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Abstract—We present a paradigm and implementation of a
parallel control flow model for algorithmic patterns of two
nested loops; an outer iteration loop and an inner data traversal
loop. It is centered around memory access patterns. Other than
dataflow programming it emphasizes on upholding the sequential
modification order of each data object. As a consequence the
visible side effects on any object can be guaranteed to be identical
to a sequential execution. Thus the set of optimizations that
are performed are compatible with C’s abstract state machine
and compilers could perform them, in principle, automatically
and unobserved. We present two separate implementations of
this model. The first in C++ uses overloading of the operator[]
to instrument the memory accesses. The second in Modular C
uses annotations and code transformations for the two nested
loops. Thereby the code inside the loops may stay as close
as possible to the original code such that optimization of that
code is not impacted unnecessarily. These implementations show
promising results for appropriate benchmarks from polybench
and rodinia.

Index Terms—automatic parallelization, iterative algorithms,
parallel control flow, memory access classification

I. INTRODUCTION AND OVERVIEW

Race conditions are one of the main challenges of automatic
parallelization, and over last decades a lot of effort has been
put into understanding and mastering them, in particular into
their detection in faulty executions, see e.g [1]–[3]. Another
direction of research has been to attempt to provide a race
free task schedule once that a dependency graph is given [4].
Unfortunately, the need to manually specify a dependency
graph can be a burden for the programmer and also defeats
automatic parallelization.

In our opinion, to be closer to current programming practice,
detection of dependencies and thus possible parallelism should
be based on the features that are present in every day’s imper-
ative programming languages. In these, dependency between
program statements are usually not explicit but they are forced
indirectly via data accesses when one statement that reads a
data has to be scheduled after another statement that wrote it.

Therefore parallelization of loops with irregular access
patterns requires a runtime data dependency analysis that is
followed by a tool that ensures that dependencies are enforced.
There are currently mainly two types of tools: speculative and
scheduling based.

Speculative techniques such as LRPD [5] identify the de-
pendencies during the execution of the loop. The loop is
run in parallel as a doall and followed by a test to check
if the computations are correct. If not, a rollback to the
previous correct state is performed and a sequential execution
of the loop is carried out. For certain types of data accesses,
namely affine or nearly affine functions over loop counts,
polyhedral models can be used to provide race-free static
task parallelism [6], and these approaches have also recently
be used successfully to build runtime systems that are able
to rollback execution if access violations occurred [7]. For
programs with low effective parallelism, this can lead to a
significant overhead due to rollback followed by sequential
execution when many conflicts occur between threads.

Scheduling based methods preprocess the loop to compute
a dependency graph at runtime and use this information to do
a parallel scheduling. The Inspector-Executor model [8], [9]
consists of three phases: inspection, scheduling and execution.
First the program is instrumented to explicitly compute a
dependency graph. Then a parallel scheduling of the iterations
is derived, and then the iterations are run in parallel in wave-
fronts, using synchronization between consecutive wavefronts.
August et al. [10] propose a scheduling based method that does
not explicitly compute the dependency graph, but instead over-
laps the inspection and scheduling. A dedicated scheduling
thread dynamically ensures that there is no conflict between
threads, and allows cross invocation parallelism. However this
method still needs an inspector that is run at the beginning of
each iteration. The limitations of these methods are inherent
to the Inspector-Executor model: it needs one inspector per
iteration. In the case of a cyclic dependency between data and
computation of shared addresses the inspector is basically the
whole loop body.

In contrast to that, we will not restrict ourselves to a specific
fine grained access projection model, but instead focus on
certain type of applications, namely those that repeat the
same data access pattern (coined data traversal) over a set of
iterations, Section II. This is a pattern that is found widely in
the field, e.g many iterative algorithms that traverse matrices or
geometric objects fall into that category. Using the assumption
of a constant data access pattern, we detect dependencies and
derive an implicit scheduling at runtime using Ordered Read-



Write Locks (ORWL) during some initial iterations, see [11].
After this instrumentation phase, we do not need to check
any condition or recompute dependencies, thus eliminating the
drawbacks of the Inspector-Executor model.

As a basis for our argumentation, here, we will use C’s
model of side effects on data [12]. C has an abstract state
machine that can be used to describe the effects of any
valid program and compilers are allowed to perform all
optimizations that respect that machine model. Our present
work emphasizes on the fact that our parallelization fully
respects the computation in that machine model. A fine
grained (theoretical) model is presented that guarantees that
all computational results are exactly as they would have been
produced by the originating sequential program, Section III.
Based on [11] we are able to prove that our parallel execution
model is correct, fair and deadlock free.

Being much too fine-grained for practical utilization, we
have to coarsen our model by grouping programming steps into
“meta-steps” and by classifying objects into “meta-objects”,
Section IV. We are able to prove that by doing so the good
properties of our model are maintained, and present two
different strategies that can be used for a memory access
classification.

Our approach has been implemented twice, Section V; first
by using C++ and its ability to overload the operator[]. By
that we are able to dynamically instrument the access pattern
of complex code without having to rely on the program-
mer. A second implementation in Modular C [13] provides
#pragma annotations for a code transformation that shows to
be more efficient, but that still needs manual annotations of
the data accesses. Both implementations are tested with a set
of benchmarks from the polybench and the rodinia collections,
Section VI, and show very satisfying speedups that are close
to the maximum that we could expect.

II. ITERATIONS OVER DATA TRANSVERSALS

In this work we restrict ourselves to a specific framework,
namely programs that are dominated by two levels of loops.

1) An outer loop that we call iteration, e.g, an iteration
over a simulated time or an iterative approximation of
some numerical quantity.

2) One or several inner loops that we call data traversal
tasks or just tasks, e.g loops that visit all elements of a
matrix or that iterate over a geometric domain such as
the facets of a polyhedral object description.

Our main assumption for data accesses is the following:

The data access pattern does not depend on the iteration.

That is, we assume that each outer iteration visits the same
data in the same order as the previous ones, e.g a traversal of
a matrix or of geometry elements would be done in the same
order in each iteration. That does not mean that a task can’t
use the iteration variable for its computation, only that its data
access should not depend on it.

The inner part of a data traversal task t is called a step,
denoted by T t

(i, p), characterized by the triple (i, t, p), where

Listing 1
ANNOTATION OF A DATA TRAVERSAL LOOP OF RODINIA’S hotspot3D

BENCHMARK

for (size_t i = 0; i < numiter; ++i) {
# pragma CMOD insert mctask split
task ∶∶ for(size_t z = 0; z < nz; z++) {
size_t z0 = ... ; size_t z1 = ... ;
/* insert some miraculous data coherence enforcement */

# pragma CMOD insert mctask lvalue = tOut[z]
# pragma CMOD insert mctask rvalue = \

tIn[z], tIn[z0], tIn[z1]
for(size_t y = 0; y < ny; y++) {
size_t y0 = ... ; size_t y1 = ... ;
for(size_t x = 0; x < nx; x++) {
size_t x0 = ... ; size_t x1 = ... ;
/* do the computation */
tOut[z][y][x] = tIn[z][y][x]*cc

+ tIn[z][y0][x]*cn + ... ;
}

}
}
// same data traversal, but inverting roles of tOut and tIn
...

}

i is the actual iteration, t is the task and p is the actual
position in the traversal. That is, we assume that the program
identifies code segments that perform these steps, and that the
information about the current iteration, task and position in
the traversal is available.

Steps are sequenced, that is there is a linear order in which
the steps are executed by the program. This order corresponds
to the lexicographic ordering of the indices (i, t, p).

Listing 1 illustrates what we have in mind here. It shows
an idealized code excerpt of rodinia’s hotspot3D benchmark,
where we use a split directive (pragma) and a special
task ∶∶for construct to identify a data traversal task. A step is
then the entire code inside the {}. It has access to the iteration
variable i and the traversal position z.

Another feature of that implementation is also shown,
namely data accesses are instrumented explicitly by means of
directives that proclaim that the step may modify (lvalue) or
just read (rvalue) a specific data. Evidently, such data access
annotations could be avoided with sufficient compiler support
that would track access to data. But as this implementation
entirely works in source and C does not allow for operator
overloading, this must be left to future enhancements of the
platform.

A. Execution model: loop exchange and parallelism

In general, we suppose that a sequential program P has the
following form:

for (all iterations i)
for (all tasks t)

for (all positions p in T t data traversal) T t(i, p);

Our goal is to improve the performance of P by paral-
lelizing it. The main idea is to automatically perform a loop



exchange. After the exchange the outer loops are in fact over
the positions p of the data traversals and (at least conceptually)
an independent thread is launched for each such position.
Inside such a thread, the iterations are performed over the
individual steps that are all associated to the same position p.

Data races could occur when two inner steps would access
the same data concurrently. Therefore we will have to develop
a mechanism that helps us to detect when one step has to
wait for another one because of such a concurrent access.
As already implicit in the hotspot3D example, our notion
of dependency of steps is not an abstract model of data or
control flow, but directly deduced from access to objects of the
program. It directly follows C’s notion of side effects [12], that
is, of modifications effected to data. Step S1 directly depends
on step S0 if
● S1 is sequenced after S0 and
● S1 reads or writes a data object o that S0 has written.

By that, direct dependency between two steps can never be
induced by only read accesses to a common data.

We transitively close the direct dependency relation to a
partial ordering ℘ the dependency relation on the steps that are
executed by a program. Two steps S0 and S1 are independent
if neither of them depends on the other and if so, they can be
executed concurrently without introducing a race condition.
Observe that two independent steps may be from the same or
different tasks, iterations and traversal positions.

The notions of dependence and independence easily extend
to sets of steps S0 and S1.

B. Parallelizations

Fig. 1 shows an example of the initial section of a direct
dependency graph and different scheduling strategies that
have been applied. In all four examples, lines correspond
to concurrent executions of steps at a given time. Columns
visualize all steps that deal with the same position in their
respective data traversal. For the sake of the example, we
make the simplified assumption that all steps have the same
execution time.
Sequential execution. A sequential scheduling of the graph is
shown in Fig. 1(a). Here, all steps are strictly executed in
iteration and traversal order. The rectangle in the figure shows
the pattern of the steady state, that is the pattern of the graph
that is repeated over and over again until the final iteration.
Horizontal parallel execution is similar to what OpenMP
would do with a for loop that is prefixed with a parallel for
directive. Only here we will guarantee that data dependencies
between steps of the same task will be honored. Fig. 1(b)
shows that our example only allows for a limited horizontal
parallelization that respects dependencies: the small rectangles
inside the steady state visualize the steps from the same task
that can be parallelized.
Vertical parallel execution is illustrated in Fig. 1(c). Here, we
start the steps as early as possible under the constraint to still
execute the steps of the same task and iteration in order.
Vertical and horizontal parallel execution as a combination of
both parallel modes, shows the best available parallelism, see

Fig. 1(d). Here it not only allows to run steps of the same
iteration in parallel (e.g T 1

(0,0) and T 1
(0,1)) but also steps

of the same task but from different iterations, e.g T 0
(0,3) and

T 0
(1,0). Or stated differently, a new iteration of a task may

already start before the previous has completely finished.

III. A FINE GRAINED EXECUTION MODEL

We aim to develop an execution model that is compatible
with C’s abstract machine in a way that the parallelizations that
we propose do not change the observable state of a program.

Observable changes in the states of that abstract machine
occur through so-called side effects. By neglecting IO and
similar external events for the moment, the interesting side
effects in our context are modifications of the data objects
that a program manipulates. Such manipulations occur through
operations (such as assignment = or increment ++) or C library
functions (such as memcpy).

For each object o in an execution of a program the C
standard requires that accesses to o are properly sequenced,
that is, that it can be deduced from the program structure if
● a write operation A on o provides the value for a read

operation B of o;
● two write operation A and B on o are not separated by

another write operation.
Read-only operations in turn are not necessarily expected to be
properly sequenced. E.g the two evaluations of i in a function
call f(i, i) may be executed in any order.

For our context here, we can assume that an access A to
object o is characterized by a triple (i, t, p) for step T t

(i, p),
and, if it is a write access, by the new value that is stored in o
at the end of step T t

(i, p). In particular, we don’t distinguish
if a step T t

(i, p) does several accesses to the same object o
and whether read and write access occur inside the same step.

The modification order M(o) = M0,M1, . . . is the precise
list of changes that are applied to an object o. The access
order L(o) is M(o) together with the read accesses to o, that
is where we insert the read accesses in sequence order between
write accesses:

L(o) =W0,R
0
0,R

1
0, . . . ,W1,R

0
0,R

1
0, . . .

Since we are assuming that memory accesses do not depend
on the iteration, L(o) is of the form

L(o) = L̂(o,0), L̂(o,1), . . .

where L̂(o, x) is a predetermined list (x, t0, p0), (x, t1, p1), . . .
where we textually substitute x by i for each iteration i.

By changing the perspective from data objects to steps,
for each step T t

(i, p) we can now identify the objects o =

o0, o1, . . . that it accesses as well as the list position `(i, t, p, o)
in L̂(o, i) where this access occurs.

A. Fifo execution

Such data access lists can now be used to establish a parallel
execution model for the program steps, that takes care of the
coherence requirements. For each object o we establish a FIFO
data structure F(o) that follows L(o) and for which we define
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(b) horizontal parallelism: if possible steps of the same task are executed
in parallel. On average, 8

6
= 1.3 parallel threads are in the steady state.
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(c) vertical parallelism: task starts executing as soon conflicts
with preceding tasks are resolved. There are 2 parallel threads
in steady state.
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(d) vertical and horizontal parallelism: steps are scheduled with first-fit.
On average, 8

3
= 2.6 parallel threads are in steady state.

Fig. 1. Schedulings of the direct dependency graphs of steps. Arrows represent data dependencies, numbers on the left represent execution times of the steps
in their line. Rectangles illustrate patterns of the steady state.

init, release and acquire operations. They ensure that any
write access is only granted when all previous accesses in
L(o) have been released, and that all read-only accesses that
follow the same write access can be honored concurrently.

Now we can augment each step of the program such that it
is protected from race conditions by acquiring all FIFOs for all
accessed objects and by releasing them thereafter. A protected
step Prot⟪T t

⟫(i, p) (1) acquires all FIFOs of accessed objects
(2) executes T t

(i, p) and (3) releases them thereafter.
Clearly, substituting Prot⟪T t

⟫ for T t for all t in the whole
program does not change its visible side effects: an acquire
operation would only be issued after all previous positions in

L(o) are released, and all operations T t themselves would still
appear in sequence order.

We can now proceed to our final goal, the loop exchange.
A step iteration StepIt⟪T t

⟫ performs the iteration loop

StepIt⟪T t⟫(p) {
for (i in iteration) Prot⟪T t⟫(i,p);

}

Now our parallelized program can be formulated as

for (all tasks t) do parallel
for (all positions p in T t data traversal) do parallel
StepIt⟪T t⟫(p);



Theorem 1: The parallelized program is well defined and
produces the same side effects as the original program.

A proof of this theorem follows from the fact that the depen-
dency relation ℘ is acyclic and from the theory developed for
Ordered Read-Write Locks (ORWL), see [11]. This formalizes
a model for autonomous execution of tasks or processes that
manage their shared resources by means of cyclic FIFOs that
are attached to data resources. Here, the ORWL model can
guarantee correctness, equity and liveness of execution.

IV. COARSENING

Generally for the framework that we described so far, we
are unfortunately not in a coarse grained setting.
● Data traversals can have many steps, exceeding the pos-

sible number of threads for current architectures.
● Prot⟪T t

⟫ introduces runtime overhead for each memory
access.

● Additionally, we also would have to maintain a FIFO for
each data object.

● There is an important overhead to initiate FIFOs for all
objects.

To be useful, we have to coarsen our model with respect to
two aspects. First, we have to ensure that the number of steps
(and thus the number of threads) does not exceed the limits
of existing platforms. Second, we have to avoid that each data
object gives rise to its own FIFO.

A. Groups of steps
To reduce the number of steps, we transform the original

program by grouping steps:
for (i in iteration)
for (t in tasks)
for (group g of positions in T t traversal)
for (p in g) T t(iteration, p);

The easiest strategy to form such groups of positions is to
divide the positions p0, p1, . . . , pr in the traversal into a fixed
amount m of intervals of successive positions. This allows to
rewrite a group g of steps into a “meta-step” MetaStepm⟪T

t
⟫:

for (p in g) T t(i, p);

And thus we can reformulate the program as
for (i in iteration)
for (t in tasks)
for (g of meta-positions in MetaStepm⟪T t⟫ traversal)
MetaStepm⟪T t⟫(i, g);

As a consequence this rewrite of the program fits exactly the
same model as the original program; it consists of an iteration
loop that is nested with data traversal loops such that the data
access pattern does not change with the iterations. The induced
dependency relation ℘m between groups g1 and g2 is given by
the union of all (p1, p2) ∈ g1×g2 such p2 reads data written by
p1. Since by definition of the groups all p1 ∈ g1 come before
all p2 ∈ g2 such a union never induces a cycle.

Lemma 1: The induced dependency relation ℘m between
meta-steps is acyclic.

B. Classes of objects

To bundle the management of FIFOs for several data objects
at a time we partition the set of data elements D into m′

meta-objects C = {ck ⊂D}. Such a classification of objects
into meta-objects gives rise to an induced dependency relation
℘m∣C between meta-steps in a obvious way. We have

Lemma 2: ℘m∣C is an partial order extension of ℘m.
Corollary 1: ℘m∣C is an acyclic, irreflexive and transitive.

We then attribute one FIFO F(c) to each meta-object c ∈ C and
define the protected meta-step analogously as before. Clearly,
the resulting scheduling is more restrictive, but, because of
Corollary 1 its validity is not impacted.

Theorem 2: The parallelized program that is coarsened with
respect to a step grouping of m and an object classifier C is
well defined and produces the same side effects as the original
program.

To assemble the meta-objects we investigated two strategies.

a) Classify groups of contiguous memory accesses in
ranges.: Suppose the main data access is through a vector
V[j] for j = 0, ...,N − 1 and that the access to that vector
is regular such that the progression of the data traversal
corresponds to a linear access to the vector. To classify the
access to V we can then fix a chunk size M and define the meta-
objects Contig(j) as the jth chunk of size M. The advantage
of Contig(.) is that the membership for any data object to
its class is easily computed. Therefore the overhead that is
needed to establish the FIFOs for the meta-steps is relatively
small.

b) Classify random memory access by ownership.: Vec-
tor classification does not work if data access is through lists,
e.g if we do a data traversal over a complicated data structure
or if our access pattern follows some random order. The class
Owner(g) is the set of objects for which g is the first writer
in the sequence.

We may prepare the computation of Owner(g) by first
running several sequential iterations: first we have to observe
the first writer for each object, and then we have to classify
all other accesses with respect to that writer. After this initial
setup of the meta-objects, the remaining iterations can be done
in parallel.

Compared to Contig, Owner classification has a startup that
is is more expensive. On the other hand, no assumption is made
about access order or about a specific organization of the data.

V. IMPLEMENTATIONS

We have implemented the Owner classifier with two dif-
ferent approaches. The first uses C++ and overloading of the
operator[] and the second uses Modular C [13] and #pragma
directives for a source-to-source transformation.

Both build on the EiLck library1 for the FIFO functionality.
EiLck is a standalone library written in Modular C for Linux.

1http://cmod.gforge.inria.fr/eilck.html



Listing 2
PARALLELIZATION OF RODINIA’S hotspot3D BENCHMARK USING OPERATOR OVERLOADING - THE CODE WAS SIMPLIFIED FOR CLARITY (E.G. OMISSION

OF TEMPLATE PARAMETERS).

// encapsulate computation in a separate function
void computeTask(VectorWrapper tOut_w, VectorWrapper tIn_w, ...) {
for(size_t z = 0; z < nz; z++) {
size_t z0 = ... ; size_t z1 = ... ;
for(size_t y = 0; y < ny; y++) {
size_t y0 = ... ; size_t y1 = ... ;
for(size_t x = 0; x < nx; x++) {
size_t x0 = ... ; size_t x1 = ... ;
tOut_w[z][y][x] = tIn_w[z][y][x]*cc + tIn_w[z][y0][x]*cn + ... ;

}
}

}
}
VectorWrapper tOut_w(tOut), tIn_w(tIn); // overload operator[] using a vector wrapper
IterationLoopIdentifier loopId = ...; // identify an iteration loop
for (size_t i = 0; i < numiter; ++i) {
beginLoopIteration(loopId);
threadPool->submit(new TraversalTask(computeTask,tOut_w,tIn_w)); // start task 1
threadPool->submit(new TraversalTask(computeTask,tIn_w,tOut_w)); // start task 2
endLoopIteration(loopId);

}

It implements cyclic access FIFOs on the basis of Linux’
futex system call that efficiently combines atomic access with
a scheduling queue in the system kernel, [14]. All scheduling
of tasks is done implicitly via these FIFOs; EiLck executes
the application without dedicated management threads. EiLck
is compatible with different thread libraries (C11, C++11,
POSIX, OpenMP) and is interfaced to C and C++. It efficiently
avoids overhead for busy waiting if a FIFO access is congested
and provides a minimal run time overhead in case it is not.

A. C++: Operator overloading and explicit thread creation

Besides the use of Eilck, our C++ implementation is based
on standard tools, mainly operator[] and the explicit creation
of threads for the execution of the tasks. operator[] is used to
instrument every single memory access to a set of vectors that
the programmer designates as being shared between steps. In
addition, the programmer also identifies the iteration loop and
registers the data traversal tasks as functions that are executed
in separate C++11 threads.

Then, during execution, data traversals are grouped and
protected automatically. For the grouping of the steps into
meta-steps, each task counts its number of calls to operator[]

and uses this count as an indication of the traversal position.
For the classification of the memory accesses we use a
dynamic std::map to register the owners and then classify each
access according to that owner. A set of FIFOs is constructed
from this, and used in subsequent iterations.

This approach has the advantage that we don’t even have
to identify steps. Any code that supplies sufficient amount of
work can automatically be split by this operator[] approach
into steps and meta-steps, respectively. Listing 2 shows a
complete parallelization of the hotspot3D benchmark using

this implementation. The approach has several disadvantages,
though:
● All meta-steps of a task are executed in the same thread.
● Control operations by operator[] interleave the compu-

tation.
● The operator[] needs a thread local variable for the

position in the traversal.

B. Modular C: pragmas and source-to-source transformation
Listing 3 shows a complete parallelization of the hotspot3D

benchmark using our Modular C implementation. Here we
use two forms of Modular C directives. The first, insert,
is for a construct that precedes some statement or block
and potentially changes its interpretation. The second, amend,
can be used to rewrite an entire code snippet as necessary.
Here, both directives refer to an external script, mctask, that
implements our parallelization.
The main features shown in that example are the following
● An iterate directive replaces the outer iteration loop.
● A split directive prefixes the data traversal.
● A task ∶∶for (or task ∶∶while) loop specifies the data

traversal.
● Data access directives lvalue and rvalue indicate all

memory accesses that could be subject to race conditions.
The iterate directive uses amend to transform the code of

the iteration. It creates two modified copies of the code, one
for an initial instrumentation phase and one for the steady state
iterations. For the first phase, lvalue and rvalue are replaced
by calls to access classification functions, for the second they
are removed such that the steady-state iterations can use the
original code directly.



Listing 3
THE COMPLETE PARALELLIZATION OF RODINIA’S hotspot3D

BENCHMARK. alternate AND duplicate UNROLL THE ITERATION
LOOP FOUR TIMES SUCH THAT FOUR TASKS CAN BE GENERATED.

#pragma CMOD insert mctask groups = 8
#pragma CMOD amend mctask iterate = numiter
/* unroll for more parallelism */
#pragma CMOD amend mctask duplicate = 2
/* unroll to alternate buffers */
#pragma CMOD amend mctask alternate tOut tIn
#pragma CMOD insert mctask split
task ∶∶ for(size_t z = 0; z < nz; z++) {
size_t z0 = ... ; size_t z1 = ... ;
/* insert some miraculous data coherence enforcement */

# pragma CMOD insert mctask lvalue = tOut[z]
# pragma CMOD insert mctask rvalue = \

tIn[z], tIn[z0], tIn[z1]
for(size_t y = 0; y < ny; y++) {
size_t y0 = ... ; size_t y1 = ... ;
for(size_t x = 0; x < nx; x++) {
size_t x0 = ... ; size_t x1 = ... ;
/* do the computation */
tOut[z][y][x] = tIn[z][y][x]*cc

+ tIn[z][y0][x]*cn + ... ;
}

}
}

#pragma CMOD done
#pragma CMOD done
#pragma CMOD done

The split directive together with the task ∶∶for ensures
that the loop is interpreted as a single task. It groups the steps
into meta-steps and ensures that the protection against race
conditions is inserted between them. But in contrast to a steps
directive, see below, it still only launches one thread per task,
and we only will see vertical parallelism if we only use split.

The transformed parallel program can be quite effective
because the inner data traversal is exactly as programmed
originally. In particular, the program maintains the same opti-
mization opportunities, e.g for vectorization. Also, compared
to our C++ version, there is no need for thread local variables.
On the other hand, this implementation here requires that the
structure of the program makes the iteration and data traversal
loops apparent.

Listing 3 also features two other directives that are be quite
useful. With the innermost amend, the alternate directive
implements an automatic duplication that alternates the roles
of tOut and tIn. The next level of amend with a duplicate
directive duplicates its inner part, again, such that at the end we
have four copies of the inner part, giving rise to four different
tasks.

In total we have 4×8 = 32 meta-steps. Here, because of the
split directive, we have one thread for each task, so 4 tasks
in total that are parallelized vertically. To gain also horizontal
parallelism we can replace the split directive by a steps
directive (not shown) with 32 threads in total.

VI. BENCHMARKS

We tested our implementations with those benchmarks
from the polybench and the rodinia series that fulfill our
requirements, and inside a real life application, the SOFA
frameworkwww.sofa-framework.org.

The test platform is a Linux machine with an Intel Xeon
E5-2650 v3 processor, 2 CPU sockets, 10 real cores (and
20 hyperthreaded cores) each. Although we did not expect
much parallelism beyond a speedup factor of 2 or 3, see
below, we chose such a platform with relatively many cores
to avoid an artificial bound on the parallelism. For the C++
implementation, we adapted the code using C++ vectors.

Fig. 2 shows the speedups that we obtained with these
relatively simple tests, once we have reached the steady state.
We compare the original sequential implementation seq to
our implementations using Modular C with split and steps
directives, and C++. Generally, the expected parallelism is
bound by the number of tasks that we can identify in the
benchmark, which in the examples is some small number. But
for some of the tests we unroll the iteration loop (2x or 4x
factor) to increase the number of tasks for more parallelism.

With Modular C, we see that all but one of the bench-
marks achieve worthy speedup factors that range from 1.2
or 1.3 (srad2D), over 1.5 (fdtd), 1.7 (adi and heat3d), 2.2
(hotspot3D), to up to 4 for seidel_2d. Indeed, the latter
parallelizes perfectly with the number of duplicates of the data
traversal that we produce.

Most of these parallelizations are straight forward code an-
notations as we have seen them for the hotspot3D benchmark
above. There is no clear winner between the split and steps
directives; adding more threads is not always an advantage.
The parallelization of srad2D is a little bit more involved than
the others, but when we divide that traversal loop into several
such that we obtain 4, 5 or 7 tasks in total, we observe a
speedup of about 1.3.

Only the nearest neighbor (nn) benchmark from the rodinia
suite detaches from this. It is completely dominated by the IO
for reading the input data.

With the C++ version, most of the tested benchmarks achieve
worthy speedup, too, although lower than with Modular C.
The overhead induced by the overloading and the inhibited
compiler optimizations can seriously impact the performances
(e.g. only 1.1 speedup for heat3d and even a slowdown for
adi). However, a simple unrolling of the iteration allows us
to create more tasks and gives a much better speedup (1.7 for
heat3d with duplicated tasks, and up to 2.9 with 4x unrolling).

The cost of the startup steps is highly dependent on the data
objects considered and the application. With default settings,
the Modular C version uses fine grained data objects (cache
lines) with a cost ranging from 2 to 120 sequential iterations.
This granularity can be manually adapted to reduce this cost.
The C++ version, uses coarser data objects (rows of 2D
matrices) with a cost of 3 sequential iterations for seidel2D,
12 for heat3d, 16 for hotspot3D.

We also tested our C++ implementation on a large scale ap-
plication, the SOFA framework, with interesting performance:



se
q

sp
lit

sp
lit

 r
e
v

st
e
p

s

c+
+

c+
+

 2
x

0

0,5

1

1,5

2

adi

se
q

sp
lit

sp
lit

 r
e
v

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

fdtd

se
q

sp
lit

st
e
p

s

c+
+

c+
+

 2
x

c+
+

 4
x

0

0,5

1

1,5

2

2,5

3

heat3d

se
q

sp
lit

 2
x

st
e
p

s

c+
+

 2
x

c+
+

 4
x

0

0,5

1

1,5

2

2,5

hotspot3D

se
q

sp
lit

0

0,2

0,4

0,6

0,8

1

1,2

nn

se
q

sp
lit

 2
x

sp
lit

 4
x

c+
+

 2
x

c+
+

 4
x

0

1

2

3

4

seidel 2d

se
q

sp
lit

sp
lit

 4

sp
lit

 5

sp
lit

 7

0

0,2

0,4

0,6

0,8

1

1,2

1,4

srad2D

Fig. 2. Speedups of steady state iterations achieved for benchmarks from polybench and rodinia with the Modular C and the C++ implementations.

we were able to maintain the runtime overhead induced by
our parallelization mechanism low enough to get a significant
speedup on a specific test simulation.

VII. CONCLUSION AND OUTLOOK

We have shown that a semi-automatic parallelization tool
for a special class of iterative algorithm can be implemented.
Provided that the data access pattern does not change in the
iteration loop, execution is guaranteed to follow the sequential
modification order for each data. Thereby we can e.g guarantee
that numerical iterations lead to exactly the same results
as sequential execution and that all proofs for convergence
translate directly to the parallel version. We showed that our
implementations leads to satisfying speedups for a variety of
benchmarks.

For the moment our implementations both need intervention
from the programmer. Both need an identification of the
iterations and data traversals. Also, they are limited in their
ability to instrument the memory access. The C++ version has
a certain runtime overhead for the overloaded operator[]. The
Modular C version needs manual annotation of the accesses
and has a high startup cost because of its use of fine grained
data objects. We think that all these shortcomings can be over-
come by implementing the memory access instrumentation
directly in the compiler.

The need of identification could be circumvented by using
a framework such as Apollo [7] that allows to speculate on a
particular pattern, and then to rollback if the expected pattern
was not respected.
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