prices over the three periods of
five years each: 1/1/2003 – 31/12/2007, 1/1/2008 – 31/12/2012 and 1/1/2013 –
31/12/2017. The second period contains the 2008 financial crisis.

Estimators are thus computed on the three periods for 332 of the stocks out of
the 500, failures being due to the lack of complete data or to stock prices with at
most 5 % of the observations on each side of the estimated threshold. The latter
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Figure 3: The (approximated) log-likelihood Log-Lik(𝑖) given by (13) against
the possible threshold 𝑟(𝑖) = log 𝑚(𝑖) for the stocks CSCO, GOOG and
PCG. The vertical dashed line represents the threshold 𝑟(𝑖) which max-
imizes Log-Lik (𝑖), hence the estimated 𝑟. The horizontal dashed line
represents the value of the log-likelihood of the drifted Brownian motion
(that is 𝜎− = 𝜎+ and 𝑏− = 𝑏+).
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Figure 4: Non-parametric estimation of 𝜎 and 𝑏 for the log-price of the stocks
CSCO, GOOG and PCG with a Nadaraya-Watson estimator. The vertical
dashed line represents the choice of the threshold. The horizontal lines
represent the estimated values of (𝜎−, 𝜎+) (top) and (𝑏−, 𝑏+) (bottom).

exclusion aims at avoiding outliers.
We plot the estimated values of (𝜎−, 𝜎+) and (𝑏−, 𝑏+) in Figure 5.
In the 2008-2012 period, containing the 2008 financial crisis, the stock prices

exhibit higher ratio of 𝜎−/𝜎+, hence stronger leverage effects. For the 2008-2012
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Figure 5: Yearly estimated values of (𝜎−, 𝜎+) and (𝑏−, 𝑏+) on the daily close prices
for the stocks in the S&P 500. The percentages in boxes indicates the
proportions of stocks in each region delimited by the solid gray lines.

period, the hypothesis test “𝜎− = 𝜎+” is rejected for all the stocks. For the
2003-2007 period (resp. 2013-2017), the test is rejected for all but five (resp. six)
stocks.

These findings seem to be consistent with Aït-Sahalia, Fan & Li (2013), which
shows leverage effect in an aggregated form through the correlation between the
VIX (involving the ex-ante volatility) and the log-return of the indices of the S&P
500 for the period 1/1/2004 – 12/12/22007.

Let us now look at the drift coefficient. First, we notice that 𝑏− is almost
always positive, but 𝑏+ can be positive or negative. For the 2008-2012 period,
which contains the 2008 financial crisis, 224 stocks show a mean-reverting behavior
(𝑏− > 0, 𝑏+ < 0) against 140 (resp. 161) for the 2003-2007 period (resp. the 2013-
2017). A possible interpretation of such results is that, on periods not involving
financial crisis, prices tend to increase in time and therefore also the estimated
value of 𝑏+ is positive relatively often. When a crisis occurs, prices oscillate more,
going down as well as up, and thus giving in most cases estimated values of 𝑏+ < 0,
𝑏− > 0. This seems to be consistent with the results of Section 4 and Mota &
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Esquível (2014).
Let us also report here a similar finding of Spierdijk, Bikker & Hoek (2012),

together with one of its economic interpretations given in the same paper: “Our
findings suggest that expected returns diverge away from their long-term value
and converge back to this level relatively quickly during periods of high economic
uncertainty; much faster than in more tranquil periods. When the economic
uncertainty dissolves, expected returns are likely to show a substantial increase
in value during a relatively short time period, which could account for such high
mean-reversion speed. Measures and interventions by financial and government
institutions to restore financial stability may also speed up the adjustment process.”

In Figure 6, we plot a normalized log-threshold by dividing the log-threshold 𝑟 by
the mean log-price (in order to get a normalized value) for one period against the
next one. We observe that this ratio ranges between 0.8 and 1.2 for each stock and
each period. The normalized log-threshold is statistically higher for the 2013-2017
period than for the 2008-2012 period.
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Figure 6: Ratio of the log-threshold 𝑟 over the mean log-price for two consecutive
periods. The solid line is 𝑦 = 𝑥.

These facts seem to indicate than in the crisis period, a stronger leverage effect
is more likely to occur at a lower threshold.

7 Conclusion
Leverage effects in finance have been the subject of a large literature with many
empirical evidences. The geometric oscillating Brownian motion (GOBM) stud-
ied in this article mimics such leverage effect. This model can be interpreted
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as a continuous-time version of the self-exciting threshold autoregressive model
(SETAR).

We have shown its validity on real data and exhibited evidence in favor of leverage
effects. We detect a mean-reverting behavior for most of the stocks in periods of
financial crisis, less so in periods not containing major events, in agreement with
Spierdijk, Bikker & Hoek (2012). Our estimations are consistent with the ones of
M. Esquível and P. Mota based on least squares.

Our model is simple and does not aim at capturing other stylized facts. It could
serve as a basic building brick for more complex models. Our rationale is that the
GOBM is really tractable while offering more flexibility than the Black-Scholes
model:

• The estimation procedure is simple to set up.
• Simulations are easily performed.
• The market is complete.
• Option pricing could be performed through analytic or semi-analytic approach

without relying on Monte Carlo simulations.
In addition, our model and estimation procedure could serve other purposes.

In this model the leverage effect is a consequence of a spatial segmentation in
which the dynamics of the price changes according to a threshold. The same
estimation procedure could also be applied in short time windows in order to detect
sharp changes, hence reflecting temporal changes, as for regime switching models
involving Hidden Markov models.

Another possible application of the GOBM, and more generally of local volatil-
ities with discontinuities, would be to introduce such features in more complex
models. The properties we showed in the present paper and their capability of
reproducing extreme skews in the implied volatility (Pigato 2017) suggest that
such discontinuities could be a tractable way to introduce asymmetries and regime
changes in other models (Decamps, Goovaerts & Schoutens 2006).
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