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Abstract
This paper studies clustering for possibly high dimensional data (e.g. images, time series, gene
expression data, and many other settings), and rephrase it as low rank matrix estimation in the
PAC-Bayesian framework. Our approach leverages the well known Burer-Monteiro factorisation
strategy from large scale optimisation, in the context of low rank estimation. Moreover, our Burer-
Monteiro factors are shown to lie on a Stiefel manifold. We propose a new generalized Bayesian
estimator for this problem and prove novel prediction bounds for clustering. We also devise a
componentwise Langevin sampler on the Stiefel manifold to compute this estimator.
Keywords: Clustering, concentration inequalities, non-negative matrix factorisation, Gaussian
mixtures, PAC-Bayes, optimisation on manifolds.

1. Introduction

Clustering, i.e., unsupervised classification, is a central problem in machine learning and has at-
tracted great attention since the origins of statistics, via model-based learning, but recently regained
a lot of interest from theoreticians, due to its similarities with community detection (Arias-Castro
and Verzelen, 2014; Verzelen and Arias-Castro, 2015). On the application side, clustering is per-
vasive in data science, and has become a basic tool in computer science, bio-informatics, finance,
metrology, to name but a few.

1.1. Historical background

The problem of identifying clusters in a data set can be addressed using an wide variety of tools.
Two main approaches can be delineated, namely the model-based approach and the non-model
based approach. Techniques such as hierarchical clustering (Hastie et al., 2009), minimum spanning
tree-based approaches (Blum et al., 2016), K-means algorithms (Hastie et al., 2009), belong to the
non-model based family of methods. Model-based techniques mostly rely on mixture modelling
(McLachlan and Peel, 2004) and often offer better interpretability whilst being easily amenable to
uncertainty quantification analysis. The EM algorithm (Dempster et al., 1977; McLachlan and Peel,
2004) is often the algorithm of choice in the frequentist approach while many Monte Carlo Markov
Chain techniques have been proposed for estimation in the Bayesian setting.

In recent years, the clustering problem has revived a surge of interest in a different setting,
namely community detection in random graphs. Tools from spectral graph theory and convex
optimisation, combined with recent breakthrough from random matrix theory where put to work
in devising efficient clustering methods that operate in polynomial time. The celebrated exam-
ple of Max-Cut, a well known NP-hard combinatorial optimisation problem strongly related to bi-
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clustering and with a tight Semi-Definite Programming (SDP) relaxation discovered by Goemans
and Williamson (1995), is an example among the many successes of the convex optimisation ap-
proach to addressing machine learning problems. SDP is the class of optimisation problems that
consist in minimising a linear function over the sets of Positive Semi-Definite matrices that sat-
isfy a set of linear (in)equalities. Goemans and Williamson (1995) subsequently triggered a long
lasting trend of research in convex relaxation with many application in data science, and recent re-
sults proposing tighter relaxations to the clustering problem can be found in Guédon and Vershynin
(2016), Chrétien et al. (2016), Giraud and Verzelen (2018). Some of these methods even apply to
any kind of data set endowed with a relevant affinity measure computed from the pairwise distances
between the data points, and share the common feature of using low-rank matrix representations
of the clustering problem. The theoretical tools behind the analysing of the performance of these
convex optimisation-based methods are also quite fascinating and range from random matrix theory
(Bandeira, 2018; Vershynin, 2018), concentration inequalities for quadratic forms of random vectors
(Rudelson and Vershynin, 2013) and optimisation theory (optimality conditions, see Royer, 2017),
localisation arguments in statistical learning theory (Giraud and Verzelen, 2018), Grothendieck’s
inequality (Guédon and Vershynin, 2016; Montanari and Sen, 2015), to name but a few.

The main drawback, however, of the current lines of approach to the performance analysis of
these powerful convex SDP and spectral relaxations is that they all depend on the separation be-
tween clusters, i.e., the minimum distance between two points from different clusters, a crucial
parameter in the aforecited analyses. In real data sets however, sufficient inter-cluster separation
rarely holds and overlaps between clusters are the common situation. This leaves open the diffi-
cult problem of finding an alternative theoretical route for controlling the estimation error. On the
computational side, the sample size is also a problem for SDP relaxations for which off-the-shelf
software does not scale to big data. A remedy to this problem is to use the Burer-Monteiro factori-
sation consisting in solving in U where X = UU t is the variable of the SDP at hand (Burer and
Monteiro, 2003). The Burer-Monteiro factorisation results in a non-convex optimisation problem
whose local minimisers are global minimisers when the number of columns of U is sufficiently
large (Burer and Monteiro, 2005; Boumal et al., 2016). In practice however, the rank of the sought
matrix is simply equal to the number of clusters, and whether such small priors on the rank of the
Burer-Monteiro factorisation are compatible with the local/global equivalence of the minimisers in
general remains an open question to this day. A final source of frustration in our list, is that there
does not seem to exist any method for quantifying the uncertainty of the results in these convex
optimisation-based approaches to clustering.

In the present paper, we propose a generalized Bayesian approach to clustering which hinges
on low rank estimation of a clustering matrix. We then leverage arguments from the PAC-Bayesian
theory for controlling the error which does not use any prior estimate of separation. Our approach
is based on the estimation of a normalised version T ∗ of the adjacency matrix of the clustering,
which can be factorised into T ∗ = U∗U∗

t
, where U∗ has orthonormal, non-negative columns.

Leveraging this structure leads to sampling on the intersection of the Stiefel manifold Edelman
et al. (1998) and the non-negative orthant, which is another surprising manifestation of the power
of non-negative matrix factorisation (NMF) in clustering problems. Solving this factorised version
in the PAC-Bayesian setting is the sampling counterpart of the Burer-Monteiro approach to the
numerical solution of high dimensional SDP. The PAC-Bayesian approach (initiated by Shawe-
Taylor and Williamson, 1997; McAllester, 1998, 1999; Catoni, 2004, 2007; see Guedj, 2019, for a
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recent survey) moreover makes no prior use of the separation and at the same time makes it possible
to obtain state-of-the-art risk bounds.

1.2. Our contribution

The main goal of the present paper is to study the clustering problem from a low rank Stiefel matrix,
i.e. matrices with orthonormal columns, view point, and present a PAC-Bayesian analysis of the re-
lated statistical estimation problem. Our approach is in particular inspired by recent work on low
rank approximation for k-means (Boutsidis et al., 2009; Cohen et al., 2015), where the representa-
tion of clustering using the matrix T ∗ is explicitly stated (although no algorithm is provided), and
PAC-Bayesian bounds for Non-Negative Matrix factorisation (as introduced by Alquier and Guedj,
2017, although they do not establish the link between NMF and clustering). To the best of our
knowledge, the representation in Boutsidis et al. (2009) using the matrix T ∗ has never been studied
from a statistical learning perspective.

We present our main result (Theorem 1, which states an inequality holding in expectation on the
prediction performance) in Section 2 and its proof in Section 3. Our second main result is Theorem
2, which specifies the results of Theorem 1 in the case where we assume that the family of means is
incoherent. Section 4 is devoted to our algorithm (an alternating Langevin sampler which relies on
computing gradients on the Stiefel manifold), and the paper closes with a discussion and comments
on future work in 5. Additional proofs are gathered in Appendix A.

1.3. Notation

The notation used in the present paper is fairly standard. The canonical scalar product in Rd will
be denoted by 〈·, ·〉, the `p norms by ‖ · · · ‖p. For matrices in Rd×n, the operator norm will be
denoted by ‖ · ‖ and the Frobenius norm by ‖ · ‖F . The Stiefel manifold of order (n,R), i.e. the set
of matrices in Rn×R with orthonormal columns, will be denoted by On,R, and On,R,+ will denote
the subset of the Stiefel manifold On,R consisting of componentwise nonnegative matrices. The
matrices in On,R will sometimes be identified with matrices in Rn×n where the first R columns
form an orthonormal family and the remaining n−R columns are set to zero. The gradient operator
acting on differentiable multivariate functions will be denoted by∇.

2. Non-negative factorisation of the Stiefel manifold

This section is devoted to the presentation of our framework and our main theoretical result.

2.1. Model

Let data points x1, . . . , xn be vectors in Rd and let X denote the matrix

X = [x1, . . . , xn] .

Let µ1, . . . , µK beK ∈ N\{0} vectors in Rd. We will say that xi belongs to cluster k ∈ {1, . . . ,K}
if xi = µk+Ei for some centered random vectorEi ∈ Rd. For each i = 1, . . . , n, we will denote by
ki the label of the cluster to which xi belongs. For each k, we will denote by Ik the index set of the
points which belong to cluster k and nk its cardinality. Now, we can decompose X as X = M +E
with

M = [µk1 , . . . , µkn ] ,
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E = [ε1, . . . , εn]

More assumptions about the noise matrix E will be introduced and their consequences on the per-
formance of our clustering method will be studied in Theorem 2.

2.2. Ideal solution

If we try to estimate the columns of M , one simple way is to use a convex combination of the xi’s
for each of them. In other words, one might try to approximate X by XT ∗ where T ∗ is a Rn×n
matrix. One simple way to proceed is to set T as the matrix which computes the cluster means,
given by

T ∗i,j =


1
nk

if xi and xj belong to the same cluster k, i.e., ki = kj

0 otherwise.

Thus, each column i = 1, . . . , n of XT ∗ is simply the mean over cluster ki. This type of solution is
well-motivated by the fact that the mean is the least-squares solution of the approximation of µk by
the observation points. The matrix T ∗ defined as above enjoys the following desirable properties:
(i) its rank is exactly the number of clusters (ii) it is nonnegative (iii) the columns corresponding to
different clusters are orthogonal.

One important fact to notice is that the eigenvalue decomposition of T ∗ is explicit and given by

T ∗ = U∗U∗t (2.1)

with

U∗ =

[
1
√
n1

1I1 , . . . ,
1
√
nK

1IK

]
, (2.2)

and therefore, all the eigenvalues of T ∗ are equal to one.
Based on this decomposition, we can now focus on estimating U∗ rather than T ∗, the reason be-

ing that working on estimating U∗ with Û ≥ 0 will automatically enforce positive semi-definiteness
of T̂ (the estimator of T ∗) and non-negativity of its components. Moreover, enforcing the orthog-
onality of the columns of Û , combined with the non-negativity of its components, will enforce the
columns of Û to have disjoint supports.

Adopting a generalized Bayesian strategy (inspired by Alquier and Guedj, 2017), we will then
define a prior distribution on Û and study the main properties of the resulting (generalized) posterior
distribution.

2.3. The latent variable model

In order to perform an accurate estimation, we need to devise meaningful priors which will account
for the main constraints our estimator should satisfy, namely (i) nonnegativity of the entries (ii)
orthogonality of the columns (iii) the columns have unit `2 norm (iv) group sparsity of the columns.

In order to simplify this task, we will introduce a latent (matrix) variable O with uniform dis-
tribution on the orthogonal group, and build priors on U that will promote group sparsity of the
columns and non-negativity (component-wise).
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Prior on (U,O). Let UR denote the set of matrices of the form

U =

U1,1 · · · U1,R 0 · · · 0
...

...
...

...
Un,1 · · · Un,R 0 · · · 0

 .
Let On,R denote the Stiefel manifold, i.e., the manifold of all matrices with R orthonormal columns
in Rn. The prior on (U,O) ∈ UR ×On,R is given by

πU,O(U,O) = πU |O(U) πO(O)

with

πUi,r|O(U) =
1√
2πµ

exp

(
−
‖Ui,r − |Oi,r|‖2F

2µ2

)
, i = 1, . . . , n, r = 1, . . . , R,

with R being a fixed integer and πO being the uniform distribution on the Stiefel manifold On,R.

2.4. Generalized posterior and estimator

Following the approach of Alquier and Guedj (2017), we use a loss term (instead of a likelihood,
hence the term "generalized Bayes", see Guedj, 2019, for a survey) given by

Lλ(U) = exp

(
−λ

2
‖X −XUU t‖2F

)
for some fixed positive parameters λ and µ. The resulting generalized posterior (also known as a
Gibbs measure) is defined as

ρ(U,O) =
1

Zλ
Lλ(U) πU |O(U) πO(O),

where Zλ denotes the normalisation constant Zλ =
∫
Lλ(U) πU |O(U) πO(O) dU. Finally we let

Ûλ denote the posterior mean of U , i.e.

Ûλ =

∫
U Lλ(U) πU |O(U)πO(O)dUdO.

2.5. A PAC-Bayesian-flavored error bound

Our main result is the following theorem.

Theorem 1 Let νmin and νmax be such that

νmin ≤ min
Ũ∈On,R,+, MŨŨt=M

‖E(I − Ũ Ũ t)‖F and νmax ≥ max
Ũ∈On,R,+, MŨŨt=M

‖E(I − Ũ Ũ t)‖F .

Then, for all ε > 0, and for all cO > 0 and cU > cO such that

cU (2 + cU ) ≤ ε νmin

‖M‖+ ‖E‖
, (2.3)
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for any R ∈ {1, . . . , n} and for c and ρ sufficiently small universal constants, we have

E
[∥∥∥M (

T ∗ − ÛλÛ tλ
)∥∥∥

F

]
≤ (1 + ε) min

Ũ∈On,R,+, MŨŨt=M
‖M(T ∗ − Ũ Ũ t)‖F

(2.4)

+

√√√√√√
1

exp

((√
c2U−c

2
O−
√
nR

)2

2

)
− 1

+

√(
nR− 1

2
(R2 +R)

)
log(ρ−1) + log(c−1)

+(2 + ε)νmax.

This theorem gives a prediction bound on the difference between the true and the estimated cluster
matrices filtered by the matrix of means. Up to our knowledge, this is the first oracle bound for
clustering using a generalized Bayesian NMF. Note that the oracle bound is not sharp as the leading
constant is 1 + ε > 1, however ε may be chosen arbitrarily close to 0.

Note also that the claim that this result is PAC-Bayesian-flavored comes from the fact that the
prediction machinery is largely inspired by Alquier and Guedj (2017), and the scheme of proof
builds upon the PAC-Bayesian bound from Dalalyan and Tsybakov (2008). Hence we kept that
PAC-Bayesian filiation, even though the bound holds in expectation.

The following Theorem gives a more precise bound in the case where the noise E is assumed to
be iid Gaussian.

Theorem 2 Assume that the dimension is larger that the number of clusters, i.e. d > K. In
addition to the assumptions of Theorem 1, assume that E is iid Gaussian with minimum (resp.
maximum) one-dimensional variance σ2

min (resp. σ2
max) and assume also that the µk have Euclidean

norm less that 1 and pairwise scalar products less than µ in absolute value. Then, as long as
µ < 1/(K − 1), for all ε > 0, and for all cO > 0 and cU > cO such that

cU (2 + cU ) ≤ ε νmin√(
maxKk=1 nk

)
µ(K − 1) + 1 + σmax

(√
n+ 2

√
d
) , (2.5)

with probability at least

1− exp(−d)−
(c
ε

)nR−R(R+1)/2
(

2√
πn(n−R)

(tmin e/2)n(d−R)/4 + exp(−tmax)

)
− exp(−nu2/8),

we have

K∑
k=1

∑
ik∈Ik

∑
i′k∈Ik

T ∗π,i′k,ik
− Ûλ,π,i′k Û

t
λ,π,ik

2

≤
(1 + ε)

√
1 + µ(K − 1)

1− µ(K − 1)
min

Ũ∈On,R,+, MŨŨt=M
‖M(T ∗ − Ũ Ũ t)‖F

+

√√√√√√
1

exp

((√
c2U−c

2
O−
√
dR

)2

2

)
− 1

+

√
(dR− 1

2
(R2 +R)) log(ρ−1) + log(c−1) + (2 + ε)νmax.
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with

tmin =

(
νmin
σmin

+ 4ε
√
nd+ u

)2

n(n−R)
and tmax =

(
νmax

σmax
− 4ε
√
nd+ u

)2

−
√
n(n−R),

This theorem shows that a bound on the difference of the cluster matrices can be obtained when the
matrix of means is sufficiently incoherent. Notice that this bound is not exactly component-wise, but
considers a sum over clusters, which is perfectly relevant because the matrixM does not distinguish
between points in the same cluster. As expected, the smaller the coherence µ, the better the oracle
bound.

The proof of Theorem 2 is deferred to Appendix A.

3. Proof of Theorem 1

We break down the proof in the following successive elementary steps.

3.1. Initial PAC-Bayesian bound

Theorem 3.1 (adapted from Dalalyan and Tsybakov, 2008) For λ ≤ 1/4,

E
[
‖X −XÛλÛ tλ‖2F

]
≤ inf

ρ

{∫
‖X −XÛλÛ tλ‖2F ρ(U) dU

}
+
KL(ρ, π)

λ
(3.6)

where the infimum is taken over all probability measures ρ which are absolutely continuous with
respect to π. Here KL denotes the Kullback-Leibler divergence.

3.2. Bounding the integral part

In order to bound the integral part in the bound given in (3.6), we define for any R and any matrix
U0 ∈ UR ∩On,R,+ for any cU , cO ∈ (0, 1], the measure

ρR,U0,cU ,cO(U,O) =
1‖U−U0‖F≤cU , ‖|O|−U0‖F≤cO πU,O(U,O)

πU,O (‖U − U0‖F ≤ cU , ‖|O| − U0‖F ≤ cO)
.

Define c = (cU , cO). Using these distributions we will be able to prove the following bound.

Lemma 3.2 We have∫
‖X −XUU t‖2FρR,U0,cU ,cO(U,O) dUdO ≤

(
‖X −XU0U0t‖F + cU (2 + cU ) (‖M‖+ ‖E‖)

)2
.

Proof Note that∫
‖X −XUU t‖2FρR,U0,cU ,cO(U,O) dUdO =

∫ (
‖X −XU0U0t‖2F + 2〈X(UU t − U0U0t , X −XU0U0t〉

+ ‖XUU t −XU0U0t‖2F

)
ρR,U0,cU ,cO(U,O) dUdO
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and thus, ∫
‖X −XUU t‖2F ρR,U0,cU ,cO(U,O) dUdO

=

∫ (
‖X −XU0U0t‖2F + 2〈X(UU t − U0U0t), X −XU0U0t〉

+ ‖XUU t −XU0U0t‖2F
)
ρR,U0,cU ,cO(U,O) dUdO.

By the Cauchy-Schwartz inequality, we get∫
‖X −XUU t‖2F ρR,U0,cU ,cO(U,O) dUdO = ‖X −XU0U0t‖2F

+ ‖X −XU0U0t‖F
∫

2 ‖X(UU t − U0U0t)‖F ρR,U0,cU ,cO(U,O) dUdO

+

∫
‖X(UU t − U0U0t)‖2F ρR,U0,cU ,cO(U,O) dUdO

Note further that since (U,O) must belong to the support of ρR,U0,cU ,cO , we have

‖X(UU t − U0U0t)‖F =
∥∥∥X (U(U − U0)t + (U − U0)U0t

)∥∥∥
F

≤
∥∥XU(U − U0)t

∥∥
F

+
∥∥∥X(U − U0)U0t

∥∥∥
F
.

Now, on the one hand, we have∥∥XU(U − U0)t
∥∥2

F
≤ ‖XU‖2 ‖U − U0‖2F
≤
(
‖MU0‖+ ‖EU0‖+ (‖M‖+ ‖E‖)‖U − U0‖

)2 ‖U − U0‖2F
and since the columns of U0 are orthonormal, we have ‖U0‖ = 1, which gives∥∥XU(U − U0)t

∥∥
F
≤ (‖M‖+ ‖E‖)

(
1 + ‖U − U0‖F

)
‖U − U0‖F .

On the other hand,∥∥∥X(U − U0)U0t
∥∥∥2

F
≤ ‖X‖2

∥∥∥(U − U0)U0t
∥∥∥2

F
≤ ‖X‖2 ‖U0‖2

∥∥(U − U0)
∥∥2

F

and using again that ‖U0‖ = 1,∥∥∥X(U − U0)U0t
∥∥∥
F
≤ ‖X‖

∥∥(U − U0)
∥∥
F
.

From this, we easily deduce that∫
‖X −X(UU t)‖F ρR,U0,cU ,cO(U,O) dUdO ≤ (‖M‖+ ‖E‖) ((1 + cU ) cU + cU ) ,

≤ cU (2 + cU ) (‖M‖+ ‖E‖) ,

and ∫
‖X −X(UU t)‖2F ρR,U0,cU ,cO(U,O) dUdO ≤ c2

U (2 + cU )2 (‖M‖+ ‖E‖)2

which completes the proof.
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3.3. Upper bound on the Kullback-Leibler divergence

Lemma 3.3 We have

KL
(
ρR,U0,c, π

)
≤ 1

exp

((
1
µ

√
c2U−c

2
O−
√
nR

)2

2

)
− 1

+

(
nR− 1

2
(R2 +R)

)
log(ρ−1) + log(c−1),

for some ρ, c > 0 sufficiently small.

Proof By definition,

KL(ρR,U0,cU ,cO , π) =

∫
ρR,U0,cU ,cO(U,O) log

(
ρR,U0,cU ,cO(U,O)

πU,O(U,O)

)
dUdO,

= log

(
1∫

1‖U−U0‖F≤cU , ‖|O|−U0‖F≤cO πU,O(U,O) dUdO

)
dUdO.

We then have

πU,O
(
‖U − U0‖2F ≤ c2

U , ‖|O| − U0‖2F ≤ c2
O

)
≥ πU,O

(
‖U − |O|‖2F ≤ c2

U − c2
0, ‖|O| − U0‖2F ≤ c2

O

)
=

∫
‖|O|−U0‖2F≤c

2
O

(∫
1‖U−|O|‖2F≤c

2
U−c

2
O

πU |O(U)dU

)
πO(O)dO

=

∫
‖|O|−U0‖2F≤c

2
O

πU |O

(
d∑
i=1

R∑
r=1

(Ui,r − |Oi,r|)2 ≤ c2
U − c2

O

)
πO(O)dO.

As long as c2
U ≥ dR, the inner probability can be bounded as follows (see equation 7.50 in Massart,

2007):

πU |O


√√√√ d∑

i=1

R∑
r=1

(Ui,r − |Oi,r|)2 ≤
√
c2
U − c2

O

 ≥ 1− exp

−
(

1
µ

√
c2
U − c2

O −
√
nR
)2

2

 .

From this last inequality, we get

πU,O
(
‖Ui,r − U0

i,r‖2F ≤ c2
U , ‖|O| − U0‖2F ≤ c2

O

)
≥

1− exp

−
(

1
µ

√
c2
U − c2

O −
√
nR
)2

2


 πO

(
‖|O| − U0‖2F ≤ c2

O

)
. (3.7)

We now use the elementary inequality log(1 + x) ≥ x/(1 + x) for x ∈ (−1,+∞), and a lower
bound on πO

(
‖|O| − U0‖2F ≤ c2

O

)
(given by Lee and Ruymgaart, 1996). Therefore

πO
(
‖|O| − U0‖2F ≤ c2

O

)
≥ c ρnR−

1
2

(R2+R)

9
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for c and ρ sufficiently small. From these two inequalities, we end the proof:

log

πU |O

√√√√ d∑

i=1

R∑
r=1

(Ui,r − |Oi,r|)2 ≤
√
c2
U − c2

O

 ≥ −1

exp

((
1
µ

√
c2U−c

2
O−
√
dR

)2

2

)
− 1

+

(
nR− 1

2
(R2 +R)

)
log(ρ) + log(c).

3.4. Combining the lemmæ

Combining the results of the previous lemmæ, we get the following proposition.

Proposition 3.4 Let ν = minŨ∈On,R,+, MŨŨt=M ‖E(I − Ũ Ũ t)‖F . Then, for any cU such that
cU (2 + cU ) ≤ ε ν

(‖M‖+‖E‖) , we have

E
[∥∥∥X −XÛλÛ tλ∥∥∥2

F

]
≤ (1 + ε)2‖X −XU0U0t‖2F

+
1

exp

((
1
µ

√
c2U−c

2
O−
√
nR

)2

2

)
− 1

+ (nR− 1

2
(R2 +R)) log(ρ−1) + log(c−1).

Proof Let Ũ be a minimiser in the numerator of the right hand-side in (2.3). Since

‖X −XŨŨ t‖F = ‖M + E −MŨŨ t − EŨŨ t‖F

and since M = MŨŨ t, we get ‖X −XŨŨ t‖F = ‖E(I − Ũ Ũ t)‖F . As

‖E(I − Ũ Ũ t)‖F ≤ ‖E(I − U0U0t)‖F

for all U0 ∈ On,r,+ ∪ {U | MUU t = M}, the claim then follows from combining the results of
Lemma 3.2 and Lemma 3.3 above, and taking cU such that (2.3) holds.

3.5. Assembling the elements

We have that∥∥∥X −XÛλÛ tλ∥∥∥2

F
≥
(∥∥∥M −MÛλÛ

t
λ

∥∥∥
F
− νmax

)2
=
(∥∥∥M (

U0U0t − ÛλÛ tλ
)∥∥∥

F
− νmax

)2

Using Jensen’s inequality gives

E
[∥∥∥X −XÛλÛ tλ∥∥∥2

F

]
≥ E

[∥∥∥X −XÛλÛ tλ∥∥∥
F

]2
≥ E

[∥∥∥M (
T ∗ − ÛλÛ tλ

)∥∥∥
F
− νmax

]2

10
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which, combined with Proposition 3.4 gives

E
[∥∥∥M (

T ∗ − ÛλÛ tλ
)∥∥∥

F

]
≤ (1 + ε)‖X −XU0U0t‖F

+

√√√√√√
1

exp

((
1
µ

√
c2U−c

2
O−
√
nR

)2

2

)
− 1

+

√
(nR− 1

2
(R2 +R)) log(ρ−1) + log(c−1) + νmax.

Given that

‖X −XU0U0t‖F ≤ ‖M −MU0U0t‖F + νmax

this completes the proof of Theorem 1, since U0 is any matrix satisfying the constraints.

4. A Langevin sampler

In this section, we present a Langevin sampler for our estimator Ûλ, Ôλ ∗. Langevin-type sam-
plers were first proposed by Grenander (1983), Grenander and Miller (1994), Roberts and Tweedie
(1996), and have attracted a lot a attention lately in the statistical learning community (Dalalyan,
2017; Durmus and Moulines, 2017; Brosse et al., 2018).

4.1. Computing the gradient on the Stiefel manifold

We start with some preliminary material about gradient computation on the Stiefel manifold from
Edelman et al. (1998). The Stiefel manifold can be interpreted as the set of equivalence classes

[O] =

{[
O

[
IR 0
0 O′

]
, with O′ ∈ Od−R

]}
.

As can easily be deduced from this quotient representation of the Steifel manifold, the tangent space
to the Stiefel manifold at a point O is

TO(Od,R) =

{
O

[
A −Bt

B 0

]
, with A ∈ RR×R skew symmetric

}
.

The canonical metric at a point O is given by

gc = trace

(
∆t

(
I − 1

2
OOt

)
∆

)
.

For ∆ ∈ TO(Od,R), the exponential map is given by O(t) = Oet∆Id,R. The gradient at O of a
function f defined on the Stiefel manifold Od,R is given by †

∇f(O) = fO −Of tOO, (4.8)

where fO(i, i′) = ∂f
∂ Oi,i′

for any i, i′ = 1, . . . , n.

∗. Notation-wise, we will identify the Stiefel manifold with the set of matrices whose first R columns form an orthonor-
mal family and the remaining n−R columns are set to zero
†. This formula can be obtained using differentiation along the geodesic defined by the exponential map in the direction

∆, for all ∆ ∈ TO(Od,R).

11
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4.2. The alternating Langevin sampler

The alternating Langevin sampler is described as follows. It consists in alternating between per-
turbed gradient steps in the matrix variable O on the Stiefel manifold and perturbed gradient steps
in the matrix variable U .

For clarity of the exposition, we give the formula for the gradient of ‖X−XUU t‖2F as a function
of U :

∇
(
‖X −X · ·t‖2F

)
U

=
(
(X −XUU t)tX +Xt(X −XUU t)

)
U.

Following Brosse et al. (2018), we propose the following algorithm.

Algorithm 1 The Langevin sampler

Result: A sample Ûλ of the quasi-posterior distribution
initialise U (0) = O(0)

for ` = 1 do

O(`+1) = exp

(
O(`),−h

(
sign(O(`))�

(
U (`) − |O(`)|

)
−O(`)

(
sign(O(`))�

(
U (`) − |O(`)|

))t
O(`) +

√
2 h Z

(`)
O

))

U (`+1) = U (`) − h

(
−
(

(X −XU (`)U (`)t)tX +Xt(X −XU (`)U (`)t)
)
U (`)

+
1

µ2

(
U (`) − |O(`+1)|

))
+
√

2 h Z
(`)
U .

end

In this algorithm the exponential function exp(O,H) at O is given by Edelman et al. (1998, Eq.
2.45) using different notation.

5. Conclusion and future work

We propose a novel way to address the standard clustering problem by recasting it for the first time
into constrained NMF framework using a Stiefel manifold prior. Up to our knowledge, this strategy
is unprecedented in the statistical learning literature. For this approach, a bound in expectation is
derived in a very general setting and then specialised to the case of an incoherent matrix of means.
We derive a original componentwise Langevin sampler on the Stiefel manifold to compute our
estimator.

This paper opens several lines of research. On a computational aspect, we intend to deploy our
algorithm and evalute its performance on large real-life data sets. On a more theoretical side, our
plans are to investigate the convergence properties of our Langevin sampler along with its conver-
gence rate.

12
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Appendix A. Proof of Theorem 2

A.1. Control of P
(
minU∈On,R ‖E(I − UU t)‖F ≤ νmin

)
The covering number of the Stiefel manifold in the operator norm was computed in Hinrichs et al.
(2017) and is given by

N(On,R, ‖ · ‖, ε) ≤
(c
ε

)nR−R(R+1)/2
. (A.9)

Let Nε denote an ε-net in the operator norm for the Stiefel manifold with cardinality N(On,R, ‖ ·
‖, ε). For any U ∈ On,R, let U ] denote the closest matrix in Nε to U . Then, we have

‖E(I − UU t)‖F = ‖E(I − (U ] + (U − U ]))(U ] + (U − U ]))t‖F
≥ ‖E(I − U ]U ]t)‖F − ‖EU ](U − U ])t)‖F − ‖E(U − U ])U ]t)‖F
≥ ‖E(I − U ]U ]t)‖F − ‖(U − U ])‖‖EU ]‖F − ‖E(U − U ])U ]t‖F (A.10)

Moreover,

‖E(U − U ])U ]t‖2F = trace(E(U − U ])U ]tU ](U − U ])tEt)
= trace(E(U − U ])(U − U ])tEt)
= ‖E(U − U ])‖2F
≤ ‖U − U ]‖2 ‖E‖2F
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Combining this last inequality with (A.10), we get

‖E(I − UU t)‖F ≥ ‖E(I − U ]U ]t)‖F − ε
(
‖EU ]‖F + ‖E‖F

)
≤ ‖E(I − U ]U ]t)‖F − 2 ε‖E‖F

Therefore, we obtain that

P
(

min
U∈On,R

‖E(I − UU t)‖F ≤ νmin

)
≤ P

(
min
U∈Nε

‖E(I − UU t)‖F ≤ νmin + 2ε‖E‖F
)

≤ P
(

min
U∈Nε

‖E(I − U ]U ]t)‖F ≤ νmin + 4ε‖E‖F
)

where, for any U in Nε, U ] will denote the projection in operator norm of U onto On,R. Moreover

P
(

min
U∈On,R

‖E(I − UU t)‖F ≤ νmin

)
≤ P

(
min
U∈Nε

‖E(I − U ]U ]t)‖F ≤ νmin + 4ε‖E‖F , ‖E‖F ≤ η
)

+ P
(

min
U∈Nε

‖E(I − U ]U ]t)‖F ≤ v + 4ε‖E‖F , ‖E‖F > η

)
≤ P

(
min
U∈Nε

‖E(I − U ]U ]t)‖F ≤ νmin + 4εη

)
+ P (‖E‖F > η)

Since E is i.i.d. Gaussian with minimum one-dimensional variance σ2
min, for any U ] ∈ On,R, the

lower tail of σ−1
min‖E(I − U ]U ]t)‖2F is dominated by the lower tail of a χ2(n(n− R)) distribution

and therefore, as recalled in Chrétien and Darses (2014, Lemma B1)

P
(
‖E(I − U ]U ]t)‖F ≤ σ

√
t n(n−R)

)
≤ 2√

π n(n−R)
(t e/2)n(n−R)/4 . (A.11)

Let us now tune t and η. On the one hand, by Boucheron et al. (2013), we have that

P
(
‖E‖F ≥ σ

√
dn+ u

)
≤ exp(−nu2/8).

Thus, we will choose η = σ
√
dn+ u. On the other hand, we will take t such that

σ
√
tn(d−R) = νmin + 4εη

i.e.

t =

(
νmin
σ + 4ε

√
nd+ u

)2
n(n−R)

Therefore, using the union bound we get

P
(

min
U∈Nε

‖E(I − U ]U ]t)‖F ≤ νmin

)
≤

2 N(On,R, ‖ · ‖, ε)√
π n(n−R)

(t e/2)n(n−R)/4 .
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A.2. Control of P
(
maxU∈On,R ‖E(I − UU t)‖F ≥ νmax

)
The same strategy applies, with slight modifications. We consider the same ε-net as in the previous
subsection. We first easily get

‖E(I − UU t)‖F ≤ ‖E(I − U ]U ]t)‖2F + 2 ε‖E‖F

Therefore,

P
(

max
U∈On,R

‖E(I − UU t)‖F ≥ νmax

)
≤ P

(
max
U∈Nε

‖E(I − UU t)‖F ≥ νmax − 2ε‖E‖F
)

≤ P
(

max
U∈Nε

‖E(I − U ]U ]t)‖F ≤ νmax − 4ε‖E‖F
)

where, for any U inNε, U ] again denotes the projection in operator norm of U onto On,R. We then
get

P
(

max
U∈On,R

‖E(I − UU t)‖F ≤ νmax

)
≤ P

(
max
U∈Nε

‖E(I − U ]U ]t)‖F ≤ νmax − 4εη

)
+ P (‖E‖F > η)

SinceE is i.i.d. Gaussian with maximum one-dimensional variance σ2
max, the upper tail of σ−1

max‖E(I−
U ]U ]

t
)‖2F is dominated by that of a χ2(n(n − R)) distribution for any U ] in On,R, and therefore,

as recalled in Chrétien and Darses (2014, Lemma B1)

P
(
‖E(I − U ]U ]t)‖F ≥ σmax

(√
n(n−R) +

√
2t
))
≤ exp(−t). (A.12)

We can now tune t and η. Recall that for all u > 0, we have

P
(
‖E‖F ≥ σ

√
dn+ u

)
≤ exp(−nu2/8).

Thus, we will choose as before η = σmax

√
dn+ u. On the other hand, we will take t such that

σmax

(√
2t+

√
n(n−R)

)
= νmax − 4εη

i.e.

t =

(
v

σmax
− 4ε
√
nd+ u

)2

−
√
n(d−R).

Therefore, using the union bound we get

P
(

min
U∈Nε

‖E(I − U ]U ]t)‖F ≤ v
)
≤ N(On,R, ‖ · ‖, ε) exp(−t).

A.3. Control of ‖E‖

We will also need to control ‖E‖. Using Vershynin (2018, Section 4.4), we obtain

‖E‖ ≤ σ
(√

n+ 2
√
d
)

with probability at least 1− exp(−d).
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A.4. Control of ‖M‖

Finally, we need to compute ‖M‖ as a function of the coherence µ. Using the Gershgorin bound,
we easily obtain

‖M‖ =
√
‖M tM − I‖+ 1 ≤

√(
K

max
k=1

nk

)
µ(K − 1) + 1 (A.13)

A.5. End of the proof

Let us now study ‖M(T ∗ÛλÛ
t
λ)‖2F . Let

Υ = [µ1, . . . , µK ].

Let Υ† denote the pseudo inverse of Υ, i.e.

Υ† = (ΥtΥ)−1Υt.

In particular, let π denote a permutation which orders the data cluster wise, i.e. all data from cluster
1, followed by all data from cluster 2, . . . , all data from cluster K and let Mπ denote the matrix
whose columns are permuted by π. Then,

Υ†Mπ =


1tn1

0 · · · · · · 0
0 1tn2

· · · · · · 0
... 0

...
...

...
...

0 0 · · · 0 1tnK


Denote by T ∗π the matrix obtained from T ∗ after reordering its rows and columns using π, and Ûλ,π
denote the matrix obtained from Ûλ after reordering its row using π.

∥∥∥Υ†Mπ

(
T ∗π − Ûλ,πUλ,π

)∥∥∥2

F
=

K∑
k=1

∑
ik∈Ik

∑
i′k∈Ik

T ∗π,i′k,ik
− Ûλ,π,i′k Û

t
λ,π,ik

2

.

On the other hand,

σmax

(
Υ†
)
≤ σmin

(
ΥtΥ

)−1
σmax

(
Υt
)
≥
√

1 + µ(K − 1)

1− µ(K − 1)

and we get that∥∥∥Υ†Mπ

(
T ∗π − Ûλ,πUλ,π

)∥∥∥2

F
≤
√

1 + µ(K − 1)

1− µ(K − 1)

∥∥∥Mπ

(
T ∗π − Ûλ,πUλ,π

)∥∥∥2

F

and the result follows.
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