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ABLATION STUDY: T

We report experiments to measure the impact in perfor-
mance of the sequence length T in Fig. 1. Precisely, we
selected Mean-2D-Enc (as best model on Vernissage ) and
3D/2D U-Net (as best model on synthetic ) and compute the
f1-score evolution for these two networks varying T from 10
to 450. Both networks behave similarly to the results reported
before: 3D/2D U-Net is consistently better on synthetic data
than Mean-2D-Enc, and consistently worse on the Vernissage
dataset. We observe that the performances of both networks
tend to increase with the sequence length on synthetic data,
though quite slowly for T > 150. However, when the net-
works are transfered to be used on the Vernissage dataset, the
f1-score stops increasing past T = 200 or 250. Moreover, the
variances are sometimes quite higher, which could indicate
a more unstable training process. This validates the choice
of T = 200 for our experiments.

OTHER SYNTHETIC EXAMPLES

Example of generated scenarios in Fig. 2-3-4. Fig. 2 is the
generated scenario used in the paper.
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Fig. 1: Performance obtained on the synthetic and Vernissage
datasets with RGB data. We measure the f1-score with
different values of sequence length T .

(a) Object heat-map (b) Gaze heat-map (c) Mean gaze heat-
map

Fig. 2: Heat-maps from a synthetic scenario generated ran-
domly, with 2 people (N = 2) and 3 objects (M = 3). (a):
the ground truth Object heat-map Ω used for training or
evaluation. (b): a Gaze heat-map randomly chosen among the
sequence. (c): the mean gaze heat-map over the sequence.

(a) Object head-map (b) Gaze heat-map (c) Mean gaze heat-
map

Fig. 3: Heat-maps from a synthetic scenario generated ran-
domly, similar to Fig. 2, but with a different setup: 2 people
(N = 2) and 1 object (M = 1).

(a) Object head-map (b) Gaze heat-map (c) Mean gaze heat-
map

Fig. 4: Heat-maps from a synthetic scenario generated ran-
domly, similar to Fig. 2, but with a different setup: 3 people
(N = 3) and 5 objects (M = 5).

In Fig. 5, the predicted gaze heat-maps Ω̂ for several
learning-based approaches applied on the synthetic scenario
from Fig. 2 are displayed. The architectures Mean-2D-Enc
and Linear Reg. use the average gaze heat-map 1

T

∑T
t=1 Γt as

input, whereas 3D/2D U-Net takes the whole concatenated
sequence Γ1:T . Contrary to the experiments on the Vernissage
dataset, We observe that the 3D/2D U-Net yields an object
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(a) Ω̂ - Mean-2D-Enc (b) Ω̂ - 3D/2D U-Net (c) Ω̂ - Linear Reg.

(d) Obj - Mean-2D-Enc (e) Obj - 3D/2D U-Net (f) Obj - Linear Reg.

Fig. 5: Results of three methods on the synthetic sequence
from Fig. 2 (a), (b), (c): Estimates Ω̂ of the synthetic object
heat-map Ω from Fig. 2a using three different architectures.
(d), (e), (f) : Corresponding objects positions, obtained as the
highest local maxima from Ω̂. Black pixels in (c) indicate
negative values.

heat-map Ω̂ closer to the expected one Ω than the other
models, and lead to a higher precision. This is consistent
with the quantitative results reported in Table I in the main
paper.

ARCHITECTURES

Fig. 6 is an illustration of the convolutional en-
coder/decoder architectures proposed in section III-B of the
main paper.

(a) Mean-2D-Enc

(b) 2D-Enc

(c) 3D-Enc

(d) 3D/2D U-Net

Fig. 6: Proposed convolutional encoder/decoder architectures


