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Abstract

Atomic registers are certainly the most basic objects offmating science. Their implementation on
top of ann-process asynchronous message-passing system has dezéoteof attention. It has been
shown thatt < n/2 (wheret is the maximal number of processes that may crash) is a reegessd
sufficient requirement to build an atomic register on top ofash-prone asynchronous message-passing
system. Considering such a context, this paper presentgaritlam which implements a single-writer
multi-reader atomic register with four message types anig where no message needs to carry control
information in addition to its type. Hence, two bits are stiéint to capture all the control information
carried by all the implementation messages. Moreover, thesages of two types need to carry a data
value while the messages of the two other types carry no \alaé. As far as we know, this algorithm
is the first with such an optimality property on the size oftconinformation carried by messages. It is
also particularly efficient from a time complexity point déw.

Keywords: Asynchronous message-passing system, Atomic read-wegtster, Message type, Pro-
cess crash failure, Sequence number, Upper bound.



1 Introduction

Since Sumer time [9], and —much later— Turing’s machine tape [20], readbhbijiéets are certainly the most
basic communication objects. Such an object, usually callediater, provides its users (processes) with a
write operation which defines the new value of the register, and a readtimmewhich returns the value of
the register. When considering sequential computing, registers arersetiin the sense that they allow to
solve any problem that can be solved [20].

Register in message-passing systemin a message-passing system, the computing entities communicate
only by sending and receiving messages transmitted through a communicegttiesria Hence, in such a
system, a register is not a communication object given for free, but cdaestacommunication abstraction
which must be built with the help of the underlying communication network and tted tnemories of the
processes.

Several types of registers can be defined according to which pescass allowed to read or write the
register, and the quality (semantics) of the value returned by each reeatiop. We consider here registers
which are single-writer multi-reader (SWMR), and atomic. Atomicity means tha¢dah read or write
operation appears as if it had been executed instantaneously at a siitglefghe time line, between its
start event and its end event, (b) no two operations appear at the samefpthe time line, and (c) a
read returns the value written by the closest preceding write operatidhganitial value of the register if
there is no preceding write) [10]. Algorithms building multi-writer multi-readeMMR) atomic registers
from single-writer single-reader (SWSR) registers with a weaker sersgséide or regular registers) have
been introduced by L. Lamport in [10, 11] (such algorithms are destiibseveral papers and textbooks,
e.g., [4,12, 18, 21)).

Many distributed algorithms have been proposed, which build a registerpoof ta message-passing
system, be it failure-free or failure-prone. In the failure-prone cttse addressed failure models are the
process crash failure model, or the Byzantine process failure moegltfsetextbooks [4, 12, 16, 17]). The
most famous of these algorithms was proposed by H. Attiya, A. Bar-NayDaDolev in [3]. This algorithm,
which is usually called ABD according to the names of its authors, considenspaocess asynchronous
system in which up te < n/2 processes may crash (it is also shown in [3] that n/2 is an upper bound
of the number of process crashes which can be tolerated). This simpldegzoht algorithm, relies on (a)
quorums [22], and (b) a simple broadcast/reply communication pattern. A®B this pattern once in a
write operation, and twice in a read operation implementing an SWMR registerr(iaf presentations of
ABD can be found in [2, 19]).

Content of the paper ABD and its successors (e.g., [1, 15, 22]) associate an increasingrssginumber
with each value that is written. This allows to easily identify each written valuantdwed with the use
of majority quorums, this value identification allows each read invocation torretwelue that satisfies the
atomicity property (intuitively, a read always returns the “last” written value)

Hence, from a communication point of view, in addition to the number of messaggried to implement
a read or a write operation, important issues are the number of differessiage types, and the size of the
control information that each of them has to carry. As sequence nurmoeesse according to the number
of write invocations, this number is not bounded, and the size of a messatgmthies a sequence number
can become arbitrarily large.

A way to overcome this drawback consists in finding a modulo-based implementésequence num-
bers [8], which can be used to implement read/write registers. Considarsgpproach, one of the algo-
rithms presented in [3] uses messages that carry control informatiorevgizesis upper bounded I6y(n°)
bits (wheren is the total number of processes). The algorithm presented in [1] rédhisesize toO(n?)
bits. Hence the natural questiortiéw many bits of control information, a message has to carry, when one
wants to implement an atomic read/write register?

This is the question that gave rise to this paper, which shows that it is possibliplement an SWMR



atomic register with four types of message carrying no control informatiodditian to their type. Hence,
the result: messages carrying only two bits of control information are sufficient tdement an SWMR
atomic register in the presence of asynchrony and up to n/2 unexpected process crashe&nother

important property of the proposed algorithm lies in its time complexity, namely, @ilard-free context
and assuming a bounl on message transfer delays, a write operation requires at2foine units, and
a read operation requires at mdgt time units.

Roadmap The paper is made up of 5 sections. The computing model and the notion wait aegister
are presented in Section 2. The algorithm building an SWMR atomic registerewtessages carry only two
bits of control information (their type), in an asynchronous messaggrgasystem prone to any minority
of process crashes is presented in Section 3. Its proof appeargionSecFinally, Section 5 concludes the
paper.

2 Computation Model and Atomic Read/Write Register
2.1 Computation model

Processes The computing model is composed of a sehafequential processes denojgd ..., p,. Each
process is asynchronous which means that it proceeds at its own sgeeld can be arbitrary and remains
always unknown to the other processes.

A process may halt prematurely (crash failure), but executes coritclhcal algorithm until it possibly
crashes. The model parametglenotes the maximal number of processes that may crash in a run. Agroces
that crashes in a run is said to failty. Otherwise, it iscorrector non-faulty Given a runC denotes the set
of correct processes.

Communication Each pair of processes communicate by sending and receiving metzageh two uni-
directional channels, one in each direction. Hence, the communicationnkésaacomplete network: any
procesy; can directly send a message to any progess process; invokes the operationsénd TYPE(m)
to p;” to send top; the messager, whose type igYPE. The operation feceive TYPE() from p;” allows p;
to receive fromp; a message whose typeTigPE.

Each channel is reliable (no loss, corruption, nor creation of messamesecessarily first-in/first-out,
and asynchronous (while the transit time of each message is finite, thergpp@obound on message transit
times).

Let us notice that, due to process and message asynchrony, nospeaceknow if an other process
crashed or is only very slow.

Notation In the following, the previous computation model is denafetiMP,, ;)] (unconstrainedrash
Asynchronous\essagePassing).

2.2 Atomic read/write register

Definition A concurrent objects an object that can be accessed by several processes (possilta-simu
neously). An SWMRatomicregister (sayR £'G) is a concurrent object which provides exactly one process
(called the writer) with an operation denotéd”G.write(), and all processes with an operation denoted
REG.read(). When the writer invokeR EG .write(v) it definesv as being the new value @@EG. An
SWMR atomic register is defined by the following set of properties [10].

e Liveness. An invocation of an operation by a correct process ternsinate

e Consistency (safety). All the operations invoked by the processespepossibly —for each faulty
process— the last operation it invoked, appear as if they have beenteadesequentially and this
sequence of operations is such that:



— each read returns the value written by the closest write that precedeghie(mitial value of
REG if there is no preceding write),

— if an operatiorppl terminates before an operatiop2 starts, therpl appears beforep2 in the
sequence.

This set of properties states that, from an external observer poi\wf the read/write register appears
as if it is accessed sequentially by the processes, and this sequenesp@its the real time access order,
and (ii) belongs to the sequential specification of a register. More forefalitions can be found in [10, 14].
(When considering any object defined by a sequential specificationidtyis also called linearizability [7],
and it is then said that the objectlisearizable)

Necessary and sufficient condition The constrain{t < n/2) is a necessary and sufficient condition to
implement an atomic read/write registerd M P,, ,[0] [3]. Hence, the corresponding constrained model
is denoted AMP,, +[t < n/2].

3 An Algorithm with Two-Bit Messages

A distributed algorithm implementing an SWMR atomic registe€uM P, :[t < n/2] is described in Fig-
ure 1. As already indicated, this algorithm uses only four types of messdgeotedvRITEO(), WRITEL(),
READ(), andPROCEEL). The messagewRITEO() andwRITEL() carry a data value, while the messages
READ() andPROCEEL) carry only their type.

3.1 Notation and underlying principles

Notation p,, denotes the writer process, denotes the:*" value written byp,,,, anduv is the initial value
of the registelREG that is built.

Underlying principles The principle that underlies the algorithm is the following. First, each peo(@ds
manages a local copy of the sequential history made up of the values wsittea tyriter, and (b) forwards,
once to each process, each new value it learns. Then, in order thabvedisses obtain the same sequential
history, and be able to read up to date values, each pragdslows rules to forward a value to another
procesw;, and manages accordingly appropriate local variables, which stonerseg numbers.

e Rule R1. When, while it knows the firgt: — 1) written values, and only them, receives the:*"
written value, it forwards it to all the processes that, from its point of viawgw the first(z — 1)
written values and no more. In this way, these processes will learn'theritten value (if not yet
done when they receive the corresponding message forwardeggl by

e Rule R2. The second forwarding rule is whenreceives thec*” written value from a process;,
while it knows the firsty written values, wherg > z. In this casep; sends thex + 1) written
value top;, and only this value, in order; increases its local sequential history with its next value (if
not yet done when it receives the message fggm

e Rule R3. To ensure a correct management of the local histories, andegfioyeess to help other pro-
cesses in the construction of their local histories (Rules R1 and R2)peaobss manages a sequence
number-based local view of the progress of each other process @sthe construction of their local
history is concerned).

As we are about to see, translating these rules into an algorithm, providéthusdistributed algorithm
where, while each process locally manages sequence numbers, themnd) information carried by each
message is its type, the number of different message types being veryrsanadliy4, as already indicatedl)

Such a constant number of message types is not possible from altmp@y)” implementation of sequence numbers carried
by messages. This is because, from a control information point of e&eh of the values i0, 1, ..., f(n) — 1} defines a distinct
message type.




3.2 Local data structures
Each procesg; manages the following local data structures.

e history; is the prefix sequence of the values already written, as knowm;byistory; is accessed
with an array like-notation, and we ha¥estory;[0] = vo. As there is a single writep,,, history,,
represents the history of the values written so far.

e w_sync;[l..n] is an array of sequence numbets;sync;[j] = o means that, tp;'s knowledge p;
knows the prefix ofvistory,, until history,[a]. Hence,w_sync;i] is the sequence number of the
most recent value known by, andw_sync,, [w] is the sequence number of the last value written (by
Puw)-

e r_sync;[1..n] is an array of sequence numbers;sync;[j] = a means that, tg;’s knowledge,p;
answered of its read requests.

e wsn, rsn andsn are auxiliary local variables, the scope of each being restricted to thathigo
implementing an operation, or the processing of a message, in which it occurs

3.3 Channel behavior with respect to the message typ&RITEO() and WRITEL()

As far as the messagesrITEO() and WRITEL() are concerned, the notatioNrITE(0,v) is used for
WRITEO(v), and similarly,WRITE(1, v) is used foWwRITEL(v).

When considering the two uni-directional channels connegtingnd p;, the algorithm, as we will
see, requires (&); to send top; the sequence of message&ITE(1, v1), WRITEO(O0, v2), WRITE(L, v3),
..., WRITE(z mod2, v;), etc., and (bp; to send top; the very same sequence of messagesTe(1, vq),
WRITEO(O0, v2), WRITE(1, v3), ..., WRITE(z mod2, v,), etc.

Moreover, the algorithm forces processto send top; the messag&/RITE(x mod2, v,.), only when
it has received fronp; the messag&RITE((z — 1) mod2,v,_1). From the point of view of the write
messages, these communication rules actually implemeattdraating bitprotocol [6, 13], which ensures
the following properties:

e Property P1: each of the two uni-directional channels connegfiagdp; allows at most one message
WRITE(—, —) to bypass another messageITE(—, —), which, thanks to the single control bit carried
by these messages allows the destination process £g.4o, process the messageRITE(—, —) it
receives from (e.gp;) in their sending order.

e Property P2:p; andp; are synchronized in such a way that< |w_sync;[j] — w_sync;[i]] < 1.
This is the translation of Property P1 in terms of the pair of local synchrboizaelated variables

(w_sync;[j], w_sync;[i]).

Let us insist on the fact that this “alternating bit” message exchange p&ttenty on the write messages.
It imposes no constraint on the messages of the tpea®() andPROCEEL) exchanged betweer and
P4, which can come in between, at any place in the sequence of the write regessag by a procegs to a
procesw;.

3.4 The algorithm implementing thewrite() operation
This algorithm is described at lines 1-4, executed by the wpiteand line 11-18, executed by any process.

Invocation of the operation write() Whenp,, invokeswrite(v,) (we have thenv_sync,[w] = = — 1),
it increasesv_sync,, [w] and writesv,. at the tail of its local history variable (line 1). This value is locally
identified by its sequence numbee= wsn.

Thenp,, sends the messagerITE(b, v,), whereb = (wsn mod2), to each procesg; that (from
its point of view) knows all the previous write invocations, and only to thesegsses. According to the
definition ofw_sync,,[1..n], those are the procesggssuch thatv_sync,,[j] = wsn—1 = w_sync,[w]—1



(line 2). Let us notice that this ensures the requirementeds to satisfy when it sends a message in order
to benefit from the properties provided by the alternating bit communicatitbarpa

Finally, p,, waits until it knows that a quorum of at legst—t¢) processes knows the valugis it writing.
The fact that a procegs knows thisz?” value is captured by the predicate sync,,[j] = wsn(= z) (line 3).

local variables initialization:
history;[0] < vo; w_sync;[l..n] < [0,...,0]; r_sync;[1..n] < [0,...,0].

operation write(v) is % invoked byp; = p., (the writer) %

1) wsn + w_syncy[w] + 1; w_syncy [w] < wsn; history, [wsn] < v; b < wsn mod2;
(2) foreachj such thatw_sync,[j] = wsn — 1 dosend WRITE(b, v) to p; end for;

(3) wait (z > (n — t) wherez is the number of processps such thatw_sync., [j] = wsn);
(4) return()

end operation

operation read() is % the writer can directly returnsistory; [w_synch;[i]] %

(5) rsn <+ r_synci[i] + 1; r_sync;[i] < rsn;

(6) foreachj € {1,...n}\ {i} dosend READ() to p, end for;

(7) wait (z > (n — t) wherez is the number of processgs such that_sync;[j] = rsn);
(8) letsn = w_sync[i];

(9) wait (z > (n — t) wherez is the number of processgs such thatw_sync;[j] > sn);
(10) return(history;[sn])

end operation

%

whenwRITE(b, v) is received fromp; do

(11) wait (b = (w_synci[j] + 1) mod2);

(12) wsn + w_sync;[j] + 1;

(23) if (wsn = w_sync;[i] + 1)

(14) thenw_sync;[i] + wsn; history;[wsn] < v; b <= wsn mod2;

(15) for each ¢ such thatw_sync;[¢] = wsn — 1 do send WRITE(D, v) to p, end for
(16) else if(wsn < w_sync;[i]) thenb < (wsn + 1) mod2; send WRITE(D, history;[wsn + 1]) to p; end if
(17) end if;

(18) w_sync;[j] < wsn.

when READ() is received fromp; do
(19) sn + w_sync;[i);

(20) wait (w_sync;[j] > sn);

(21) send PROCEEK) to p;.

when PROCEEL) is received fromp; do
(22) r_sync;[j] < r_synci[j] + 1.

Figure 1: Single-writer multi-reader atomic registeCIAMP,, +[t < n/2] with counter-free messages

Reception of a messag@/RITE(b, v) from a processp; Whenp; receives a messagerITE(b, v) from a
proces;, it first waits until the waiting predicate of line 11 is satisfied. This waiting stat¢mserothing
else than the the reception part of the alternating bit algorithm, which guasathi@ the messagesRITE()
from p; are processed in their sending order. When, this waiting predicate iseshtefimessages sent py
beforewRITE(b, v) have been received and processeg;bgnd consequently the messagrRITE(b, v) is the
swn'™ message sent by (FIFO order), wherevsn = w_sync;[j]+1, which means thatistory;[wsn] = v
(line 12).

When this occurgy; learns thav is the next value to be added to its local history if additionally we have
w_sync;[i] = wsn — 1. In this case (predicate of line 13); (a) addsv at the tail of its history (line 14),
and (b) forwards the messag®RITE(b, v) to the processes that, from its local point of view, know the first
(wsn — 1) written values and no more (line 15, forwarding Rule R1).
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If wsn < w_sync;[i], from p;’s local point of view, the history known by, is a strict prefix of its
own history. Consequently,; sends tg; the message/RITE(Y,v’), whereb/ = ((wsn + 1) mod2) and
v' = history;lwsn + 1] (line 16 applies the forwarding Rule R2 in order to allpyto catch up its lag, if
not yet done when it will receive the messagrITE(b', v') sent byp;). Finally, asp; sends tq; a single
message per write operation, whatever the valuewof, p; updatesv_sync;[j] (line 18).

Remark As far as the written values are concerned, the algorithm implementing thatiopevrite() can

be seen as a fault-tolerant “synchronizer” (in the spirit of [5]), whecdlsures the mutual consistency of the
local histories between any two neighbors with the help of an alternating bitihign executed by each pair
of neighbors [6, 13].

3.5 The algorithm implementing theread() operation
This algorithm is described at lines 5-10 executed by a regdand lines 19-22 executed by any process.

Invocation of the operationread() The invoking processg; first increments its local read request sequence
numberr_sync;[i] and broadcasts its read request in a messa&g®(), which carries neither additional
control information, nor a data value (lines 5-6)plfcrashes during this broadcast, the messageD() is
received by an arbitrary subset of processes (possibly empty)rn@sieep; waits until it knows that at least
(n — t) processes received its current request (line 7).

When this occursp; considers the sequence number of the last value in its history, namely
w_sync;[i] (line 8). This is the value it will return, namelyistory;[sn| (line 10). But in order to en-
sure atomicity, before returningistory;[sn|, p; waits until at leastn — ¢) processes know this value (and
may be more). From;’s point of view, the corresponding waiting predicate translates in “at leas- t)
processep; are such that_sync;[j] > sn”.

Reception of a messag&EAD() sent by a procesgp; When a process; receives a messageEAD()
from a procesg; (hence,p; issued a read operation), it considers the most recent written valuevitskno
(the sequence number of this valuis= w_sync;[i], line 19), and waits until it knows that; knows this
value, which is locally captured by the sequence number-based predicajac;[j] > sn (line 20). When
this occursp; sends the messa@®OCEEL) to p; which is allowed to progress as fargsis concerned.

The control messagexEAD() andPROCEEL) (whose sending is controlled by a predicate) implement a
synchronization which —as far gsis concerned- forces the reader proggs® wait until it knows a “fresh”
enough value, where “freshness” is locally definedppws the last value it was knowing when it received
the messagrEAD() from p; (predicate of line 20).

Reception of a messageROCEEL) sent by a procesp; Whenp; receives a messag&ROCEEL) from
a procesgp, it learns that its local history is as freshass history whenp; received its messageeAD().
Locally, this is captured by the incrementation-obync;[j], namelyp; answered all the read requestppf
until the (r_sync;[j])*" one.

4 Proof of the Algorithm

Let us remind thaf is the set of correct processes, the writer, and,, the " value written byp,,. Due to
page limitation, the missing proofs are given in an Appendix.

Lemma 1 Vi, j: w_sync;[j] increases by steps equalto
Lemma 2 Vi, j : w_sync;[i] > w_sync;[i].
Lemma 3 Vi: w_sync;[i] = max{w_sync;[j]}1<j<n.

Lemma 4 Vi: history[0..w_sync;[i]] is a prefix ofhistory[0..w_sync, [w]].
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Lemmab5 Vi € C,Vj : we have:
R1: (w_sync;[i] = w_sync;[j] = x) = p; sentz messagew/RITE(—, —) to pj,
R2: (w_sync;[i] > w_sync;[j] = x) = p; sentz + 1 messagew/RITE(—, —) to p;.

Lemma 6 Vi, j € C, if w_sync;[i] = =, there is a finite time after whiclh_sync;[j] > =.

Proof Let us first notice that, due to Lemma 7, &lRITE(—, —) messages received by correct processes
will eventually satisfy the predicate line 11 and will be processed.

The proofis by contradiction. Let us assume that there exists sometqmoees®; such thatv_sync;[j]
stops increasing forever at some vajue: x. Let us first notice that there is no messageITE(—, —) in
transit fromp; to p; otherwise its reception by; will entail the incrementation ofv_sync;[j] from y to
y + 1, contradicting the assumption. So, let us consider the last message(—, —) sent byp; to p; and
processed by;. There are three cases to consider when this message is receipgdtdine 11. (Let us
remind that, due to to Lemma 8,_sync;[i] > w_sync;[j].)

e Case lw_sync;|i] = w_sync;[j] = y—1 < x—1. The variablesv_sync;|[i] andw_sync;|[j] are both
incremented at lines 14 and 18 respectively to the value x. As by assumptionw_sync;[i] will
attain the value:, it will be necessarily incremented in the future to reacfrhe next timew_sync;|i]
is incremented, a messag®RITE(—, —) is sent byp; to p; (at line 15). Due to Lemma %, senty + 1
messagewRITE(—, —) to p; and eventuallyv_sync;[i] will be equal toy + 1. When the last of these
messages arrives and is processeg byhere are two cases.

— Casew_sync;[j] = y (asp; senty + 1 messagesvRITE(—, —) t0 p;, w_sync;[j] cannot be
smaller thany). In this casew_sync;[j] = y is increased, and a messag®ITE(—, —) iS
necessarily sent by; to p; (line 15). This contradicts the assumption that the message we
considered was the last message sent;dp p;.

— Casew_sync;[j] > y + 1. In this case, ap; sent previously messages tp;, we necessarily
havew_sync;[i] = y. In this case, the predicate of line 13 is false, while the one of line 16 is
satisfied. Hencey; sends a messag@erITE(—, —) to p;. A contradiction.

e Case 2.w_sync;[i] = w_synci[j] + 1 = y < z. In this case, whemp; receives the last message
WRITE(—, —) from p;, the variablev_sync;[j] is incremented at line 18 to the valye< «. Moreover,
by the contradiction assumption, no more Mess&BETE(—, —) is sent byp; to p;.

Hence, we have now_sync;[i] = w_sync;[j] = y < x, and the variablev_sync;[i] will be incre-
mented in the future to reach A reasoning similar to the previous one shows thawill send a
messagevRITE(—, —) to p; in the future, which contradicts the initial assumption.

e Case 3.w_sync;[i] > w_sync;[j] + 1. The reception by; of the last messag@RrRITE(—, —) from
p; entails the incrementation af_sync;[j] to its next value. However as_sync;[i| > w_sync;[j]
remains true, a messagRITE(—, —) is sent byp; to p; at line 16. Similarly to the previous cases, the
reception of this message pywill direct it to send another messag®ITE(—, —) to p;, contradicting
the initial assumption.

Hencew_sync;[j] cannot stop increasing before reachingvhich proves the lemma. OLemma 6

Lemma 7 No correct process blocks forever at litié.
Lemma 8 If the writer does not crash during a write operation, it terminates it.

Proof Let us first notice that, due to Lemma 7, the writer cannot block foreveretltin
When itinvokes a new write operation, the writgrfirst increases the write sequence numbesync,,[w]
to its next valuewsn (line 1). If p,, does not crash, it follows from Lemma 6 that we eventually have
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w_sync;[i] > w_sync,[i] = wsn at each correct proceps Consequently, the writer cannot block forever
at line 3 and the lemma follows. O~emma 8

Lemma 9 If a process does not crash during a read operation, it terminates it.

Proof Let us first notice that, due to Lemma 7, the reader cannot block forelired 1.

Each time a procegs executes a read operation it broadcasts a messg®() to all the other processes
(line 6). Let us remind that its local variabte sync;[i] counts the number of messagesAD() it has
broadcast, while_sync;[j] counts the number of messagesoCEEL) it has received fromp; (line 22) in
response to itREAD messageBEAD().

When the predicate of line 7 becomes true at the repdethere are at leasin — ¢) processes that
answered the_sync;[i] messageBEAD() it sent (note that_sync;[i] is incremented line 5 ang does not
send messageeEAD() to itself). We claim that each messaReAD() sent byp; to a correct process; is
eventually acknowledged by a a messageCEELN) send byp; to p;. It follows from this claim and line 22
executed by, when it receives a messagrOCEEL), that the predicate of line 7 is eventually satisfied, and
consequentlyy; cannot block forever at line 7.

Proof of the claim. Let us consider a correct processvhen it receives a messag&AD() from p;.

It savesw_sync;[i] in sn and waits untikw_sync;[i] > sn (lines 19-20). Due to Lemma 6, the predicate
w_sync;li] > sn eventually becomes true paf. When this occursy; sends the messag&OCEEN) to p;
(line 21), which proves the claim.

Let us now consider the wait statement at line 9, wherés the value ofw_sync;[i] when the wait
statement of line 7 terminates. Letbe a correct process. Due to Lemma 6 the predieatenc;[j] > sn
eventually holds. As this is true for any correct procegsp; eventually exits the wait statement, which
concludes the proof of the lemma. OLemma 9

Lemma 10 The register that is built is atomic.

Proof Letread[i, z] be aread operation issued by a proggsghich returns the value with sequence number
x (i.e., history;[x]), andwrite[y] be the write operation which writes the value with sequence numper.,
history,[y]). The proof of the lemma is the consequence of the three following claims.

e Claim 1. If read[i, z] terminates beforerite[y| starts, therr < y.
e Claim 2. Ifwrite[x] terminates beforeecad|[i, y| starts, therr < y.
e Claim 3. If read[i, x] terminates beforeecad[j, y] starts, ther: < y.

Claim 1 states that no process can read from the future. Claim 2 state® {hiataess can read overwritten
values. Claim 3 states that there is no new/old read inversion [4, 18].

Proof of Claim 1.
Due to Lemma 4, the value returned ®ud|i, z| is history;|[x] = history.,[z] = v,. As each write gener-
ate a greater sequence number, ppdhas not yet invokedrite(v, ), we necessarily have > .

Proof of Claim 2.

It follows from lines 1-3 that whemrite[x] terminates, there is a quorugh, of at least(n — ¢) processes
p; such thatw_sync,,[j] = x. On another side;ead|i, y| obtains messageROCEEL) from a quorumgy),
at least(n — t) processes (lines 22 and 7). A3,| > n —t, |Q,| > n —t, andn — ¢t > n/2, we have
QuwNQ, # 0. Letp, be a process af),, N Q.. As w_syncy|k] = x, andw_syncy[k] > w_sync, k]
(Lemma 2), andvrite|z] is the last write beforeead|i, y|, we havew_synci[k] = x whenread]i, y] starts.



Whenpy, received the message&AD() fromp;, we hadw_syncy[k] = x, andpy, waited untilw_syncy[i] >
z (line 20) before sending the messageoCEEL) that allowedp; to progress in its waiting at line 7. As
w_sync;[i] > w_synci[i] (Lemma 2), it follows that we have_sync;[i| > x, whenp; computes at line 8
the sequence numben of the value it will return at line 10). Hence, the indgx= sn computed byp; at
line 8 is such thay = sn = w_sync;[i] > .

Proof of Claim 3.

On one side, whenead|[i, ] stops waiting at line 9, there is a quorupy, of at least(n — t) processepy
such thatw_sync;[k] > = (predicate of line 9 ap;). Due to Lemma 2, we have them synci[k] > x for
any procesgy of Q,;, whenread[i, x] terminates.

On the other side, wheread|j, y] stops waiting at line 7 (which defines the value it returns, namely,
history;[y]), there is a quoruny),.; of at least(n — t) processep, such that (due to the waiting predicate of
line 20)w_syncy[j] > sn(f), wheresn({) is the value ofw_sync,[¢] whenp, receives the messageAD()
from p;.

As each of@,; and@,; contains at leagtn — t) processes, and there is a majority of correct processes,
there is at least one correct process in their intersectiony,sayt follows that we havev_sync,,[m] > x
whenread]i, z] terminates, and_sync,,[j] > sn(m), wheresn(m) is the value ofw_sync,,[m|, when
pm received the messageeAD() from p;. As w_sync,,[m] never decreases, apg, receives the message
READ() from p; afterread[i, z] terminated, we necessarily have(m) > x. Hence,w_syncy,|j] > z,
whenp,, sendsPROCEELN) to p;. As (Lemma 2)w_sync;[j] > w_syncy[j], it follows that the indexsn
computed by; at line 8 is such thatn = y > x. O Lemma 10

Theorem 1 The algorithm described in Figureimplements alsWMR atomic register in the system model
CAMP [t < n/2].

Proof The theorem follows from Lemma 8 and Lemma 9 (Termination properties), amgria 10 (Atom-
icity property). UTheorem 1

Theorem 2 The algorithm described in Figur&é uses only four types of messages, and those carry no
additional control information. Moreover, a read operation requi@g:) messages, and a write operation
requiresO(n?) messages.

Proof The message content part of the theorem is trivial. A read generatesssage&EAD(), and each
of generates a messagrROCEEL). A write operation generatds — 1) messagesvRITE(b, —) from the
writer to the other processes, and then each process forward onoeegage to each procesSqpeorem 2

5 Concluding Remarks

The aim and the paper

As indicated in the introduction, our aim was to investigate the following questidow many bits of
control information messages have to carry to implement an atomic regisfed MP,, ;[t < n/2]?".

As far as we know, all the previous works addressing this issue hdueed the size of control infor-
mation with the use of a “module”’ implementation technique. Table 1 presents three algorithms plus ours.
These three algorithms are the unbounded version of the ABD algorithritd3jounded version, and the
bounded algorithm due to H. Attiya [1]. They all associate a sequenceerunith each written value, but
differently from ours, the last two require each message to carry a “lbedpresentative” of a sequence
number.



For each algorithm, the table considers the number of messages it uses to intlamerite operation
(line 1), the read operation (line 2), the number of control bits carried bgsages (line 3), the size of
local memory used by each process (line 4), the time complexity of the writatige(line 5), and the time
complexity of the read operation (line 6), both in a failure-free contexttifrar complexity it is assumed that
message transfer delays are boundedbgnd local computations are instantaneous. The values appearing
in the table for the bounded version of ABD and Attiya’s algorithm are frénip]. The reader can see that
the proposed algorithm is particularly efficient from a time complexity pointi@fvynamely, it is as good
as the unbounded version of ABD.

line What is ABD95 [3] ABD95 [3] H. Attiya’s Proposed
number measured | unbounded seq. nb bounded seq. nb algorithm [1] | algorithm

1 #msgs: write O(n) O(n?) O(n) O(n?)
2 #msgs: read O(n) O(n?) O(n) O(n)
3 msg size (bits) unbounded O(n®) O(n?) 2
4 local memory unbounded O(n") O(nd) unbounded
5 Time: write 2A 12A 14A 2A
6 Time: read 4A 12A 18A 4A

Table 1: A few algorithms implementing an SWMR atomic registef WM P,, [t < n/2]

The result presented in the paper As we have seen, our algorithm also uses sequence numbers, but those
remain local. Only four types of messages are used, which means thatgdementation message carries
only two bits of control information. Moreover, only two message typesycarmata value, the other two
carry no data at all. Hence, this paper answers a long lasting questitpdssible to implement an atomic
register, despite asynchrony and crashes of a minority of processtts messages whose control part is
constant?.

The unbounded feature of the proposed algorithm (when looking at¢hérmemory size) is due to the
fact that the algorithm introduces a fault-tolerant version of a “symiibkes™ suited to the implementation
of an atomic register, which disseminates new values, each traveling betaelepair of processes in both
directions, in such a way that a strong synchronization is ensured beamyepair of processes, indepen-
dently from the other processes, (naméty,j : 0 < |w_sync;[j] — w_sync;[i]| < 1). This fault-tolerant
synchronization is strong enough to allow sequence numbers to be eliminatedrfessages. Unfortu-
nately, it does not seem appropriate to allow a local modulo-based espatien of sequence numbers at
each process.

In addition to its theoretical interest, and thanks to its time complexity, the pro@dgedthm is also
interesting from a practical point of view. Due to t&n) message cost of its read operation, it can benefit
to read-dominated applications and, more generally, to any setting wherentimeunication cost (time and
message size) is the critical paraméter

A problem that remains open According to the previous discussion, a problem that still remains open is
the following. Is it possible to design an implementation where (a) a constamberuof bits is sufficient

to encode the control information carried by messages, and (b) thermeguembers have a local modulo-
based implementation? We are inclined to think that this is not possible.

2As introduced in [5], and presented in textbooks such as [4, 12, 17].

%In addition to the way they use sequence numbers, an interesting dedigrentie between our algorithm and ABD-like
algorithms is the following. When a process receives a message(), it has two possibilities. Either send by return the last
written value it knows, as done in ABD-like algorithms. Or wait until it knowattthe sender has a value as up to date as it own
value, and only then send it a signal, as done in our algorithm with the neessagEEL).
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A Proof of the Lemmas 1-5 and Lemma 7
Lemmal Vi,j: w_sync;[j] increases by steps equallto

As this lemma is used in all other lemmas, it will not be explicitly referenced.
Proof Let us first observe that, due to the sending predicates of line 2 (forriker)vand lines 15 and 16
for any procesg;, no process sends a messagaTE(—, —) to itself.

As far asw_sync;|i] is concerned, and according to the previous observation,we haveltverfig. The
writer increasesv_sync, [w] only at line 1. Any reader procegs increasesv_sync;[i] at line 14, and due
to line 12 and the predicate of line 13, the incremerit iset us now consider the casewf sync;[j] when
i # j. Anincrementation of such a local variable occurs only at line 18, wiare {o line 12) we have
wsn = w_sync;[j] + 1, and the lemma follows. Oremma 1

Lemma 2 Vi,j: w_synci| > w_sync;li].

Proof Let us first observe, that the predicate is initially true. Then, a localberia_sync;[i] is increased
by 1, whenp; receives a messagerITE(—, —) from p; (lines 12 and 18). Procegs sent this message
at line 2 or 16 ifi = w, and at lines 15 or 16 for any# w. If the sending of the messagerITE(b, —)

by p; occurs at line 2 or 15y; increasedv_sync;|i] at the previous line. If the sending occurs at line 16,
w_sync;[i] was increased during a previous message reception. Oremma 2

Lemma 3 Vi: w_sync;[i] = max{w_sync;[j]}i<j<n.

Proof The lemma is trivially true for the writer procegs. Let us consider any other processdifferent
from p,,. The proof is by induction on the number of messag&sTe(—, —) received byp;. Let P(i,m)
be the predicate_sync;[i] = max{w_sync;[j]}1<;j<n, Wherem is the number of messagesRITE(—, —)
processed by;. The predicaté®(i, 0) is true. Let us assum@(i, m’) is true for anym’ such that < m' <
m. Letp; be the process that sendspiche (m + 1) messagevRITE(b, —), and letw_sync;[i] = = when
p; starts processing this message. There are four cases to consider.

e Case 1. When the messag®ITE(—, —) from p; is processed by;, we havew_sync;[i] + 1 =
w_sync;[j] + 1. As the predicate of line 13 is satisfied when this message is procesagujates
w_sync;|i] to the value(z + 1) at line 14. Moreover, it also updates sync;[j] to the same value
(z+1) atline 18. AsP(i,m) is true, it follows thatP (i, m+ 1) is true afterp; processed the message.

e Case 2. When the messag®ITE(—, —) from p; is processed by;, we havew_sync;[j] + 1 <
w_sync;[i] = x. In this casep; does not modifyw_sync;[i]. It only updatesv_sync;[j] to its next
value (line 18), which is smaller than As P(i, m) is true, it follows thatP (i, m + 1) is true aftemn;
processed the message.

e Case 3. When the messag®ITE(—, —) from p; is processed by;, we havew_sync;[j] + 1 =
w_sync;[i] = x. In this case, both the predicates of lines 13 and 16 are false. It follagth
executes only the update of line 18, and we have thesync;[j] = w_sync;[i] = x. As P(i,m) is
true, P(i,m + 1) is true aftem; processed the message.

e Case 4. When the messag®ITE(—, —) from p; is processed by;, we havew_sync;[j] + 1 >
w_sync;li] + 1 = x + 1. In this case, due to (a)_sync;[j] < w_sync;[i] (induction assumption
satisfied when the messag&ITE(—, —) arrives atp; from p;), and (b) the fact thatv_sync;[j]
increases by step (Lemma 1), we necessarily hawe sync;[i] + 1 > w_sync;[j] + 1, when the
message is received. Hence, we obtairsync;[j] + 1 > w_sync;[i] + 1 > w_sync;[j] + 1, a
contradiction. It follows that this case cannot occur.



U Lemma 3

Lemma 4 Vi: historyl0..w_sync;[i]] is a prefix ofhistory[0..w_syncy, [w]].

Proof The proof of this lemma rests on the properties P1 and P2 provided by tleglyind “alternating
bit” communication pattern imposed on the messagesTe(—, —) exchanged by any pair of processes
p; andp;. If follows from these properties (obtained from the use of parity bits@aby every message
WRITE(—, —), and the associated wait statement of line 11) thatends tg; the message/RITE(—, v),
only after it knows thap; receivedwRITE(—, v,—1 ). Moreover, it follows from the management of the local
sequence numbets_sync;[1..n], that no process sends twice the same messa&gyes(—, v, ). Finally, due
to the predicate of line 11, two consecutive messagesE(0, —) andwRITE(1, —) sent by a process to
a procesp; are processed in their sending order.

The lemma then follows from these properties, and the fact that, when alBag$ a procesg; assigns
a valuev to history;[x], this value was carried by’* messag&vRITE(—, v) sent by some procegs, and is
the value ofhistory;[x]. It follows that no two processes have different histories, from whieltanclude
thathistory;[x] = history.,|z]. O Lemma 4

Lemmab5 Vi e C,V; : we have:
R1: (w_sync;[i]| = w_sync;[j| = x) = p; sente messagewRITE(—, —) to pj,
R2: (w_sync;[i] > w_sync;[j] = x) = p; sentz + 1 messagew/RITE(—, —) to p;.

Proof Both predicates are initially trueo_sync;[i] = w_sync;[j] = 0 and no message was previously
sent byp; to p;). The variables involved in the premises of the predicates R1 and R2 cawodiied in
the execution of a write operation (if is the writer), or when a messag®RITE(—, —) arrives at process;
from procesg;. Let us suppose that R1 and R2 are true until the valuand let us show that they remain
true for the valuéx + 1).

During the execution of a write operation, f_sync,[w] = w_sync,[j] = =, the local variable
w_synecy,[w] isincremented téz+1), and the(z+1)"" messag/RITE(—, —) is sent byp,, top; (lines 1-2).
R1 and R2 remain true. tf_sync,[w] > w_sync,[j] = =, the local variablev_sync,,[w] is incremented
at line 1, but no message is senptoat line 2, which falsifies neither R1 nor R2.

When a process; receives a messagerITE(—, —) from a procesp;, there are also two cases, accord-
ing to the values ofv_sync;[i] andw_sync;[j] whenp; starts processing the message at line 12.

e Case l.w_sync[i] = w_sync;[j] = x. In this case, the predicate of line 13 is satisfied. It follows
that bothw_sync;[i] andw_sync;[j] are incremented tor + 1) (at line 14 forw_sync;[:] and line 18
for w_sync;[j]). Moreover, wherp; executes line 15 we hawe_sync;[i] = w_sync;[j] — 1, and
consequently; sends a messagerITE(—, —) to p; (the fact this message is tlie + 1) follows
from the induction assumption). Hence, R1 and R2 are true wheerminates the processing of the
messagevRITE(—, —) received fromp;.

e Casew_sync;[i] > w_sync;[j] = x. In this casew_sync;[j] is incremented ta + 1 at line 18, while
w_sync;[i] is not (because the predicate of line 13 is false). Two sub-casesrsielered according
to the values ofv_sync;[i] andw_sync;[j].

— If w_sync;[i] = x+1 (this is the valuev_sync;[j] will obtain at line 18), the predicate of line 16
is false, and no message is senpjoR1 and R2 remains true, as, by the induction assumption,
p; already senfz + 1) messagew/RITE(—, —).

— If w_sync;[i] > x+1, the predicate of line 16 is satisfied, and te-2)"* messag&RITE(—, —)
is sent top; at this line, maintaining satisfied the predicates R1 and R2.



U Lemma 5

Lemma 7 No correct process blocks forever at line 11.

Proof The fact that the waiting predicate of line 11 is eventually satisfied follows tre following obser-
vations.

e As the network is reliable, all the messages that are sent are receivedolines 2 and 15-16, this
means that, for any, if WRITE(—, v,) is received whilen = WRITE(—, v,_1) has not, themn will
be eventually received.

e The message exchange pattern involving any two messege% (0, —) andwRrITE(1, —) (sent con-
secutively) exchanged between each pair of processes is the “ttigrba pattern”, from which it
follows that no two messag&srITE(b, —) (with the sameé) can be received consecutively.

¢ It follows that the predicate of line 11 is a simple re-ordering predicaterfpipair of messages such
that WRITE(—, v,,) was received befor&/RITE(—,v,—1). When this predicate is not satisfied for a
messagen = WRITE(b, —), this is because a messagé= WRITE(1 — b, —), will necessarily arrive
and be processed befate After that, the predicate of line 11 becomes truerfor
Oremma 7



