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Consistent Discretization of Locally Homogeneous Finite-time Stable
Control Systems

Andrey Polyakov1, Denis Efimov1, Bernard Brogliato2 and Markus Reichhartinger3

Abstract— An algorithm of consistent implicit discretization
for locally homogeneous finite-time stable system having discon-
tinuity only at the origin is developed. It preserves finite-time
stability property in the discrete-time models. The homogeneous
domination approach is utilized for analysis of the discretized
model. The scheme is demonstrated for a simplified model of
a quadrotor control system.

I. INTRODUCTION

Discretization issues are important for a digital implemen-
tation of estimation and control algorithms as well as for a
computer simulation of control processes. Construction of
a so-called consistent stable discretization is a non-trivial
problem for essentially non-linear ordinary differential equa-
tions (ODEs), which do not satisfy some classical regularity
assumptions. In our case consistent discretization means
that the resulting discrete-time model approximates solutions
and preserves stability/convergence properties of the original
continuous-time system. An inconsistent discretization of
non-Lipschitz feedback algorithms results in degradation of
control precision [1], chattering effect [2], or even instability
[3]. For example, the sliding mode algorithms are known
to be difficult in practical realization [1], [4], [5] due to
their discontinuous (set-valued) nature, which may involve
chattering caused by the discretization (the so-called numer-
ical chattering). The mentioned papers have discovered that
the implicit discretization technique is useful for practical
implementation of non-smooth and discontinuous control
and estimation algorithms. In particular, numerical chattering
suppression in both input and output, as well as a good
closed-loop performance have been confirmed experimen-
tally in [1], [6].

A symmetry of functions or vector fields with respect to a
certain group of transformations (dilations) is known as ho-
mogeneity [7], [8], [9], [10]. Nonlinear homogeneous differ-
ential equations/inclusions form an important class of control
systems [11], [12], [13], [14], [15]. They can be utilized as
local approximations [8], [14] or set-valued extensions [16],
[17] of nonlinear control systems. For example, some models
of process control [18], nonholonomic mechanical systems
[19] and systems with frictions [16] are homogeneous or
at least locally homogeneous. It is well known that any
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ẋ = f(x)
y=Φ(x)⇔ ẏ = f̃(y)

← a consistent
discrete-time

approximation

← → a consistent
discrete-time

approximation

→

xi+1 =Φ−1(Φ(xi)+hf̃(Φ(xi+1)))
x=Φ−1(y)⇔ yi+1 =yi+hf̃(yi+1)

Fig. 1. The scheme of the consistent implicit discretization of ẋ = f(x)

asymptotically stable homogeneous system with a negative
degree is finite-time stable

The type of homogeneity is identified by the dilation
group, which can be linear [7], [20], [21] or nonlinear [9],
[11]. In this paper, we deal with the linear geometric ho-
mogeneity studied originally in [10] for infinite dimensional
models. In the finite dimensional case the corresponding
dilation group (see [21] for more details) is given by the
matrix exponential function esGd , where s ∈ R is the group
parameter and Gd ∈ Rn×n is an anti-Hurwitz matrix known
also as a generator of the dilation.

Recently [22], a problem of consistent discretization of
homogeneous finite-dimensional systems with negative de-
gree has been studied. In particular, a discretization algorithm
preserving the finite-time stability in the obtained discrete-
time model has been developed. It is essentially based on
topological equivalence of any stable homogeneous system
to a quadratically stable one (see Fig. 1 and [22], [23]).

It is shown [24] that an implementation of finite-time
controllers using the developed scheme rejects numerical
chattering and essentially improves the control precision.
This paper continues this research direction and proposes a
consistent discretization scheme for non-homogeneous finite-
time stable systems, which admit homogeneous approxima-
tion at the origin.
Notation ‖A‖=sup‖x‖=1‖Ax‖ and bAc=inf‖x‖=1‖Ax‖ for

A∈Rn×n; In ∈ Rn×n is the identity matrix; 0 denotes zero
element; diag{λ1,.., λn} - diagonal matrix with elements λi;
P � 0 means positive definiteness of P = P> ∈ Rn×n;
λmax(P ) and λmin(P ) denote maximal and minimal eigen-
values of P = P> ∈ Rn×n; <(λ) denotes the real part of a
complex number λ; the notation P

1
2 means that P

1
2 = M is

such that P = M2; the class K consists of continuous strictly
increasing functions σ : [0,+∞) → [0,+∞), σ(0) = 0;
B(r) = {x ∈ Rn : ‖x‖ < r} is an open ball of the
radius r > 0; the closed ball is denoted by B̄(r); a mapping
Rn ⇒ Rm is set-valued if it associates a set of Rm with
each x ∈ Rn.



II. PROBLEM STATEMENT

Let us consider the non-linear system

ẋ = f(x), t > 0, x(0) = x0, (1)

where x(t) ∈ Rn is the system state and the nonlinear
function f : Rn → Rn is continuous on Rn\{0}, i.e.,
the only possible discontinuity point of f is the origin.
System (1) is assumed to be forward complete for solutions
understood in the sense of Filippov [25]:

An absolutely continuous function φ(·, x0) : [0,+∞) →
Rn is a solution to (1) if φ(0, x0) = x0 and for almost all
t > 0 it satisfies the differential inclusion

ẋ ∈ F (x) =
⋂
ε>0

⋂
µ(N)=0

cof(x+B(ε)\{N}), (2)

where B(ε) denotes the ball in Rn of the radius ε, co denotes
convex closure and µ(N) means that the Lebesgue measure
of the set N ⊂ Rn is zero. In our case, F (x) = {f(x)} is a
singleton for x ∈ Rn\{0}, but

F (0) =
⋂
ε>0

cof(B(ε)\{0})

is a set, each time f is discontinuous at 0.
Recall [16], [26] that the origin of system (1) is said to be

locally uniformly finite-time stable, if it is Lyapunov stable,
and there exist a neighborhood U of the origin and a locally
bounded function T : U → [0,+∞) such that any solution
φ(·, x0) to (1) satisfies φ(t, x0) = 0 for t ≥ T (x0), x0 ∈ U .

We understand the consistency of a discretization scheme
for the finite-time stable system (1) in the sense of the
following definition.

Definition 1: [24] A (possibly) set-valued mapping

Q : R+ × Rn × Rn ⇒ Rn

is said to be a consistent discrete-time approximation of
the locally uniformly finite-time stable system (1) in a
neighborhood U of the origin if ∃h0 > 0 :
• Existence property: for any x̃ ∈ U and any h ∈ (0, h0),

there exists x̃h ∈ U :

0 ∈ Q(h, x̃, x̃h), (3)

and x̃h = 0 is the unique solution to 0 ∈ Q(h,0, x̃h).
• Finite-time convergence property: for any h ∈ (0, h0)

each sequence {xi}+∞i=0 generated by the inclusion

0 ∈ Q(h, xi, xi+1), i = 0, 1, 2, .... (4)

converges to zero in a finite number of steps, i.e., ∀x0 ∈
U\{0} i∗ > 0 such that xi = 0 for i ≥ i∗.

• Approximation property: for any ε > 0 and any R > ε,
there exists a function ω ∈ K such that any sequence
{xi}+∞i=0 generated by (4) satisfies

‖φ(h, xi)− xi+1‖≤ hω(h), (5)

provided that xi+1, xi ∈ U and ‖xi+1‖, ‖xi‖ ∈ [ε,R],
where φ(·, xi) is a solution to (1) with the initial
condition x(0) = xi.

Notice that the last property in this definition requires the
existence of the conventional estimate (5) for the discretiza-
tion error on any compact set from U\{0} (since ε > 0 and
R > ε can be selected arbitrary small and arbitrary large,
respectively). The origin is excluded because of a possible
singularity of the vector field f at zero (in particular, it can
be discontinuous at the origin). The inequality (5) describes
a local (one-step) approximation error. An approximation
error on the time interval [0, T (x0)] is O(ω(h)) provided
that h = T (x0)/N with N ∈ N. This error tends to zero as
h→ 0, i.e., as N → +∞.

The aim of the paper is to design a consistent (in the sense
of Definition 1) discretization scheme for locally finite-time
stable system (1), under the assumption that the vector field
f admits a local homogeneous approximation at the origin
(see [14] or the next section for the details).

III. PRELIMINARIES

A. Generalized Homogeneity

The generalized homogeneity [10], [23], [21], [27] deals
with the group of linear transformations (linear dilations).

Definition 2: A map d : R → Rn×n is called dilation in
Rn if it satisfies

• Group property: d(0) = In and d(t+s) = d(t)d(s) =
d(s)d(t) for all t, s ∈ R;

• Continuity property: d is a continuous map, i.e.,

∀t∈R, ∀ε>0, ∃δ>0 : |s−t|<δ ⇒ ‖d(s)−d(t)‖≤ε;

• Limit property: lim
s→−∞

‖d(s)x‖ = 0 and lim
s→+∞

‖d(s)x‖=

+∞ uniformly on the unit sphere S :={x : ‖x‖= 1}.
The dilation d is a continuous group of invertible linear maps
d(s) ∈ Rn×n, d(−s) = [d(s)]−1. The matrix Gd ∈ Rn×n
Gd = lims→0

d(s)−I
s is known [28, Chapter 1] as the

generator of the group d. It satisfies the following properties
d d(s)
ds = Gdd(s), d(s) = eGds =

+∞∑
i=0

siGid
i! , s ∈ R. The

most popular dilations in Rn are [17], [16] the uniform
(or standard) dilation (L. Euler 17th century) : d1(s) =
esIn, s∈R; and the weighted dilation (Zubov 1958, [7]):
d2(s) = diag{eris}, s ∈ R, ri > 0, i = 1, ..., n. They
satisfy Definition 2 with Gd1

= In and Gd2
= diag{ri},

respectively. In fact, any anti-Hurwitz1 matrix Gd ∈ Rn×n
defines a dilation d(s) = eGds in Rn.

Definition 3: [21] The dilation d is strictly monotone if
there exists β > 0 such that ‖d(s)‖ ≤ eβs as s<0.
Obviously, the monotonicity of a dilation may depend on the
norm ‖ · ‖ in Rn.

Theorem 1: [21] Let d be a dilation in Rn, then

1) all eigenvalues λi of the matrix Gd are placed in the
right complex half-plane, i.e., <(λi) > 0, i = 1, 2, ..., n;

2) there exists a matrix P ∈ Rn×n such that

PGd +G>d P � 0, P = P> � 0; (6)

1The matrix Gd ∈ Rn is anti-Hurwitz if −Gd is Hurwitz.



3) the dilation d is strictly monotone with respect to the
weighted Euclidean norm ‖ ·‖ =

√
〈·, ·〉 induced by the

inner product 〈x, z〉 = x>Pz with P satisfying (6).
Moreover,

eαs≤bd(s)c≤‖d(s)‖≤ eβs if s≤0,
eβs≤bd(s)c≤‖d(s)‖≤ eαs if s≥0,

(7)

where α = 1
2λmax

(
P

1
2GdP

− 1
2 + P−

1
2G>d P

1
2

)
and β =

1
2λmin

(
P

1
2GdP

− 1
2 + P−

1
2G>d P

1
2

)
.

The latter theorem proves that any dilation d is strictly
monotone if Rn is equipped with the norm ‖x‖=

√
x>Px,

provided that the matrix P �0 satisfies (6).
Definition 4: [21] A continuous function p : Rn → R+ is

said to be a d-homogeneous norm if p(x) → 0 as x → 0
and p(d(s)x) = esp(x) > 0 for x ∈ Rn\{0} and s ∈ R.

Obviously, the d-homogeneous norm is neither a norm nor
semi-norm in the general case, since the triangle inequality
may not hold. However, many authors (see e.g. [14], [27]
and references therein) call a function satisfying the latter
definition a homogeneous norm. We follow this tradition.

The canonical homogeneous norm ‖ · ‖d : Rn → R+ is
defined as

‖x‖d = esx where sx ∈ R : ‖d(−sx)x‖ = 1. (8)

The map ‖ · ‖d : Rn → [0,+∞) is well defined and
single-valued for monotone dilations [27]. In [29] such
a homogeneous norm was called canonical because it is
induced by a (canonical) norm in Rn. Notice that

bd(ln ‖x‖d)c≤‖x‖≤‖d(ln ‖x‖d)‖ for x∈Rn,

and, due to (7), ‖ · ‖d is continuous at zero.
Proposition 1: [21] If d is a strictly monotone dilation then
• the canonical homogeneous norm ‖ · ‖d is Lipschitz

continuous on Rn\{0};
• if the norm ‖ · ‖ is smooth outside the origin then the

homogeneous norm ‖ · ‖d is also smooth outside the
origin, d‖d(−s)x‖

ds <0 if s∈R, x∈Rn\{0} and

∂‖x‖d
∂x =

‖x‖d
∂‖z‖
∂z |z=d(−s)x

∂‖z‖
∂z |z=d(−s)x

Gdd(−s)x

∣∣∣∣
s=ln ‖x‖d

(9)

Below we use the notation ‖ · ‖d only for the canonical
homogeneous norm induced by the weighted Euclidean
norm ‖x‖ =

√
x>Px with a matrix P � 0 satisfying (6).

The unit sphere S is defined using the same norm.
Vector fields, which are homogeneous with respect to

dilation d, have many properties useful for control design
and state estimation of linear and nonlinear plants as well as
for analysis of convergence rates [20].

Definition 5: [21] A vector field f : Rn → Rn (resp. a
function h : Rn→ R) is said to be d-homogeneous if there
exists ν ∈ R

f(d(s)x) = e νsd(s)f(x), ∀x ∈ Rn\{0}, ∀s ∈ R. (10)

(resp. h(d(s)x)=e νsh(x), ∀x∈Rn\{0}, ∀s∈R.) (11)
The number ν ∈ R is called the homogeneity degree of f
(resp. h).

Let Fd(Rn) (resp. Hd(Rn)) be the set of vector fields
Rn → Rn (resp. functions Rn → R) satisfying the identity
(10) (resp. (11)), which are continuous on Rn\{0}. Let
degFd

(f) (resp. degHd
(h)) denote the homogeneity degree

of f ∈ Fd(Rn) (resp. h ∈ Hd(Rn)).
The homogeneity allows local properties (e.g., smooth-

ness) of vector fields (functions) to be extended globally
[7], [8]. For instance [21], the vector field f ∈ Fd(Rn) is
Lipschitz continuous on Rn\{0} if and only if it satisfies
Lipschitz condition on the unit sphere S. Similarly, since
the map s → d(s)x is locally uniformly continuous, then
uniform continuity of f ∈ Fd(Rn) on the unit sphere implies
its local uniform continuity on Rn\{0} (see [24]).

B. Quadratic Stability of Nonlinear Homogeneous Systems

Homogeneity may simplify the analysis of differential
equations. The most important property of d-homogeneous
systems is the symmetry of solutions [7], [11], [12],[30],
[20]. Namely, if ϕξ0 : [0, T )→ Rn is a solution to

ξ̇ = f(ξ), f ∈ Fd(Rn) (12)

with the initial condition ξ(0) = ξ0 ∈ Rn, then
ϕd(s)ξ0 : [0, e−νsT ) → Rn defined as ϕd(s)ξ0(t) =
d(s)ϕξ0(teνs), s ∈ R is a solution to (12) with the initial
condition ξ(0) = d(s)ξ0, where ν = degFd

(f).
The latter property implies many corollaries. In this paper

we use the next one.
Theorem 2: [21] The following five claims are equivalent:

1) The origin of the system (12) is asymptotically stable.
2) There exists a Lyapunov function V for the system (12)

such that V ∈ Hd(Rn) ∩ C∞(Rn).
3) The origin of the system

ż = ‖z‖1+degFd
(f)
(

(In−Gd)zz
>P

z>PGdz
+ In

)
f
(
z
‖z‖

)
(13)

is asymptotically stable, where z =
√
z>Pz, and the

positive definite matrix P ∈ Rn×n satisfies (6).
4) For any positive definite matrix P ∈ Rn×n satisfying

(6) there exists

Ψ ∈ Fd(Rn) ∩ C∞(Rn\{0}), degFd
(Ψ) = 0,

such that Ψ is a diffeomorphism on Rn\{0}, a homeo-
morphism on Rn, Ψ(0) = 0 and

∂(Ψ>(ξ)P Ψ(ξ))
∂ξ f(ξ)<0 if Ψ>(ξ)PΨ(ξ)=1. (14)

Moreover, ‖Ψ‖d ∈ Hd(Rn) ∩ C∞(Rn\{0}) is a Lya-
punov function for the system (12).

5) For any matrix P ∈ Rn×n satisfying (6), there ex-
ists a smooth mapping Ξ ∈ C∞(Rn\{0},Rn×n),

det(Ξ(z)) 6=0, ∂Ξ(z)
∂zi

z=0, Ξ(esz)=Ξ(z)

for z=(z1, ..., zn)>∈Rn\{0}, s∈R, i=1, ..., n

z>Ξ>(z)PΞ(z)
(

(In−Gd)zz
>P

z>PGdz
+In

)
f
(
z
‖z‖

)
<0. (15)

This theorem proves two important facts:
• Any generalized homogeneous system (12) is home-

omorphic on Rn and diffeomorphic on Rn\{0} to a



standard homogeneous one (13). The corresponding
change of coordinates is given by

z = Φ(ξ) := ‖ξ‖dd(− ln ‖ξ‖d)ξ (16)

and ξ = Φ−1(z) := d(ln ‖z‖) z
‖z‖ .

• Any asymptotically stable generalized homogeneous
system is homeomorphic on Rn and diffeomorphic on
Rn\{0} to a quadratically stable one. Indeed, making
the change of variables z = Ψ(ξ) we derive

ż = f̂(z) =
∂Ψ(ξ)

∂ξ
f(ξ)

∣∣∣∣
ξ=Ψ−1(z)

,

but the criterion (14) implies that z>P ż < 0 if z>Pz =
1, so the homogeneous norm ‖ · ‖d is the Lyapunov
function to the latter system. Finally, the change of
variable x = ‖z‖dd(− ln ‖z‖d)z gives ‖z‖d = ‖x‖,
so the transformed system ẋ = f̃(x) is quadratically
stable with the Lyapunov function V defined as V (x) =
‖x‖2 = x>Px, where

f̃(x)=‖x‖1+degFd
(f)
(

(In−Gd)xx>P
x>PGdx

+In

)
f̂
(
x
‖x‖

)
.

Below we show that the transformations Φ and Ψ can be
utilized for the design of a consistent discretization scheme
for locally homogeneous systems.

Recall [16], [17], [20], [21] that if the homogeneous
system (12) is asymptotically stable and degFd

(f) < 0, then
it is globally uniformly finite-time stable.

Remark 1: If d is a dilation with the generator Gd, then
for any fixed α > 0, the group dα defined as dα(s) :=
d(αs), s ∈ Rn, is the dilation with the generator Gdα =
αGd. If f ∈ Fd(Rn), then f ∈ Fdα(Rn) and degFdα

(f) =
α degFd

(f). In other words, if degFd
(f) < 0, then a new

dilation dα can be selected such that degFdα
(f) = −1.

C. Local Homogeneity

Local homogeneous approximations has been studied in
[14], [31] in the case of for weighted dilations. In the
generalized case local homogeneity is defined analogously.

Definition 6: A vector field f0 ∈ Fd(Rn) is said to be a d-
homogeneous approximation of a vector field f : Rn → Rn
at 0 if lims→−∞ ‖e− degFd

(f0)sd(−s)f(d(s)x)− f0(x)‖ = 0
uniformly on x ∈ S.
Local homogeneity at ∞ can be introduced similarly con-
sidering the limit s→ +∞.

The next simple result follows the well-known ideas of
homogeneous domination approach [7], [14].

Lemma 1: Let f0 ∈ Fd(Rn) be a local d-homogeneous
approximation of a vector field f : Rn → Rn at 0 and
degFd(f0) < 0. If the system

ẋ = f0(x) (17)

is asymptotically stable then the system (1) is locally finite-
time stable.

A consistent discretization scheme for finite-time stable
homogeneous systems is developed [24] based on Theorem
2. Below we use similar ideas in order to design a consistent

discretization scheme locally (close to 0), where the d-
homogeneous approximation f0 is a dominating nonlinearity.
The next trivial corollary plays a key role in the later
constructions.

Corollary 1: If all conditions of Lemma 1 hold, then for
any matrix P ∈ Rn×n satisfying (6), there exist r > 0 and
a smooth mapping Ξ ∈ C∞(Rn\{0},Rn×n), det(Ξ(z)) 6=
0, ∂Ξ(z)

∂zi
z = 0, Ξ(esz) = Ξ(z), for z = (z1, ..., zn)> ∈

Rn\{0}, s∈R, i=1, ..., n, such that the inequality

z>Ξ>(z)PΞ(z)
(

(In−Gd)zz
>P

z>PGdz
+In

)
d(− ln ‖z‖)f

(
d(ln ‖z‖)z
‖z‖

)
<0

holds for any z ∈ B(r)\{0}.

IV. FINITE-TIME STABLE IMPLICIT DISCRETIZATION

The main idea of the design of a finite-time stable dis-
cretization for homogeneous systems, is to use the coordinate
transformation (16).

Theorem 3: Let a vector field f : Rn → Rn be locally
uniformly continuous on any ring

K(r1, r2) = {x ∈ Rn : r1 ≤ ‖x‖ ≤ r2},

0 < r1 < r2 < rmax < +∞

and admit a d-homogeneous approximation f0 ∈ Fd(Rn) at
0 such that degFd

(f0) = −1 and the condition (15) with
Ξ = In holds for f0.

Then there exists r > 0 such that the map Q : R+×Rn×
Rn ⇒ Rn defined as

Q(h, xi, xi+1)=Q̃(h,Φ(xi),Φ(xi+1)), (18)

Φ(x) = ‖x‖d d(− ln ‖x‖d)x,

Q̃(h, yi, yi+1) = yi+1 − yi − hF̃ (yi+1),

F̃ (y)=
⋂
ε>0

cof̃(y +B(ε)\{0}),
(19)

f̃(y) :=‖y‖
(

(I−Gd)yy
>P

y>GdPy
+In

)
d(− ln ‖y‖)f

(
d(ln ‖y‖) y

‖y‖

)
,

is a consistent discrete-time approximation in

U = {x ∈ Rn : ‖x‖d ≤ r/2}

of the locally uniformly finite-time stable system (1) with the
maximum step size h0 = r

2 sup
y∈Rn:‖y‖≤r

f̃(y)
.

The latter theorem is based on the fact that the system
ẏ = f̃0(y) admits a quadratic Lyapunov function (the
condition (15) with Ξ =const). However, as it was shown
in Theorem 2, any stable homogeneous system is equivalent
to a quadratically stable one. If f in Theorem 3 is replaced
with the equivalent one:

fnew(x) = ∂Ψ(ξ)
∂ξ f(ξ)

∣∣∣
ξ=Ψ−1(x)

, x ∈ Rn, ξ ∈ Rn,

where Ψ ∈ Fd(Rn) is a diffeomorphism on Rn\{0} given in
Theorem 2, then the condition Ξ = In required for Theorem
3 is fulfilled.

According to Theorem 2, a homogeneous Lyapunov func-
tion V ∈ Hd(Rn)∩C∞(Rn) with degree degH(V ) = µ > 0



can always be found for any asymptotically stable system
with a homogeneous vector field f ∈ Fd(Rn). In this case,
the required transformation Ψ can be defined as follows

Ψ(ξ) = d
(

ln V 1/µ(ξ)
‖ξ‖d

)
ξ.

(see [23] for more details).
In other words, if we know a homogeneous Lyapunov

function for a finite-time stable homogeneous system then,
we can easily design a consistent (in the sense of Definition
1) implicit discretization scheme.

Therefore, any finite-time stable system allowing a finite-
time stable homogeneous approximation at 0 admits a con-
sistent implicit approximation, at least locally.

V. EXAMPLE: DISCRETE-TIME APPROXIMATION OF A
QUADROTOR CONTROL SYSTEM

Let us consider the system

ẋ = A(x)x+Bu, A(x) =

(
0 I 0 0
0 0 E(x) 0
0 0 0 I
0 0 0 0

)
, B =

(
0
0
0
I

)
,

where x∈R8,u∈R2,E(x)=

(
sin(x5)
x5

0

0
sin(x6) cos(x5)

x6

)
, I=(1 0

0 1).

The system of this form appears as a simplified model for
the control of horizontal position of a quadrotor, when the
vertical position and a yaw angle are already stabilized in
some set-points.

Obviously, A(x)x admits d-homogeneous approximation
A0x at 0 with the homogeneity degree −1, d(s)=esGd and

Gd =

(
4I 0 0 0
0 3I 0 0
0 0 2I 0
0 0 0 I

)
, A0 =

(
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

)
.

Let the control law is defined as

u(x) = Kd(− ln ‖x‖d)x (20)

where K ∈ R2×8 such that

(A0 +BK)>P + P (A0 +BK) + (GdP + PGd) = 0,

GdP + PGd � 0, P � 0.

Such a selection of K is always possible (see [32]). More-
over, it can be shown that the control u has globally bounded
and discontinuity only at the origin. The closed-loop system
is locally finite-time stable, V = ‖x‖d is a Lyapunov function
and f0(x) = A0x+Bu(x) is a d-homogeneous approxima-
tion of the closed-loop system at zero, degFd

(f0) = −1.
All conditions of Theorem 3 are fulfilled. Applying the
coordinate transformation y = Φ(x) = ‖x‖d d(− ln ‖x‖d)x
we derive

f̃(y)=
(
A0+BK+

(
1− y>P∆A(y)y

y>GdPy

)
(Gd − I)+∆A(y)

)
y
‖y‖ ,

∆A=

(
0 0 0 0
0 0 E−I 0
0 0 0 0
0 0 0 0

)
, E =

(
sin(‖y‖y5)

‖y‖y5
0

0
sin(‖y‖y6) cos(‖y‖y5)

‖y‖y6

)
.

Obviously, F̃ (y) = f̃(y) if y 6= 0 and

F̃ (0) = (A0 +BK +Gd − I)B(1) ⊂ Rn.

Hence, if yi ∈ hF̃ (0) then the inclusion yi+1 ∈ yi +
hF̃ (yi+1) has a solution yi+1 = 0. For the case yi 6=
hF̃ (yi+1) some properly adapted numerical procedures (like
Newton method) is required for solving of the obtained
discrete-time inclusion yi ∈ yi+1−hF̃ (yi+1). Notice, that f̃
is smooth outside the origin, so the Newton method can be
applied while, for example, y[k]

i+1 /∈ hF̃ (0), where k denotes
the number of Newton’s iteration. The latter inclusion can be
utilized as one of conditions for termination of the Newton
iterations, since next the state of the system converges to
zero in one step.

Let us denote qi+1 = ‖yi+1‖, zi+1 = yi+1

‖yi+1‖ and Ã =
A0 + BK + Gd. Similarly to [24] the discretized control
can be defined as ui = u(xi+1) = u

(
Φ−1(y)

)
= Kzi+1. If

y>i (In − Ã)−>P (In − Ã)−1yi ≤ h2 then yi ∈ hF̃ (0),

qi+1 = 0 and zi+1 = h−1(In − Ã)−1yi; (21)

Otherwise, according the scheme proposed above the value
of yi+1 (as well as qi+1 6= 0 and zi+1) are assumed to be
derived by means of a Newton method. Notice that the matrix
I−Ã is invertible [24], so the control ui is well defined. The
original state is given by xi+1 = d(ln ‖yi+1‖)yi+1/‖yi+1‖.

The simulation results for the consistent discretization
scheme with h = 0.04 are given in Fig. 2 and the results
for the explicit Euler discretization with the same sampling
period are depicted in Fig. 3. They confirm finite-time
convergence of the consistent discretization scheme and the
numerical chattering of the explicit one.
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Fig. 2. Simulation results for the consistently discretized model.
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Fig. 3. Simulation results for the explicit Euler method.

VI. DISCUSSIONS AND CONCLUSIONS

In the paper it is shown that any homogeneous finite-
time stable system allowing finite-time stable homogeneous
approximation at 0 always admits an implicit discretization
scheme preserving finite-time convergence. For practical
implementation, implicit discretization scheme needs to be
supported with an appropriated algorithm of solving the
corresponding implicit equation/inclusion (18). Development
of such algorithms is planned as future research.
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