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Abstract—Container orchestration engines such as Kuber-
netes do not take into account the geographical location of
application replicas when deciding which replica should handle
which request. This makes them ill-suited to act as a general-
purpose fog computing platforms where the proximity between
end users and the replica serving them is essential. We present
proxy-mity, a proximity-aware traffic routing system for
distributed fog computing platforms. It seamlessly integrates in
Kubernetes, and provides very simple control mechanisms to
allow system administrators to address the necessary trade-off
between reducing the user-to-replica latencies and balancing the
load equally across replicas. proxy-mity is very lightweight
and it can reduce average user-to-replica latencies by as much
as 90% while allowing the system administrators to control the
level of load imbalance in their system.

Index Terms—Fog Computing, Proximity-Awareness, Load-
Balancing, Kubernetes.

I. INTRODUCTION

Fog computing extends datacenter-based cloud platforms
with additional resources located in the immediate vicinity of
the end users. By bringing computation where the input data
was produced and the resulting output data will be consumed,
fog computing is expected to support new types of applications
which either require very low network latency to their end
users (e.g., augmented reality applications [1]) or produce
large volumes of data which are relevant only locally (e.g.,
IoT-based data analytics).

Geographical proximity of the computing resources with the
end users makes fog computing platforms very different from
traditional datacenter-based clouds: when cloud platforms aim
to concentrate huge amounts of computing resources in a small
number of data centers, fog computing rather aims to distribute
resources as broadly as possible across some geographical area
so some resources are always located in the immediate vicinity
of every end user’s devices.

A large range of fog computing applications such as fog-
assisted social networks and autonomous driving systems will
need to serve numerous users or devices at the same time.
To maintain proximity, these applications deploy multiple
instances in relevant locations and provide a homogeneous
interface to their users through the use of classical data
partitioning and/or (partial) replication techniques. In this
model, from a functional point of view any interaction with
the application may be addressed to any instance of the

application, but performance-wise it is highly desirable that
interactions are addressed to nearby nodes.

A geo-distributed system such as a fog computing appli-
cation must necessarily choose a suitable trade-off between
resource proximity and load-balancing. A system which would
always route every request to the closest instance may face
severe load imbalance between instances if some users create
more load than others [2]. On the other hand, systems like
Mesos [3], Docker Swarm [4] and Kubernetes [5] implement
location-unaware traffic redirection policies which deliver ex-
cellent load-balancing between application instances but very
suboptimal user-to-resource network latencies.

In this paper we propose proxy-mity, a proximity-aware
request routing plugin for Kubernetes. We chose Kubernetes
as our base system because it matches many requirements for
becoming an excellent fog computing platform: it can exploit
even very limited machines thanks to its usage of lightweight
containers rather than VMs, while remaining highly scalable
and robust in highly dynamic and unstable computing infras-
tructures. Our approach can however easily be adapted to
integrate in other container orchestration systems.
proxy-mity exposes a single easy-to-understand config-

uration parameter α which enables system administrators to
express their desired trade-off between load-balancing and
proximity (defined as a low user-to-instance network latency).
It integrates seamlessly within Kubernetes and introduces very
low overhead. In our evaluations, it can reduce the end-to-
end request latencies by up to 90% while allowing the system
administrators to control the level of load imbalance in their
system.

This paper is organized as follows. In Section II, we discuss
the background and related work. In Section III, we present
the design of proxy-mity, and in Section IV we evaluate
its performance. Finally, in Section V we conclude.

II. RELATED WORK

A. Background

Kubernetes is an open-source container orchestration plat-
form which automates the deployment, scaling and manage-
ment of containerized applications on large-scale computing
infrastructures [5]. Kubernetes deploys every application in-
stance in a Pod, which is a tight group of logically-related con-
tainers running in a single worker node. The containers which
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Fig. 1: Organization of a Kubernetes service.

belong to the same pod expose a single private IP address to
the rest of the Kubernetes system, and they can communicate
with one another using an isolated private network.

Pods are usually not managed directly by the developers.
Rather, application developers are expected to create a De-
ployment Controller which is in charge of the creation and
management of a set of identical pods providing the expected
functionality. A Deployment Controller can dynamically add
and remove pods to/from the set, for example to adjust the
processing capacity according to workload variations or to deal
with end-user mobility.

As illustrated in Figure 1, a set of identical pods can be
made publicly accessible to external end users by creating a
Service which exposes a single stable IP address and acts as
a front end for the entire set of pods.

Although a Kubernetes service is conceptually a single
component, it is implemented in a highly distributed manner.
When an end user sends a request to an application’s service
IP address, this request is routed to one of the application’s
pods following a two-step process.

First step: routing external requests to the Kubernetes
system. A variety of mechanisms such as DNS redirection
and software-defined networking must be used to route the
request to any node belonging to the Kubernetes system. This
means in particular that every node in Kubernetes (which may
or may not contain a pod of the concerned application) can
actually act as a Gateway node between the end users and the
Kubernetes system.

When using Kubernetes as a fog computing platform, we
assume that the fog system is somehow able to route end
user traffic to a nearby gateway node. In our implementation
every fog compute node also acts as a WiFi hotspot to which
end user’s devices may connect to access the system. This
organization naturally routes every request to a Kubernetes
node in a single wireless network hop. Other implementations
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may rely on a wide variety of technologies such as LTE
and SDN to provide the same functionality. Note that every
fog computing platform must necessarily implement such a
mechanism, otherwise it would not be able to provide any
form of network proximity between the end users and the fog
resources serving them.

Second step: internal request routing to one of the appli-
cation’s pods. The request is further routed internally to the
Kubernetes cluster using DNAT (Destination Network Address
Translation) which chooses one of the service pods’ private
IP address as a destination. When the application comprises
more than one pod, Kubernetes load-balances requests equally
between all available pods.

Internal request routing is implemented by a daemon pro-
cess called kube-proxy which runs in every Kubernetes node.
When the Kubernetes master node detects a change in the
set of pods belonging to a service, it sends a request to all
kube-proxy daemons to update their local routing tables. Such
changes may be caused by an explicit action from the system
such as starting or stopping a pod, or by a variety of failure
scenarios.

The kube-proxy daemons are in charge of updating the
kernel-level routing configuration using iptables or IPVS. For
each service’s IP address, kube-proxy creates rules which
load-balance incoming connections among the service pods’
private IP addresses. As shown in Figure 2, network traffic
is addressed toward a Serving node which contains the actual
Serving pod that will process the incoming request.

In the standard Kubernetes implementation, every incoming
connection has an equal probability to be processed by each of
the service pods. This load-balancing strategy is very sensible
in a cluster-based environment where all service pods are
equivalent in terms of their functional and non-functional
properties. However, it clearly does not fit our requirement
of proximity-based routing in the context of a fog computing
platform. The objective of our work is therefore to re-design
the internal network routing in Kubernetes such that every
gateway node creates specific local routes that favorize nearby
pods. In a broadly geo-distributed system such as a fog
computing platform this will significantly decrease the mean
and standard deviation of network latencies experienced by
the end users, thereby providing them with a better and more
predictable user experience.



B. State of the art
Fog computing aims at providing compute, storage and

networking resources that are geographically distributed across
a geographical area such as a building, a neighborhood and
a city [6], [7]. Much like cloud platforms, fog platforms
rely on virtualization techniques to support multi-tenancy and
increase resource utilization. For resource-efficiency reasons,
most fog computing platforms rely on lightweight container
technologies [8] rather than virtual machines, enabling one to
envisage fog computing platforms making use of resources as
limited as Raspberry Pis for example [9], [10].

The main purpose of fog computing is to allow applications
to use resources located in the immediate vicinity of the end
users. This for example enables applications which can offload
parts of their tasks to the fog infrastructure. Optimizing the
trade-off between latency and using the limited edge resources
is relevant for example for video analytics applications [11].
Such applications must carefully control the trade-off between
user-perceived latency and energy consumption [12].

When multiple fog nodes provide equivalent functionality,
it is the task of a load balancer to choose the best available
node which should process each end user request. Puthal et
al. propose a secure and sustainable load balancing technique
which aims to distribute the load to the less-loaded edge data
centers [13]. Similarly, Beraldi et al. propose a cooperative
load balancing technique to distribute the load over different
edge data centers to reduce the blocking probability and the
task overall time [14]. However, these techniques do not aim
to reduce the network latency between the end user and
the fog node serving them. Also, they were evaluated using
simulations only, with no actual system implementation.

Kapsalis et al. propose a fog-aware publish-subscribe sys-
tem which aims to deliver messages to the best possible
node according to a combination of network latency, resource
utilization and battery state [15]. To our best knowledge this
is the only proposed fog system which aims, similarly to
our work, at implementing a trade-off between proximity and
fair load balancing. However, this approach was implemented
and evaluated only in simulation. It is unclear how network
latencies, resource utilization and battery states would be
measured in a real implementation nor how messages would
be routed to their destination without being dispatched by a
single central broker node.

PiCasso is a container orchestration platform that specif-
ically targets edge clouds with a focus on lightness and
platform automation [16]. The developers of PiCasso intend
to develop a service proxy that will redirect user’s request
to the closest node. However, no technical detail is provided.
PiCasso is still under development and not publicly available.

OpenStack++ is a set of OpenStack extensions that enable
the deployment of Cloudlets in an edge computing environ-
ment [17]. However, applications in OpenStack++ are imple-
mented as a single (migratable) VM so requests addressed to
any application always have only a single possible destination.

Fogernetes is an extension of Kubernetes which, similarly
to our work, aims to extend Kubernetes for fog computing

scenarios [18]. Fogernetes and proxy-mity rely on the same
application model based on pods and replication controllers.
However, in Fogernetes, the selection of which pod should
be used to process which request is done manually through
the use of node labels. In contrast, proxy-mity aims to
automate the pod selection to implement any trade-off between
proximity and fair load balancing defined by the platform’s
administrator.

III. SYSTEM DESIGN

proxy-mity1 is a plug-in designed to integrate in a Ku-
bernetes system and implement proximity-aware traffic rout-
ing. It however has very few dependencies with Kubernetes
and may arguably be adapted to work in different platforms.

Similarly to the standard kube-proxy Kubernetes compo-
nent, proxy-mity is deployed in every worker node of
the system. It continuously monitors network latencies with
the other worker nodes using Serf [19], a lightweight imple-
mentation of Vivaldi coordinates [20]. When a proxy-mity
daemon detects a change in the set of pods belonging to any
service, it recomputes a new set of traffic routing rules (with
their weights determining the probability that a request follows
each route) according to preferences expressed by the system
administrator, and injects them in the local Linux kernel using
iptables.

In the next sections we respectively discuss the overall
system architecture, the representation and measurement of
proximity between nodes, the calculation of weights to be
associated with each route, and the injection of new routes
in the local Linux kernel.

A. Architecture

Kubernetes is designed as a set of control loops. It therefore
continuously monitors itself, and takes corrective actions when
the state it observes deviates from the specification of the de-
sired system state. This organization makes it highly dynamic
and robust against a wide range of situations. The master node
maintains a view of the current system state which can be
queried by other components.

As shown in Figure 3a, in unmodified Kubernetes a kube-
proxy daemon is started in every worker node to maintain
its local iptables routes. When a change is detected in the
set of pods belonging to a service (caused by a pod start
or stop operation or by any kind of failure), all kube-proxy
daemons re-inject new routes in their local iptables system.
All kube-proxy daemons inject the same set of rule which
ensures that every pod from the application receives an equal
1/N share of the load (where N is the number of pods of the
application). This ensures excellent load balancing between the
pods. However, in a fog computing scenario where nodes are
broadly geo-distributed, it actually routes significant amounts
of end user requests to pods located far away from them. This
results in unacceptably high mean network latencies, and also
in very high standard deviations.

1https://github.com/alijawadfahs/FOG-aware

https://github.com/alijawadfahs/FOG-aware
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Fig. 3: Architectures of kube-proxy and proxy-mity.

The architecture of proxy-mity, presented in Figure 3b,
is very similar to that of kube-proxy. It receives the same
notifications as kube-proxy upon a change in the set of pods
belonging to a service. However, each kube-proxy daemon
computes a specific set of weights to be attached to each route
according to the measured network latencies. Different worker
nodes therefore compute different sets of rules, and the weights
attached to different routes in each gateway node are explicitly
biased to send more load to nearby nodes.

These sets of rules are recomputed and re-injected every
time a modification is detected in the set of pods which
constitute an application, and also periodically to account for
possible variations in the measured network latencies between
nodes.

B. Measuring proximity

Data center networks often follow very complex topologies
to provide cloud users with many interesting properties such
as excellent bisection bandwidth and resilience toward a
wide range of possible disruptions. They often have excellent
performance which means that the inter-node latencies within
a data-center are usually low enough to be ignored in practice.
Nodes in a data center may be located far from the end users,
but they are very close from each other. This is the reason why
orchestration systems such as Kubernetes that were designed
for data center environments do not make any attempt at
routing end user requests to nearby nodes.

Fig. 4: Accuracy of Vivaldi latency predictions for a newly
joined node in a 12-node cluster.

However, in fog computing environments resources are
physically distributed across some geographical area in order
to provide compute, storage and networking resources in the
immediate vicinity of the end users. Nodes in this case will
be close to the end users, but necessarily far from each other.

There are many ways to represent proximity. For example,
the broad availability of inexpensive GPS receivers makes it
easy to measure the geographical distance between nodes.
However, geographical distance is known to be a poor pre-
dictor for route lengths or latencies in large-scale network
infrastructures [21]. We therefore prefer directly relying on
network latency as the measure of proximity.

To avoid the overhead of periodically measuring N2 pair-
wise latencies between N nodes, proxy-mity relies on
Vivaldi coordinates [20] for modeling the latencies between
nodes. Vivaldi is a distributed, lightweight algorithm to ac-
curately predict the latency between hosts without contacting
them. Using Vivaldi, a node in the cluster can easily compute
the latency with all the nodes by communicating with a few
of them.

We specifically use Serf [19], a mature open-source tool
which maintains cluster membership, detects failures, and
offers a robust implementation of Vivaldi coordinates. Serf
is based on a gossiping protocol where each node periodically
contacts a set of randomly-selected other nodes, measures
latencies to them, and adjusts their Vivaldi coordinates ac-
cordingly. Latency between any pair of nodes is modeled
as the Euclidean distance between their respective Vivaldi
coordinates. The end result is a lightweight and robust system
which can produce accurate predictions of inter-node latencies.

Figure 4 depicts the accuracy of latency predictions pro-
duced by Serf. Immediately after a fresh node joins a 12-node
cluster, its latency predictions are highly inaccurate. However,
the system converges very quickly. Roughly 20 seconds after
startup, the prediction error consistently remains below 20%,
and stabilizes in the order of 10%. In a fog computing system
where latencies between nodes are expected to belong to a
very wide range of values, this level of prediction accuracy is
largely sufficient to distinguish a nearby node from a further
away one.



C. Weight calculation

In Kubernetes, a set of identical pods is called a Deploy-
ment. A Kubernetes service associates a single IP address to
such a set of pods to which incoming requests are distributed.

Consider a deployment Φ composed of N functionally
identical pods:

Φ = {ϕ1, ϕ2, ..., ϕN}

where each ϕ represent one pod in this deployment.
A Kubernetes service essentially implements a map function

which determines the probability that an incoming connection
gets routed to each of these pods. Kubernetes’ kube-proxy
component implements a very simple mapping function:

F (ϕi) = 1/N ∀ϕi ∈ Φ

We can however generalize this formula to any function F
which respects:

F : Φ −→ [0, 1] |
N∑
i=1

F (ϕi) = 1

As previously discussed, a request routing system for fog
computing environments must necessarily implement a trade-
off between proximity and load balancing. A system which
optimizes based on proximity only risks severe load imbal-
ances between pods in case different numbers of requests are
generated in different geographical areas of the system. On
the other hand, balancing the load equally among pods will
result in larger means and standard deviations of the latencies
between the users and the pods serving them.

We address this challenge by proposing two mapping
functions P (which aims for proximity regardless of load
balancing) and L (which aims at load balancing regardless of
proximity). These two functions can be combined in a single
function Fα:

Fα(ϕ) = α.P (ϕ) + (1− α).L(ϕ) (1)

Here α ∈ [0, 1] is a parameter chosen by the system
administrator which represents the desired trade-off between
pure load-balancing (when α = 0) and pure proximity-based
routing (when α = 1).

Function L, which aims to balance the load, is the same as
the original Kubernetes one:

L(ϕi) = 1/N ∀ϕi ∈ Φ

Function P , which aims at maximizing proximity, takes
into account the estimated network latencies between the local
node and all the possible serving nodes in the system. These
latencies are represented by the set L = {l1, l2, ..., lN} where
li represents the network latency to the physical node which
holds pod ϕi. In fact, any function where nodes with lower
latencies are given greater weight than further away nodes may
act as the proximity-maximizing decay function:

P (ϕi) =
fβ(li)∑N
j=1 fβ(lj)

(2)

where fβ(li) is a weight determined from the estimated latency
to every node. We use the secondary parameter β to determine
how aggressive the proximity-oriented function should be to
favorize nearby nodes.

We propose three possible decay functions to determine the
weights fβ(l):

f inverse
β (l) =

1

βl
(3)

f power
β (l) =

1

lβ
(4)

f exponential
β (l) = e−βl (5)

As we will discuss in Section IV, different decay functions
have different levels of aggressiveness in selecting nearby
pods.

The final weight function Fα,β(ϕ) is therefore:

Fα,β(ϕi) = (1− α).
1

N
+ α.

fβ(li)∑N
j=1 fβ(lj)

∀ϕi ∈ Φ (6)

A special case in the computation of weights relates to
fact that the node which computes new weights may also
hold a pod of the concerned application. In this case, the
latency attached to the localhost interface may be as low as
0.3 ms. When applying formulas 3, 4 or 5 this results in giving
the localhost route an extremely high probability compared
to the other pods of the application. To avoid this effect,
we artificially increase the localhost latencies in the weight
calculation by a parameter localrtt that is set to be slightly
lower than the lowest inter-node latencies observed in the
deployed system.

D. Updated routes injection

Once every node in proxy-mity has computed the frac-
tion of requests it should route to every other node, the last
step is to inject the corresponding routes in the Linux kernel
firewall in the form of iptables rules. iptables defines chains
of rules for the treatment of packets where every chain is
associated with a different kind of packet processing. Packets
are processed by sequentially traversing the rules in their
chains.

As illustrated in Figure 5, iptables rules are organized in
five chains. Incoming packets first traverse the PREROUTING
chain, then they get split between two chains. The packets
whose destination IP address is locally available are sent to the
INPUT chain for immediate delivery. Other packets traverse
the FORWARD chain which decides where they should be
sent next. On the other hand, the packets issued from the local
node traverse the OUTPUT chain. Finally, all outgoing packets
traverse the POSTROUTING chain before being actually sent
to the network. Kubernetes implements its internal network
routing system by defining rules in the PREROUTING and
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OUTPUT chains: incoming network packets whose destination
address matches the IP address of a Kubernetes service are
redirected using rules in the PREROUTING towards the load-
balancing chain. On the other hand, the OUTPUT chain
redirects the packets sent to the service by the local node
itself.

As depicted in Figure 6a, every Kubernetes service is actu-
ally implemented as a separate chain which redirects packets
to the respective pods using DNAT. To load-balance incoming
requests among the service pods, each iptables rule i defines a
probability Pi for incoming requests to exit the iptables chain
and get routed to the corresponding pod Podi.

Rules are executed in a predefined sequential order, so
the probabilistic load-balancing system actually implements a
Markov chain, as shown in Figure 6b. Every incoming packet
sent to the service first undergoes rule 1 with a probability
P1 of exiting the chain and of being redirected to Pod1. With
probability 1− P1 the packet continues to the next rule. The
same mechanism is used for all rules in the chain, except the
last one which routes all remaining messages to the last pod
with probability 1. Based on the individual probabilities Pi, an
incoming packet will therefore eventually get routed to Podi
with probability P (Podi):

P (Podi) =



P1 if i = 1

Pi ×
i−1∏
j=1

(1− Pj) if 1 < i < N

N−1∏
j=1

(1− Pj) if i = N

(7)

Injecting a set of weights W = {w1, w2, ..., wN} as com-
puted in Equation 6 for a deployment Φ therefore requires us
to compute the probabilities Pi which should be defined in
the iptables Markov chain such that the resulting probabilities
P (Podi) match the desired weights wi:

Load Balancing Chain
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Fig. 6: Load balancing rules in iptables.

Pi =



w1 if i = 1

wi × 1
i−1∏
j=1

(1−Pj)

if 1 < i < N

1 if i = N

(8)

Upon every detected modification in the set of pods be-
longing to a Kubernetes service, proxy-mity therefore
recomputes the weights wi using Equation 6 in every worker
node of the system based on its estimated latencies to the other
nodes, and converts them into iptables rule probabilities using
Equation 8 before injecting them in the local Linux kernel.
The same process is also applied periodically to account for
possible modifications in the estimated inter-node network
latencies.

We evaluate the performance of these newly applied rules
in the next section.

IV. EVALUATION

A. Experimental setup

We evaluate proxy-mity using an experimental testbed
composed of 12 Raspberry Pi 3 B+ single-board comput-
ers (Rpi’s), as depicted in Figure 7. Despite their obvious
hardware limitations, Raspberry PIs offer excellent perfor-
mance/cost/energy ratios and are well-suited to fog computing
scenarios where the devices’ physical size and energy con-
sumption are important enablers for actual deployment [22],
[23].

All Rpi’s are installed with HypriotOS 1.9.0 Linux dis-
tribution2, Linux 4.4.50 kernel, and Kubernetes v1.9.3. In
this setup, one machine acts as the Kubernetes master node

2https://blog.hypriot.com/downloads/

https://blog.hypriot.com/downloads/
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üs

se
ld

or
f

G
en

ev
a

L
on

do
n

Ly
on

M
ar

se
ill

e

Pa
ri

s

St
ra

sb
ou

rg

E
di

nb
ur

gh

Amsterdam 0.3 14 18 12 20 9 24 40 26 13 19
Brussels 14 0.3 16 14 20 10 14 16 8 24 17

Copenhagen 18 16 0.3 15 30 20 25 35 22 27 31
Düsseldorf 12 14 15 0.3 15 15 25 20 10 22 22

Geneva 20 20 30 15 0.3 18 12 10 36 20 28
London 9 10 20 15 18 0.3 14 38 4 21 10

Lyon 24 14 25 25 12 14 0.3 24 10 16 25
Marseille 40 16 35 20 10 38 24 0.3 25 30 27

Paris 26 8 22 10 36 4 10 25 0.3 12 13
Strasbourg 13 24 27 22 20 21 16 30 12 0.3 30
Edinburgh 19 17 31 22 28 10 25 27 13 30 0.3

TABLE I: Inter-node network latencies (ms).

while the eleven remaining nodes act as worker nodes. These
machines are connected to each other using a dedicated
Gigabit Ethernet switch. Every worker node also acts as a
WiFi hotspot which allows end users and external IoT devices
to connect to a nearby node. Any request addressed by an end-
user device to a Kubernetes service therefore reaches one of
the worker nodes in a single WiFi network hop, before being
further routed via the wired network to one of the service’s
pods using the iptables rules created by proxy-mity.

We create artificial network latencies between every pair
of nodes using the Linux tc command. We use actual mea-
surements of city-to-city network latencies as a representation
of realistic pairwise latencies between geo-distributed nodes.
These pairwise latencies were obtained from the WonderNet-
work3 GeoIP testing solution, and are presented in Table I.
In this configuration, network latencies range from 4 ms to
40 ms and can arguably represent a typical situation for a geo-
distributed fog computing infrastructure.

3https://wondernetwork.com/
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Fig. 8: CPU and Memory Usage For proxy-mity.

B. Performance overhead

The proxy-mity load-balancing system must carry addi-
tional tasks compared to the standard kube-proxy component
of Kubernetes: it must execute Serf on every worker node
(which creates periodic CPU and network activity), recompute
weights and inject updated routes periodically. When the
fog computing platform is composed of limited devices such
as Raspberry PIs it is important to keep this performance
overhead as low as possible.

Figure 8 shows the the total node’s CPU and memory usage
before and after starting proxy-mity on one of the cluster’s
nodes. proxy-mity is configured to check for changes every
10 seconds (this is the default value in our implementation).

Before proxy-mity starts at time 15 s, the monitored
node is already acting as an (idle) Kubernetes worker node.
It uses on average 3% of CPU and 187 MB of memory. After
proxy-mity is started the memory usage grows by only
3 MB and the average CPU usage grows by ≈ 2-4%. We
conclude that the performance overhead, although not totally
negligible, remains sufficiently low not to disturb the good
behavior of worker nodes in their operations.

This low performance overhead also indicates that the
introduction of proxy-mity will not significantly affect the
scalability or fault-tolerance properties of Kubernetes. Besides
the introduction of the very lightweight, scalable and robust
Serf system, proxy-mity does not require a re-organization
of Kubernetes processes, and simply creates iptables rules with
different weights at every node.

C. Service access latency

We first evaluate the effectiveness of proxy-mity
in distributing load according to a given proximity/load-
balancing trade-off α and decay function fβ(l). We deploy
proxy-mity with a Kubernetes service which contains a
small Web server that simply returns the IP address of the
serving pod to every client. The execution time of the service
function itself is extremely short, so any end-to-end latency
measured at the client side accurately represents the network
latency that was experienced by every request.

https://wondernetwork.com/


(a) Deployment with 11 pods located in all the nodes.

(b) Deployment with 5 pods (none of them in the London gateway node).

Fig. 9: Average service access latency.

In every experiment in this section, we issue 1000 HTTP
requests originating from a single node of the system (the
London node), and observe the distribution of latencies expe-
rienced by these requests. The requests address a Kubernetes
service which is deployed either across 11 pods (one in every
worker node of the system), or only 5 pods (with none of
these pods running in the London node). Having all traffic
originating from a single node can be seen as a worst-case
scenario for load-balancing among pods, and therefore allows
us to closely observe the behavior of proxy-mity. The
parameters for this experiment are summarized in Table II.

α {0.1, . . . , 1}
β {0.2, 0.5, 1, 1.5, 2}

fβ(l) {1/βl, 1/lβ , exp(−βl)}

localrtt 3ms

Number of pods (|Φ|) {5, 11}
Transmitted requests/experiment 1000

TABLE II: Evaluation parameters.

Figure 9 shows the average measured end-to-end latency for
various values of α, choices of decay function, and values of
β: Figure 9a shows the results with a deployment of 11 pods,
and Figure 9b shows the results with a deployment of 5 pods.

a) Effect of parameter α: In all presented figures, we
observe that configurations where α = 0 experience high
average latencies. This is due to the fact that requests are
distributed equally among all the pods, so a significant fraction
of requests gets routed over long-latency routes. This is the
default Kubernetes behavior.

When α increases, requests experience much lower laten-
cies, which indicates that the closest pods receive more load
than the others. For example, in the case of {|Φ| = 11, β =
0.5, fβ(l) = exp(−βl)}, the overall average request latency
is 15.7 ms for α = 0 but only 1.09 ms for α = 1 (a 92%
reduction of latency).

The parameter α therefore effectively allows the system
administrator to control the latency/load-balancing trade-off:
low values of α produce equal load balancing whereas high
values of α favorize proximity.

b) Effect of parameter β and the choice of decay func-
tion: All evaluated decay functions achieve similar results
where greater values of α produce lower average service
latencies. However, they differ in their level of aggressiveness.
Unsurprisingly, the exponential function exp(−βl) produces
the fastest decay whereas the other two functions produce
slower decay. The exponential function may therefore be used
in scenarios where we want to strongly skew the request rout-
ing system toward proximity, whereas the other two functions
may be used for implementing less skewed load distribution.

Interestingly, the choice of parameter β does not signifi-
cantly influence the end results, except for the fβ(l) = 1

lβ

decay function. This is due to the fact that the shape of the
chosen decay function matters more than its own parameter.
In future experiments we therefore fix β to a single “medium”
value per decay function.

D. Load distribution

We now focus more closely on the statistical distribution of
request latencies. We execute the same experiment as in the
previous section over a deployment of 11 pods, and measure



Fig. 10: Load distribution as a function of α and f(l).

the number of requests which get routed to each pod (sorted
by their latency to the gateway node).

The experiment results are presented in Figure 10. Each bar
in the figure indicates the number of requests processed by a
pod with the associated latency to the gateway node. We can
see when α = 0 that all the pods receive roughly the same
number of requests regardless of their distance to the gateway
node. The load per pod fluctuates slightly because the routing
system is probabilistic and therefore experiences some amount
of noise.

As the value of α increases, more packets get routed toward
the pods with a lower latency. Finally, with α = 1 the load is
balanced only based on the proximity function, which leads
to extreme skew between nodes (in particular in the case of
f(l) = exp(−l/2), where a single pod receives more than
90% of the total load).

The obvious possible drawback in the extreme case of
α = 1 is that a single pod which processes most of the
incoming traffic might become overloaded as a result of the
load imbalance. Remember however that we are producing
incoming traffic at a single node only. In a setup where traffic
is being generated in multiple locations, we would observe
much less load imbalance between the pods, as we discuss
next.

Fig. 11: Overall system load imbalance as a function of α and
the number of senders.

E. Load (im)balance in the presence of multiple senders

A fog computing platform has very few reasons to deploy
pods in regions where no user is accessing the considered
service. Evaluations where all the traffic originates from a
single sender therefore represent a worst-case scenario in terms
of the load imbalance it creates. A more realistic scenario
where traffic originates from multiple senders in various
regions of the system would arguably experience a much lower
load imbalance.

To study this effect, we simulated a system where a
randomly-chosen subset of the worker nodes act as traffic
senders. All senders issue the same number of requests,
while the other nodes do not send any request at all. Using
Equation 6 with f(l) = exp(−l/2) (where β = 0.5) we
can compute the weights that each sender node would assign
to each of the pods, based on the inter-node latencies from
Table I. In the presence of multiple senders, each pod serves a
large number of requests originating from nearby senders, and
lower numbers of requests originating from senders located
further away. We can therefore add these numbers together to
compute the total load that each of the pods is expected to
receive.

Figure 11 depicts the standard deviation among the pre-
dicted loads per pod, in a scenario where every node holds
a pod of the service and a random subset of k nodes act as
traffic senders.

We observe two interesting phenomena. The first one relates
to the fact that a greater number of senders naturally creates
a better-balanced system. Using one sender among 11 nodes,
with α = 1, the standard deviation among predicted pods’
loads is as high as 25% of the mean load among pods.
When moving to two randomly-chosen senders, this standard
deviation drops to 17% of the mean. The same trend continues
until the scenario where all nodes act as senders: here the
standard deviation drops to a mere 1% of the mean. This
indicates that, although α = 1 requires proxy-mity to
aggressively favorize proximity and low end-to-end request



latencies, geographical distribution of the traffic sources natu-
rally helps to balance the load among pods. The more uniform
the distribution of traffic sources is, the better-balanced the
resulting system will be (without sacrificing the objective of
proximity and low service latencies).

The second phenomenon concerns the relation between α
and the system load imbalance, measured as the standard
deviation between predicted pods’ load. When α = 0 the
predicted load imbalance is obviously 0, as each sender equally
distributes the load it creates between all the pods. When
α = 1 the predicted load imbalance is a function of the
distribution of traffic sources. Interestingly, when α takes
intermediate values between 0 and 1, the load imbalance varies
linearly between these two extremes4. This means that the
criteria for choosing a good value for α can be explained to
system administrators in a precise yet very intuitive manner:
“α linearly controls the system imbalance between 0 when
α = 0 and some value when α = 1 which is determined by
the geographical heterogeneity of the traffic senders”.

V. CONCLUSION

Container orchestration engines such as Kubernetes do not
take the geographical location of service pods into account
when deciding which replica should handle which request.
This makes them ill-suited to act as general-purpose fog
computing platforms where the proximity between end users
and the replica serving them is essential. We presented
proxy-mity, a proximity-aware traffic routing system for
distributed fog computing platforms. It seamlessly integrates
in Kubernetes, and gives very simple mechanisms to allow
system administrators to control the necessary trade-off be-
tween reducing the user-to-replica latencies and balancing the
load equally across replicas. When the pods are geographically
distributed close to the sources of traffic, proxy-mity dras-
tically reduces the end-to-end service access latencies without
creating major system load imbalances.

This work demonstrates that orchestration systems which
were originally designed for cluster-based environments can be
extended to become proximity-aware with no need for major
structural changes. It paves the way toward extending some
of the major orchestration systems to become mainstream,
general-purpose platforms for future fog computing scenarios.
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