
HAL Id: hal-02056763
https://hal.archives-ouvertes.fr/hal-02056763

Submitted on 4 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models and Algorithms for the Product Pricing with
Single-Minded Customers Requesting Bundles
Víctor Bucarey, Sourour Elloumi, Martine Labbé, Fränk Plein

To cite this version:
Víctor Bucarey, Sourour Elloumi, Martine Labbé, Fränk Plein. Models and Algorithms for the Product
Pricing with Single-Minded Customers Requesting Bundles. Computers and Operations Research,
Elsevier, 2020, �10.1016/j.cor.2020.105139�. �hal-02056763�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195841237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02056763
https://hal.archives-ouvertes.fr

Models and Algorithms for the Product Pricing with
Single-Minded Customers Requesting Bundles

Víctor Bucarey1,2, Sourour Elloumi3,4, Martine Labbé1,2, and Fränk Plein1,2

1Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium.
2Inria Lille-Nord Europe, Villeneuve d’Ascq, France.

{vbucarey, mlabbe, fplein}@ulb.ac.be
3UMA-Ensta ParisTech, Paris, France.

4CEDRIC-Cnam, Paris, France.
sourour.elloumi@ensta-paristech.fr

March 4, 2019

Abstract

We analyze a product pricing problem with single-minded customers, each interested in buying a
bundle of products. The objective is to maximize the total revenue and we assume that supply is
unlimited for all products. We contribute to a missing piece of literature by giving some mathematical
formulations for this single-minded bundle pricing problem. We first present a mixed-integer nonlinear
program with bilinear terms in the objective function and the constraints. By applying classical
linearization techniques, we obtain two different mixed-integer linear programs. We then study the
polyhedral structure of the linear formulations and obtain valid inequalities based on an RLT-like
framework. We develop a Benders decomposition to project strong cuts from the tightest model onto
the lighter models. We conclude this work with extensive numerical experiments to assess the quality
of the mixed-integer linear formulations, as well as the performance of the cutting plane algorithms
and the impact of the preprocessing on computation times.
Keywords: Pricing Problems, Integer Programming Formulations, Benders Decomposition

1 Introduction.
In this article we analyze a problem in product pricing under a model of single-minded customer behavior,
determined by a bundle and a budget. A bundle is a subset of products, that a given customer wants to
purchase, and he is willing to pay at most his budget. The single-mindedness of the client translates into
him purchasing his bundle if and only if the corresponding total price does not exceeds his budget. The
objective is to maximize the total revenue, assuming unlimited supply. This problem is known under
Single-Minded Bundle Pricing Problem (SMBPP).

The SMBPP is a particular problem from the field of product pricing. We consider a reservation price
customer behavior given by the budget, as opposed to a multinomial-logit approach that is often found in
the revenue management literature [1, 9, 15]. However, there is a link between both models exhibited
in [13]. Furthermore, [18] gives an overview of different client behavior models.

Under the model of reservation price, clients behavior is determined by the optimization of a certain
utility function. In [17], maximum and minimum utility functions, as well as a maximum rank utility
function, are introduced. In the SMBPP, clients can be seen to maximize their utility defined by the
difference of their budget minus their bundle price.

When supplies are limited, the notion of envy-free assignment is discussed in [8]. Since we assume
unlimited supply, every assignment is automatically envy-free. In the PhD thesis of [12] several other
aspects of product pricing problems are discussed.

The SMBPP is the problem of pricing individual products statically when customers have a budget
and request a single subset of products. A similar problem is considered in [6], where prices are fixed for

1

subsets of products, instead of individual products. They show that under the assumptions of unlimited
supply, this problem can be solved in polynomial time. On the other hand, [7] show that the SMBPP is
NP-hard, even when bundles have size 2. The authors devise a PTAS from their analysis for some special
cases. It is also shown that the SMBPP is APX-hard in [8] and a 4-approximation algorithm is given
in [2]. Further research was done on the hardness of approximation in [10] improving the best-known
approximation bounds. To the best of our knowledge, most of the literature on the SMBPP is concerned
with complexity and approximation results, see also for instance [4, 12]. This justifies our choice of
contributing to a missing piece of literature by formulating the problem as a mixed-integer linear program
(MILP).

Other problems that have attracted great interest in the literature and that share a similar combinatorial
structure with the SMBPP are combinatorial auctions. Consider [11] and the references therein. Bidders
request a bundle of products and their bids are the maximum price they are willing to pay. The goal of
the auctioneer is however not to price his goods, but rather to determine an envy-free assignment of a
limited supply to bidders in order to maximize his revenue.

The contributions of this work include the introduction of mathematical models for the SMBPP.
In particular, we propose mixed-integer nonlinear and linear formulations. In order to get stronger
formulations, valid inequalities and a polyhedral study are presented. Also, a Benders reformulation is
presented in order to increase the scalability of our formulations.

The structure of the paper is as follows. The problem statement and notation is introduced in
Section 2. In Section 3, we introduce basic notations and give new mixed-integer nonlinear programming
(MINLP) and MILP formulations for the SMBPP. In Section 4, we discuss polyhedral properties of the
MILP formulations. Furthermore, based on an RLT-like approach, we obtain valid inequalities that lead
to a new tighter MILP formulation. Section 5 presents a Benders reformulation of the tightest MILP
formulation. We then discuss stabilization methods in order to accelerate the cutting plane generation
procedure. In Section 6, we present preprocessing methods to decrease the size of the problem. Section 7
summarizes the main computational results obtained. Finally, we present our conclusions and discuss
future work in Section 8.

2 Problem statement.
Let N = {1, . . . , n} be a set of products with unlimited supply and let M = {1, . . . ,m} be a set of clients.

We consider a reservation price model with single-minded customers, i.e., each client j ∈M is entirely
represented by a bundle Sj ⊆ N and a budget bj > 0. The problem information can thus be encoded in a
0-1-matrix S = [Sji]i∈N,j∈M where

Sji :=

{
1, if product i ∈ Sj ,
0, otherwise,

and a vector of positive budgets b. A single-minded client purchases his bundle whenever its total price is
inferior to his budget. The total price of a bundle is given by the sum of the prices for the products that
constitute it.

The single-minded bundle pricing problem (SMBPP) consists of determining prices pi ≥ 0 for each
product i ∈ N , in order to maximize the total revenue obtained by selling bundles to clients. The total
bundle price is denoted by

p(Sj) :=
∑
i∈Sj

pi.

A client purchases his bundle if and only if the total price for the bundle is less than his budget, so when
p(Sj) ≤ bj . The SBMPP which maximizes the total revenue is

max
p≥0

∑
j∈M

Revenuej(p)

where Revenuej(p), is the revenue obtained from client j ∈M , which takes value p(Sj) if p(Sj) ≤ bj and
0 otherwise.

2

1 2

Figure 1: Illustration of bundles.

Example 1. Take for instance the following input data

S =

[
1 1 0
1 0 1

]
b =

(
2 3 4

)
We then need to solve the SMBPP with two products N = {1, 2} and three clients M = {1, 2, 3}.

Furthermore, the bundles can be represented as in Figure 1. A first client desires to purchase both
products and is willing to pay at most 2 price units in total. A second client seeks to purchase product 1
for at most 3 price units, whereas the third client requests product 2 at a budget of 4. For instance, the
single-mindedness of the first client implies that he decides to purchase his bundle, when its total price
p(S1) = p1 + p2 is at most 2. If however, the price of his bundle exceeds his budget, he does not purchase
it.

The optimal solution is obtained by setting p1 = 3 and p2 = 4. Then, client 1 does not purchase, and
clients 2 and 3 purchase, resulting in a total profit of 7.

3 Formulations.
In this section, we first derive a mixed-integer nonlinear program (MINLP) formulation for the SMBPP
involving products of price variables and buying decision variables. Next, we show how price variables
can be bounded and how to linearize the nonlinear terms. We then give two differ- ent mixed-integer
linear program (MILP) formulations obtained by applying linearization in two different ways.

3.1 MINLP formulation.
We start by giving a MINLP formulation that is directly derived from the problem description. We
introduce binary variables xj ∈ {0, 1} for every client’s purchase decision, i.e. xj = 1 if and only if
customer j ∈M purchases his bundle Sj .

max
pi,xj

∑
j∈M

p(Sj)xj (1a)

s.t. xj(p(S
j)− bj) ≤ 0, j ∈M, (1b)

(1− xj)(p(Sj)− bj) ≥ 0, j ∈M, (1c)
pi ≥ 0, i ∈ N, (1d)
xj ∈ {0, 1} , j ∈M. (1e)

Constraints (1b) ensure that if the total bundle price is greater than the budget, p(Sj) > bj , then
client j ∈M cannot purchase, xj = 0. Conversely, Constraints (1c) ensure that xj = 1 if the price is
lower than the budget. Finally, we maximize the total profit given by

∑
j∈M p(Sj)xj .

We would like to conclude this subsection by some remarks:
First, by optimality, Constraints (1c) are always satisfied, because as soon as p(Sj) ≤ bj , it is profitable

to set xj = 1. Our goal is to solve the SMBPP to optimality, we will thus often use the following formulation

3

(NLM) max
pi,xj

∑
j∈M

p(Sj)xj (2a)

s.t. (1b), (1d), (1e).

In a feasible solution of this formulation, a client is not forced to purchase his bundle when p
(
Sj
)
≤ bj .

Nonetheless, an optimal solution of the relaxed formulation has the same value as an optimal solution of
the complete formulation.

Second, again by optimality, variables xj always take a binary value even when (NLM) is solved
over [0, 1].

Third, the objective function and constraints of (NLM) are bilinear non-convex. Finally, the problem
is always bounded since the maximum revenue cannot be larger than

∑
j∈M bj . Furthermore, the revenue

corresponding to an optimal solution is at least maxj∈M bj .

3.2 Implicit upper bound on prices.
To linearize terms that are product of continuous variables pi and binary variables xj , we first need an
upper bound on the price variables.

Let us denote by U(pi) the upper bound on variable pi for i ∈ N . Even though, prices pi are not
bounded a priori, it is not hard to observe that we can set

U(pi) := max
j∈M
{bj : i ∈ Sj}.

If we fix pi > U(pi), any client j ∈ M with bundle Sj 3 i cannot purchase. Hence, product i is never
bought. This implies that pi ≤ U(pi) in any optimal solution. We give an example to convince the reader
that these bounds are tight in general.

Example 2. Consider the instance of 1 product and 2 clients given by the following input:

S =
[
1 1

]
b =

(
1 10

)
Both clients want to purchase the same product but with different budgets. It is straightforward to see
that an optimal solution yields a revenue of 10 and is obtained by setting p = 10 = U(p), so that x1 = 0
and x2 = 1.

For a subset of products S ⊆ N , denote by U(S) the upper bound on the total price p(S):=
∑
i∈S pi

of the subset S. As a natural extension, we define U(S) :=
∑
i∈S U(pi).

3.3 Aggregated and disaggregated MILP formulations.
In a first attempt, we linearize the objective function and the constraints of (NLM) by replacing the
products of total bundle price and buying decision using the classical techniques of [14]. To that end,
we introduce new variables rj := p(Sj)xj for all j ∈M and obtain a first MILP formulation direct from
(NLM),

(LM1) max
pi,xj ,rj

∑
j∈M

rj (3a)

s.t. (1d), (1e),

rj ≤ bjxj , j ∈M, (3b)

rj ≤ p(Sj), j ∈M, (3c)

rj ≥ p(Sj)− U(Sj)(1− xj), j ∈M, (3d)
rj ≥ 0, j ∈M. (3e)

Constraints (3b) are the linear version of Constraints (1b). We can omit the additional McCormick
inequalities rj ≤ U(Sj)xj , which are dominated by (3b).

4

After this linearization step, the new variables rj := p
(
Sj
)
xj can be interpreted as Revenuej(p), for

client j ∈M . Furthermore, rj represents an aggregate of products pixj for all i ∈ Sj , hence the name of
aggregated model.

In a second attempt, we can be more precise in our linearization of (NLM) and replace the products
pixj for any i ∈ Sj and j ∈M . Therefore, we introduce variables

sij = pixj j ∈M, i ∈ Sj . (4)

We obtain a disaggregated formulation as opposed to aggregated formulation (LM1).

(LM2) max
pi,xj ,sij

∑
j∈M

∑
i∈Sj

sij (5a)

s.t. (1d), (1e),∑
i∈Sj

sij ≤ bjxj , j ∈M, (5b)

sij ≤ pi, i ∈ Sj , j ∈M, (5c)

sij ≥ pi − U(pi)(1− xj), i ∈ Sj , j ∈M, (5d)

sij ≥ 0, i ∈ Sj , j ∈M. (5e)

We only point out that for j ∈ M and i ∈ Sj , Constraints (5b) imply that sij ≤ bjxj and hence,
sij ≤ U(pi)xj are redundant by definition of U(pi).

4 Polyhedral properties and a new formulation.
In this section, we study the polyhedral properties of (LM1) and (LM2). We then discuss families of valid
inequalities and finally present a stronger formulation for the SBMPP.

4.1 Polyhedral study.
Let us first introduce some notation. Denote by v(·) the optimal value of a given problem. We also
denote (LMi) the linear relaxation of model (LMi), i = 1, 2. We first establish how formulations (LM1)
and (LM2) are related through the following proposition:

Proposition 3. The following inequality holds:

v(LM1) ≤ v(LM1).

Proof. Proof:
Let (p, x, s) be a feasible solution to LM2. Then define rj satisfying

rj =
∑
i∈Sj

sij j ∈M. (6)

It is easy to verify that (p, x, r) is feasible for LM1 with the same objective value. �

We give an example to show that we can find v(LM2) < v(LM1):

Example 4. Consider an instance of 2 products and 2 clients given by

S =

[
1 1
1 0

]
b =

(
10 20

)
.

The optimal solution of (LM1) is obtained by setting x = (1
2 , 1) and p = (20, 0) yielding a revenue of

v(LM1) = 25. The optimal value of (LM2) is v(LM1) = 20. The optimal prices are the same, but the
fractional optimal solution of (LM1) is cut off by constraints s1,1 ≥ p1 − 20(1− x1), s1,1 + s1,2 ≤ 10x1
and the fact that s1,2 ≥ 0.

5

We are also interested in the structure of the convex hull of mixed-integer feasible solutions. We denote
it by P I(LM1) (respectively P I(LM2)) the convex hull of mixed integer solutions to LM1 (respectively
LM2). A detailed polyhedral study is given in [16]. The author has shown the following proposition:

Proposition 5. P I(LM1) and P I(LM2) are full dimension in their relative space. Further, Constraints
(5b), (5c), (5d), and (5e) induce facets of P I(LM2).

4.2 Valid inequalities and a new formulation.
The different formulations we have obtained so far are all based on linearizations of our first MINLP
model (NLM). The definition of U(pi) implies that the relaxations become weaker when products appear
in more bundles. Furthermore, the structure of (NLM) does not link the binary buying decisions of clients
j, k ∈M explicitly, but there is an implicit link through the prices pi for i ∈ Sj ∩Sk. We intend to create
an explicit link using RLT-like valid inequalities:

(p(Sk)− bk)(xk + xj − 1) ≤ 0 j, k ∈M, j 6= k (7)

(p(Sk)− bk)(xk − xj) ≤ 0 j, k ∈M, j 6= k (8)

Proposition 6. Expressions (7) and (8) are valid inequalities.

Proof. Proof: Consider two clients j, k ∈ M , with j 6= k. For client k, we multiply the corresponding
Constraint (1b) by −xj ≤ 0 and Constraint (1c) by 1− xj ≥ 0.

(p(Sk)− bk)(xk − xkxj) ≤ 0

−(p(Sk)− bk)(xj − xkxj) ≤ 0

Summing up the resulting valid inequalities, we obtain Constraint (8) corresponding to clients j and k.
Constraint (8) is obtained similarly, by multiplying Constraint (1b) by −(1− xj) ≤ 0 and Constraint (1c)
by xj ≥ 0. �

To take advantage of this explicit link, let us extend the definition (4) of variables sij to all i ∈ N, j ∈M .
With these additional variables sik, i /∈ Sk, we can then linearize Constraints (7) and (8). This leads to
the following formulation:

(LM3) max
pi,xj ,sij

∑
j∈M

∑
i∈Sj

sij (9a)

s.t. (1d), (1e), (5b),
sij ≤ pi, i ∈ N, j ∈M, (9b)
sij ≤ U(pi)xj , i ∈ N, j ∈M, (9c)
sij ≥ pi − U(pi)(1− xj), i ∈ N, j ∈M, (9d)∑

i∈Sk

(sik + sij − pi) ≤ bk(xk + xj − 1), j, k ∈M, j 6= k, (9e)

∑
i∈Sk

(sik − sij) ≤ bk(xk − xj), j, k ∈M, j 6= k, (9f)

sij ≥ 0, i ∈ N, j ∈M. (9g)

This model is clearly an extension of (LM2). The following proposition states that Constraints (9c)
can be omitted, even for i /∈ Sj .

Proposition 7. Constraints (9c) are redundant in (LM3).

Proof. Proof: In Section 3, we already observed that sij ≤ U(pi)xj is redundant for i ∈ Sj . Further, for
every optimal solution of (LM3) with sij > U(pi)xj , for i /∈ Sj , we can build a new feasible solution with
the same objective function value by setting sij = U(pi)xj for those variables.

6

For a client j0 and a product i0 such that i0 /∈ Sj0 , if si0j0 > U(pi0)xj0 , we build a new solution
with s̃i0j0 = U(pi0)xj0 . We show that this new solution is feasible. First, given that this new solution
decreases the LHS of (9b) and (9e), they are satisfied. Given that s̃i0j0 = U(pi0) ≥ pi0 when xj0 = 1 and
s̃i0j0 = 0 ≥ pi0 − U(pi0) when xj0 = 0, Constraints (9d) are also satisfied. For a fixed client k ∈ M , if
i0 /∈ Sk, Constraint (9f) is trivially satisfied. Otherwise, s̃i0j0 satisfies

s̃i0j0 ≥ bkxj0 ≥ bkxj0 −

∑
i∈Sk

sik − bkxk

− ∑
i∈Sk\{i0}

sij0 ,

where the first inequality comes from the fact that bk ≤ U(pi0) when i0 ∈ Sk and the second inequality is
derived by (5b) and sik ≥ 0. Then, Constraint (9f) is also satisfied. Finally, since i0 /∈ Sj0 , the objective
function does not change and the result follows. �

The new variables sij for i /∈ Sj allow to create a relation to a client k for whom i ∈ Sk by means
of Constraints (9e) and (9f). We have therefore managed to model an explicit link between clients and
the intersection of their bundle. However, (LM3) contains O(NM) variables and O(M2) constraints, as
opposed to the O(N +M) variables and O(M) constraints of (LM1).

5 Benders decomposition.
In this section, we first present a Benders reformulation for (LM3). We then give a cutting plane algorithm
and discuss stabilization methods to accelerate its performance.

5.1 Reformulating (LM3).
As a first step, we rewrite (LM3) by introducing variables rj :=

∑
i∈Sj sij for all j ∈M . The objective

function of (LM3) can then be rewritten as max
∑
j∈M rj . For fixed x, p and r, it remains to solve a

feasibility problem given by Constraints (6), (9b), (9d), (9e) and (9f) in the variables sij , which can be
decomposed by clients j ∈M . We name this problem (SPj).

The dual of this sub-problem for client j, which determines the most violated cut, is given by

(DSPj) min
α
α0
jrj +

∑
i∈N

α1
ijpi −

∑
i∈N

α2
ij [pi − U(pi)(1− xj)]

−
∑

k∈M : k 6=j

α3
jk

[
rk − bk(xk − xj)

]

+
∑

k∈M : k 6=j

α4
jk

bk(xk + xj − 1) +
∑
i∈Sk

pi − rk

 (10)

s.t. α0
j + α1

ij − α2
ij −

∑
k∈M : k 6=j
i∈Sk

α3
kj +

∑
k∈M : k 6=j
i∈Sk

α4
kj ≥ 0 i ∈ Sj (11)

α1
ij − α2

ij −
∑

k∈M : k 6=j
i∈Sk

α3
kj +

∑
k∈M : k 6=j
i∈Sk

α4
kj ≥ 0 i /∈ Sj (12)

α0
j ∈ R, α1

j , α
2
j , α

3
j , α

4 ≥ 0, (13)

where α0
j , α

1
j , α

2
j , α

3
j and α4

j are the dual variables associated with Constraints (6), (9b), (9d), (9e) and
(9f), respectively.

The master problem of the Benders reformulation is

7

(MP) max
∑
j∈M

rj

rj ≤ bjxj j ∈M
α0
jrj +

∑
i∈N

α1
ijpi −

∑
i∈N

α2
ij [pi − U(pi)(1− xj)] (14)

−
∑

k∈M : k 6=j

α3
kj [rk − bk(xk − xj)]

+
∑

k∈M : k 6=j

α4
kj

bk(xk + xj − 1) +
∑
i∈Sk

pi − rk

 ≥ 0 αj extreme ray of QD (15)

pi ≥ 0, rj ≥ 0, xj ∈ {0, 1} i ∈ N, j ∈M

Constraints (15) can be generated using the classical Benders approach. We denote (RMP) to the
relaxed master problem which includes only some of Constraints (15). In a regular iteration, the algorithm
solves the master problem with some feasibility cuts retrieving optimal values x, p, and r. The optimal
value v(RMP) of the problem at every iteration is an upper bound for the original problem. The optimal
solution is introduced in each (DSPj). Each of these problems are upper bounded by 0 (α = 0 is always a
feasible solution). In consequence, for each problem (DSPj) there is either an optimal solution with value
0 or it admits an extreme ray which makes the problem unbounded.

As a consequence, there are no optimality cuts. The procedure will stop if at any iteration, all the
problems (DSPj) have optimal value 0. In that case, the last values of x, p and r are optimal. This
procedure is summarized in Algorithm 1.

Algorithm 1 Benders decomposition algorithm for (LM3)

Require: N,M,S, b
UB := +∞
Set convergence = False
while not convergence do
Solve (RMP) retrieving x, p and r.
Update upper bound with v(RMP).
Set convergence = True
for j ∈M do

Solve (DSPj)
if (DSPj) is unbounded then
Add feasibility cut to (RMP)
Set convergence = False

end if
end for

end while
return x, p, v(RMP)

We use this general scheme to solve the (LM3) to optimality or solving just its LP relaxation, at
the root node of the Branch-and-Bound algorithm. Furthermore, we use this algorithm to improve
weaker formulations. In particular, given that (LM1) is the fastest formulation, with weak LP bound—see
computational results in Section 7.2—we can use the cuts generated by applying the Benders decomposition
to the strongest formulation (LM3) and strengthen the LP bound of (LM1).

5.2 Stabilization methods.
In general, cutting plane algorithms can perform very poorly, mainly, due to two reasons. First, the upper
bound, i.e., the optimal value of the current relaxation, can decrease very slowly. Second, even when the
optimal value is reached the algorithm may continue generating cuts to obtain an optimality certificate.

8

Benders decomposition is not an exception to these problems. In this section, we compare and analyze
two methods: the first one, In-Out stabilization, was proposed by [3]; the second one, equivalent to a
facet separation, was proposed by [5], we name it (CW). In both methods, the separation point used to
generate a new cut lies in the segment linking a point in the relative interior of the feasible domain of
(MP) and the optimal point of the current relaxation. The main goal is to decrease the number of cuts
generated, by obtaining fewer but tighter cuts.

The interior point, denoted by (xin, pin, rin), can be computed as an interior point of the feasible
region of (LM3) and projected into (MP). In algorithm In-Out, the point used in each cut generation
LP is a convex combination of the interior point (xin, pin, rin) and the optimal solution of the relaxed
master problem, denoted by (xout, pout, rout). Let ∆x = xout − xin and define ∆p and ∆r, analogously.
For fixed λ̄ ∈ (0, 1], the separation point used in each sub-problem is then given by (xsep, psep, rsep) =
(xin, pin, rin) + λ̄(∆x,∆p,∆r).

There are two possible outcomes. Either the separation point is feasible, in that case the interior point
is updated, or it is infeasible and a new cut is generated. The method is outlined in Algorithm 2.

Algorithm 2 In-Out stabilization for Benders decomposition
Require: N,M,S, b and λ̄ ∈ (0, 1].
UB := +∞
Compute an interior point (xin, pin, rin).
Set convergence = False
while not convergence do
Solve (RMP) retrieving xout, pout, rout.
Update upper bound with v(RMP).
Compute (xsep, psep, rsep) = (xin, pin, rin) + λ̄[(xout, pout, rout)− (xin, pin, rin)]
for j ∈M do

Solve (DSPj) using (xsep, psep, rsep) as a separation point.
if (DSPj) is unbounded. then
Add feasibility cut to (RMP)

end if
end for
if There is no cuts to add then
Update the interior point (xin, pin, rin) = (xsep, psep, rsep)
Optional: Check feasibility of (xout, pout, rout)

end if
if
∑
j∈M routj −∑j∈M rinj < ε

∑
j∈M rinj then

convergence = True
end if

end while
return (xin, pin, rin) and v(RMP)

In the methodology proposed by [5], the algorithm determines the largest value of λ such that
(xsep, psep, rsep) = (xin, pin, rin) +λ(∆x,∆p,∆r) is feasible for (SPj). With probability 1, this cut defines
a facet of the convex hull of feasible solutions for LM3. The sub-problem for a client j ∈M is stated as
follows:

9

(SP-CWj) max
λ,r̃

λ∑
i∈Sj

sij = rinj + λ∆rj

sij ≤ pini + λ∆pi i ∈ N
sij ≥ pini − U(pi)(1− xinj) + λ(∆pi − U(pi)∆xj) i ∈ N∑
i∈Sk

sij ≥ rink − bk(xink − xinj) + λ[∆rk − bk(∆xk −∆xj)] k ∈M, k 6= j

∑
i∈Sk

sij ≤ bk(xinj + xink − 1) +
∑
i∈Sk

pini − rink + λ[bk(∆xk + ∆xj)

+
∑
i∈Sk

∆pi −∆rk] k ∈M, k 6= j

0 ≤ λ ≤ 1

sij ≥ 0 i ∈ N

Its dual is:

(DSP-CWj) min
α,β

α0rinj +
∑
i∈N

α1
i p
in
i −

∑
i∈N

α2
i [p

in
i − U(pi)(1− xinj)]

−
∑

k∈M : k 6=j

a3k
[
rink − bk(xink − xinj)

]

+
∑

k∈M : k 6=j

a4k

bk(xink + xinj − 1) +
∑
i∈Sk

pini − rink

+ β

s.t. α0 + α1
i − α2

i −
∑

k∈M : k 6=j
i∈Sk

α3
k +

∑
k∈M : k 6=j
i∈Sk

α4
k ≥ 0 i ∈ Sj

α1
i − α2

i −
∑

k∈M : k 6=j
i∈Sk

α3
k +

∑
k∈M : k 6=j
i∈Sk

α4
k ≥ 0 i /∈ Sj

− α0∆rj −
∑
i∈N

α1
i∆pi +

∑
i∈N

α2
i [∆pi + U(pi)∆xj]+∑

k 6=j

α3
k[∆rk − bk(∆xk −∆xj)]

−
∑
k 6=j

α4
k[bk(∆xk + bk∆xj +

∑
i∈Sk

∆pi −∆rk] + β ≥ 1

α0 ∈ R, α1, α2, α3, α4, β ≥ 0,

Given that (SP-CWj) is always feasible (λ = 0 is feasible) and its optimal value bounded by 1, both
Qj and (DSP-CWj) has always finite optimal solutions. If λ = 1, then (xout, pout, rout) is feasible. Cuts
are added whenever the optimal value of (DSP-CWj) is strictly smaller than 1. The new cut has the
same form as in (15).

5.3 Preliminary comparison of In-Out and CW.
We tested the behavior in solving the LP relaxation of (LM3) on a small instance with n = 20 and
m = 40. We compare the traditional Benders decomposition, the In-Out stabilization with parameter
λ̄ ∈ {0.25, 0.5, 0.75} and the CW procedure. We fix a limit of 100 iterations, that is, the relaxed master
problem is solved at most 100 times. To obtain a point in the relative interior, we use the barrier algorithm

10

implemented in CPLEX 12.8 without crossover applied to LM3 and project the point into (MP) by setting
rj =

∑
i∈Sj sij for every client j ∈M .

Given that this problem only has feasibility cuts, only the upper bound is updated. Figure 2 shows
the behavior of the upper bound through the iterations. CW is the procedure that takes fewer iterations
to obtain the optimal solution. The main drawback of the In-Out stabilization is that it takes a lot of
time to certify the optimality. To improve on this aspect, we add a step to check if the outer point is
feasible (step 3 of Algorithm 2).

0 20 40 60 80
Iterations

7800

8000

8200

8400

8600

8800

9000

9200

9400

Ob
je

ct
iv

e
fu

nc
tio

n

Objective Function through the iterations

Traditional
In-Out 0.25
In-Out 0.5
In-Out 0.75
CW

Figure 2: Upper bound through the iterations.

Table 5.3 shows the number of cuts added, the iteration number and the solution time. Clearly, the
CW procedure outperforms all other methods.

Traditional In Out 0.25 In Out 0.5 In Out 0.75 CW
Cuts added 1691 2049 1176 969 526
Iterations 53 90 54 51 30

Solution Time [s] 136.00 225.20 109.83 103.58 54.27

Table 1: Some statistics of the example.

A more complete comparison of In-Out and CW is presented in Section 7.3.

6 Preprocessing.
In this section, we describe some methods that exploit the combinatorial structure of the SMBPP in
order to decrease the problem size.

6.1 Connected components and merging.
We build an undirected graph G where the set of nodes are the clients and there exists an edge between
clients j and k if their bundles have products in common, i.e., Sj ∩ Sk 6= ∅. This graph can be built
in O(NM2) operations. If the graph has more than one connected component, we can decompose the
problem. It is not hard to observe that prices and buying decisions corresponding to products and clients
in different connected components are independent. Connected components can be computed in linear
time in a straightforward way using either breadth-first search or depth-first search.

11

This decomposition also induces a partition in the products as is shown in the following example:

S =

1 0 0 1
0 1 0 0
0 1 1 0

 b =
(
10 50 20 15

)
.

The induced graph is shown in Figure 3. The SMBPP for this instance can be solved by splitting
the problem into two sub-problems: The first considering clients 1 and 4 and product 1, and the second
considering clients 2 and 3, and products 2 and 3.

1

2 3

4
1 ∈ S1 ∩ S4

2, 3 ∈ S2 ∩ S3

Figure 3: Induced graph in the example.

Also, the set of products can be reduced in the following way. Suppose that a subset of products
Ñ ⊆ N appear only together in client bundles. Then those products can be considered as a single product,
with pÑ :=

∑
i∈Ñ pi. For example, in the following instance, matrix S indicates that products 2 and

3 appear together in bundles of clients 1 and 2, then they can be treated as one single product. The
resulting matrix S′ has one row less.

S =

0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
0 0 1 1 0

 S′ =

0 0 1 1 1
1 1 0 0 0
0 0 1 1 0

6.2 Fixing rich clients buying decisions.
Suppose there is one client with a large budget. Then it is reasonable to think that he will be able to buy
his bundle in any optimal solution. The following proposition states one condition on the budgets to
know a priori if a client with high budget is going to buy his bundle.

Proposition 8. If client j ∈M satisfies
∑
k∈M\{j}:Sk∩Sj 6=∅ b

k ≤ bj , then xj = 1 in any optimal solution.

Proof. Proof: Suppose there exists an optimal solution x with xj = 0. If for all k such that Sk ∩ Sj 6= ∅
xk = 0 then by setting xj = 1 and pi = bj a higher value solution is reached and x is not optimal. Let K1

be the set of clients k such that Sk ∩ Sj 6= ∅ and xk = 1. That means that bk ≥∑i∈Sk pi for all k ∈ K1.
Analogously, define K0 as the set of clients k such that Sk ∩ Sj 6= ∅ and xk = 0. Note that K0 6= ∅ under
the assumption xj = 0. Then,

bj >
∑
k∈K1

bk ≥
∑
k∈K1

∑
i∈Sk

pi ≥
∑

i∈∪k∈K1
Sk

pi ≥
∑

i∈∪k∈K1
Sk∩Sj

pi

Then by setting xj = 1, pi = 0 for products i /∈ ∪k∈K1
Sk ∩ Sj and keeping the other prices the

solution obtained is feasible and has a higher revenue, the result follows. �

We call clients satisfying this condition relatively rich clients. As a consequence, when considering
Constraints (1c) for relatively rich clients, we observe that xj = 1 is an implicit equality.

12

Now for each relatively rich client, we can replace the binary variables representing its purchase
decision by constraints that only enforce prices to satisfy their budgets. Let M̃ be the set of relatively
rich clients. For those clients, rj =

∑
i∈Sj pi and sij = pi, then we can rewrite (LM1):

(LM1 − M̃) max
∑
j /∈M̃

rj +
∑
j∈M̃

∑
i∈Sj

pi

s.t. rj ≤ bjxj j /∈ M̃∑
i∈Sj

pi ≤ bj j ∈ M̃

rj ≤
∑
i∈Sj

pi j /∈ M̃

rj ≥
∑
i∈Sj

pi − U(Sj)(1− xj) j /∈ M̃

rj ≥ 0 ∀j /∈ M̃
pi ≥ 0 ∀i ∈ N
xj ∈ {0, 1} j /∈ M̃

We can also reformulate (LM3) but for the sake of shortness we describe this reformulation in
Appendix A.

7 Computational Results.
In this section, we report the computational results of the models and algorithms proposed in this paper.
All experiments have been carried out using CPLEX 12.8 and Python 3.5, in a single thread on a server
with a 3.40Ghz Intel i7 processor and 64 GB of memory.

7.1 Instances.
A SMBPP instance consists of the number n of products and m clients. Each client is encoded by a
positive real representing his budget and a subset of products representing his bundle. One aspect that
seems to play an important role in solution times is the density of the matrix S. This density is defined by

d =

∑
i∈N

∑
j∈M Sji

nm
(16)

.
The size of LM2, in terms of the number of constraints and variables, depends on the size of this

parameter. On the other hand, the size of LM1 and LM3 do not depend on d. The sizes of the different
formulations are summarized in Table 2.

Formulation Variables Constraints
LM1 n+ 2m 3m
LM2 n+m+ dnm m+ 2dnm
LM3 n+m+ nm m+ 3nm+ 2m(m− 1)

Table 2: Number of variables and constraints for each formulation.

In order to test the methods described in this paper, we generate three types of instances.

• Small instances: We generate instances for n ∈ {10, 25, 50} number of products, m ∈
{10, 25, 50, 100, 150} number of clients, and d ∈ {0.2, 0.5, 0.8} density of matrix S. For every
size and density, we generate 10 instances. Each instance was generated using Algorithm 3. We
denote this family by Small(n,m, d). These instances are used to test the performance of (LM1),
(LM2) and (LM3).

13

• Big instances: Instances generated for n ∈ {100, 500} products, and m ∈ {150, 200, 300} clients. For
every size, we generate 10 instances. We denote this family by Big(n,m). These instances are used
to test the performance of the Branch-and-Cut and Cut-and-Branch algorithms. Instances were
generated again by Algorithm 3 using d = 0.5.

• Rich-poor instances: Instances generated with a fixed number m1 ∈ {25, 50} of relatively rich clients
and m2 ∈ {25, 50} other clients. The set of products was fixed to be of size n = 200. We denote
these instances by RP(n,m1,m2). For every size, we generate 10 instances. The procedure to
generate these instances is stated in Algorithm 4 in Appendix B.

Algorithm 3 Generate instances by density
Require: m,n ∈ Z+, d ∈ (0, 1)
Step 1: Create set of clients M = {1, . . . ,m} and products N = {1, . . . , n}.
Step 2: Create Budgets. For j ∈ {1, . . . ,m} bj = U(1, 1000) .
Step 3: For each i ∈ N and j ∈M set Sji = 1 with probability d.
Step 4: For each client with empty bundle, or each product not appearing in any bundle, sample 1
product and client respectively and set Sji = 1.
return N,M,S, b with S with density approximately d.

7.2 Performance of (LM1), (LM2) and (LM3).
For instances in Small(n,m, d), we compute the optimal solutions, the solution time, the LP gap if
optimality is reached, and the number of nodes explored in the Branch-and-Bound algorithm. We set the
time limit to 1 hour.

Amongst the 450 instances in Small(n,m, d), (LM1) can solve 85.33% of the instances, while (LM2)
and (LM3) solve only 74.67% and 74.44% respectively, within the time limit. In Figure 4, we present the
performance profiles for these instances.

10 2 10 1 100 101 102 103

Time to solve the integer problem (s)

0%

20%

40%

60%

80%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time to solve the LP relaxation (s)

0%

20%

40%

60%

80%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1

LP Gap (%)

0%

20%

40%

60%

80%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

101 102 103 104 105 106 107

Number of nodes in the Branch and Bound tree

0%

20%

40%

60%

80%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

LM1
LM2
LM3

Figure 4: Performance profile for (LM1), (LM2) and (LM3) for instances Small(n,m) within a time limit
of one hour.

14

Model (LM1) is the most efficient formulation in terms of solution time despite the fact that (LM1) has
the weakest linear relaxation. One interesting result is despite the theoretical result in Proposition 3, the
improvement in terms of LP gap of (LM2) is insignificant. However, the bound of (LM3) is significantly
tighter. The efficiency of (LM1) came from the small amount of time required to solve its linear relaxation,
which counteracts its weak linear relaxation and the large amount of nodes to explore to get an optimal
solution.

Table 3 shows the percentage of instances solved by each model. Our results show that the most
difficult instances are the ones with medium density d = 0.5. They also show that LM1 and LM3 perform
very well for instances with high density, and LM2 performs better for instances with the matrix S with
low density.

% solved
Model / d 0.2 0.5 0.8 Aggregated

LM1 82.00 80.67 93.33 85.33
LM2 78.00 70.67 75.33 74.67
LM3 74.00 70.00 79.33 74.44

Table 3: Instances solved for LM1, LM2 and LM3 within a time limit of 1 hour.

Table 4 shows the same information disaggregated by instance size. LM1 is the only formulation that
can solve instances with 150 clients and 10 products to optimality within the time limit. LM2 and LM3

are not able to solve any instance with 150 clients. All instances with n ≤ 50 and m ≤ 50 can be solved
by the three formulations. We show the LP gap and solution time for those instances in Tables 5 and 6.
The three formulations have a bigger LP gap as d increases. However, it does not have a proportional
impact on solution times. It seems that the hardest instances are the ones that have medium density
d = 0.5,

d = 0.2 d = 0.5 d = 0.8
n m LM1 LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3

10 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10

10 50 10 10 10 10 10 10 10 10 10
100 10 10 10 10 10 10 10 10 10
150 10 10 10 10 6 5 10 8 10
10 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10

25 50 10 10 10 10 10 10 10 10 10
100 10 7 1 10 0 0 10 5 9
150 0 0 0 0 0 0 10 0 0
10 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10

50 50 10 10 10 10 10 10 10 10 10
100 3 0 0 1 0 0 10 0 0
150 0 0 0 0 0 0 0 0 0

Table 4: Number of instances over 10 solved with LM1, LM2 and LM3 within a time limit of 1 hour
dissagregated.

7.3 Benders Decomposition Performance.
We run a second set of experiments to analyze the behavior of the stabilization methods for the Benders
decomposition. For each instance in Small(n,m, d), we solve the linear relaxation of (LM3). Figure 5
shows performance profiles in terms of solution time, number of cuts added and number of iterations
required to get the optimal solution. The results show that the procedure (CW) is the most efficient for
all three indicators. We also observe that the performance of the In-Out stabilization is very sensitive

15

d = 0.2 d = 0.5 d = 0.8
n m LM1 LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3

10 8.595 4.154 0.453 15.172 11.116 1.054 27.523 26.137 2.508
10 25 18.959 16.127 2.727 35.401 33.095 8.289 38.784 37.068 3.012

50 31.16 29.397 6.02 45.636 43.65 13.229 55.161 53.301 5.664
10 1.059 0.384 0.054 5.436 5.089 2.717 15.696 15.137 4.283

25 25 13.969 10.573 4.057 18.084 17.144 9.246 29.891 29.197 9.291
50 27.201 23.579 13.186 34.495 33.206 21.051 43.912 43.192 17.125
10 0.06 0.05 0.02 0.853 0.791 0.506 6.509 6.305 2.879

50 25 3.63 3.144 1.872 9.723 9.375 6.765 23.898 23.575 14.362
50 16.164 15.12 11.711 24.388 23.935 18.845 36.587 36.23 23.578

Table 5: LP gap (%) for small instances.

d = 0.2 d = 0.5 d = 0.8
n m LM1 LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3

10 0.016 0.016 0.037 0.017 0.025 0.057 0.019 0.045 0.063
10 25 0.028 0.036 0.221 0.046 0.114 0.464 0.05 0.122 0.366

50 0.108 0.149 2.306 0.269 0.761 6.576 0.237 0.826 3.749
10 0.01 0.015 0.063 0.018 0.045 0.144 0.021 0.092 0.138

25 25 0.052 0.078 0.945 0.08 0.234 2.097 0.079 0.437 1.408
50 0.503 1.392 34.345 1.692 11.188 79.31 0.681 11.988 41.958
10 0.01 0.022 0.116 0.015 0.055 0.215 0.017 0.118 0.24

50 25 0.044 0.122 3.235 0.093 0.615 6.797 0.108 1.47 6.972
50 1.848 8.43 328.971 3.21 52.053 452.955 1.272 62.464 205.513

Table 6: Solution time for small instances in seconds.

to the parameter λ selected. Furthermore, there is no clear dominance in efficiency between the In-out
stabilization and the traditional Benders implementation.

In order to improve the performance and scalability of (LM1), we can generate valid cuts obtained by
the Benders Decomposition of (LM3). The above results suggest that we can improve the gap of (LM1)
by using very few cuts generated by (CW).

7.4 Branch and cut, beating (LM1).
In order to scale-up our models, we implement a cut generation algorithm with cuts coming from the
Benders decomposition of (LM3). These cuts are added to (LM1). We tested two implementations. First,
we only generate cuts in the root node of the Branch-and-Bound tree. This implementation is named Cut
& Branch. A second implementation consider adding cuts in the whole tree, each a fixed number of nodes
explored. This implementation is named Branch & Cut. Since only few cuts are necessary to improve the
LP gap, we limit the number of cuts added. In this experiment, we set the maximum number of cuts to
nm. In the Branch-and-Cut scheme we add cuts each 1000 nodes of the Branch-and-Bound tree.

For each instance in Big(n,m), we solve the Cut & Branch, Branch & Cut and (LM1) and compare
the solution times, limited to 3 hours, and the MIPGAP returned by CPLEX. Figure 6 shows the results
separated by cases when n = 100 and n = 500.

16

102 103 104

Number of cuts

0%

20%

40%

60%

80%

100%
%

 o
f i

ns
ta

nc
es

 so
lv

ed

101 102

Number of iterations

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

100 101 102 103

Solution time (s)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Traditional
In-Out 0.25
In-Out 0.5
In-Out 0.75
CW

Figure 5: Performance of different implementations of Benders decomposition solving the linear relaxation
of (LM3)

160 180 200 220 240 260 280 300
|M|: Number of clients

0.2

0.4

0.6

0.8

M
ip

 G
ap

Gap after 3 hours with |N| = 100

160 180 200 220 240 260 280 300
|M|: Number of clients

M
ip

 G
ap

Gap after 3 hours with |N| = 500

Branch and Cut
LM1
Cut and Branch

Figure 6: Gap after 3 hours in LM1, and the different Branch and Cut implementations.

The Branch & Cut implementation is the one with the worst performance. On the other hand, the
Cut & Branch implementation can decrease the MIPGAP in the biggest instances. In instances with
n = 500 and m = 300 this implementation reduces by 4% the MIPGAP. One possible improvement is to
test using an small limit in the amount of cuts added in our branch-and-cut implementations.

7.5 Impact of preprocessing.
Our fourth set of experiments consists in measuring the improvement due to preprocessing for each
instance in RP(N,M1,M2). To do so, we measure the solution time with and without preprocessing for
(LM1), and the Cut-and-Branch and Branch-and-Cut algorithms. In order to compute the improvement

17

we use the Improvement factor

Solution Time without Preprocessing
Solution Time with Preprocessing

.

Figure 7 shows the impact of preprocessing for each size of instances. Branch-and-Cut and Cut-and-
Branch algorithms were the ones with higher impact in terms of solution time. This impact increases as
the instance size increases. For (LM1) this preprocessing is negligible in small instances. This is due to
the fact that the time spent in preprocessing is similar to the time spent in solving the whole problem.

(25,25) (25,50) (50,25) (50,50)
Family size (|M1|, |M2|)

0

1

2

3

4

5

6

7

Im
pr

ov
em

en
t f

ac
to

r

Impact of Preprocessing in Solution Times

LM1
Branch and Cut
Cut and Branch

Figure 7: Improvement in solution times for (LM1), Branch-and-Cut and Cut-and-Branch.

8 Concluding Remarks
In this paper, we have presented three novel MILP formulations for the single-minded bundle pricing
problem. After obtaining an mixed-integer non-linear model we derive models (LM1) and (LM2) by
different linearizations. A stronger model, (LM3), is obtained by adding RLT-like valid inequalities, that
significantly strengthen the gap of the LP relaxation. Some polyhedral results are shown and supported
by computational results.

The main bottleneck, at this time, is solving the tighter but significantly heavier LP relaxation in
large instances. Here we have studied a Benders Decomposition approach to scale-up our models with
different stabilization methods in Branch-and-Cut and Cut-and-Branch schemes. The latter approach
generates an improvement of 4% in cases tested in this paper. We believe an improvement can still be
obtained by tuning the number of cuts generated.

Finally, we think that, given the combinatorial structure of this problem, some heuristics can be used
to improve the optimality gap.

Acknowledgments
Victor Bucarey and Martine Labbé have been partially supported by the Fonds de la Recherche Scientifique -
FNRS under Grant(s) no PDR T0098.18
Fränk Plein has been supported by his F.R.S.-FNRS research fellowship.
We would also like to thank Domenico Salvagnin for his valuable comments and discussion about this
work.

18

A (LM3) reformulation for Rich - Poor instances

(LM3 − M̃) max
∑
j /∈M̃

∑
i∈Sj

sij +
∑
j∈M̃

∑
i∈Sj

pi

s.t. rj =
∑
i∈Sj

sij j /∈ M̃
∑
i∈Sj

sij ≤ bjxj j /∈ M̃
∑
i∈Sj

pi ≤ bj j ∈ M̃

sij ≤ pi i ∈ N, j /∈ M̃
sij ≥ pi − U(pi)(1− xj) i ∈ N, j /∈ M̃∑
i∈Sk

sij ≥ rk − bk(xk − xj) j, k /∈ M̃, j 6= k

∑
i∈Sk

sij ≤ bk(xk + xj − 1) +
∑
i∈Sk

pi − rk j, k /∈ M̃, j 6= k

sij ≥ 0 i ∈ N, j ∈M
pi ≥ 0 i ∈ N
xj ∈ {0, 1} j ∈M

B Generating Rich - Poor instances
Given positive integers n,m1,m2, such that n > m1, the algorithm returns a set of clients, bundles,
budgets and n products such that there exist m1 relative rich clients and m2 other clients.

Algorithm 4 Generate relative rich - poor instances
Require: m1,m2, n
Step 1: Create set of clients M = {1, . . . ,m1,m1 + 1, . . . ,m1 +m2} and products N = {1, . . . , n}
Step 2: Create Budgets. For j ∈ {1, . . . ,m1} bj = U(1000, 5000) . For j ∈ {m1 + 1, . . . ,m1 + m2}
generate bj = U(10, 1000).
Step 3: Partition the set of products in m1 components. Each disjoint subset is allocated to one of the
m1 first clients.
Step 4: Generate random bundles for the rest of the clients.
Step 5: For each of the first m1 clients check if the condition is satisfied. If it is not the case, randomly
either reduce the bundles of clients that intersect their bundles, or decrease their budget.
return N,M,S, b with exactly m1 relative rich clients.

References
[1] Goker Aydin and Jennifer K Ryan. “Product line selection and pricing under the multinomial logit

choice model.” In: Proceedings of the 2000 MSOM conference. Citeseer. 2000.

[2] Maria-Florina Balcan and Avrim Blum. “Approximation algorithms and online mechanisms for
item pricing.” en. In: Proceedings of the 7th ACM conference on Electronic commerce - EC ’06.
Ann Arbor, Michigan, USA: ACM Press, 2006, pp. 29–35. doi: 10.1145/1134707.1134711. url:
http://portal.acm.org/citation.cfm?doid=1134707.1134711.

[3] Walid Ben-Ameur and José Neto. “Acceleration of cutting-plane and column generation algorithms:
Applications to network design.” In: Networks: An International Journal 49.1 (2007), pp. 3–17.

19

https://doi.org/10.1145/1134707.1134711
http://portal.acm.org/citation.cfm?doid=1134707.1134711

[4] Patrick Briest and Piotr Krysta. “Single-minded unlimited supply pricing on sparse instances.” In:
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. Society for
Industrial and Applied Mathematics. 2006, pp. 1093–1102.

[5] Michele Conforti and Laurence A Wolsey. “Facet separation with one linear program.” In: Mathe-
matical Programming (2018), pp. 1–20.

[6] Amos Fiat and Amiram Wingarten. “Envy, Multi Envy, and Revenue Maximization.” In: Sept.
2009. doi: 10.1007/978-3-642-10841-9_48.

[7] Alexander Grigoriev, Joyce van Loon, Maxim Sviridenko, Marc Uetz, and Tjark Vredeveld. “Optimal
bundle pricing with monotonicity constraint.” In: Operations research letters 36.5 (2008), pp. 609–
614.

[8] Venkatesan Guruswami, Jason D Hartline, Anna R Karlin, David Kempe, Claire Kenyon, and
Frank McSherry. “On profit-maximizing envy-free pricing.” In: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics.
2005, pp. 1164–1173.

[9] Ward Hanson and Kipp Martin. “Optimizing multinomial logit profit functions.” In: Management
Science 42.7 (1996), pp. 992–1003.

[10] Rohit Khandekar, Tracy Kimbrel, Konstantin Makarychev, and Maxim Sviridenko. “On hardness of
pricing items for single-minded bidders.” In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Springer, 2009, pp. 202–216.

[11] John O Ledyard. “Optimal combinatoric auctions with single-minded bidders.” In: Proceedings of
the 8th ACM conference on Electronic commerce. ACM. 2007, pp. 237–242.

[12] Joyce van Loon. Algorithmic Pricing. Universitaire Pers Maastricht, 2009.

[13] Stefan Mayer and Jochen Gönsch. “Consumer choice modelling in product line pricing: reservation
prices and discrete choice theory.” In: Operations Research Proceedings 2011. Springer, 2012, pp. 547–
552.

[14] Garth P McCormick. “Computability of global solutions to factorable nonconvex programs: Part
I—Convex underestimating problems.” In: Mathematical programming 10.1 (1976), pp. 147–175.

[15] Margaret P Pierson, Gad Allon, and Awi Federgruen. “Price Competition Under Mixed Multinomial
Logit Demand Functions.” In: Management Science 59 (2013), p. 8.

[16] Fränk Plein. “Analysis of a Problem in Product Pricing, Mathematics.” en. MA thesis. Brussels:
Université Libre de Bruxelles, 2017. url: http://hdl.handle.net/2013/ULB- DIPOT:oai:
dipot.ulb.ac.be:2013/260879 (visited on 01/07/2018).

[17] Paat Rusmevichientong, Benjamin Van Roy, and Peter W Glynn. “A nonparametric approach to
multiproduct pricing.” In: Operations Research 54.1 (2006), pp. 82–98.

[18] Kalyan T Talluri and Garrett J Van Ryzin. The theory and practice of revenue management. Vol. 68.
Springer Science & Business Media, 2006.

20

https://doi.org/10.1007/978-3-642-10841-9_48
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/260879
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/260879

	Introduction.
	Problem statement.
	Formulations.
	MINLP formulation.
	Implicit upper bound on prices.
	Aggregated and disaggregated MILP formulations.

	Polyhedral properties and a new formulation.
	Polyhedral study.
	Valid inequalities and a new formulation.

	Benders decomposition.
	Reformulating (LM3).
	Stabilization methods.
	Preliminary comparison of In-Out and CW.

	Preprocessing.
	Connected components and merging.
	Fixing rich clients buying decisions.

	Computational Results.
	Instances.
	Performance of (LM1), (LM2) and (LM3).
	Benders Decomposition Performance.
	Branch and cut, beating (LM1).
	Impact of preprocessing.

	Concluding Remarks
	(LM3) reformulation for Rich - Poor instances
	Generating Rich - Poor instances

