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Inria and LIX (UMR 7161 and Ecole polytechnique),
France
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ABSTRACT

RDF graphs can be large and complex; finding out interesting in-
formation within them is challenging. One easy method for users
to discover such graphs is to be shown interesting aggregates (un-
der the form of two-dimensional graphs, i.e., bar charts), where
interestingness is evaluated through statistics criteria. Dagger [5]
pioneered this approach, however its is quite inefficient, in partic-
ular due to the need to evaluate numerous, expensive aggregation
queries. In this work, we describe Dagger*, which builds upon
Dagger and leverages sampling to speed up the evaluation of po-
tentially interesting aggregates. We show that Dagger™ achieves
very significant execution time reductions, while reaching results
very close to those of the original, less efficient system.

1 INTRODUCTION

RDF graphs are oftentimes large and complex; first-time users
have a hard time to understand them. Exploration methods in-
vestigated in the past are based on keyword search, or on RDF
summaries, which give users a first idea of a graph’s content
and structure. A different method of exploring RDF graphs was
introduced in Dagger [5], based on aggregation. Starting from
an RDF graph, a set of agregate queries are automatically iden-
tified and evaluated, the most interesting ones (in a sense to be
outlined shortly below) are chosen, and shown to human users
as two-dimensional plots, in particular, bar charts.
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As these examples illustrate, in Dagger™, we consider an aggre-
gate query interesting if its result set has a high variance (second
statistical moment). Other criteria can be considered, e.g., we have
experimented also with the third statistical moment (skewness);
more generally, while an RDF graph may have many interesting
features, we seek to find aggregates over the graph having the
highest variance. The running time of Dagger was quite high: it
took hours to identify the 10 most interesting aggregates on a
dataset of 20 million triples. In this paper, we show how to speed
it up, in particular through novel sampling techniques.

The remainder of this article is organized as follows. Section 2
introduces the state of the art. Section 3 describes the main con-
cepts and algorithms of Dagger [5], together with a set of im-
provements we brought through re-engineering. Then, Section 4
presents our performance-enhancing sampling technique.

2 STATE OF THE ART

The problem of data exploration [8] has received much atten-
tion; the automatic extraction of interesting aggregates is just
one among many proposed techniques. Multidimensional data
is particularly interesting in this respect, however, most works
assume a fixed relational schema, which is not available for RDF
graphs. More recent works [2], consider graphs, but (unlike Dag-
ger) assume a very regular and simple structure.

In [9] the authors show how to automatically extract the top-k
insights from multi-dimensional relational data, with fixed di-
mensions and measures. An insight is an observation derived
from aggregation in multiple steps; it is considered interesting
when it is remarkably different from others, or it exhibits a ris-
ing or falling trend. SeeDB [10] recommends visualizations in
high-dimensional relational data by means of a phased execution
framework. The focus is to detect the visualizations with a large
deviation with respect to a reference (e.g. another dataset, histor-
ical data or the rest of the data) from a database with a snowflake
schema. In [6], multi-structural databases are proposed; their
schema (i.e. possible dimensions) is known and three analytical
operations are defined to: (i) determine how data is distributed
across a particular set of dimensions, (ii) compare two sets of
data with respect to given dimensions and (iii) separate the data
into cohesive groups with respect to the known dimensions.

In contrast, Dagger (and Dagger™) start directly from RDF, and,
lacking schema information, automatically derives dimensions
and measures that are good candidates to produce insights.

There is no universally accepted definition of interestingness;
frequently, something unexpected (which differs from a refer-
ence) is considered interesting. The reference might be known
a-priori, come from historical data, or be the average behavior.
So far we have experimented with variance, skewness and kurto-
sis; we are also working to use the entropy. Many different RDF
visualizations techniques can be used, e.g., [1].

3 DAGGER OVERVIEW

We consider three pairwise disjoint sets: the set of URIs U, the
set of literals £, and the set of blank nodes B. An RDF graph G is
a finite set of triples of the form (s, p, 0), called subject, property



and object, such thats e (U U B),pe Uando e (UHUBU L).
The RDF property rdfitype is used to attach types (i.e. classes)
to an RDF resource, which can have zero, one or several types.
G can have an ontology stating relationships between its classes
and properties, e.g., any UndegraduateStudent is a Student; its
presence may lead to implicit triples, which are part of G even if
they may not appear explicitly. A graph containing all the triples
which may be derived from it is said to be saturated. Without
loss of generality, we consider that our input graph is saturated.

Dagger identifies unidimensional aggregate queries to be eval-
uated in an RDF graph G. However, unlike a traditional relational
data warehouse, an RDF graph comes without identified set of
facts; nor are dimensions and measures known in advance. There-
fore, Dagger must enumerate candidates for each of these roles.

A set of candidate facts (cf, in short) is a set of G resources
which are deemed interesting for the analysis. Dagger considers
as cf (i) all the resources of a given class C, e.g., all the Students;
(ii) all the resources having a certain set P of properties, e.g.,
all those having title and author. A simple way to pick such a
property set is to compute the support of the properties in G and
select property sets whose support is above a certain threshold.

A candidate dimension (denoted d) is used for grouping the
candidate facts. Dagger supports as candidate dimensions (i) prop-
erties present on at least a certain fraction t;p,.., of resources
from cf’; (ii) derived properties, computed by Dagger in order
to find potentially interesting insights. The derived properties
supported in [5] are count(p), where p is a property that some
cf resources have. For instance, if resources of type Student are
stated to takeCourse, Dagger derives the property takeCourse#.
Further, Dagger will consider a candidate dimension only the
number of distinct values of this property on the cf resources is
smaller than t;;¢, X |cf| for a certain ratio 0 < tg;5; < 1.

A candidate measure (denoted m) is something to be evaluated
or measured for each candidate fact. Dagger considers candidate
measures among the (original or derived) properties of candidate
facts whose support is above t;,¢sp- Dimension-measure com-
binations such that one is a property a and the other is the count
a# of this property are excluded.

An aggregation function @ is chosen among min, max, avg,
sum, count; the first four are considered only if the measure is
numeric. Given that RDF data is often untyped or only partially
typed, Dagger implements a type detection mechanism by trying
to convert the property values to different types.

A Dagger aggregate agg is a tuple (cf, d, m, ®). To specify how
interesting an aggregate is, let f(V) be a function which inputs
a set of numerical values V and returns a number. Given f, the
interestingness of agg is computed as:

e let dq,dy, ... be the distinct values that d may take for a
resource in cf;
o for each d;, let cf; be set of ¢ f resources for which d takes
the value d;; observe that the cf; sets may overlap, as a
resource with more than one value for d belongs to several
such sets. For instance, students can be grouped by the
courses they take, and each student takes many courses;
o for each cfj, let M; be the set of m values of cf; resources,
and m; = ®(M;);
o the interestingness of agg is f({m1, ma,...}).
The problem considered by Dagger is: given a graph G, a set of
value thresholds, function f and an integer k, find the k most
interesting aggregates.
Architecture. Dagger leverages the robust query evaluation ca-
pabilities of an RDBMS to store the RDF graph, enumerate and

evaluate candidate aggregates. SQL queries are used to: deter-
mine the resources part of a candidate fact sets; evaluate the suit-
ability of their properties as dimensions, respectively, measures;
compute and aggregate the group measures m;. The remaining
operations, e.g., the computation of the interestingness score
function, are done in Java.

Aggregate recommendation cost. The most expensive compu-
tation steps are: (i) finding the candidate dimensions and (ii) eval-
uating the aggregation operations. Indeed, when looking for
candidate dimensions, several queries are issued over cf (e.g.,
find all distinct properties, count the number of subject that have
each property, find the values of the derived properties, etc.).
Moreover, many candidate aggregates are generated, also leading
to a high number of potentially expensive SQL queries.

4 DAGGER": SPEEDING UP DAGGER

A set of re-engineering changes were brought to Dagger since
the original demonstration. In particular, it has been ported on
top of OntoSQL (https://ontosql.inria.fr), a Java-based platform
developed at Inria, providing efficient RDF storage, saturation,
and query processing algorithms [3, 4]. OntoSQL encodes space-
consuming URIs and literals into compact integers, together with
a dictionary table which allows going from one to the other. For
a given class c, all triples of the form x type ¢ are stored in a
single-column table ¢, holding the codes of the subjects x; for
each property p other than type, a table t;, stores (s code, o code)
pairs for each (s, p, o) triple in G. This re-engineering has lead to
a very significant reduction in Dagger’s running time, e.g., on a
20 million triples graph, from several hours to 20 minutes.

Further, we adapted an optimization previously proposed in [10]:
we evaluate all candidate aggregates that share both dimension
and measure by a single SQL query. In a relational context, ag-
gregates can be evaluated together as soon as they have the
same dimension (even if the measures are different) because one
relational tuple usually contains all the attributes used in the
different measures. In contrast, RDF candidate facts need to be
Jjoined with the t; table corresponding to the property d chosen
as dimension, and with the t,, table for the property chosen as
measure; distinct measures require distinct joins, thus sharing is
more limited. This is not due to the storage model, but to RDF
heterogeneity: the candidate facts having the measure property
mj may be different from those having property mjy. This forces
evaluating (d, m;) aggregates separately from (d, my) ones.

Below, we focus on two novel optimization techniques we ap-
plied subsequently: using an RDF graph summary to speed up
candidate dimension enumeration (Section 4.1), and using sam-
pling to accelerate candidate dimension enumeration, aggregate
evaluation and ranking (Section 4.2).

4.1 Summary-based dimension enumeration

RDFQuotient [7] is a structural RDF graph summarization tool
based on graph quotients. Given an equivalence relation over
graph nodes, the summary contains one node for each equiva-
lence class in the original graph. Moreover, each edge n Lm
in the original graph leads to an edge rep(n) N rep(m) in the
summary, where rep(n) is the summary representative of node
n. A particular equivalence relation groups the nodes by their
set of types. Dagger™ uses it to find: (i) all the types, (ii) for each
type, the number of resources of that type, and (iii) the set of
possible properties these resources might have. These questions
can be answered exactly directly from the RDFQuotient reducing
dimension enumeration time.


https://ontosql.inria.fr

4.2 Sampling-based aggregate selection

We introduced two sampling strategies to trade some accuracy
in aggregate selection for running time:

o CFSampling: the cf is sampled (draw n; samples of size
ny), and candidate dimensions and measures are found for
each sample independently. For each of the n; samples,
candidate aggregates are generated, and their interesting-
ness is evaluated on the sample.

e ESampling: candidate dimensions and measures are com-
puted on the whole cf as in Dagger. Then, n; samples of
size ny are drawn from the cf, and the candidate aggre-
gates are evaluated on the samples.

With CFSampling, the aggregates recommended for different
sample may be different, e.g., certain properties might be found
to be frequent in some sample but not in all of them. After the
evaluation, a ranked list of aggregates is obtained for each sample.
In ESampling, instead, the set of aggregates is unique as it is
derived directly from the original data. However, given that all
the aggregates are evaluated on samples, it also yields a ranked
list of aggregates for each sample.

To be able to compare the results found without sampling with
those found through sampling, we need to reconcile the results
found on different samples into a single ranked list. We can do
this by taking (i) the union or (ii) the intersection of the lists
obtained from all the samples. Then, we re-rank the aggregates
according to a estimation of their global interestingness measure
(based on their interestingness on each sample), e.g., through
pooled variance; at the end of this process, we obtain a unique
ranked list of candidate aggregates.

5 EXPERIMENTAL RESULTS

We measure the run time performances and to test the accuracy
of the results obtained with sampling techniques. We used a 2,7
GHz Intel Core i7 with 16 GB of RAM. We describe experiments
on the articles from the DBLP dataset!; we use 20.132.491 triples
describing information about 888.183 distinct articles.

Dagger™ without
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Figure 3: Running times with sampling,.

Dagger™' generates a total of 371 candidate aggregates; without
shared evaluation, each of them is evaluated as one query, how-
ever, with shared evaluation, only 131 queries are executed as
this is the number of distinct pairs of dimension and measure.

Sampling. We measure the running time and the accuracy of
the results by varying 3 parameters: (i) the sampling strategy
(CFSampling or ESampling), (ii) the number of samples (2, 3, 4 or
5); and (iii) the sample size, as a ratio of the candidate fact set size
(from 1% to 10% of the number of distinct CF resources). Figure 3
shows the running times: one plot for each number of samples
(from top to bottom, 2, 3, 4, 5), each of which varies the strategy
and the sample size. Ten runs are averaged for each parameter
combinations (different samples are drawn in each run).

Figure 3 shows that ESampling is slower than CFSampling, as
the former looks for candidate dimensions on the whole candi-
date fact set, whereas the latter does this on smaller-size samples.
ESampling enumerates all the candidate aggregates also found
without sampling, while CFSampling might enumerate a different
set of aggregates: some properties that are overall frequent (infre-
quent) might be found infrequent (frequent) in a specific sample,
and thus not be considered (considered) as candidate dimensions
and measures. However, even though ESampling enumerates all
the no-sampling candidate aggregates, it evaluates them on sam-
ples, and may end up considering them interesting (uninteresting)
differently from the way they are on the complete CF.

To evaluate the accuracy of the results obtained through sam-
pling, we compare the Top-5, Top-10 and Top-20 aggregates
found without sampling, with those found through sampling.
The ranked list of aggregates found with sampling is built by
taking the union of all those found across the samples and re-
ranking them according to the interestingness measure (in our
experiments we use the pooled variance to rank all the results).
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Figure 4: Accuracy of results (%) with respect to running times (sec).

#samples | Top-K | 1% 3% 5% 7% 9% 10%
Top5 | 28% 36% 28% 24% 24% 36%
2 Top10 | 41% 55% 54% 55% 62% 75%
Top20 | 57% 69% 80% 81% 88% 96%
Top5 | 32% 16% 28% 24% 36% 20%
3 Top10 | 49% 55% 60% 55% 74% 61%
Top20 | 57% 68% 74% 80% 85% 83%
Top5 | 32% 22% 16% 12% 20% 12%
4 Top10 | 46% 50% 39% 42% 50% 55%
Top20 | 63% 68% 72% 76% 81% 85%
Top5 | 40% 20% 24% 20% 16% 20%
5 Top10 | 55% 53% 50% 51% 49% 55%
Top20 | 67% 63% 68% 74% 78% 79%

Table 1: Accuracy of results with CFSampling.

#samples | Top-K | 1% 3% 5% 7% 9% 10%
Top5 40% 36% 24% 32% 28% 32%
2 Top10 | 49% 55% 63% 57% 63% 71%
Top20 | 65% 69% 81% 84% 89% 93%
Top5 28% 28% 32% 24% 16% 28%
3 Top10 | 45% 68% 71% 60% 59% 72%
Top20 | 67% 76% 75% 83% 83% 87%
Top5 | 36% 16% 12% 24% 24% 20%
4 Top10 | 49% 55% 27% 41% 60% 53%
Top20 | 70% 71% 66% 73% 87% 84%
Top5 36% 20% 12% 24% 20% 24%
5 Top10 | 50% 49% 38% 45% 52% 60%
Top20 | 68% 63% 68% 77% 80% 88%

Table 2: Accuracy of results with ESampling,.

Aggregates whose interestingness is zero are not considered. No-
tice that we do not break ties, that is: if we search e.g. the Top-5
most interesting aggregates, but find that the sixth element in the
list has the same interestingness value as the fifth, we also include
it in the Top-5, as we did not find a meaningful way to break such
ties. When no sampling is used, Top-5 returned 5 aggregates,
respectively, Top-10 returned 11 while the Top-20 returned 20.
We compute the accuracy as the percentage of aggregates in the
sampling result, that are also in the result without sampling.
Table 1 shows the precision of CFSampling while Table 2
shows that of ESampling. In 57% of the cases the accuracy obtained
using ESampling is higher; on average, the two accuracy values
differ by 6%. The accuracy is quite low when searching for the
the Top-5 aggregates; in contrast, both Top-10 and Top-20 can be
well approximated (accuracy above 80% for the Top-20 even with
few samples). In general, the bigger the samples, the better the
accuracy, however, results show situations where the Top-10 and
Top-20 have better accuracy with a lower number of samples;

there is a 10% difference in accuracy on average, i.e. the top-Ks
differ by 2/3 aggregates. This does not mean that such aggregates
were not found though but they have been ranked differently.
Figure 4 plots the accuracy with respect to the running times.
Each line of graphs represents the Top-5, Top-10 and Top-20 for a
different number of samples; red x’s indicate CFsampling, while
green +’s indicate ESampling, for different sample dimensions.
Clearly, the accuracy increases with K (the amount of top ag-
gregates) and with the size of the samples. The increase in the
number of samples does not significantly improve accuracy.

6 CONCLUSION

Automatic selection of interesting aggregates in an RDF graph
is challenging, as candidate dimensions and measures must be
“guessed” from the data, and candidate aggregates must be eval-
uated to assess their interestingness. After re-engineering Dag-
ger [5] to exploit an existing efficient RDF platform, we have
shown that sharing work and (to a lesser extent) using a graph
summary can reduce its running time by a factor of 2. Our main
focus has been on sampling, which, for Top-10 and Top-20 search,
achieves good accuracy (above 70%) while reducing running time
by another factor of 2. Overall, CFSampling appears the most
interesting strategy. Our current work stretches in several direc-
tions: (i) generalizing Dagger to more complex dimension and
measure selection, (ii) adopt more interestingness metrics, (iii)
introduce new types of derived properties, e.g., extract mean-
ingful keywords from textual properties to be used as potential
dimensions and/or measures.
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