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Copula-Based Interference Models for IoT Wireless
Networks

Ce Zheng, Malcolm Egan, Laurent Clavier, Gareth W. Peters and Jean-Marie Gorce

Abstract—As the Internet of Things (IoT) is largely supported
by wireless communication networks in unlicensed bands, there
has been a proliferation of technologies that use a large variety of
protocols. An ongoing challenge is how these networks can coexist
given that they have different power levels, symbol periods,
and access protocols. In this paper, we study the statistics of
interference due to IoT networks that transmit small amounts
of data. A key observation is that sets of active devices change
rapidly, which leads to impulsive noise channels. Moreover, these
devices operate on multiple partially overlapping resource blocks.
As such, we characterize the joint distribution and propose
a tractable model based on copulas. Using our copula model,
we derive closed-form achievable rates. This provides a basis
for resource allocation and network design for coexisting IoT
networks.

I. INTRODUCTION

With the increasing scale of wireless network deployments
for the Internet of Things (IoT), an ongoing challenge is to
ensure that these networks can coexist. A key issue is that
interference from a large number of devices, even if they
operate at low power levels, can degrade the performance of
other communication networks. This means that the interfer-
ence statistics are difficult to characterize and has lead to a
number of experimental studies on the interference in various
contexts [1]–[4].

One feature observed in IoT networks is the presence
of impulsive interference, where high amplitude interference
is significantly more likely than in Gaussian models. This
behavior has been observed both in experimental studies [4]
and also in theoretical analysis [5], [6]. As a consequence,
Gaussian models are often not appropriate and the interference
statistics lie in a more general class of models.

Introducing non-Gaussian interference models implies that
the interference statistics are not simply characterized by their
mean and variance. This issue is amplified in settings where
a number of frequency bands are used for transmissions. In
these cases, the covariance matrix is not sufficient in order to
characterize the joint interference statistics over multiple fre-
quency bands. This is particularly evident when the frequency
bands used by different users only partially overlap [7], such
as in non-orthogonal multiple access (NOMA) schemes [8]
including sparse code multiple access (SCMA) [9].

Due to the rich dependence structure possible for the joint
distribution of non-Gaussian random vectors, a key question
is how it should be modeled. For the purposes of analysis,
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simulation and design, it is highly desirable that the class
of distributions captures the realistic dependence between the
interference on different bands, and admits tractable estimation
and simulation methods.

A popular method in statistics for tractably modeling non-
Gaussian multivariate distributions is based on copulas [10].
Copula models have been applied in wireless communications
to model fading in MIMO systems [11], for blind source
separation [12], and modeling interference in ultra wideband
or ad hoc networks [13], [14].

In the copula modeling approach, the joint distribution
function of a random vector in Rn, X = [X1, . . . , Xn] is
given in the form

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (1)

where C : [0, 1]n → [0, 1] is called a copula function, and
Fi, i = 1, . . . , n are the marginal distribution functions.
When both the joint and marginal distributions admit density
functions, the joint probability density function is then given
in the form

pX(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))

n∏
i=1

pXi(xi). (2)

That is, the joint probability density function decomposes into
the product of the marginal densities and another function
c : [0, 1]n → R+ which captures dependence between the
different components of X.

In this paper, we introduce copula models for interference
in the context of IoT wireless networks. In particular, we adopt
the class of t-copulas with α-stable marginal distributions.
This choice of marginals is consistent with theoretical models
for interference arising from Poisson spatial fields of interfer-
ers [5], [15]–[17] that exhibits heavy-tails and consistent with
experimental studies [4].

To show that t-copulas are a good fit for the interference
dependence structure, we study simulated data sets arising
from a Poisson spatial field of interferers and a SCMA scheme.
In our model, interferers randomly select frequency bands to
transmit on, leading to partial overlaps. Our fits are shown to
be close in terms of the Kullback-Leibler (KL) divergence.
Since parameters from t-copulas can also be efficiently es-
timated and the resulting random vectors easily simulated,
our proposed interference model satisfies several criteria for a
desirable model.

In order to emphasize the tractability of working with the
t-copula model, we also study achievable rates of a commu-
nication system with this class of interference. In particular,
we consider a system where two devices communicate in



a point-to-point fashion with interference modeled via the
t-copula. This setting arises when the active interferer sets
change rapidly; that is, on a symbol-by-symbol basis [5]–[7].
Such a setting is realistic when the point-to-point link exploits
a different protocol to that of the interferers; for example
on the 868 MHz band, where Zigbee coexists with the wide
area networks of SigFox and LoRa. We derive limits on the
resulting additive noise channel. In particular, achievable rates
are derived, which form a tractable basis for further analysis
and design of IoT networks.

II. SYSTEM MODEL

Consider a network of interfering devices, which is observed
by a device at the origin. The locations of the interfering
devices form a homogeneous Poisson point process with
intensity λ. Each interfering device transmits over a subset
of orthogonal frequency bands, B = {1, 2, . . . ,K}.

At each time t, interfering devices independently transmit
on a band k ∈ B, with probability p > 0 (p is same for each
band). The probability p can be interpreted as proportional to
the quantity of data each interfering device seeks to transmit.
As such, the probability that an interfering device transmits on
M out of K bands is

(
K
M

)
pM (1−p)K−M . Due to independent

thinning, the locations of the subset of transmitting devices on
band k are also governed by a Poisson point process. We call
Φ the set of interferers, a Poisson point process with intensity
λ, and Φk(t) the set of active interferers at time t on frequency
band k, a Poisson point process with intensity λp.

The interference observed at the origin at time t on frequen-
cy band k is given by

zk(t) =
∑

j∈Φk(t)

rj(t)
−η/2hj,k(t)xj,k(t), (3)

where rj is the distance from device j ∈ Φk(t) to the origin,
η is the path loss exponent, hj,k(t) is a Rayleigh fading
coefficient with hj,k(t) ∼ CN (0, 1), and xj,k(t) is the base-
band emission.

Suppose that in addition to the set of interferers, there is
an interference-limited point-to-point commmunication system
consisting of a device located at the origin and a transmitter
located at a distance d from the origin. Hence at time t, the
device at the origin observes the signal on the k-th frequency
band given by

yk(t) = d−η/2gk(t)wk(t) + zk(t), (4)

where gk(t) is the Rayleigh fading coefficent on the k-th band
distributed according to gk(t) ∼ CN (0, 1), wk(t) is the base-
band emission on band k and zk(t) is the interference in (3)
on band k. In the following, we will focus on the interference
limited regime and neglect the thermal noise arising at the
receiver.

Motivated by the fact that IoT networks transmit non-
continguously small quantities of data and there exist protocols
that have large variations in symbol periods, we assume that
the interference at time t is independent of the interference at
any other time t′, corresponding to different symbols of the
point-to-point communication system. The main consequence

of this assumption is that the interference random vector
z(t) = [z1(t), . . . , zK(t)]T is independent in t and hence the
additive noise channel in (4) is memoryless and stationary. We
remark that although z(t) is independent in time, in general the
elements of z(t) corresponding to different frequency bands
will be dependent.

Due to the additive nature of the channel in (4), it
can be viewed as a stationary memoryless real-valued 2K-
dimensional vector additive noise channel. Note that since the
channel is both memoryless and stationary, we drop the time
index and write the channel as

Y = AX + Z, (5)

where A is a real diagonal matrix, and Y, X and Z are
all random vectors on the measurable space1 (R2K ,B(R2K)).
The noise vector Z is given by

Z = [Re(z1), Im(z1), . . . ,Re(zK), Im(zK)]T . (6)

III. COPULA-BASED INTERFERENCE MODELS

In this section, we develop our copula-based interference
model and validate its use on a simulated data set obtained
from the Poisson spatial field of interferers detailed in Sec-
tion II. As α-stable models will play a key role in our analysis,
we first recall their properties that will be used in developing
our model.

A. α-Stable Distribution Preliminaries
The α-stable random variables have heavy-tailed probability

density functions, which have been widely used to model
impulsive signals [18], [19]. The probability density function
of an α-stable random variable is parameterized by four
parameters: the exponent 0 < α ≤ 2; the scale parameter
γ ∈ R+; the skew parameter β ∈ [−1, 1]; and the shift
parameter δ ∈ R. As such, a common notation for an α-stable
random variable X is X ∼ Sα(γ, β, δ). In the case β = δ = 0,
X is said to be a symmetric α-stable random variable.

In general, α-stable random variables do not have closed-
form probability density functions. Instead, they are usually
represented by their characteristic function, given by [19, Eq.
1.1.6]

E[eiθX ]=

{
exp
{
−γα|θ|α(1−iβ(signθ) tan πα

2 )+iδθ
}
, α 6=1

exp
{
−γ|θ|(1+iβ 2

π (signθ) log |θ|)+iδθ
}
, α=1

(7)

It is possible to extend the notion of an α-stable random
variable to the multivariate setting. In general d-dimensional
symmetric α-stable random vectors are represented via their
characteristic function, given by [19]

E[eiθ·X] = exp

(
−
∫
Sd−1

∣∣∣∣∣
d∑
k=1

θksk

∣∣∣∣∣
α

Γ(ds)

)
, (8)

where Γ is the unique symmetric measure on the d-
dimensional unit sphere Sd−1. A particular class of α-stable

1B(R2K) denotes the Borel σ-algebra of R2K .



random vectors are an instance of the sub-Gaussian α-stable
random vectors2, defined as follows.

Definition 1. Any vector X distributed as X =
(A1/2G1, . . . , A

1/2Gd), where

A ∼ Sα/2((cosπα/4)2/α, 1, 0), (9)

and G = [G1, . . . , Gd]
T ∼ N (0, σ2I) is called a sub-

Gaussian α-stable random vector in Rd with underlying
Gaussian vector G.

Sub-Gaussian α-stable random vectors also play an im-
portant role in studying complex α-stable random variables;
that is, a random variable with α-stable distributed real and
imaginary components. In particular, the generalization of
symmetric α-stable random variables to the complex case is
known as the class of isotropic α-stable random variables,
defined as follows.

Definition 2. Let Z1, Z2 be two symmetric α-stable random
variables. The complex α-stable random variable Z = Z1 +
iZ2 is isotropic if it satisfies the condition

eiφZ
(d)
= Z for any φ ∈ [0, 2π). (10)

Due to the fact that baseband signals are typically complex,
isotropic α-stable random variables will play an important role
in the interference characterization.

The following proposition [19, Corollary 2.6.4] highlights
the link between isotropic α-stable random variables and sub-
Gaussian α-stable random vectors.

Proposition 1. Let 0 < α < 2. A complex α-stable random
variable Z = Z1 + iZ2 is isotropic if and only if there are two
independent and identically distributed zero-mean Gaussian
random variables G1, G2 with variance σ2 and a random
variable A ∼ Sα/2((cos(πα/4))2/α, 1, 0) independent of
(G1, G2)T such that (Z1, Z2)T = A1/2(G1, G2)T . That is,
(Z1, Z2)T is a sub-Gaussian α-stable random vector.

We remark that isotropic complex α-stable random variables
are closely related to sub-Gaussian random vectors as can
be observed from a comparison with Definition 1. Moreover,
unlike the isotropic (or circularly symmetric) Gaussian case
(α = 2), isotropic α-stable random variables with α < 2 do
not have independent real and imaginary components. This
dependence arises from the characterization in Proposition 1
through the dependence of the α-stable random variable A in
both the real and imaginary components.

B. Characterization of Interference Marginal Distributions
The marginal distributions of the interference are character-

ized in the following theorem.

Theorem 1. Suppose that hj,k(t)xj,k(t) is an isotropic com-
plex random variable and

E[|Re(hj,k(t)xj,k(t))|4/η|] <∞. (11)

2There exist also sub-Gaussian stable vectors allowing for more general
dependence structure [19], but are not necessary for the purposes of this paper.

Then, zk(t) in (3) converges almost surely to an isotropic 4/η-
stable random variable.

Moreover, if the fading coefficients hj,k(t) are i.i.d. and
baseband emissions xj,k(t) are also i.i.d. then the scale
parameters of all real and imaginary components are equal,
given by

σyk(t) =
(
πλpC−1

4
η

E[|Re(hj,k(t)xj,k(t))|
4
η ]
) η

4

, (12)

where

Cα =

{ 1−α
Γ(2−α) cos(πα/2) , if α 6= 1

2/π, if α = 1.
(13)

Proof. We sketch the proof as follows. By the mapping
theorem for homogeneous Poisson point processes, the process
{r2
j} is a one-dimensional Poisson point process with intensity

πλp. By an application of the LePage series representation
of symmetric α-stable random variables, it follows that zk(t)
converges almost surely to

zk(t) = Zr + iZi, (14)

where Zr, Zi are symmetric 4/η-stable random variables.
Finally, zk(t) is isotropic due to the hypothesis that each
hj,k(t)xj,k(t) is an isotropic complex random variable. By
Definition 2, it then follows that zk(t) is an isotropic complex
4/η-stable random variable.

We remark that the condition in Theorem 1 is satisfied for
most common models for fading and baseband emissions. In
particular, if hj,k(t) is Rayleigh and xj,k(t) is Gaussian then
the condition is satisfied.

C. Copula Interference Model
As shown in (1), copulas provide a parameteric represen-

tation of the joint distribution for a random vector. As a
consequence of Sklar’s theorem [10], any joint distribution
function admits a copula C. This copula is also unique if the
marginal distributions are continuous, which is the case for
the α-stable marginals obtained in Section III-B.

Nevertheless, obtaining the exact copula is a challenging
problem, both in its derivation and also for efficient parameter
estimation and simulation. As such, we seek a copula that
captures the joint dependence in the interference random
vector Z in (6). This copula is required to:

1) well-approximate the true joint distribution of the inter-
ference random vector Z;

2) and have a closed-form representation or be computa-
tionally feasible to numerically evaluate.

A good candidate for the copula to approximate Z can be
obtained from standard parametric classes of copulas; namely,
archimedean and t-copulas. As will be shown by a numerical
study in Section III-D, the t-copula is particularly effective.

To this end, we recall the following definition of the t-copula
[10]. Let Fv be the distribution function of the univariate t-
distribution, given by

Fv(x) =

∫ x

−∞

Γ(v+1
2 )

√
vπΓ(v2 )

(
1 +

t2

v

)− v+1
2

dt, (15)



parameterized by the degree of freedom v ∈ N. Moreover,
the joint distribution Fv,Σ of a n-dimensional multivariate t-
distribution is given by

Fv,Σ(x)=

∫ x1

−∞
· · ·
∫ xn

−∞

Γ( v+d
2 )

Γ(v2 )
√

(πv)d|Σ|

(
1+

tTΣ−1t

v

)− v+d2

dt,

(16)

parameterized by the degree of freedom v ∈ N and the n× n
correlation matrix Σ. The t copula is then defined as

Ctv,Σ(u) = Fv,Σ(F−1
v (u1), . . . , F−1

v (un))). (17)

D. Numerical Results
We now study the quality of the t-copula model by fitting it

to a data set obtained via Monte Carlo simulations. The Monte
Carlo simulations implement the system model described in
Section II. Recall that the system consists of a network of
interfering devices. Each of these devices transmits on each
band k = 1, ...,K, with a probability p > 0. The quantity
pK can be interpreted as the average quantity of frequency
resources used by each device per transmission.

Our goal is to obtain a statistical model of the interference
that fits the simulated data well in terms of the KL divergence.
In all the numerical results, the KL divergence between the
copula model and the simulated data set is obtained using the
Information Theoretical Estimators (ITE) toolbox [20].

In the experiments, we compare three models all with α-
stable marginal distributions motivated by Theorem 1:

1) The t-copula model detailed in Section III-C.
2) The 2-dim. sub-Gaussian model consisting of inde-

pendent two-dimensional sub-Gaussian random vectors.
In this model, the 2K-dimensional random interference
vector Z is decomposed into K two-dimensional random
vectors (corresponding to the real and imaginary parts
of each band). Each two-dimensional random vector is
sub-Gaussian (see Definition 1), independent from each
of the other K−1 two-dimensional random vectors. This
model is exact when interfering devices only transmit on
a single band.

3) The 2K sub-Gaussian model consisting of a 2K-
dimensional sub-Gaussian random vector. This model
corresponds to the scenario where all devices transmit
on every band in B, i.e., p = 1 (see [7, Theorem 3]).

TABLE I
VALUE OF p GIVING THE LARGEST KL DIVERGENCE BETWEEN THE
t-COPULA MODEL AND 2-DIM. SUB-GAUSSIAN MODEL FOR DIFFERENT

NUMBERS OF BANDS.

K 2 3 4 5 6 7 8

p∗ 0.692 0.634 0.576 0.519 0.469 0.425 0.388
DKL 0.136 0.192 0.221 0.247 0.275 0.287 0.290

In Fig. 1 and 2, we plot the KL divergence, denoted as
DKL, of the three models with varying p in 2 and 8 bands,
respectively. As expected, the 2-dim. sub-Gaussian model has
a very low KL divergence for p ≈ 0 and the 2K sub-Gaussian
model has a very low KL divergence for p ≈ 1. We also
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Fig. 1. Plot of the KL divergence between the simulated data set and three
statistical models: t-copula model; 2-dim. sub-Gaussian model; and 2K sub-
Gaussian model. In the figure, K = 2 frequency bands are considered.
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Fig. 2. Plot of the KL divergence between the simulated data set and three
statistical models: t-copula model; 2-dim. sub-Gaussian model; and 2K sub-
Gaussian model. In the figure, K = 8 frequency bands are considered.

observe that for p > 0.7 (K = 2 bands) and p > 0.4 (K = 8
bands), the t-copula model performs better than or comparably
to the other two models. This suggests that a useful model for
the interference statistics is to adopt the 2-dim. sub-Gaussian
model for small p and the t-copula model for larger p.

We also observe that as the number of bands K varies, the
value of p giving the largest divergence between the t-copula
model and the 2-dim. sub-Gaussian model (denoted by p∗)
varies, illustrated in Table I. In particular, as K increases, p∗

decreases. This suggests that for larger numbers of bands K,
the t-copula model is the best model for a wider range of p.

TABLE II
KL DIVERGENCE BETWEEN SIMULATED DATA SET AND GAUSSIAN MODEL

p 0.01 0.1 0.2 0.3 0.4 0.5
KL 111.82 105.19 91.32 102.91 92.87 95.63
p 0.6 0.7 0.8 0.9 1
KL 97.73 86.60 96.41 96.09 89.38



Finally, note that as K increases, the KL divergence at p∗

very slowly increases. This suggests that using the 2-dim. sub-
Gaussian model combined with the t-copula model has an
error that is nearly independent of the dimension. We also
make the same comparison with the Gaussian model in Table
II., which shows that it is a poor model.

IV. INFORMATION THEORETIC LIMITS

In this section, we study achievable rates of a point-to-
point communication system described in Section II with
interference governed by the copula model in Section III.

A. Optimization Problem for the Capacity
Motivated by the model developed in Section III, the joint

distribution of the interference in (3) is of the form

FZ(z1,r, z1,i, . . . , zK,r, zK,i)=C(F1,r(z1,r),. . ., FK,i(zK,i)), (18)

where C is a copula.
At present, no bounds on the capacity for power-constrained

inputs in general α-stable noise channels are known [6], [7],
[21]. As such, we follow [6], [7] and consider the constraints

E[|Re(X)|r] ≤ c
E[|Im(X)|r] ≤ c
|Re(X)| ≤ A
|Im(X)| ≤ A, (19)

where 0 < r < α, c > 0 and A > 0. Note that although a
power constraint is not explicitly imposed, the constraints on
the amplitude imply that the power is finite.

Following the standard procedure used to study Gaussian
noise channels, we relax the amplitude constraints, which via
the noisy channel coding theorem [22] leads to the following
optimization problem for the capacity

C = sup
µ∈P(R2K)

I(X;Y)

subject to Eµ[|X|r] � c,
(20)

where P(R2K) corresponds to the set of probability measures
on (R2K ,B(R2K)).

B. Achievable Rates
The following theorem gives achievable rates for the chan-

nel in (5).

Theorem 2. An achievable rate for the channel in (4) subject
to the constraints in (20) is given by

C ≥ R =
1

α
log

1 +

|a|min

r

√
c

C(r,α)

σZ

α , (21)

where

C(r, α) =
2r+1Γ

(
r+1

2

)
Γ(−r/α)

α
√
πΓ(−r/2)

. (22)

and |a|min = min{|aii|, i = 1, . . . , 2K} with aii the i-th
diagonal element of A, σZ is the scale parameter of each
element of Z, given by (12).

Proof. By Theorem 1, the scale parameters of each component
of the noise vector Z in (5) are equal. Therefore, there exists
a random vector W with α-stable marginals with unit scale
parameters and constant σZ ∈ R+ given in (12) such that

Z
d
= σZW. (23)

By [23], the fractional moment of a symmetric α-stable
random variable V with scale parameter σV is given by

E[|V |r] = C(r, α)σrV , (24)

where

C(r, α) =
2r+1Γ

(
r+1

2

)
Γ(−r/α)

α
√
πΓ(−r/2)

. (25)

As such, recalling that A is a diagonal matrix and choosing
X

d
= σXA−1XI , where XI is a random vector with the same

distribution as W,

σX = |a|min
r

√
c

C(r, α)
(26)

and |a|min = min{|aii|, i = 1, . . . , 2K} with aii the i-th
diagonal element of A. This ensures the constraint in (20) is
satisfied.

By the stability property of scalar symmetric α-stable ran-
dom variables,

Y:=(σαX + σαZ)
1
αV

=σV, (27)

where V is a random vector with symmetric α-stable
marginals, each with scale parameter 1.

Let X1, XI,1,W1 be the first elements of X,XI ,W, re-
spectively. Then,

I(X;Y) = I(X;AX + Z)

≥ I
(
X1;σ

(
a1X1

σ
+
Z1

σ

))
= I

(
X1;σ

(σX
σ
XI,1 +

σZ
σ
W1

))
= log

σ

σZ
+ h

(σX
σ
XI,1 +

σZ
σ
W1

)
− h(W1)

= log
σ

σZ
, (28)

where the inequality follows from the chain rule for mutual
information [24]. The last equality follows from the fact
that XI,1 and W1 are symmetric α-stable random variables
with unit scale parameters. Therefore, the scale parameter of
σX

σ XI,1 + σZ

σ W1 is
(

1
σαX+σαZ

(σαX + σαZ)
) 1
α

= 1. Applying
(24) to (28) then yields the desired result.

C. Numerical Results
Through the scale parameter σZ, the achievable rates in

Theorem 2 implicitly depend on the probability that a given
device access a given band, and also the intensity λ of the
Poisson point process governing the locations of the inter-
ferers. In particular, we observe that when all other model
parameters—including α, η and the fractional moments of the



fading and base-band emmisions—are constant, the achievable
rate is proportional to log

(
1 + Q

λp

)
, where Q is a constant

depending on the remaining fixed model parameters.
In Fig. 3, we plot the achievable rate in (21) with varying

probability p a given user accesses a given band. Observe
that the achievable rate decreases as p increases. The main
reason for this is that as p increases, the scale parameter of the
interference also increases. We remark that in the achievable
rate in (21), the copula dependence structure of the interference
does not explicitly appear. We note however that it does appear
in the distribution of the input X.
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Fig. 3. Plot of the lower bound achievable rate and area spectral efficiency

V. CONCLUSIONS

A basic challenge in communication over the ISM bands
is that a number of large-scale IoT technologies have been
proposed that have significantly different protocols. These
differences lead to non-Gaussian interference and, in systems
transmitting over multiple frequency bands, dependence be-
tween the interference on each band.

To provide tractable yet accurate models for the interfer-
ence, we have proposed interference models based on the t-
copula and α-stable marginals. This model has been validated
on a simulated data set, which exhibits non-trivial dependence
structures.

To illustrate the tractability of the copula interference model,
we considered a point-to-point communication link in the
presence of interference from an IoT system. We derived
a closed-form expression for achievable rates. These results
provide a basis to study resource allocation and network
design, which we intend to explore in future work.

ACKNOWLEDGEMENTS

This work has been (partly) funded by the French National
Agency for Research (ANR) under grant ANR-16-CE25-0001
- ARBURST.

REFERENCES

[1] M. Lauridsen, B. Vejlgaard, I. Kovács, H. Nguyen, and P. Mogensen,
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