
HAL Id: hal-02060796
https://hal.inria.fr/hal-02060796

Submitted on 7 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-Flow/Dependence Profiling for Structured
Transformations

Fabian Gruber, Manuel Selva, Diogo Sampaio, Christophe Guillon, Antoine
Moynault, Louis-Noël Pouchet, Fabrice Rastello

To cite this version:
Fabian Gruber, Manuel Selva, Diogo Sampaio, Christophe Guillon, Antoine Moynault, et al.. Data-
Flow/Dependence Profiling for Structured Transformations. PPoPP 2019 - 24th Symposium on Prin-
ciples and Practice of Parallel Programming, Feb 2019, Washington, D.C., United States. pp.173-185,
�10.1145/3293883.3295737�. �hal-02060796�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195837719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02060796
https://hal.archives-ouvertes.fr

Data-Flow/Dependence Profiling for Structured
Transformations

Fabian Gruber
Manuel Selva
Diogo Sampaio

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

Christophe Guillon
Antoine Moynault
STMicroelectronics

Louis-Noël Pouchet
Colorado State University

Fabrice Rastello
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

Abstract
Profiling feedback is an important technique used by devel-
opers for performance debugging, where it is usually used to
pinpoint performance bottlenecks and also to find optimiza-
tion opportunities. Assessing the validity and potential bene-
fit of a program transformation requires accurate knowledge
of the data flow and dependencies, which can be uncovered
by profiling a particular execution of the program.
In this work we develop poly-prof, an end-to-end in-

frastructure for dynamic binary analysis, which produces
feedback about the potential to apply complex program
rescheduling. Our tool can handle both inter- and intraproce-
dural aspects of the program in a unified way, thus providing
interprocedural transformation feedback.
Keywords Performance Feedback, PolyhedralModel, Loop
Transformations, Compiler Optimization, Binary, Instrumen-
tation, Dynamic Dependence Graph

1 Introduction
The most effective program transformations for improving
performance or energy consumption are typically based
on rescheduling instructions so as to expose data locality
and/or parallelism. Optimizing compilers typically attempt,
via static analysis, to build a representation of the program
precise enough to enable useful program transformations. A
key issue faced when analyzing general-purpose languages
is the ambiguities introduced by the language itself: for ex-
ample the use of pointers typically restricts the ability to
precisely characterize the data being accessed, in turn trig-
gering conservative and approximate dependence analysis
[27, 40, 68]. Such frameworks therefore rely on conservative
assumptions, limiting the ability to reason on the legality
of complex program restructuring. In this work we specif-
ically target structured transformations, that is, a (possibly
interprocedural) reordering of operations involving com-
plex sequences of multidimensional loop transformations,
including (partial) loop fusion/fission, loop tiling [11], etc.
When a region of the source program fits specific syn-

tactic and semantics restrictions, such as avoiding function
calls, using only arrays as data structures, and very simple
conditional statements with no indirections [16, 20], trans-
formation frameworks such as the polyhedral model [11]
showed that multidimensional loop nest rescheduling can be
successfully implemented, leading to significantly improved

performance [28, 53, 68]. The input program can bemassaged
manually via function inlining, loop rewriting/normaliza-
tion, etc. to enable such static analyses to succeed, but this
is a rare scenario: In full programs and in particular those
relying on external binaries visible only to the linker in com-
piled form, often data allocation and even the full call stack
is inaccessible to static analysis.

Dynamic analysis frameworks [9, 21, 47, 63] address this
limitation by reasoning on a particular execution of the pro-
gram, through the analysis of its execution trace. That is,
disambiguation of dependence information and accessed
data is addressed by monitoring the stream of operations
and accessed addresses. In general, the result is only valid
for that particular execution. Such systems provide some
feedback to the user, pinpointing the probable absence of
dependencies along some loop, thus highlighting potential
parallelism [37, 67, 70, 74] or SIMD vectorization [33].

The contributions of this work are: 1. The development of
an inter-procedural intermediate representation that com-
pacts program traces effectively while being amenable to
polyhedral optimization, and all associated algorithms and
implementation tomake the process scalable to full programs.
2. poly-prof, a tool that provides optimization feedback us-
ing binary translation and instrumentation. poly-prof is
the first framework that provides feedback on structured
transformation potential for arbitrary binaries.

2 Overview of poly-prof
In contrast to, for instance, basic loop parallelization, struc-
tured transformations can be found even in the presence
of data dependencies between loop iterations, dramatically
broadening the class of loop transformations that can be
applied on the program. This, however, requires detailed
information about such dependencies. That is, instead of just
proving the absence of dependencies one must capture and
represent them in order to be able to find patterns and reason
about their structure.
An overview of poly-prof is shown in Fig. 1. Taking a

carefully generated execution trace of the program, the first
objective of poly-prof is to construct a useful and analyzable
representation of the trace. Building such a representation
constitutes our first key set of contributions, and covers
the first three stages below. We then extended a polyhe-
dral compiler. The goal here is not to provide automated

1

transformations, but instead to assist the user in figuring
out where optimizations should be implemented, and im-
portantly which ones. This corresponds to the fourth stage
below that forms the second contribution of this work.
Interprocedural control structure To eventually recon-
struct a compact and useful representation of the program
trace, the first stage starts by dynamically computing the
intraprocedural control flow graphs (CFGs) and the inter-
procedural call graph (CG) from an optimized binary. This
information is then used to construct the interprocedural loop
context treewhich combines the notions of loop-nesting-trees
and their equivalent for call graphs, the recursive-component-
set, both of which are input to the next stage. Their structure
and construction are detailed in section 3.
Dynamic Dependence Graph This stage generates the
actual dynamic dependence graph (DDG) [50], a trace repre-
senting both the dynamic execution of a program’s instruc-
tions as well as their data dependencies. It uses the interpro-
cedural loop context tree to construct dynamic interprocedu-
ral iteration vectors, a new interprocedural representation of
the program execution which unifies two abstractions: the
intraprocedural schedule tree [35, 72] and the interprocedu-
ral calling-context-tree [2]. Both the DDG and the dynamic
interprocedural iteration vector are described in section 4.
Compact polyhedral DDG The third stage compacts, or
folds, the DDG into a polyhedral program representation
where, essentially, sequences of individual operations in the
trace are merged together into sets of points. Intuitively,
when a loop is executed it generates one execution of a state-
ment for each loop iteration and therefore one point in the
trace for each execution. This stage amounts to folding those
points back into a loop-equivalent representation, which
itself can be the input of a polyhedral compiler. However
we proceed in a general case, where folding occurs across
multi-level loops but also, possibly recursive, procedure calls,
leading to interprocedural folding. Details are presented in
[29], and an outline of the process is presented in Sec. 5.
DDG polyhedral feedback The last stage of poly-prof
consists of a customized state-of-the-art polyhedral tool-
chain, for the purpose of analyzing very large polyhedral
programs. It analyzes the polyhedral DDG and suggests se-
quences of program transformations needed to expose multi-
level parallelism and/or improved data locality, along with
numerous statistics on the original and potentially trans-
formed program including SIMDization potential. Section 6
describes this last step as well as how poly-prof provides
human interpretable feedback to the user.

Section 7 illustrates this feedback through a few case stud-
ies. Section 8 thoroughly evaluates poly-prof on the Rodinia
benchmarking suite. Related work is discussed in Section 9
before concluding.

3 Interprocedural Control Structure
As most of the execution time of a program is usually spent
in loops, poly-prof has been designed to find loop-based
transformations. In practice, however, as illustrated in Ex. 1

DDG Polyhedral Feedback

Polyhedral optimiser
Polyhedral analyser

 transfo (fuse, skew, tile, vectorise, parallelise…)

 metrics (hotness, fatness, …)

Best effort assembly/source matching
Schedule tree decoration

 annotated flame-graph (regions of interest,
 transformations, metrics)

PluTo. Polyfeat. ISL

Annotated flamegraph

Human interpretable
feedback display

source

Interprocedural Control Structure

Call stack → Dynamic CFG

SCC loop forest recognition

 loop nesting tree & recursive component set

DDG: Dynamic Dependence Graph

Instrumentation II

Compact Polyhedral DDG

 statement doms. & dependence rels. & access funcs.

Folding. ISL

 dynamic inter-procedural iteration vector.
shadow memory & mem addresses & integer values

relevance scalability
 chunking
 clamping

 statements & dependencies & accesses

Instrumentation IBinary

Dynamic
control flow

Semantic
trace

Compact IR
of fat
regions

asm level
feedback

Figure 1. Overview over the poly-prof framework.
of Fig. 3, interesting loop nests are often spread across mul-
tiple functions over long call chains, obfuscating them to
traditional static analysis. poly-prof is designed to be able
to represent both classical loops as well as function calls and
returns in a unified way with polyhedra [23, 75].

poly-prof has been designed to handle several scenarios.
1. Nested loops containing function calls with side effects:
here calls can be viewed as atomic instructions, but profiling
the storage locations they access or modify and compute
the dependencies between each call and the rest of the loop
body is required. 2. Loops containing function calls that
themselves contain loops, as in the Ex. 1 of Fig. 3: here the
objective is to view the whole interprocedural region as a
multidimensional loop nest. 3. Recursive functions, as in Ex. 2
of Fig. 3: here the primary objective is to avoid the depth of
the generated representation to grow proportionally with the
depth of the call stack; A secondary objective is to detect any
underlying regular loop structure amenable to polyhedral
compilation (after recursion-to-iteration conversion).
This section explains how to go from the execution of a

program to a representation of its interprocedural control
structure.

2

The first step of poly-prof is to extract the inter- and
intraprocedural static control structure from a program in
compiled binary form. This static control structure of the pro-
gram will then be used in a later stage of poly-prof to trans-
form the stream of raw events (jump/call/return) gathered
during execution into loop events (entry/iterate/exit).

poly-prof performs this through instrumentation of jump,
call, return and a few other instructions to dynamically
trace any transfer of control during execution. It thus “dy-
namically” extracts the control-flow-graph (CFG) of each
function and then proceeds to statically build the loop-nesting-
tree. It also dynamically extracts the call-graph (CG) of the
whole program and builds the counterpart of loop-nesting-
trees for call-graphs, the recursive-component-set. An advan-
tage of our approach is that only the part of a program that is
actually executed will be analyzed. For large programs with
only a small performance-critical part this can substantially
reduce the amount of work for the analyzer.

3.1 Control-flow-graph and loop-nesting-tree
For the profiled CFG, the loop detection algorithm used by
poly-prof is the one described by Havlak [31]. As formal-
ized by Ramalingam in [58], a loop-nesting-forest can be
recursively defined (the actual algorithm is almost linear) as
follows: 1. Each strongly connected component (SCC) of the
CFG containing at least one cycle constitutes the region of
an outermost loop; 2. for each loop, one of its entry nodes is
designated the header node of the loop; 3. all edges within
the loop that target its header node are called back-edges;
4. “removing” all back-edges from the CFG allows one to
recursively define the next level of sub-loops.

An example CFG and its corresponding loop-nesting-tree
is given in Figures 2a & 2b. Here, the CFG can be partitioned
into one SCC (giving rise to loop L1 with B as its header) plus
two separated basic-blocksA and E. The region of L1, once its
back-edge (D,B) has been removed, contains one sub-SCC
formed by the loop L2 and the basic-block B. Among the
two entry nodes C and D of L2 only one, C , is selected to
be its header. As depicted in Alg. 1, those notions (region,
header, back-edge) are important as they allow associating
loop events (E: entry, I: iterate, and X: exit) with the stream of
raw control events (jump, call, return) that are produced
by our instrumented execution. Here, generation of loop
events is driven by the control event “jump” that is emitted
by our instrumentation. Whenever we detect the start of a
new iteration of a given loop (Line 8), all live sub-loops are
considered exited, that is, we emit an ”exit” event (Line 4).
This is especially important for recursive loops as further
explained in Alg. 2.

3.2 Call-graph and recursive-component-set
To uniquely identify each dynamic execution of an instruc-
tion, also called a dynamic instruction, poly-prof uses in-
terprocedural iteration vectors. This is described in more
detail in Section 4. Note, that the modeling of programs con-
taining recursive function calls with calling-context-paths is

A

B
Header L1

C
Header L2

D

E

B
a
c
k
-e

d
g

e
 L

2

B
a
c
k
-e

d
g

e
 L

1

L1

L2

R
e
tu

rn

(a)

r

A L1:B E

B L2:C

C D

(b)

L1

Main B C D E

(c)

components = {L1}
L1.entries = {B}
L1.headers = {B,C}

(d)
Figure 2. (a/b) Example CFG and associated loop-nesting-
tree; (c/d) Example CG and associated recursive-components-
set.

Algorithm 1 CFG-loop events generated from a jump event.
Input:
• event: Branch event.
• inLoops: Stack of currently live loops. From outermost to innermost.
Emitted events:
• E(L, H): entry into loop L; H is the header.
• I(L, H): iteration of loop L; H is the header.
• X(L, B): exit of loop L, jumping to basic-block B
• N(B): local jump to basic-block B .

1 if event.type is local -jump:
2 B:=event.dstBB
3 while L:= inLoops.peek() and L.isCFG and B not in L:
4 L.visiting :=false; inLoops.pop(); emit X(L,B)
5 if B is loop -header:
6 H:=B; L:=loop(H)
7 if L.visiting=false:
8 L.visiting :=true; inLoops.push(L); emit E(L,H)
9 else: emit I(L,H)
10 emit N(B)
11 else:
12 . . . # Alg. 2

memory inefficient since the length of the paths is propor-
tional to the depth of the recursion. While recursive function
calls are found to be very uncommon in performance critical
code 1, we do need to handle them to ensure robustness.
poly-prof handles recursiveness in an elegant way that we
believe to be useful beyond the restricted scope of this paper,
for example to detect properties of tree-recursive calls. The
main data structure for treating recursive control flow is the
recursive-component-set which is for the call-graph what the
loop-nesting-tree is for the control-flow-graph.

Before providing more details, we go through the illustrat-
ing Ex. 2 of Fig. 3. Here, the edge from B3 to B0 (in orange) is
not a CFG-edge but a recursive call to B from call site B3. The
recursive-component-set computed from the CG contains
one SCC with a cycle made up of a single function B. This
example raises several questions: 1. Should C0 be part of the
associated recursive loop? It actually depends on the context:
It should, when called from B1, while it should not when
called from D0. 2.What about B5? One should observe that
B5 will be executed as many times as the number of recursive
calls to B: In other words, B5 should be part of a loop.

1the Rodinia benchmark suite, for example, does not use any recursion

3

To conclude, while CG-cycles clearly represent potential
dynamic loop structures, a CG-edge does not have the same
semantic as a CFG-edge. In particular, a call will never exit
a recursive loop. For poly-prof, the recursive loop ”L1” of
Ex. 2 is a dynamic notion defined as follows: 1. Entering L1 is
characterized by a call to B (step 1). 2. L1 is exited when this
(first) call gets unstacked, that is, when the number of returns
reaches the number of calls (step 22). 3. Everything executed
in between is part of the loop and iteration, and the corre-
sponding increment of induction variables takes place when-
ever a call/return to/from B occurs (steps 10,15,20,and 21).
As one can see, once the recursive-component-set has been
computed from the CG, the only relevant information dy-
namically used to devise recursive-loop events corresponds
to the header functions, here B.

As already stated, the recursive-component-set is for the
CG what the loop-nesting-tree is for the CFG. In a similar
way it can be recursively defined as follows:
1. Find all the top-level SCCs with at least one cycle in the

CG. Each gives rise to a distinct recursive-component.
2. For each component, determine all its entry nodes.
3. Repeat the following phases until no more cycles exist:
a. For a given SCC, choose an entry node and add it to the

headers-set of the recursive-component (top-level SCC)
it belongs to.

b. Remove all edges inside this SCC that point to this node.
Havlak’s loop-nesting-forest construction algorithm can eas-
ily be adapted to build the recursive-component-set in al-
most linear time. The end result of the algorithm is a possibly
empty set of recursive-components where each recursive-
component has a non-empty set of headers plus a non-empty
set of entries associated with it. Alg. 2 uses this data structure
to associate loop events (entry, iterate, and exit) to control
events (call and return). Here: 1. entering a recursive loop
is characterized by a call to a component’s entry function
(Line 4); 2. a new iteration is started whenever a call/return
to/from one of the components’ header occurs (Line 6); 3. an
exit occurs when all the iterating calls to the headers have
been unstacked, that is, when the number of returns equals
the number of calls, and we are returning from the original
function that entered the loop (Line 18). Tracking the state
of the call stack is done with the following two data struc-
tures: L.stackcount represents for a recursive-component
L a counter of the number of calls-to a header minus the
number of returns from it; L.entry represents the function
through which L was entered.

4 DDG: Dynamic dependence graph
The objective of the second stage of poly-prof (“Instrumen-
tation II”) is to profile the dynamic dependence graph of a
given execution, that is, to build a graph that has one vertex
for every dynamic instruction and one edge for every data
dependence. Because we want to enable feedback with struc-
tured loop transformations, we need to map this graph to
a “geometric” space that reflects the structural properties of
the program. To this end, we tag each dynamic instruction
with its iteration vector (IV). The IVs uniquely identify each

Algorithm2Different recursive-loop events generated from
a call or a return event.
Input:
• event, inLoops: same as for Alg. 1
Emitted events:
• EC(L, B): call-to a function header of recursive-component L and entry into

the corresponding loop. B is the current basic-block after the call.
• IC(L, B) / IR(L, B): call-to / return-from a function header of recursive-

component L and iteration of the corresponding loop. B is the current basic-
block after the call/return.

• XR(L, B): return from a function header of recursive-component L and exit
from that loop.

1 if event.type is call:
2 F := event.callee; B := event.dstBB
3 L := F.recursive_component
4 if F is recursive -component entry and L.entry==undef:
5 L.entry := F; inLoops.push(L); emit EC(L,B)
6 elif F is recursive -component header:
7 while L’:= inLoops.peek() and L’ in L:
8 L’.visiting := false; inLoops.pop();
9 emit X(L’,B)
10 L.stackcount ++; emit IC(L,B)
11 else: emit C(F,B)
12 if event.type is return:
13 F := event.callee; B := event.dstBB
14 while L’:= inLoops.peek() and L’.isCFG and L’ in F
15 L’.visiting := false; inLoops.pop(); emit X(L’,B)
16 L := F.recursive_component
17 if F is recursive -component entry and
18 L.stackcount == 0 and L.entry == F:
19 L.entry := undef; emit XR(L,B)
20 elif F is recursive -component header:
21 L := F.recursive_component; L.stackcount --;
22 emit IR(L,B)
23 else:
24 . . . # Alg. 1

dynamic instruction and naturally span a geometric space.
A data dependency is then simply represented as the pair of
the IVs of the producer and the consumer.
To handle interprocedural programs we also need a no-

tion of calling context that is scalable in the presence of
recursive calls. Our dynamic interprocedural iteration vector
(dynamic IIV) described in this section addresses those ob-
jectives by unifying two notions: 1. Kelly’s mapping which
describes intraprocedural IVs and is used by the polyhedral
framework [35]; 2. calling-context-paths used by profiling
feedback tools. We first briefly recall those two notions.
Kelly’s mapping For a given function, Kelly’s mapping
can be explained using a form of schedule tree [72] as shown
in Fig. 4. Here a schedule tree is nothing else than a decorated
loop-nesting-forest. The first decoration consists of associat-
ing a “static” index to each loop and basic-block: Recall the
recursive characterization of loops given by Ramalingam in
the previous section. For a given loop region (e.g. Lj in the
schedule-tree of the fused version in Fig. 4), its sub-regions
(once back-edges have been removed – here statements S and
T) form a directed-acyclic-graph (reduced DAG represented
in dashed in Fig. 4) that can be numbered using a topological
order. This numbering is used to index the corresponding
nodes at every level of the loop-nesting-tree (e.g. S(0) and
T (1) for the fused schedule or Li (0) and Li′(1) for the fis-
sioned one). The second decoration consists of associating a
canonical induction variable, that is, an induction variable
that starts at value 0 and increments by 1, to each loop-vertex.
As an example the loop-vertex associated with Lj is labeled

4

 A0

A1

A2

A3

B0

B1

B2

B3

M0

Main

A B

L1 L2

(a) Example 1

Main A B

(b)

 r(Main)

M0

 r(A) r(B)

B0 L2:B1 B3

A1 A2 B1 B2

A0 L1:A1 A3

(c)

step : trace event dynamic IIV
(⊥)

1 : M0 N(M0) (M0)
2 : A0 C(A0) (M0/A0)
3 : A1 E(L1, A1) (M0/L1, 0, A1)
4 : B0 C(B0) (M0/L1, 0, A1/B0)
5 : B1 E(L2, B1) (M0/L1, 0, A1/L2, 0, B1)
6 : B2 N(B2) (M0/L1, 0, A1/L2, 0, B2)
7 : B1 I(L2, B1) (M0/L1, 0, A1/L2, 1, B1)
8 : B2 N(B2) (M0/L1, 0, A1/L2, 1, B2)
9 : B3 X(L2, B3) (M0/L1, 0, A1/B3)
10 : A2 R(A2) (M0/L1, 0, A2)
11 : A1 I(L1, A1) (M0/L1, 1, A1)
.

(d)

L1 (1), (i1)

M0(0)

r

A3 (2)A0 (0)

A1 (0) A1(0) A2 (1)

L2 (1), (i2) B3 (2)B0 (0)

B1 (0) B2 (1)

(e)

M0

M1

Main

B0

B1

B2

B3

B

D0

D

C0

C

B4

B5

(f) Example 2

Main B C

D

L1

(g)
Main

B(M1)D(M0)

C(D0) C(B1) B(B3)

C(B1) B(B3)

C(B1) B(B3)

(h)

step : trace call-stack event dynamic IIV
M (⊥)

1 : M0 M N(M0) (M0)
2 : D0 M/D C(D0) (M0/D0)
3 : C0 M/D/C C(C0) (M0/D0/C0)
4 : M1 M R2(M1) (M1)
5 : B0 M/B EC(L1, B0) (M1/L1, 0, B0)
6 : B1 M/B N(B1) (M1/L1, 0, B1)
7 : C0 M/B/C C(C0) (M1/L1, 0, B1/C0)
8 : B2 M/B R(B2) (M1/L1, 0, B2)
9 : B3 M/B N(B3) (M1/L1, 0, B3)
10 : B0 M/B/B IC(L1, B0) (M1/L1, 1, B0)
11 : B1 M/B/B N(B1) (M1/L1, 1, B1)
12 : C0 M/B/B/C C(C0) (M1/L1, 1, B1/C0)
13 : B2 M/B/B R(B2) (M1/L1, 1, B2)
14 : B3 M/B/B N(B0) (M1/L1, 1, B3)
15 : B0 M/B/B/B IC(L1, B0) (M1/L1, 2, B0)
16 : B1 M/B/B/B N(B1) (M1/L1, 2, B1)
17 : C0 M/B/B/B/C C(C0) (M1/L1, 2, B1/C0)
18 : B2 M/B/B/B R(B2) (M1/L1, 2, B2)
19 : B4 M/B/B/B N(B4) (M1/L1, 2, B4)
20 : B5 M/B/B IR(L1, B5) (M1/L1, 3, B5)
21 : B5 M/B IR(L1, B5) (M1/L1, 4, B5)
22 : ⊥ XR2 (L1, ⊥) (⊥)

(i)

M0(0)

r

D0 (0)

C0 (0)

B1(1) B3 (3)B0 (0) B1 (1) B2 (2)

M0 (0) M1 (0) M1(0)

L1(0), (i1)

B4 (4) B5 (5)

C0 (0)

D0(0)

(j)

{M0() : }
{M0D0() : }
{M0D0C0() : }
{M1() : }
{M1L1B0(i) : 0 ≤ i ≤ 2}
{M1L1B1(i) : 0 ≤ i ≤ 2}
{M1L1B1C0(i) : 0 ≤ i ≤ 2}
{M1L1B2(i) : 0 ≤ i ≤ 2}
{M1L1B3(i) : 0 ≤ i ≤ 1}
{M1L1B4(i) : i = 2}
{M1L1B5(i) : 3 ≤ i ≤ 4}

(k)
Figure 3. (a/f) Code skeletons; Purple is used to represent CFG, while orange is used to represent CG; (b/g) Call-graph and
recursive-component-set; (c) Loop-nesting-forests; (h) Calling-context-tree with call-sites information; (d/i) Example trace,
associated loop events, and dynamic interprocedural interation vectors. R2 stands for two consecutive returns; (e/j) Dynamic
schedule tree; (k) Folded domains.
with Lj as well as the static index 0 followed by its canonical
variables j, resulting in Lj (0), (j). For any given statement,
an IV with Kelly’s mapping is nothing else than the vector
given by the path from the root to its corresponding leaf,
called its iteration vector. Fig. 4 shows this mapping both
in its textual form using region names and numerical form
using indices. As one can see, an interesting property of the
numerical form of this mapping is that the scheduling of the
original code is given by the lexicographical order of the so
obtained iteration vectors (unique per dynamic instance).
Calling-context-tree Differently from the schedule tree,
the calling-context-tree [2] (CCT) is only enumerative (it
does not contain any loop indices) and reflects a dynamic
behavior. In other words, it encodes the dynamic-call-tree in
a “compact” way. The calling-context-tree of the example in
Fig. 3f is reported in Fig. 3h. This figure is slightly different
from the “original” CCT, but corresponds to the current prac-
tice: to differentiate two calls to a common function from
different basic-blocks, callees are labeled with call sites (in
purple and under parenthesis in Fig. 3h). In this example,
a calling-context-path (for exampleM1/B3 . . . B3/B1/C) can
be as long as the number of recursive calls to B, but the

calling context is fully encoded making it possible to differ-
entiate the different contexts within which basic-block C0 is
executed. Obviously, looking at this example, one wants to
fold all the repeated calls from B1 to C .

Dynamic IIV The dynamic IIV is basically a combination
of Kelly’s mapping and the CCT. Similarly to Kelly’s map-
ping, the dynamic IIV alternates between context-ids and
canonical induction variables. Differently from Kelly’s map-
ping, but more like the CCT, each context-id in a dynamic
IIV is a, possibly empty, stack of calling contexts and the
identifier for a basic block.

Examples of IIVs are shown in Fig. 3a: FunctionA contains
a loop L1 that contains a call to function B, itself contain-
ing a loop L2. In this interprocedural example one clearly
wants to see that basic-block B1 in loop L2 belongs to a two-
dimensional nested loop. This is reflected by our dynamic IIV
(see steps 5,7 of Fig. 3d) whichwill be (M0/L1, i1,A1/L2, i2,B1)
where i1 (resp. i2) are the canonical induction variables of
loop L1 (resp. L2). Here, our context-ids are loop-ids (e.g. L2)
or statement-ids (e.g. B0) and each context-id is decorated
with a, possibly empty, call stack (e.g. A1).

5

1 for (i=0;i<n;i++)
2 for (j=0;j<=i;j++)
3 { S; T }

1 for (i=0;i<n;i++)
2 for (j=0;j<=i;j++)
3 { S }
4 for (i’=0;i’<n;i’++)
5 for (j’=0;j’<=i’;j’++)
6 { T }

(a) Nested loop before and after fission

Li (0), (i)

Lj (0), (j)

S(0) T(1)

r

Li (0), (i)

Lj (0), (j)

S(0) T(0)

r

Lj’ (0), (j’)

Li’ (1), (i’)

(b) Corresponding schedule trees (reduced DAG in dashed)

S → [Li , i , Lj , j , S]
→ [0, i , 0, j , 0]

T → [Li , i , Lj , j ,T]
→ [0, i , 0, j , 1]

S → [Li , i , Lj , j , S]
→ [0, i , 0, j , 0]

T → [Li′ , i′, Lj′ , j′,T]

→ [1, i′, 0, j′, 0]
(c) Corresponding Kelly’s mapping / iteration vector (IV)

Figure 4. Schedule tree (pink: static index; purple: induction
vars) and Kelly’s mapping

interprocedural loops
sched. tree / IV ✗ ✓
CCT / calling-context-path ✓ ✗
dyn. sched. tree / dynamic IIV ✓ ✓

(a) Dynamic schedule tree ≡ schedule tree ∪ CCT

all

call init_tls+387

call _dl_start+643

call _dl_sysdep_start+1261

loo..

ca..

lo..

ca..

c..

call dl_main+6..

loop _dl_map..

loop _dl_ma..

call _dl_m..

call 0x400..

call _dl_c..

call opena..

c.. cal..

c..

c..

c..

l..

c..

call init_tls+437

loop _dl_init+72

loop _dl_init+80

call _dl_init+113

loop call_init.part.0+144

call call_init.part.0+152

c..

c..

call 0x4000da7e35

call omp_set_..

call 0x4000d..

call _dl_r..

call sysco..

call __..

call _..

call o..

call _..

call 0..

call _..

cal..

c.. c..

call init_tls+452

call _start+36

call __libc_start_main+232

call backprop_kernel.c:42 (main)

call facetrain.c:47 (setup)

call facetrain.c:22 (b..

l..

l..

c..

l..

c..

call backprop..

call f.. call facetrain.c:27 (backprop..

call..

c..

c..

call bac..

lo..

c..

call..

call..

c..

c..

call ..

call ..

call ..

call ..

c..

c..

cal..

cal..

ca..

ca..

ca..

call facetr..

call 0x400..

call _dl..

call __G..

loop _..

call _..

loo..

loo..

cal..

call facet..

call ba..

call 0..

call..

call..

c..

c..

(b) Annotated flame-graph (backprop with libc)
Figure 5. Dynamic schedule tree

Similar to Kelly’s mapping one can also construct a dy-
namic schedule tree from the dynamic IIVs of a program
execution. Also, note that the schedule tree is for the dy-
namic IIVs what the calling-context-tree is for the set of
calling context paths. The schedule tree for our example is
shown in Fig. 3e. The relationship between these three struc-
tures is summarized in Fig. 5. As described in more details
further, poly-prof exposes the schedule tree to the program-
mer in the form of a flame-graph [26] where the root of the
tree is on the bottom and leaves on the top.

Ex. 3f illustrates how the recursive-component-set is used
to “fold” calling-context-paths in the presence of recursive
calls. Here,M1 is the caller site (step 4) before entering the re-
cursive loop L1 (step 5). Looking atC0, its multiple instances
are indexed by the corresponding recursive-loop induction
variable i1 (respectively 0,1, and 2 at steps 7, 12, and 17).
Within the loop it gets executed when C is called from B1.
The associated dynamic IIV is (M1/L1, i1,B1/C0). As already

mentioned, B5 is also part of the loop: Indeed there are as
many instances of B5 as there are calls to B from B3 (2 calls
at steps 10,15). Observe that the value of i1 does not reflect
the size of the call stack: It does not go up and down. It keeps
increasing. The main reason for doing so is related to our
polyhedral back-end: 1. we want our indexing to be lexico-
graphically increasing; 2. we want to match to the polyhedral
formalism where iterators can be represented using simple
canonical induction variables. To do so, any return (except
the last that exits the recursive loop) associated with a call
to B (steps 20,21) leads to incrementing i1.
As previously described, loop events allow updating the

dynamic IIV. This is done as detailed in Alg. 3. Here, diiv
corresponds to the dynamic IIV, where the rightmost is the
innermost dimension. Each dimension contains two fields,
the induction variable IV, followed by the context variable
CTX: As an example, I(L1,A1) applied to (M0/L1, 0,A2) in-
crements the IV of L1 and updates the CTX to A1, leading
to (M0/L1, 1,A1). CTX.last represents the last element of
the context variable: As an example, if CTX = M0/D0/C0,
CTX.last = C0. CTX.push(B) appends B to the context vari-
able: As an example C(C0) applied to (M1/L1, 0,B1) leads to
(M1/L1, 0,B1/C0). CTX.pop() does the reverse: As an exam-
ple R(M1) applied to (M0/D0) pops D0 and updates the last
element toM1 leading to a CTX of (M1). addDimension(0,B)
adds those two fields to the vector: As an example EC(L1,B0)
applied to (M1), appends L1 to CTX and adds a dimension
with innermost context set to B0, leading to (M1/L1, 0,B0).
removeDimension() does the reverse: For example, X(L2,B3)
applied to (M0/L1, 0,A1/L2, 1,B2) leads to (M0/L1, 0,A1/B3).

Algorithm 3 Updating of dynamic IIV (diiv)
Input:
• event: Branch event.
• diiv: Current dynamic IIV.
Output:
• Updated dynamic IIV

1 if event == C(B) or EC(L,B):
2 diiv.innermost.CTX.push(L)
3 if event == E(L,B) or EC(L,B):
4 diiv.innermost.CTX.last := L
5 diiv.addDimension (0,B)
6 if event == X(L,B) or XR(L,B):
7 diiv.removeDimension ()
8 diiv.innermost.CTX.last:=B
9 if event == I(L,B) or IC(L,B) or IR(L,B):
10 diiv.innermost.IV++
11 diiv.innermost.CTX.last := B
12 if event == R(B):
13 diiv.innermost.CTX.pop()
14 diiv.innermost.CTX.last := B

5 Compact Polyhedral DDG
In the DDG, every dynamic instruction is represented by one
vertex and every data dependence by one edge. A program
running on a modern CPU for just a few seconds can create
billions of nodes in the DDG. Our folding algorithm com-
presses those large graphs into a form that is amenable to
polyhedral analysis performed by our poly-profs back-end.
The details are presented in a separate paper [29]. Only the

6

1 for (j = 1; j <= n2)
2 sum = 0.0;
3 for (k = 0; k <= n1)
4 tmp1 = load(&conn + k)} // I1
5 tmp2 = load(tmp1 + j) // I2
6 tmp3 = load(&l1 + k) // I3
7 sum = sum + tmp2 * tmp3 // I4
8 k = k + 1 // I5
9 tmp4 = call squash(sum); // I6
10 store (&l2 + j, tmp4) // I7
11 j = j + 1 // I8

Figure 6. Pseudo-assembler for first kernel of backprop
benchmark

I1 → I2 I2 → I4 I4 → I4
IV Label IV Label IV Label

(cj,ck) (cj’,ck’) (cj,ck) (cj’,ck’) (cj,ck) (cj’,ck’)

(0,0) (0,0) (0,0) (0,0)
(0,1) (0,1) (0,1) (0,1) (0,1) (0,0)
.

Table 1. Dependency input stream from example in Fig. 6

main properties are outlined here. Our folding algorithm
borrows ideas from trace compression [36] with the notable
difference that is based on a geometric approach and is able
to perform over-approximations as briefly described below.
Folding interface The output of the second stage of poly-
prof (Instrumentation II) that feeds the folding stage is a
stream of IIVs and labels. The IIV representation used at this
stage slightly differs from the previous section. IIVs are split
into two parts: 1. The context corresponds to the non-numer-
ical part of the vector; 2. The coordinates correspond to the
numerical part. Folding is then performed for each context
separately. The folding algorithm takes as input for each
dynamic instruction and each dynamic dependence: 1. ®I : its
iteration vector, which uniquely identifies it (i.e., its unique
coordinates). 2. Label: a vector a(®I) of associated integer val-
ues. And as an output it produces: 1. a union of polyhedra
that represent the set of all ®I . 2. for each polyhedron P , an
affine function A such that for all ®I ∈ P , A(®I) = a(®I). For
dynamic instructions, a(®I) are the integer and pointer values
produced by the instruction, if any. For dependencies, a(®I)
are the IV of the producer instruction.
Dependency recognition Some of the streams compres-
sed by the folding stage are dependencies. To illustrate its
functionality on dependencies, consider bpnn_layerforward,
a kernel of the backprop benchmark from the Rodinia bench-
mark suite. Part of the input stream and corresponding folded
output dependencies can be seen in Tables 1 and 2. Note that
iterators used by poly-prof are canonical ones (here cj and
ck) computed on the fly through program instrumentation,
that do not necessarily match the ones present in the original
code (e.g. j of the outer loop starts at one).
SCEV recognition At the machine code level, even very
regular programs contain a large amount of “unimportant”
code, such as instructions that increment loop counters or
calculate addresses relative to a base pointer. Those are identi-
fied by compilers as scalar evolution expressions (SCEVs) [54,

Id Polyhedron Label expression
(cj,ck) f(cj,ck)

I1 → I2 0 ≤ c j ≤ 15, 0 ≤ ck ≤ 42 c j′ = c j + 0ck , ck ′ = 0c j + ck
I2 → I4 0 ≤ c j ≤ 15, 0 ≤ ck ≤ 42 c j′ = c j + 0ck , ck ′ = 0c j + ck
I4 → I4 0 ≤ c j ≤ 15, 1 ≤ ck ≤ 42 c j′ = c j + 0ck , ck ′ = 0c j + ck − 1

Table 2. Output of the folding algorithm for the dependen-
cies stream shown in Table 1

69], as they can be expressed as functions of the canonical
induction variables. Detecting SCEVs is important for two
reasons: First of all, the chains of dependencies associated to
their computation shall be ignored, as otherwise it greatly
and unnecessarily constrains possible code transformations;
Second, it allows to detect an important class of memory
access patterns, the strided accesses, that are used to evaluate
the profitability of some loop transformations.
If we detect during folding of an instruction that all the

Label values of a polyhedron can be expressed using a SCEV,
that is, if the folding succeeds in constructing an affine func-
tion to express them, the corresponding points in the folded
polyhedra of IIVs as well as the associated dependencies
are removed from the DDG. This happens for example for
instructions I5 and I8. For instruction I5, the folding algo-
rithm finds a SCEV with value a(cj, ck) = 0cj + 1ck + 1.

Over-approximations Even in programs where the hot
region is affine such as in PolyBench [56], profiling the en-
tire benchmark reveals a large amount of non-regular parts.
Keeping an accurate representation of non-regular parts
causes scalability issues both in the profiling part and in
the polyhedral back-end of poly-prof. Our idea to handle
such non-regular parts in a scalable fashion is through over-
approximation. This over-approximation, detailed in [29],
concerns labels for non-affine dependencies or non-affine
SCEVs and polyhedra for dependencies and instructions with
iteration domains with holes.

6 DDG Polyhedral Feedback
An essential motivation for folding DDGs into polyhedral
structures is to enable the use of advanced polyhedral compi-
lation systems, which are capable of finding a schedule that
maximizes parallelism, finds tiling opportunities, etc. [11].

Polyhedral compilation of folded-DDGs Typically, a
polyhedral compiler is applied to small numerical kernels
made of a handful of statements [11, 24, 48, 57]. Polyhe-
dral schedulers suffer scalability challenge for larger pro-
grams [48]: their complexity typically grows exponentially
with the number of statements in the input program. Our
DDG folding and over-approximation techniques allow go-
ing from programs with thousands of statements (vastly
exceeding the typical program scale these schedulers can
handle) to only a few hundreds.

Numerous customizations for scalability of the polyhedral
compiler have been implemented, ranging from constrain-
ing the space of legal schedules to accelerate the scheduling
process to approximation of the code generation process to

7

quickly output a decorated simplified AST describing the pro-
gram structure after transformation. For example, the pres-
ence of large integer constants causes combinatorial blow up
in the ILP solver used to solve the scheduling problem [52].
We implemented a parameterization of iteration domains, to
replace those constants by a parameter (an unknown, but con-
stant integer value). That is, a domain {[i] : 0 <= i < 1024}
is replaced by [n] → {[i] : 0 <= i < n ∧ n ≥ 1024} prior to
scheduling. We control the number of parameters introduced
by reusing the same parameter for a range of values, that is,
if the value x ∈ [1024 − s, 1024 + s] with s ∈ Z (we typically
set s = 20), then we replace x by n + (x − 1024).
The reader may refer to the available implementation in

PoCC [55] for further details about the simplifications imple-
mented, computation of profitability metrics is implemented
in the PolyFeat module.
Final output The main visual support used for reporting
aggregated feedback is the dynamic schedule-tree described
in Sec. 4, along with a simplified AST that shows the code
structure after the application of the suggested structured
transformation. This AST embeds various metrics on instruc-
tion count, loop properties (parallelism and tilability) and
the list of statements surrounded by every loop. This lets
the user visualize the potential effort in manually writing
the code structure corresponding to the application of the
suggested transformation.
To better visualize the various program regions, metrics

canweight each tree-node and be renderedwith flame-graphs
[26]. An example discussed in Sec. 7 is reported in Fig. 7. Here,
the “surface” of a region in the flame graph is proportional
to its estimated computation weight. Such flame graphs are
SVG files, which can be clicked to obtain detailed information
on each region/box. In the example of Fig. 7, loop/call nodes
are marked with the label loop/call, respectively. Colors
and gradients are used, that is, non-interesting regions can
be grayed out. In Fig. 7, grayed regions are non-affine and
blacklisted (initialization and extensive calls to libc) ones.
Node width is used to highlight hotness of regions. In our
example, functions adjustweight and layerforward take
substantially more space than other regions.

Numerous additional extensions have been developed, to
provide useful feedback to the user: various metrics about
the size and structure of polyhedral regions in the DDG,
before (original program) and after (transformed program)
applying an optimizing schedule, the possible code structure
including the precise fusion/distribution scheme, a simplified
sequence of core loop transformations that should be applied
to achieve the target transformation, etc. Given the extensive
textual length of the feedback we provide, an example is
shown only in the supplementary document.

7 Case Studies
This section aims to present case studies that illustrate both
the type of feedback provided by poly-prof as well as the
different transformations it can suggest. Current QEMU[7],
on which poly-prof is based, cannot handle newer AVX in-
structions. Feedback was obtained from binaries compiled

all

call facetrain.c:27 (backprop_face)

call backprop_kernel...

loop backprop.c:253 ..

loop backprop.c:254..

call backprop_kernel.c:67 (bpnn_train_kernel)

loop backprop.c:320 (bpnn_adjust_weights)

loop backprop.c:322 (bpnn_adjust_weights)

all

call ini..

call _dl..

call _d..

cal..

lo..

lo..

ca..

ca..

c..

c..

call init_tls..

loop _dl_ini..

loop _dl_ini..

call _dl_ini..

loop call_in..

call call_in..

cal..

call init_tls+452

call _start+36

call __libc_start_main+232

call backprop_kernel.c:42 (main)

call facetrain.c:47 (setup)

call ..

loop ..

cal..

cal..

cal..

c..

call facetrain.c:22 (backprop_face)

call backprop.c:..

loop ba..

call b..

call 0..

call..

loop ba..

call b..

call 0..

call..

loop backprop.c:216 (bpnn_create)

loop backprop.c:100 (bpnn_randomize_weights)

call backprop.c:100 (bpnn_randomize_weights)

call 0x400a80

call rand+4

call __random+93

lo..

ca..

c..

call facetrain.c:27 (backprop_face)

call backprop_k..

loop backprop.c..

loop backprop...

call backprop_kernel.c:67 (bpnn_train_kernel)

loop backprop.c:320 (bpnn_adjust_weights)

loop backprop.c:322 (bpnn_adjust_weights)

call facet..

loop backp..

cal..

cal..

ca..

call..

call..

ca..

c..

c..

Layerforward (1st call). 2D loop. 14%.
1. specialize
2. interchange
3. simd

adjustweight (2nd call). 2D loop. 46%.
1. specialize
3. interchange
4. omp parallel, simd

Figure 7. Annotated flame-graph for backprop (see Sec 7).
with GCC 8.1.1 and the flags -g -O2 -msse3. Speedup mea-
surements are using Intel icc and ifort compilers (version
18.0.3, flags -Ofast -march=native -mtune=native) on
a machine with a Xeon Ivy Bridge CPU with two 6 core
CPUs (24 hyperthreads), each running at 2.1Ghz (GFlop/s
are averaged over 50 runs).

Case study I This case study illustrates a simple (struc-
tured) feedback: pinpointing that dependencies live within the
first quartant [4] allows exposing data locality and fine-grain
parallelism through a loop interchange. For this study, we
selected backprop, a supervised learning method used to
train artificial neural networks extracted from the Rodinia
benchmark suite [15]. In addition to what was outlined in
the previous case study, poly-prof exploits its ability to as-
sociate an iteration vector with each memory access, and to
match pointer values with scalar evolution. Since the scalar
evolution expressions for a memory access describe the ad-
dresses it reads/writes, they can be used to detect strided
accesses along any dimension, which in turn can be used to
detect vectorization potential.
The flame-graph provided by poly-prof is reported in

Fig. 7 where the regions of interest are: 1. the first call (of
two) to bpnn_layerfowardwith a constant value of n2 = 16 ;
2. the last call (of two) of bpnn_adjust_weights with a con-
stant value of ndelta = 16. Both functions contain a 2D-
nested-loop, called Llayer and Ladjust respectively, for which
poly-prof suggests an interchange and SIMDization. For
example, see Llayer on Tab. 3 for which the two loop dimen-
sions are reported to be on lines 253 (outer) and 254 (inner)
of file backprop.c: The loop nest is fully permutable, that is,
interchange is possible; only the outermost loop is parallel;
and there are more stride 0/1 accesses along the outermost
dimension (100%) than along the innermost (67%).
To enable the suggested transformations, one needs to

specialize the two interesting function calls and array ex-
pand the scalar sum. The other calls to bpnn_layerfoward
and bpnn_adjust_weights are left unchanged, since they
(a) take up much less of the overall program runtime (b)
have different arguments and do not profit from the trans-
formation. Applying the transformation improved, in our
case, bpnn_layerfoward from 0.5 GFlop/s to 2.8 GFlop/s and
bpnn_adjust_weights from 0.3 GFlop/s to 5.1 GFlop/s.

Case study II This case study illustrates an advanced feed-
back: providing exact dependence vector “directions” allows ex-
posing data locality and coarse-grain parallelism through loop
skewing and tiling. For this study, we selected GemsFDTD, a fi-
nite difference time domain method from the SPEC CPU2006

8

Fat regions % ops interchange+SIMD parallel permutable % stride 0/1 speedup
backprop_kernel.c:52 (Llayer) 14% backprop.c:(254,253) (yes,no) (yes,yes) (100%, 50%) 5.3 x
backprop_kernel.c:57 (Ladjust) 46% backprop.c:(322,320) (yes,yes) (yes,yes) (100%, 50%) 7.8 x

Table 3. backprop case study. Reported lines (e.g. 52, 253, . . .) are from debug information. Suggested interchange is represented
using a permutation of code lines. Statistics/properties per loop dimension as follows: (outer, inner).
Fat regions op tiling speedup
update.F90:106 20% update.F90:{106,107,121} 2.6 x
update.F90:240 18% update.F90:{240,241,244} 1.9 x

Table 4. GemsFDTD case study. Reported lines are shifted
debug info.

benchmark suite [32] written in Fortran90. Analyzing For-
tran code is not a problem for poly-prof as it works at the
binary level. However, the compiler we used (gfortran-8.1.1)
messes up the debug information, making it necessary for
the user to shift the line numbers for the provided code ref-
erences by hand. This case study fully exploits poly-prof’s
ability to model (and compress in a polyhedral form) the data
dependencies, instead of simply checking their existence/ab-
sence. This knowledge about the structure of dependencies
allows poly-prof to check for tiling opportunities. First, poly-
prof detects that four functions from the benchmark are fat
(i.e. they execute a large amount of the program’s total num-
ber of dynamic instructions): updateH_homo, updateE_homo,
UPML_updateH, and UPML_updateE; Inside the first two of
those functions are the five hottest loop nests, so we focus
on them. As reported in Fig. 4, poly-prof annotates all five
loops as fully parallel and tilable. So to obtain a speedup we
tile each loop along all dimensions with a tile size of 32 and
mark the outermost loop parallel with an OMP PARALLEL DO
directive. We recall that tiled code can always be also coarse-
grain parallelized using wavefront parallelism, as exploited
by the Pluto polyhedral scheduler [11]. Tiling and paral-
lelizing the loops increased performance in updateE_homo
from 1.3 GFlop/s to 2.7 GFlop/s and updateH_homo from 1.3
GFlop/s to 3.7 GFlop/s

8 Experiments
The goal of this section is to demonstrate that poly-prof can
be systematically applied on a full benchmark suite, and find
potential for optimization. Note that the output of poly-prof
for each benchmark is extensive: flame graph, statistics on each
sub-region, potential structured transformation(s), simplified
annotated AST after the application of the transformation,
complete AST, etc. Consequently, we only illustrate here the
application of poly-prof on Rodinia by using aggregate met-
rics. These metrics are not meant to be used as is by the end
user: instead, the user is expected to work on one benchmark
at a time, and navigate the feedback we provide.

Experiment I In addition to the case studies, we evalu-
ate below our tool-chain using the latest revision (3.1) of
the Rodinia benchmark suite [14, 15]. As poly-prof does
not support multithreaded applications yet, each benchmark
is manually modified to run in a single thread, and com-
piled using the same compiler and flags as the case studies
(GCC 8.1.1, -g -O2 -msse3).

The dynamic analysis is based on the QEMU-plugin in-
strumentation interface [30]. We have extended the interface
itself to support multiple interacting C/C++ plugins. Plugins
primarily work at the level of the generic QEMU compiler
instructions, making them CPU architecture agnostic. The
choice of using QEMU for instrumenting the code is orthog-
onal to our contribution. There are some other candidates
(e.g. Valgrind [51] or pin [45]) for implementing a dynamic
binary analysis tool, each having their own advantages and
disadvantages. Since we use a shadow memory to track data
dependencies, dynamic analysis obviously does not come
for free. As an example, the total CPU time (summing for
all cores) on our server required by the first three stages of
poly-prof to analyze the full Rodinia benchmark suite is 3h
6’ (the full execution including libc was instrumented).
We have built our polyhedral feedback pass described

in Sec. 6 in the PoCC compiler [55] that implements the
PluTo scheduler [11], along with a new polyhedral DDG
analysis and optimization in PoCC/PolyFeat [55]. Extensions
for scalability have been implemented in the schedulers and
code generator, and in PolyFeat.

Experiment II To show problems static approaches en-
counter with the Rodinia suite we also ran the static LLVM-
based [40] polyhedral compiler Polly [28] over the entire
suite. We used Polly version 7.0.1 and the flags -O3 -ffast-
math -polly-process-unprofitable. Kernels that span multi-
ple functions were inlined to allow Polly to see the same
code region as poly-prof. Calls to functions from libc or
the OpenMP runtime were not inlined. Where such calls are
present this usually results in Polly being unable to analyze
the kernel, though it can handle calls to simple functions
such as exp or sqrt. Polly was unable to build a polyhedral
model of the whole region of interest for any of the 19 bench-
marks. It was able to model some smaller subregions, 1D or
2D loop nests, in most benchmarks, but in nearly all cases
its own profitability metric decided not to optimize them.
Two notable exceptions are the heartwall and lud bench-
marks. In heartwall Polly was able to model a sequence of
nine 2D loop nests which accounts for roughly two thirds
of the code in the body of the kernel. For lud it managed to
model the whole inner 3D loop nest of the kernel, but not
the outermost loop. In all benchmarks the inability to model
the outermost loops blocks Polly from exploiting the thread
level parallelism inherent in the Rodinia benchmark suite.

Summary statistics. Table 5 presents summary statistics
about the Rodinia 3.1 (CPU only) benchmarking suite, that
we computed/aggregated by processing the feedback from
poly-prof and Polly on each benchmark.
Column %Aff reports the percentage of dynamic oper-

ations that are part of a fully affine region without over-
approximation. The low proportion of affine code reported

9

Be
nc
h.

#V #E %
A
ff

R
eg
io
n

%
op

s

%
M
op

s

%
FP

op
s

in
te
rp
ro
c.

R
ea
so
ns

w
hy

Po
lly

fa
ile
d

sk
ew

%
||
op

s

%
si
m
do

ps

%
re
us
e

%
Pr
eu
se

ld
-s
rc

ld
-b
in

Ti
le
D

%
Ti
lo
ps

C C
om

p.

fu
si
on

backprop 10 M 10 M 85% facetrain.c:25 67% 30% 76% Y A N 100% 100% 50% 100% 2D 2D 2D 100% 6 4 S
bfs 2 M 1 M 21% bfs.cpp:137 55% 66% 18% N BF N 100% 100% 1% 1% 3D 3D 2D 100% 1 1 M
b+tree 23 M 24 M 49% main.c:2345 26% 99% 0% N BF N 100% 100% 44% 44% 3D 3D 3D 100% 15 4 S
cfd 251 M 372 M 98% *3d_cpu.cpp:480 98% 42% 99% Y F N 100% 61% 18% 42% 5D 4D 3D 100% 1 3 S
heartwall 4 G 8 G 1% main.c:536 99% 38% 56% Y RCBF N 100% 100% 0% 0% 7D 6D 5D 100% 1 3 S
hotspot 11 M 16 M 0% *_openmp.cpp:318 81% 35% 89% Y B Y 100% 100% 3% 3% 4D 4D 2D 100% 1 1 S
hotspot3D 210 M 256 M 99% 3D.c:261 49% 28% 81% N BF N 100% 99% 11% 11% 4D 4D 3D 100% 1 1 M
kmeans 513 M 647 M 97% *_clustering.c:160 97% 56% 98% Y RFA N 100% 100% 46% 53% 4D 4D 4D 100% 1 3 S
lavaMD 879 M 1 G 0% kernel_cpu.c:123 99% 69% 92% N BF N 100% 100% 0% 0% 4D 4D 3D 100% 1 2 S
leukocyte 4 G 9 G 39% detect_main.c:51 37% 64% 64% Y RCBFAP N 100% 100% 63% 63% 4D 4D 3D 100% 11 5 S
lud 42 M 71 M 4% lud.c:121 99% 44% 70% Y BF N 99% 98% 0% 1% 5D 5D 3D 99% 3 3 S
myocyte 1 M 866 K 89% main.c:283 99% 80% 80% Y CBA N 100% 99% 47% 47% 4D 3D 1D 99% 1 3 S
nn 1 M 2 M 1% nn_openmp.c:119 31% 42% 71% Y RF N 100% 0% 0% 0% 1D 1D 1D 100% 1 1 M
nw 80 M 93 M 99% needle.cpp:308 79% 73% 27% Y RF Y 100% 100% 77% 77% 4D 4D 2D 100% 2 2 S
particlefilter 628 M 678 M 27% *_seq.c:593 99% 5% 14% N CF N 99% 100% 55% 55% 3D 3D 2D 100% 22 2 S
pathfinder 62 M 48 M 67% pathfinder.cpp:99 31% 83% 16% N BP Y 100% 0% 0% 40% 2D 2D 2D 100% 1 1 M
srad_v1 1 G 2 G 99% main.c:241 99% 31% 93% Y RF N 99% 100% 18% 18% 3D 3D 2D 100% 1 1 S
srad_v2 600 M 864 M 98% srad.cpp:114 96% 31% 92% Y RF N 100% 100% 14% 14% 3D 3D 2D 100% 1 1 S
streamcluster 779 M 1 G 97% *_omp.cpp:1269 99% 6% 13% Y RCBFAP - - - - - 6D 6D - - 52 - -

Table 5. Summary statistics computed from poly-prof’s feedback on the Rodinia benchmark suite.

for heartwall, hotspot, and lud is the consequence of not
supporting lattices at folding time: These programs contain
hand linearized nested loops whose bounds use modulo ex-
pressions and so are not recognized as fully affine. Note
that, even when parts of a benchmark are not affine, we can
still find affine over-approximations for those regions, and
potentially find transformations for the program as a whole.

Based on the statistics provided by poly-prof, the biggest
region for which the optimizer suggests a transformation
has been selected by hand. The code reference is reported
in the column Region. We considered a region to be inter-
procedural (column interproc.) if inlining was required to
perform the transformation or if it contained a call to libc or
the OpenMP runtime. Column %ops reports the percentage
of dynamic operations of the program executed inside the
region, while %Mops and %FPops reports the percentage of
memory (resp. floating point) operations of the region itself.
Note that the sum of %Mops and %FPops can be greater
than 100% since on x86 a single instruction can both load
and store to/from memory and perform an operation.

The column Reasons why Polly failed lists the reasons why
LLVM Polly was unable to model the whole region as an
affine program. They are coded as: R. unhandled function
call; C. complex CFG (break/return); B. non-affine loop
bound or non-affine conditional statements; F. non-affine
access function (includes pointer indirection); A. unhandled
possible pointer aliasing; P. base pointer not loop invariant.
The next group of metrics shows what can be achieved

via semantics-preserving structured transformations. skew
displays whether skewing is used in the proposed transfor-
mation, we tend to avoid skewing unless it really provides
improvements in parallelism and tilability. %| |ops gives the
percentage of dynamic operations that can be parallelized us-
ing OpenMP parallel pragmas. If a non-inner loop dimension
is detected as parallel, then all its operations are considered
to be parallelizable. As a loop has at least two iterations, at
least two parallel blocks can be exposed when a loop is re-
ported parallel. Similarly, %simdops reports the percentage
of operations that occur in parallel innermost loops.
The %reuse/%Preuse metrics report space locality that is

available in the program: %reuse is the percentage of load/s-
tores that are stride-0 or stride-1 in the existing innermost

loops in the program, while %Preuse reports the maximal
percentage of load/store operations that can be made stride-0
or stride-1 via a sequence of loop permutations.
We report the maximal loop depth of the region in the

source code (ld-src) and in the binary code (ld-bin). This
shows whether the compiler performed any transformation
that modifies the loop depth (e.g., full loop unrolling for cfd).
Next the maximal tiling depth (TileD) is reported, along with
%Tilops, the percentage of operations that can be tiled.

As soon as a region can be tiled, coarse-grain (wavefront)
parallelism is possible, and data reuse could be improved.
poly-prof does not currently provide feedback on temporal
locality potential, but as illustrated in the backprop case
study %reuse allows to evaluate spatial locality improve-
ments through tiling/interchange.

Finally, metrics C/Comp./fusion outline the complexity of
the loop fusion/distribution structure that originates from
the structured transformation proposed, and is an indication
of the difficulty to manually implement a transformed code.
Any outermost loop with more than 5% of the total region
operation counts as one “component”. For example, if the
region is made of two consecutive loop nests executing each
half of the operations, then 2 components will be reported. C
reports the number of components in the binary code; Comp.
the number of components after applying the proposed struc-
tured transformation, using the fusion heuristic reported in
fusion (M for maximal loop fusion, and S for smartfuse, a
somewhat balanced fusion/distribution strategy).

Note that streamcluster exhaustedmemory at the sched-
uling stage, and therefore no result is displayed.

9 Related Work
This section describes previous work related to profiling,
performance debugging, and trace compression.

Performance feedback tools Using profiling feedback
is a widely used technique both for performance debug-
ging and for guiding optimization [64] (FDO). Tools such as
Perf [18] or Intel VTune [59] gather hardware counter values
and, using sampling, provide statistics (such as instruction
throughput or cache miss rate) at the granularity of machine
instruction. Various interfaces such as HPCToolKit [1] allow

10

navigating through the gathered statistics thanks to a best-
effort mapping from binary to source code. Compiler based
profiling tools, such as gprof [25], make it possible to pro-
vide complementary statistics (such as branch probabilities).
While these allow pin-pointing important parts of the code
where the programmer or compiler should focus his atten-
tion on, the metrics they report are very low level and conse-
quently they leave the role of finding optimizing code trans-
formations to the programmer or compiler heuristics [65].
Recent work such as in MAQAO [13, 19], AutoSCOPE [65]
or MIAMI [46] combines these metrics with static analysis of
binary/source code. Intel IACA [17], a purely static analysis
tool, uses a precise machine model, which the vendor does
not publish, to pin-point resource bottlenecks and predict
performance of snippets of binary code.
Dynamic data-flow analyses have been presented to pro-

vide useful performance feedback. The detection of paral-
lelism (such as vectorization) along canonical directions has
particularly been investigated [3, 12, 21, 37, 38, 41, 67, 70, 74],
as it requires only relatively localized information. Another
use case is the evaluation of effective reuse [8, 10, 44, 46]
with the objective of pinpointing data-locality problems.

The APOLLO [34, 47] framework uses an interesting tech-
nique that corresponds to detecting dynamic regularities
(affine expressions) of memory accesses in nested loops, and
use this information to perform speculative loop transforma-
tion, which differs in scope and challenges from the profiling
feedback tool developed in this paper.
Polyhedral compilation Integer linear algebra is a natu-
ral formalism for representing the computation space of a
loop nest. The polyhedral framework [23] leverages, among
others, operators on polyhedrons (e.g. union, intersection,
projection), enumeration (for code generation [6]), and para-
metric integer linear programming [22] (for dependence
analysis [16]). Historically, it has been designed to work on
restricted programming languages, and was used as a frame-
work to perform source-to-source transformations. More
recently, efforts have been made to integrate the technology
in mainstream compilers (e.g. Graphite [53, 68] for GCC [27]
and Polly [28] for LLVM [40]). The set of loop transforma-
tions (known as affine transformations) that the polyhedral
model can perform is wide and covers most of the important
ones for exposing locality and parallelism to improve perfor-
mance [11]. Tools such as PoCC [55] provide a convenient
interface to the numerous existing state-of-the-art schedul-
ing heuristics and polyhedral libraries such as ISL [71].
Dynamic dependence graph Shadow memory [76]
records a piece of information for each storage location used
in a program. For dependency tracking this is usually the last
statement or dynamic instruction that modified that location.
But shadow memories are also a core component of memory
error debugging tools [51, 62].

Like poly-prof, Redux [50] builds a data-flow graph from
binary level programs. It has, however, no notion of loops or
calling contexts and does not try to compress the produced
graph and is consequently only able to handle very small pro-
grams. A few techniques exist to address the high overhead

of monitoring data dependencies. The most common is the
use of static analysis so as to remove redundant instrumen-
tation [42], or to avoid monitoring must-dependencies [37].
Another approach that leads to over-approximation, consists
of reducing the size of the shadow memory through the use
of signature based addressing [43]. The most sophisticated
technique is the one developed in SD3 [39] that amounts to
detecting strided memory accesses to compress the shadow-
ing. A last technique that could be used for our purposes is
the parallelization of shadowing as done in [42, 49].

Calling context tree Using calling context trees to dis-
ambiguate instructions in different calling contexts is an idea
from Ammons, Ball and Larus [2]. But in the presence of re-
cursive functions the size of their CCTs grows proportionally
with the depth of the recursion, leading to an unreasonably
high memory overhead. Loop-call context trees [60] sim-
ply encode the calling context of intraprocedural loops and
suffer from the same size problems in recursive programs.

10 Conclusion and Future Work
In this paper we introduced poly-prof, a profiling-based
polyhedral optimization feedback tool. poly-prof tackles
the problem of dynamic data dependence profiling and poly-
hedral optimization from binary programs, while addressing
the associated scalability challenges of handling traces with
billions of operations, as we demonstrated. Our tool handles
non-regular programs with recursive function calls. Numer-
ous technical contributions as presented in this paper were
required to enable structured transformation feedback on bi-
nary programs, a significant step in complexity compared
to prior approaches typically limited to unstructured trans-
formations. We implemented numerous feedback reporting
schemes for the user in poly-prof: flame graphs, statistics
on each sub-region, proposed potential structured transfor-
mation, simplified annotated AST after the application of
the transformation, complete AST, etc.
While this represents an important step towards being

able to provide polyhedral feedback on full-scale applications
there are issues that still need to be addressed. This includes
the development of under-approximation schemes in the
DDG, as well as overall scalability enhancements, like using
approximate (non-optimal) polyhedral scheduling strategies.
Lastly, the process of mapping our results back from the

machine code back to the source code is in itself a research
topic, and currently we do not provide much more than what
objdump does. Our ongoing efforts in this direction leverage
polyhedral program equivalence techniques [5, 61, 73].

Acknowledgements
This work was supported in part by the U.S. National Sci-
ence Foundation awards CCF-1645514, CCF-1731612 and
CCF-1750399, and by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01) funded by the French program Investisse-
ment d’avenir.

11

References
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent. 2010. HPCTOOLKIT: tools for perfor-
mance analysis of optimized parallel programs. Concurrency and
Computation: Practice and Experience 22, 6 (2010), 685–701.

[2] Glenn Ammons, Thomas Ball, and James R. Larus. 1997. Exploiting
Hardware Performance Counters with Flow and Context Sensitive
Profiling. In Proceedings of the ACM SIGPLAN 1997 Conference on Pro-
gramming Language Design and Implementation (PLDI ’97).

[3] Ran Ao, Guangming Tan, and Mingyu Chen. 2013. ParaInsight: An
Assistant for Quantitatively Analyzing Multi-granularity Parallel Re-
gion. In High Performance Computing and Communications & 2013
IEEE International Conference on Embedded and Ubiquitous Comput-
ing (HPCC_EUC), 2013 IEEE 10th International Conference on. IEEE,
698–707.

[4] Utpal K. Banerjee. 1988. Dependence Analysis for Supercomputing.
Kluwer Academic Publishers, Norwell, MA, USA.

[5] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice
Rastello, and P. Sadayappan. 2016. PolyCheck: Dynamic Verification
of Iteration Space Transformations on Affine Programs. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’16). ACM, New York, NY, USA,
539–554.

[6] Cédric Bastoul. 2004. Generating loops for scanning polyhedra: Cloog
users guide. Polyhedron 2 (2004), 10.

[7] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the Annual Conference on USENIX Annual Technical
Conference (ATEC ’05).

[8] Erik Berg and Erik Hagersten. 2005. Fast data-locality profiling of
native execution. In ACM SIGMETRICS Performance Evaluation Review,
Vol. 33. ACM, 169–180.

[9] Kristof Beyls and Erik H. D’Hollander. 2006. Discovery of Locality-
improving Refactorings by Reuse Path Analysis. In Proceedings of
the Second International Conference on High Performance Computing
and Communications (HPCC’06). Springer-Verlag, Berlin, Heidelberg,
220–229. https://doi.org/10.1007/11847366_23

[10] Kristof Beyls and Erik D’Hollander. 2006. Discovery of Locality-
Improving Refactorings by Reuse Path Analysis. High Performance
Computing and Communications (2006), 220–229.

[11] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
2008. A Practical Automatic Polyhedral Program Optimization System.
In PLDI.

[12] Khansa Butt, Abdul Qadeer, Ghulam Mustafa, and Abdul Waheed.
2012. Runtime analysis of application binaries for function level paral-
lelism potential using QEMU. In Open Source Systems and Technologies
(ICOSST), 2012 International Conference on. IEEE, 33–39.

[13] Andres S Charif-Rubial, Emmanuel Oseret, José Noudohouenou,
William Jalby, and Ghislain Lartigue. 2014. CQA: A code quality
analyzer tool at binary level. In High Performance Computing (HiPC),
2014 21st International Conference on.

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark
suite for heterogeneous computing. InWorkload Characterization, 2009.
IISWC 2009. IEEE International Symposium on.

[15] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, Liang Wang, and K.
Skadron. 2010. A characterization of the Rodinia benchmark suite
with comparison to contemporary CMP workloads. InWorkload Char-
acterization (IISWC), 2010 IEEE International Symposium on.

[16] Jean-François Collard, Denis Barthou, and Paul Feautrier. 1995. Fuzzy
array dataflow analysis. In ACM SIGPLAN Notices, Vol. 30. ACM, 92–
101.

[17] Intel Corporation. 2009. Intel Architecture Code Analyzer – User’s
Guide.

[18] Arnaldo Carvalho de Melo. 2010. The new linux’perf’tools. In Slides
from Linux Kongress, Vol. 18.

[19] Lamia Djoudi, Denis Barthou, Patrick Carribault, Christophe Lemuet,
Jean-Thomas Acquaviva, William Jalby, et al. 2005. Maqao: Modu-
lar assembler quality analyzer and optimizer for itanium 2. In The

4th Workshop on EPIC architectures and compiler technology, San Jose,
Vol. 200.

[20] Johannes Doerfert, Clemens Hammacher, Kevin Streit, and Sebastian
Hack. 2013. Spolly: speculative optimizations in the polyhedral model.
IMPACT 2013 (2013), 55.

[21] Karl-Filip Faxén, Konstantin Popov, Sverker Jansson, and Lars Alberts-
son. 2008. Embla-data dependence profiling for parallel programming.
In Complex, Intelligent and Software Intensive Systems, 2008. CISIS 2008.
International Conference on. IEEE, 780–785.

[22] Paul Feautrier. 1988. Parametric integer programming. RAIRO-
Operations Research 22, 3 (1988), 243–268.

[23] Paul Feautrier and Christian Lengauer. 2011. Polyhedron model. In
Encyclopedia of Parallel Computing. Springer, 1581–1592.

[24] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. 2006. Semi-Automatic Com-
position of Loop Transformations for Deep Parallelism and Memory
Hierarchies. Intl. J. of Parallel Programming 34, 3 (2006).

[25] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. 1982.
Gprof: A call graph execution profiler. In ACM Sigplan Notices, Vol. 17.
ACM, 120–126.

[26] Brendan Gregg. 2016. The flame graph. Commun. ACM 59, 6 (2016),
48–57.

[27] Arthur Griffith. 2002. GCC: the complete reference. McGraw-Hill, Inc.
[28] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.

Polly - Performing polyhedral optimizations on a low-level intermedi-
ate representation. Parallel Processing Letters (2012), 22:04.

[29] F. Gruber, M. Selva, D. Sampaio, C. Guillon, L.-N. Pouchet, and F.
Rastello. 2019. Building of a Polyhedral Representation from an Instru-
mented Execution: Making Dynamic Analyses of non-Affine Programs
Scalable. Technical Report RR-9244. Inria.

[30] Christophe Guillon. 2011. Program Instrumentation with QEMU. In
Proceedings of the International QEMU User’s Forum (QUF ’11).

[31] Paul Havlak. 1997. Nesting of Reducible and Irreducible Loops. ACM
Trans. Program. Lang. Syst. 19, 4 (July 1997).

[32] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1–17.

[33] Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar,
Naznin Fauzia, Louis-Noël Pouchet, Atanas Rountev, and P Sadayap-
pan. 2012. Dynamic trace-based analysis of vectorization potential of
applications. ACM SIGPLAN Notices 47, 6 (2012), 371–382.

[34] Alexandra Jimborean, Luis Mastrangelo, Vincent Loechner, and
Philippe Clauss. 2012. VMAD: An Advanced Dynamic Program Analysis
and Instrumentation Framework.

[35] W. Kelly and W. Pugh. 1995. A unifying framework for iteration
reordering transformations. In Proceedings 1st International Conference
on Algorithms and Architectures for Parallel Processing.

[36] Alain Ketterlin and Philippe Clauss. 2008. Prediction and Trace Com-
pression of Data Access Addresses Through Nested Loop Recognition.
In Proceedings of the 6th Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO ’08).

[37] A. Ketterlin and P. Clauss. 2012. Profiling Data-Dependence to Assist
Parallelization: Framework, Scope, and Optimization. In 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture. 437–
448.

[38] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. Prospector:
A dynamic data-dependence profiler to help parallel programming.
In HotPar’10: Proceedings of the USENIX workshop on Hot Topics in
parallelism.

[39] Minjang Kim, Nagesh B Lakshminarayana, Hyesoon Kim, and Chi-
Keung Luk. 2013. SD3: An Efficient Dynamic Data-Dependence Profil-
ing Mechanism. IEEE Trans. Comput. 62, 12 (2013), 2516–2530.

[40] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04).

[41] Zhen Li, Rohit Atre, Zia Ul-Huda, Ali Jannesari, and Felix Wolf. 2015.
DiscoPoP: A profiling tool to identify parallelization opportunities. In
Tools for High Performance Computing 2014. Springer, 37–54.

12

https://doi.org/10.1007/11847366_23

[42] Zhen Li, Michael Beaumont, Ali Jannesari, and Felix Wolf. 2015. Fast
data-dependence profiling by skipping repeatedly executed memory
operations. In International Conference on Algorithms and Architectures
for Parallel Processing. Springer, 583–596.

[43] Zhen Li, Ali Jannesari, and Felix Wolf. 2015. An efficient data-
dependence profiler for sequential and parallel programs. In Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE International.
IEEE, 484–493.

[44] Xu Liu and John Mellor-Crummey. 2011. Pinpointing data locality
problems using data-centric analysis. In Code Generation and Opti-
mization (CGO), 2011 9th Annual IEEE/ACM International Symposium
on. IEEE, 171–180.

[45] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: building customized program analysis tools with
dynamic instrumentation. In Acm sigplan notices, Vol. 40. ACM, 190–
200.

[46] G. Marin, J. Dongarra, and D. Terpstra. 2014. MIAMI: A framework
for application performance diagnosis. In 2014 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS).

[47] Juan Manuel Martinez Caamaño, Manuel Selva, Philippe Clauss,
Artyom Baloian, and Willy Wolff. 2017. Full runtime polyhedral opti-
mizing loop transformations with the generation, instantiation, and
scheduling of code-bones. Concurrency and Computation: Practice and
Experience 29, 15 (2017), e4192. e4192 cpe.4192.

[48] Sanyam Mehta and Pen-Chung Yew. 2015. Improving Compiler Scal-
ability: Optimizing Large Programs at Small Price. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). ACM, New York, NY, USA, 143–152.
https://doi.org/10.1145/2737924.2737954

[49] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and
Ramesh Peri. 2007. Shadow profiling: Hiding instrumentation costs
with parallelism. In Code Generation and Optimization, 2007. CGO’07.
International Symposium on. IEEE, 198–208.

[50] Nicholas Nethercote and Alan Mycroft. 2003. Redux: A dynamic
dataflow tracer. Electronic Notes in Theoretical Computer Science 89, 2
(2003), 149–170.

[51] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. SIGPLAN Not.
(June 2007).

[52] Christos H Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial
optimization: algorithms and complexity. Courier Corporation.

[53] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-
André Silber, and Nicolas Vasilache. 2006. GRAPHITE: Polyhedral
analyses and optimizations for GCC. In Proceedings of the 2006 GCC
Developers Summit.

[54] Sebastian Pop, Albert Cohen, and Georges-André Silber. 2005. In-
duction Variable Analysis with Delayed Abstractions. In Proceedings
of the First International Conference on High Performance Embedded
Architectures and Compilers (HiPEAC’05).

[55] Louis-Noël Pouchet. [n. d.]. the PoCC polyhedral compiler collection.
([n. d.]). http://pocc.sourceforge.net.

[56] Louis-Noël Pouchet. 2017. Polybench: The polyhedral benchmark suite
(version 4.2). http://polybench.sf.net (Accessed: 2017-09-13). (2017).

[57] Benoît Pradelle, Benoît Meister, Muthu Baskaran, Athanasios Kon-
stantinidis, Thomas Henretty, and Richard Lethin. 2016. Scalable
hierarchical polyhedral compilation. In Parallel Processing (ICPP), 2016
45th International Conference on. IEEE, 432–441.

[58] Ganesan Ramalingam. 2002. On Loops, Dominators, and Dominance
Frontiers. ACM Trans. Program. Lang. Syst. 24, 5 (Sept. 2002).

[59] James Reinders. 2005. VTune performance analyzer essentials. Intel
Press (2005).

[60] Yukinori Sato, Yasushi Inoguchi, and Tadao Nakamura. 2011. On-the-
fly Detection of Precise Loop Nests Across Procedures on a Dynamic
Binary Translation System. In Proceedings of the 8th ACM International
Conference on Computing Frontiers (CF ’11).

[61] Markus Schordan, Pei-Hung Lin, DanQuinlan, and Louis-Noël Pouchet.
2014. Verification of polyhedral optimizations with constant loop
bounds in finite state space computations. In International Sympo-
sium On Leveraging Applications of Formal Methods, Verification and
Validation. Springer, 493–508.

[62] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity
Checker.. In USENIX Annual Technical Conference. 309–318.

[63] Andreas Simbürger, Sven Apel, Armin Größlinger, and Christian
Lengauer. 2018. PolyJIT: Polyhedral Optimization Just in Time. Inter-
national Journal of Parallel Programming (Aug 2018), 33.

[64] Michael D. Smith. 2000. Overcoming the Challenges to Feedback-
directed Optimization (Keynote Talk). SIGPLAN Not. 35, 7 (Jan. 2000),
1–11.

[65] O. A. Sopeju, M. Burtscher, A. Rane, and J. Browne. 2011. AutoSCOPE:
Automatic Suggestions for Code Optimizations Using PerfExpert. (July
2011).

[66] O. Tange. 2011. GNU Parallel - The Command-Line Power Tool. ;login:
The USENIX Magazine 36, 1 (Feb 2011), 42–47. http://www.gnu.org/s/
parallel

[67] Georgios Tournavitis and Björn Franke. 2010. Semi-automatic ex-
traction and exploitation of hierarchical pipeline parallelism using
profiling information. In Parallel Architectures and Compilation Tech-
niques (PACT), 2010 19th International Conference on. IEEE, 377–388.

[68] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias
Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop, Jan Sjödin,
and Ramakrishna Upadrasta. 2010. GRAPHITE Two Years After: First
Lessons Learned From Real-World Polyhedral Compilation. In GCC
Research Opportunities Workshop (GROW’10). ACM, Pisa, Italy.

[69] Robert A Van Engelen. 2001. Efficient symbolic analysis for optimiz-
ing compilers. In International Conference on Compiler Construction.
Springer.

[70] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. 2010. The
Paralax infrastructure: automatic parallelization with a helping hand.
In Parallel Architectures and Compilation Techniques (PACT), 2010 19th
International Conference on. IEEE, 389–399.

[71] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral
Model. In Proceedings of the Third International Congress on Mathemat-
ical Software (ICMS ’2010).

[72] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.
2014. Schedule trees. (2014).

[73] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. 2012.
Equivalence checking of static affine programs using widening to
handle recurrences. ACM Transactions on Programming Languages
and Systems (TOPLAS) 34, 3 (2012), 11.

[74] Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael FP
O’boyle. 2014. Integrating profile-driven parallelism detection and
machine-learning-based mapping. ACM Transactions on Architecture
and Code Optimization (TACO) 11, 1 (2014), 2.

[75] Michael E Wolf and Monica S Lam. 1991. A data locality optimizing
algorithm. In ACM Sigplan Notices, Vol. 26. ACM, 30–44.

[76] Qin Zhao, Derek Bruening, and Saman Amarasinghe. 2010. Umbra:
Efficient and scalable memory shadowing. In Proceedings of the 8th
annual IEEE/ACM international symposium on Code generation and
optimization. ACM, 22–31.

13

https://doi.org/10.1145/2737924.2737954
http://pocc.sourceforge.net
http://polybench.sf.net
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel

	Abstract
	1 Introduction
	2 Overview of poly-prof
	3 Interprocedural Control Structure
	3.1 Control-flow-graph and loop-nesting-tree
	3.2 Call-graph and recursive-component-set

	4 DDG: Dynamic dependence graph
	5 Compact Polyhedral DDG
	6 DDG Polyhedral Feedback
	7 Case Studies
	8 Experiments
	9 Related Work
	10 Conclusion and Future Work
	References

