
HAL Id: hal-02054788
https://hal.inria.fr/hal-02054788

Submitted on 18 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Rise of Android Code Smells: Who Is to Blame?
Sarra Habchi, Naouel Moha, Romain Rouvoy

To cite this version:
Sarra Habchi, Naouel Moha, Romain Rouvoy. The Rise of Android Code Smells: Who Is to Blame?.
MSR 2019 - Proceedings of the 16th International Conference on Mining Software Repositories, May
2019, Montréal, Canada. �hal-02054788�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195828907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02054788
https://hal.archives-ouvertes.fr

The Rise of Android Code Smells:
Who Is to Blame?

Sarra Habchi
Inria / University of Lille

Lille, France
sarra.habchi@inria.fr

Naouel Moha
Université du Québec à Montréal

Montréal, Canada
moha.naouel@uqam.ca

Romain Rouvoy
University of Lille / Inria / IUF

Lille, France
romain.rouvoy@inria.fr

Abstract—The rise of mobile apps as new software systems led
to the emergence of new development requirements regarding
performance. Development practices that do not respect these
requirements can seriously hinder app performances and impair
user experience, they qualify as code smells. Mobile code smells
are generally associated with inexperienced developers who
lack knowledge about the framework guidelines. However, this
assumption remains unverified and there is no evidence about the
role played by developers in the accrual of mobile code smells.
In this paper, we therefore study the contributions of developers
related to Android code smells. To support this study, we propose
SNIFFER, an open-source toolkit that mines Git repositories to
extract developers’ contributions as code smell histories. Using
SNIFFER, we analysed 255k commits from the change history of
324 Android apps. We found that the ownership of code smells
is spread across developers regardless of their seniority. There
are no distinct groups of code smell introducers and removers.
Developers who introduce and remove code smells are mostly the
same.

Index Terms—Android, mobile apps, code smells, history
mining

I. INTRODUCTION

Since the emergence of mobile applications (apps) as new
mainstream software systems, researchers were interested in
bad development practices in these frameworks, a.k.a. code
smells. Mobile-specific code smells are different from the
well known object-oriented (OO) code smells as they often
refer to a misuse of the mobile platform SDK and they are
more performance-oriented [44]. According to the guidelines
of mobile frameworks, they hinder memory, CPU, and energy
performances [3], [4], [36], [37]. This theoretical assumption
has been confirmed by empirical studies that assessed the im-
pact of mobile-specific code smells on app performances [9],
[27], [39]. Hence, mobile-specific code smells represent “a
gap between the current state of a software system and some
hypothesized ideal state in which the system is optimally
successful in a particular environment”, which is a definition
of technical debt [8].

Technical debt is a well founded concept in software engi-
neering and, since its definition by Cunningham et al. [12],
researchers and practitioners have been investigating its ratio-
nales. Today, it is well established that developers attitude,
ignorance, and oversight are some of its major drivers [10],
[15], [48]. These three drivers are particularly relevant in
the context of Android code smells. As these code smells

tend to be oriented towards performance issues, inexperienced
developers who do not have an extensive understanding of
the framework may not be able to guess them intuitively.
For instance, the code smell UI Overdraw manifests when
a Canvas is used without defining the boundaries with
clipRect() or quickReject() [4], [43]. A developer
who does not master the drawing process of Android cannot
guess intuitively that these particular methods should be called
while drawing. Furthermore, as many mobile developers have
been working on desktop software beforehand, they may still
adopt desktop practices without realising their bad impact on
apps performance. A concrete example of these practices are
HashMap Usage and Member Ignoring Method which are
accepted practices in Java, but considered as code smells in
Android.

Interestingly, none of the previous studies on mobile code
smells has analysed the developers angle. They only ap-
proached this topic in their explanatory hypotheses when
discussing the possible factors of mobile code smells accu-
mulation. In particular, they hypothesised that some mobile
developers who lack experience and knowledge about the
framework, are responsible for the accrual of mobile code
smells [18], [19], [26]. Our study builds on these hypotheses
and addresses the developers role with a large scale analysis.
Indeed, understanding this role is crucial for explaining the
phenomenon of mobile code smells and proposing efficient
solutions to tackle them.

Specifically, we aim at answering the following research
questions.
RQ1: How do developers contribute in code smell introduc-
tions and removals?
This question is important for quantifying developers interest
and awareness about Android code smells. If developers who
introduce and remove code smells are isolated and distinct,
this would show that the unawareness about code smells is
not prevalent and only restrained to some developers and
vice versa. In this topic, the literature and the common
understanding of code smells provide three main hypotheses.
Hypothesis 1 (H1): Code smell introductions and removals
are isolated practices.
This hypothesis is supported by studies that suggested that
the presence of code smells is the result of the actions of only
some developers [18], [19].

Hypothesis 2 (H2): There is an inverse correlation between
code smell introductions and removals among developers.
This hypothesis is motivated by the reasoning that some bad
developers who are unaware about code smells will tend to
introduce and never remove them and vice versa [18], [19],
[26], [29].
Hypothesis 3 (H3): For each code smell type, there is an
inverse correlation between code smell introductions and
removals among developers.
This hypothesis aligns with the previous one but goes deeper
by considering the knowledge about every code smell sepa-
rately.
RQ2: How does seniority impact developers contribution?
This question allows us to investigate whether code smell
unawareness is caused by inexperience. This information is
necessary to define the developers who should be targeted
firstly while designing tools and documentations about code
smells. The suggested hypotheses for this question are the
following.
Hypothesis 4 (H4): Newcomers tend to introduce more and
remove less code smells.
This hypothesis relies on the conventional wisdom that in-
experienced developers who are new to the project are bad
contributors.
Hypothesis 5 (H5): Reputable developers tend to introduce
less and remove more code smells.
Reputable developers have a status in the community and
they are considered as good contributors [14]. This hypothesis
suggests that, as good developers, they should introduce less
and remove more code smells.

Our paper provides three notable contributions. It presents
the first large-scale empirical study that investigates the role
of developers in the accrual of mobile-specific code smells.
Our study analyses 8 Android code smells, 324 Android apps,
255k commits, and contributions from 4, 525 developers. Our
results show that the accrual of mobile-specific code smells
is not due to the actions of isolated groups of developers.
This paper also proposes SNIFFER [22], a novel open-source
toolkit that accurately mines the change history of Android
apps to track developers’ contributions. SNIFFER tackles many
issues raised by the Git mining community like branch and
renaming tracking. Finally, we provide all the collected data
for this paper in a database that contains the history of 180.013
Android code smells [21].

The remainder of this paper is organised as follows. Sec-
tion II explains the study design, while Section III reports on
the results. Section IV interprets and discusses these results,
and Section V presents related works. Section VI concludes
with our main learned lessons.

II. STUDY DESIGN

We start this section with a presentation of our study
context. Afterwards, we introduce our novel toolkit SNIFFER.
Then, we conclude with a description of our approach for
analysing the extracted data to answer our research questions.

A. Context Selection

The core of our study is analysing the change history of
mobile apps to inspect developers behaviour regarding code
smells. In that respect, the context selection entails the choice
of (1) the mobile platform to study, and (2) the mobile-specific
code smells with their detection tool.

1) The Mobile Platform: We decided to focus our study
on the Android platform. With 85.9% of the market share,
Android is the most popular mobile operating system as of
2018.1 Moreover, more Android apps are available in open-
source repositories compared to other mobile platforms [19].
On top of that, both development and research communities
proposed tools to analyse the source code of Android apps
and detect their code smells [4], [29], [38].

2) Code Smells & Detection Tool: In the academic litera-
ture, the main reference to Android code smells is the catalog
of Reimann et al. [42]. It includes 30 code smells, which are
mainly performance-oriented, and covers various aspects, like
user interface and data usage. Ideally, we would consider all
the 30 code smells in our study. However, for feasibility, we
could only consider code smells that are already detectable by
state-of-the-art tools. Hence, the choice of studied code smells
will be determined by the adopted detection tool. In this re-
gard, our detection relied on PAPRIKA, an open-source tooled
approach that detects Android-specific code smells from An-
droid packages (APK). PAPRIKA is able to detect 13 Android-
specific code smells. However, after examination we found
that two of these code smells, namely Invalidate Without Rect
and Internal Getter Setter, are now deprecated [3], [5]. Thus,
we excluded them from our analysis. Moreover, we wanted
to focus our study on objective code smells—i.e., smells that
either exist in the code or not, they cannot be introduced or
removed gradually. Hence, we excluded Heavy AsyncTask,
Heavy Service Start and Heavy BroadcastReceiver, which
are subjective code smells [29]. We present in Table I brief
descriptions of the eight code smells that we kept for our study.

B. Dataset & Selection Criteria

To select the apps eligible for our study, we relied on the
famous FDROID online repository2. This choice allowed us
to include published Android apps and exclude dummy apps,
templates, and libraries that could be available on GitHub.
We automatically crawled the apps available on FDROID and
retrieved their GitHub links when available. Then using these
links, we reached the repositories on GitHub. For computa-
tional constraints and as we focus on developers, we only
kept repositories which had at least two developers. This filter
resulted in 324 projects with 255, 798 commits and 4, 525
developers. The full list of projects can be found in our
artifacts [20].

1https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems

2https://f-droid.org

TABLE I
STUDIED CODE SMELLS.

Member Ignoring Method (MIM): this smell occurs when a method that
is not a constructor and does not access non-static attributes is not static.
As the invocation of static methods is 15%–20% faster than dynamic
invocations, the framework recommends making these methods static [28].
Init OnDraw (IOD): a.k.a. DrawAllocation, this occurs when allocations
are made inside onDraw() routines. The onDraw() methods are
responsible for drawing Views and they are invoked 60 times per second.
Therefore, allocations (init) should be avoided inside them in order to
avoid memory churn [3].
No Low Memory Resolver (NLMR): this code smell occurs when an
Activity does not implement the onLowMemory() method. This
method is called by the system when running low on memory in order to
free allocated and unused memory spaces. If it is not implemented, the
system may kill the process [43].
Leaking Inner Class (LIC): in Android anonymous and non-static inner
classes hold a reference of the containing class. This can prevent the
garbage collector from freeing the memory space of the outer class even
when it is not used anymore, and thus causing memory leaks [3], [43].
Hashmap Usage (HMU): the usage of HashMap is inadvisable when
managing small sets in Android. Using Hashmaps entails the auto-boxing
process where primitive types are converted into generic objects. The
issue is that generic objects are much larger than primitive types, 16
and 4 bytes respectively. Therefore, the framework recommends using
the SparseArray data structure which is more memory-efficient [3],
[43].
UI Overdraw (UIO): a UI Overdraw is a situation where a pixel of the
screen is drawn many times in the same frame. This happens when the UI
design consists of unneeded overlapping layers, e.g., hiding backgrounds.
To avoid such situations the method clipRect() or quickReject()
should be called to define the view boundaries that are drawable [4], [43].
Unsupported Hardware Acceleration (UHA): In Android, most of
the drawing operations are executed in the GPU. Rare drawing op-
erations that are executed in the CPU, e.g., drawPath method in
android.graphics.Canvas, should be avoided to reduce CPU
load [26], [37].
Unsuited LRU Cache Size (UCS): in Android, a cache can be used to
store frequently used objects with the Least Recently Used (LRU) API.
The code smell occurs when the LRU is initialised without checking the
available memory via the method getMemoryClass(). The available
memory may vary considerably according to the device so it is necessary
to adapt the cache size to the available memory [26], [36].

C. SNIFFER

We designed and developed SNIFFER [22], an open-source,
heavily tested, and documented toolkit that tracks the full
history of Android-specific code smells. Figure 1 shows an
overview of the SNIFFER process. We detail in the following
subsections each step of this process.

1) Step 1: Extract App Data:
Input: Git link to an Android app.
Output: Commits and repository model.
This step is performed by the sub-module
CommitLooper [22]. First, SNIFFER clones the repository
from Git and parses its log to obtain the list of commits.
Afterwards, it analyses the repository to extract its model.
This model consists of properties of different repository
elements like commits, developers, branches, etc. While
most of the properties are directly extracted from Git, some
others need more processing to be retrieved. In particular,
the SDK version is retrieved from the Manifest.xml
file, which describes the configuration of the Android app.
Also, properties related to branches are not directly available.

Branches are a local concept in Git, thus information about
the original branch of a commit is not recorded to be easily
retrieved. For this, SNIFFER makes an additional analysis to
attribute each commit to its original branch. In particular, it
navigates the commit tree by crossing all commit parents and
extracts the repository branches. This extraction allows us to
track the smell history accurately in step 3.

2) Step 2: Detect Code Smells:
Input: Commits and repository model.
Output: Code smell instances per commit.
This step is performed by the sub-module
SmellDetector [22]. As explained beforehand, SNIFFER
relies on PAPRIKA to detect Android code smells. Originally,
PAPRIKA detects code smells from the APK, it does not
analyse the source code. However, we wanted to detect code
smells directly from the source code of commits. Therefore,
we needed to integrate a static analyser into SNIFFER that
feeds PAPRIKA with the necessary data. In such way, before
going through smell detection with PAPRIKA, each commit
goes through the static analysis.

Static analysis : SNIFFER performs static analysis using
SPOON [40], a framework for Java-based programs analysis
and transformation. SNIFFER launches SPOON on the commit
source code to build an abstract syntax tree. Afterwards,
it explores this tree to extract code entities (e.g., classes
and methods), properties (e.g., names, types), and metrics
(e.g., number of lines, complexity). Together, these elements
constitute a usable model by PAPRIKA.

Detection of code smell instances : Fed with the model
built by the static analyser, PAPRIKA detects the code smell
instances. To this point, commits are still processed separately.
Thus, this step produces a separate list of code smell instances
for each commit.

3) Step 3: Analyse Change History:
Input: Code smell instances per commit and the repository
model.
Output: Full code smell history.
This step is performed by the sub-module
SmellTracker [22]. In this step, SNIFFER tracks the
full history of every code smell. As our study focuses on
objective Android code smells, we only have to look at the
current and previous commits to detect smell introductions
and removals. If a code smell instance appears in a commit
while absent from the previous, a smell introduction is
detected. In the same way, if a commit does not exhibit an
instance of a smell that appeared previously, a smell removal
is detected. In order for this process to work, SNIFFER needs
to (a) retrieve the previous commits accurately and (b) track
renamings.

Retrieve the previous commit accurately: Retrieving the
previous commits requires an order in the commit history. In
this regard, Git log provides two main commit orders:

• Chronological order by date or authoring date;
• Topological order.

These two orders flatten the commit tree into one branch
and this implies a loss of accuracy. To illustrate this effect,

Commits
Git link to

an app
1-Extract app

data

Repository
model

Instances 3- Analyse

change history
2- Detect

code smells

Full code
smell history

Fig. 1. Overview of the SNIFFER toolkit.

C B A

DE Branch feature

Branch master

Introduce
{smell_x}

Remove
{smell_y}

C B ADE

Introduce
{smell_x}

Remove {smell_y,
smell_x}

Introduce
{smell_y,smell_x}

Remove
{smell_y}

C D ABE

Remove
{smell_y}

Introduce
{smell_y,smell_x}

Remove
{smell_y}

Branch order

Chronological order

Topological order

Fig. 2. Commits ordered in different settings.

we depict in Figure 2 an example of a commit tree with
two branches. The branch order presents the real commit
history where the commit D introduced smell x and commit B
removed smell y. With the chronological order, commit B is
placed between commits D and E. With the topological order,
commits D and E are placed between B and C. Moreover,
in both orders the commit C has only one previous commit
instead of two. As shown in Figure 2, these placements caused
many false code smell introductions and removals. This shows
that these orders are suitable for repositories with a single
branch. However, for multiple branches, we need to follow
a branch-aware order. For this purpose, SNIFFER considers
the branches extracted in step 1 to retrieve previous commits.
This allows to stay faithful to the real order of commits and
accurately detect code smell introductions and removals.

Track renamings : In the process of development, files
and folders can be renamed. These renamings hinder the
tracking of code smells. To prevent these mistakes, SNIFFER
relies on Git to detect all the renamings happening in the
repository. Git tracks files with their contents instead of their
names or paths. Hence, if a file or a folder is renamed
and the content is not drastically changed, Git is able to
keep track of the file. Git uses a similarity algorithm [2] to
compute a similarity index between two files. By default, if
the similarity index is above 50%, the two files are considered
the same. SNIFFER uses this feature via the command git
log --find-renames --summary, which shows all the
renamings that happened in the repository. SNIFFER uses these
detected renamings to link the files and code smells in the
output database. Consequently, when a renaming occurs, no

new code smell introductions or removals are detected, and
the history of code smells is accurately tracked.

The generated full code smell history is saved in a Post-
greSQL database that can be queried to analyse different
aspects like the developers’ role. For the sake of evaluation
and replication, we openly published this database [21].

D. Validation

In order to assess the relevance of our analysis, we validated
the performance of our data extraction. In particular, we
validated the accuracy of PAPRIKA and SNIFFER.

1) PAPRIKA: Hecht et al. [26] have already validated
PAPRIKA with a F1-score of 0.9 in previous studies. They
validated the accuracy of the used code smell definitions and
the performance of the detection. The objective of our valida-
tion of PAPRIKA is to check that its detection is also accurate
on our dataset. For this purpose, we randomly selected a
sample of 599 code smell instances. We used a stratified
sample to make sure to consider a statistically significant
sample for each code smell. This represents a 95% statistically
significant stratified sample with a 10% confidence interval of
the 180, 013 code smell instances detected in our dataset. The
stratum of the sample is represented by the 8 studied code
smells. After the selection, one author manually analysed the
instances to check their correctness. We found that all the
sample instances are conform to the adopted definitions of
code smells. Hence, we can affirm that the PAPRIKA code
smell detection is effective in our dataset. The validated sample
can be found with our artifacts [20].

2) SNIFFER: We aimed to validate the accuracy of the code
smell history generated by SNIFFER. For this, we randomly
selected a sample of 384 commits from our dataset. This
represents a 95% statistically significant stratified sample
with a 5% confidence interval of the 255, 798 commits in
our dataset. After the selection, one author analysed every
commit to check that the detected code smell introductions and
removals are correct, and the SNIFFER did not miss any code
smell introductions and removals. The results of this analysis
can be found with our artifacts [20]. Based on these results, we
computed the numbers of true positives (TP), false positives
(FP), and false negatives (FN). These numbers are reported in
Table II.

We did not find any case of missed code smell introductions
or removals, FN = 0. However, we found cases where false
code smell introductions and removals are detected, FP = 7
for both of them. These false positives are all due to a commit

TABLE II
VALIDATION OF SNIFFER.

TP FP FN Precision Recall F1-score
Introductions 151 7 0 0.95 1 0.97

Removals 85 7 0 0.92 1 0.96

from the Shopping List app [1], which renamed 12 Java
files. Three of these renamings were accompanied with major
modifications in the source code. Thus, the similarity between
the files was above 50% and Git could not detect the renaming.
Consequently, SNIFFER could not track the code smells of
these files and detected 7 false code smell introductions and
removals.
Using the results of the manual analysis, we computed the
precision, recall, and F1-score. Their values are reported in
Table II. According to these measures, we can affirm that
SNIFFER is effective for detecting both code smell introduc-
tions and removals.

E. Data Analysis

Table III reports a list of metrics that we defined for
the data analysis. We defined the rate metrics, namely

TABLE III
DEVELOPER METRICS.

Metric Description
#commits (int): the number of authored commits.
#introductions (int): the number of code smells introduced.
#removals (int): the number of code smells removed.
%introductions (float): introduction rate, i.e., the average

number of smells introduced per commit:
#introductions/#commits.

%removals (float): removal rate, i.e., the average
number of smells removed per commit:
#removals/#commits.

%contribution (float): the size of the developer’s
contribution compared to the project size:
#commits/#project size.

#followers (int): the number of followers.
introducer (boolean): true if the developer introduced at

least one code smell.
remover (boolean): true if the developer removed at least

one code smell.
neutral (boolean): true if the developer did not intro-

duce or remove any code smell.
newcomer (boolean): true if the developer has less than

three commits in the project.
unfamous (boolean): true if the developer has less follow-

ers than 75% of the population.
famous (boolean): true if the developer has more fol-

lowers than 75% of the population.

%introductions and %removals, to compare the de-
velopers’ role in terms of code smells regardless of the size
of their contributions. Indeed, comparing the number of code
smells introduced by a developer who has 100 commits and
another who has only 10 commits can be biased. The developer
with more commits has more chances to introduce and remove
code smells. Similarly, the metric %contribution allows to

relate the number of commits to the project size. For instance,
a contribution of 10 commits in a project of 20 commits is
totally different from a contribution of 10 commits in a project
of 100 commits. For the definition of the metrics newcomer
and regular, we followed the approaches proposed in
previous studies. As a matter of fact, Tufano et al. [49] used
the threshold of 3 commits to distinguish newcomers from
regular developers. We present in the following how we used
these metrics in order to answer our research questions.

1) RQ1: How do developers contribute in code smell intro-
ductions and removals?: The analysis of this research question
consisted in testing its three hypotheses.

H1: Code smell introductions and removals are isolated
practices.
This hypothesis suggests that only an isolated part of Android
developers are responsible for code smell introductions and re-
movals. To test this hypothesis, we investigated the distribution
of developers regarding code smell introductions and removals.
Specifically, we computed the numbers and percentages of
developers that have the attributes introducer, remover,
and neutral. This allowed us to split the developers into
different groups and have an insight about the general tendency
of code smell introductions and removals among Android
developers.

H2: There is an inverse correlation between code smell
introductions and removals among developers.
We took a two-step approach to test this hypothesis.
First, we measured the relationship between the metrics
#introductions and #removals using Spearman’s rank
correlation coefficient. Spearman is a non-parametric measure
that assesses how well the relationship between two variables
can be described using a monotonic function. This measure is
adequate for our analysis as it does not require the normality
of the variables and does not assess the linearity.
As the metrics #introductions and #removals can be
biased by the number of commits, we proceeded to the second
step with different metrics. Specifically, we used Spearman
to measure the correlation between %introductions and
%removals.

H3: For each code smell type, there is an inverse
correlation between code smell introductions and removals
among developers.
This hypothesis states that at the code smell level, the
introduction and removal are inversely correlated. This
means that developers who are unaware about a specific
type of code smells, will tend to introduce it and never
remove it. Similarly, developers who are aware about
the code smell type will tend to remove it and never
introduce it. To test this hypothesis, we computed the metrics
%introductions and %removals for each type of code
smell, e.g., %introductions_LIC, %removals_LIC for
the LIC code smell. As we study 8 code smells, this process
gave us 16 metrics. Afterwards, we computed the correlation
between the two metrics of each code smell type, e.g.,
correlation(%introductions MIM,%removals MIM).
The correlation coefficient used is again Spearman’s rank.

2) RQ2: How does seniority impact developers contribu-
tion?: The objective of this research question is to assess the
impact of the developer’s seniority on code smell introduc-
tions and removals. We measured the seniority with (1) the
experience in the development project and (2) the reputation
in the community.

H4: Newcomers tend to introduce more and remove less
code smells.
To assess this hypothesis, we followed two approaches. First,
we split the developers into two groups using the metrics
newcomer and regular. Then, we compared the distri-
bution of the metrics %introductions and %removals
in the two groups. In particular, we used a two-tailed Mann-
Whitney U test [46], with a 99% confidence level, to check
if the distributions of introductions and removals are identical
in the two sets. To quantify the effect size of the presumed
difference, we used Cliff’s δ [45]. Cliff is a non-parametric
effect size measure which is reported to be more robust and
reliable than Cohen’s d [11]. Moreover, it is suitable for
ordinal data and it makes no assumptions of a particular
distribution [45]. For interpretation, we followed the common
guidelines : negligible (N) for |d| < 0.10, small (S) for
0.10 ≤ |d| < 0.33, medium (M) for 0.33 ≤ |d| < 0.474,
and large (L) for |d| ≥ 0.474.

In the second approach, we relied on the metric
%contribution which reflects the involvement of a
developer in a project. We assessed the impact of this
involvement on code smell introductions and removals.
Concretely, we computed the Spearman’s rank of the
metric %contribution with %introductions and
%removals respectively.

H5: Reputable developers tend to introduce less and remove
more code smells.
In this hypothesis, we opted for the number of followers as
an estimation of the developer’s reputation. The number of
followers is a signal of status in the community, developers
with many followers are treated as celebrities [14].

To assess the hypothesis, we first used the metrics famous
and unfamous to split the developers into two groups.
Then, we compared the tendency of code smell introduc-
tions and removals in the two groups using the metrics
%introductions and %removals. To perform this com-
parison we relied on the quartiles, Mann-Whitney U, and
Cliff’s δ.

As a second approach, we measured directly the corre-
lation between the reputation and code smell introductions
and removals. For this, we computed the Spearman’s rank
of the metric #followers with %introductions and
%removals, respectively.

III. STUDY RESULTS

In this section, we report and analyse the results of our
experiments with the aim of answering our research questions.

A. RQ1: How do developers contribute in code smell intro-
ductions and removals?

1) H1: Table IV reports the distribution of developers in
terms of code smell introductions and removals. We observe
that only 35% of the developers are implicated in code
smell introductions. The remaining 65% did not introduce any
code smell instances. The distribution in terms of code smell
removals is similar. Only 31% of the developers participated
in code smell removals. We also observe that 28% of the
developers are implicated in both code smell introductions and
removals. This intersection between introducers and removers
is highlighted in Figure 3. The figure shows that there is
an important intersection between developers that introduce
and remove code smells. This means that developers who
introduce and remove code smells are mainly the same.
Another interesting observation from Table IV is that 61%
of developers are neutral, they did not introduce or remove
any code smell instances.

TABLE IV
DISTRIBUTION OF DEVELOPERS ACCORDING TO CODE SMELL

INTRODUCTIONS AND REMOVALS.

introducer remover introducer and remover neutral All
developers 1590 1414 1269 2790 4525
% developers 35 31 28 61 100

1269 145321

Removers

Introducers

Fig. 3. Intersection between introducers and removers.

To further investigate the nature of these groups, we com-
pare in Figure 4 the distribution of their number of commits.
The distribution is illustrated with a density function, which
allows to highlight how many commits are authored by the
developers in the three groups.

Fig. 4. The distribution of the number of commits among the studied
developers.

The first thing that leaps to the eye is that neutral developers
are concentrated around a low number of commits. Most of
them have only authored less than 5 commits. This means that
developers who did not introduce or remove any code smells
are developers who did not commit regularly. On the other
side, introducers and removers are less concentrated around
the low values. Developers in these two groups have authored
more commits. It is also worth noting that introducer and
remover groups are similarly distributed which aligns with
Figure 3 where they manifested a considerable intersection.

To sum up, even if Table IV shows that introducers and
removers are only one third of the total contributors. They
actually represent most of the regular developers. Developers
who did not participate in code smell introductions and re-
movals have very few commits. Based on these findings, we
can assert that code smell introduction and removal are not
isolated practices. Thus, we can reject Hypothesis 1.

Developers who introduce and remove code smells are
mainly the same. Developers who did not introduce or
remove code smells are not regular contributors.

2) H2: The results of the correlation between the numbers
of code smell introductions and removals among developers
are the following.

Spearman(#introdcutions,#removals)

{
r = 0.94
p-value < 0.01

The p − value shows that the computed r coefficient is
statistically significant. The coefficient value, 0.94, shows that
there is a strong positive relationship between the numbers
of introductions and removals performed by a developer. That
is, the more a developer tends to introduce code smells, the
more she will remove. To further investigate this finding, we
evaluated the relationship with other measures. The results of
the correlation between the introduction and removal rates are
the following.

Spearman(%introdcutions,%removals)

{
r = 0.77
p-value < 0.01

As the p − value is lower than the threshold 0.01, the
computed coefficient is statistically significant. The coefficient
value, 0.77, shows that the introduction and removal rates are
positively correlated. This means that the more a developer
introduces code smells per commit, the more she removes as
well. Hence, even independently of the number of commits,
code smell introduction and removal are positively correlated
among developers. Based on these results, we can reject
Hypothesis 2.

The more a developer introduces code smells, the more
she tends to remove them.

3) H3: Table V reports the correlation coefficients between
the %introductions and %removals per code smell
type. For the eight code smells, the p − values are under
the threshold, thus the results are statistically significant.
The correlation coefficients depict that the introduction and
removal rates are positively correlated. Indeed, for LIC, MIM,

TABLE V
CORRELATION BETWEEN INTRODUCTIONS AND REMOVALS PER CODE

SMELL TYPE.

Smell LIC MIM NLMR HMU UIO UHA IOD UCS
Correlation 0.9 1.0 0.8 0.6 0.6 0.8 0.5 1.0
p-value < 0.01

NLMR, UHA and UCS, the introduction and removal rates are
strongly correlated with a coefficient over 0.8. This means
that developers who introduced these types of code smells
also removed them and vice versa. For HMU, UIO, and IOD,
the correlation is between 0.5 and 0.6. This means that there
is an average positive correlation between the introduction
and removal rates of these code smells among developers.
These findings show that developers remove the same type
of code smells that they introduce. There is no code smell
where developers who removed instances did not tend to
introduce new ones. Hence, we can affirm that there is no
inverse correlation between introductions and removals at the
code smell level. Thus, we can reject Hypothesis 3.

The more a developer introduces a type of code smells,
the more she removes it.

B. RQ2: How does seniority impact developers contribution?

1) H4: Table VI compares the introduction and removal
rates among newcomers and regular contributors. First, we
observe that using the criterion defined in the study design,
our dataset contains 3375 newcomers and 1793 regular con-
tributors. It is worth noting that the sum of these two groups
is above the total number of developers 4, 525. This due to the
involvement of many of developers in several studied projects.
Thus, these developers did not have one global contribution
in this context, but multiple contributions.

TABLE VI
COMPARISON BETWEEN NEWCOMERS AND REGULAR DEVELOPERS IN

TERMS OF INTRODUCTION AND REMOVAL RATES.

size Q1 Med Q3 p-value Cliff

%Introduction Newcomer 3375 0 0 0
< 0.01 0.46(M) ↓Regular 1793 0 0.21 0.76

%Removal Newcomer 3375 0 0 0
< 0.01 0.44(M) ↓Regular 1793 0 0.11 0.50

Regarding introductions, we observe that newcomers tend to
introduce very few code smells per commit, Q1, Median, and
Q3 are null. This means that at least 75% of the new comers
did not introduce any code smell per commit. On the other
side, regular contributors tend to introduce more code smells.
Indeed, 50% of them introduce more than 0.21 code smells per
commit and 25% of them are above 0.76 introductions. This
superiority is confirmed by the significant p-value computed
by Mann-Whitney U and the Cliff’s δ value 0.46. The latter
shows that there is a medium difference in the introduction
rates in favour of regular contributors.

As for removals, the table shows that newcomers do not tend
to remove code smells. Q1, Median, and Q3 values are null.
Regular contributors tend to remove more code smells. 50%

of them remove more than 0.11 code smells per commit and
75% of them have a removal rate above 0.50. Mann-Whitney
U and Cliff’s δ values confirm this observation. Removal rates
among regular contributors are mediumly superior to the rates
of newcomers.

To push forward this analysis, we computed the correlation
between the experience in the project and code smell intro-
ductions and removals. The results are the following.

Spearman(%contribution,%introductions)

{
r = 0.27
p-value < 0.01

Spearman(%contribution,%removals)

{
r = 0.24
p-value < 0.01

In both correlations, the p − value indicates that the re-
sults are statistically significant. For the introduction, the r
value, 0.27 shows that there is a weak positive correlation
between the experience in the project and the introduction
rate. Likewise for code smell removals, the r value, 0.24,
indicates that the correlation between experience and removals
is positive and weak. This means that experience does not have
an impact on the developer’s role in terms of code smells.
Developers with few contributions, like newcomers, do not
forcibly introduce more or remove less code smells. Hence,
based on the comparison and correlation results, we can reject
Hypothesis 4.

Newcomers are not particularly bad contributors. They
do not introduce or remove more code smells than regular
developers.

2) H5: Figure 5 and Table VII show the distribution of the
number of followers among the studied developers.

Fig. 5. The distribution of the number of followers among studied developers.

TABLE VII
THE NUMBERS OF FOLLOWERS AMONG THE STUDIED DEVELOPERS.

Q1 Median Q3 IQR
#Followers 1 8 25 24

We observe that the majority of the studied developers have
less than 25 followers. Based on the values of Table VII, we
defined our thresholds for splitting developers into two groups:

• unfamous: developers with ≤ 1 followers,
• famous: developers with ≥ 25 followers.
Table VIII compares the code smell introduction and re-

moval rates among unfamous and famous developers.

TABLE VIII
COMPARISON BETWEEN UNFAMOUS AND FAMOUS DEVELOPERS IN TERM

OF CODE SMELL INTRODUCTION AND REMOVAL RATES.

size Q1 Med Q3 p-value Cliff

%Introduction Unfamous 945 0 0 0
< 0.01 0.18(S) ↓Famous 906 0 0 0.47

%Removal Unfamous 945 0 0 0
< 0.01 0.19(S) ↓Famous 906 0 0 0.29

For the introduction rate, we observe that in both groups,
the introduction per commit is around zero for most of the
developers. Indeed, Q1 and Median values are null for both
unfamous and famous developers. The difference arises in
the third quartile values, Q3. The latter shows that whereas
25% of famous developers introduce more than 0.47 code
smells per commit, unfamous developers are mostly around 0
introductions per commit. This difference is confirmed by the
Mann-Whitney U results as the p-value is below the confidence
threshold. The Cliff’s δ value, 0.18, shows that there is a
small difference between the two groups in favour of famous
developers. This means that famous developers have a slightly
higher introduction rate than the unfamous ones.

We observe similar results for removal rates. For both
groups, 50% of the developers remove 0 code smells per
commit—Median=0. However, the Q3 value shows that 25%
of famous developers introduce more than 0.29 code smells
per commit while the unfamous ones are mostly around 0
introductions. Mann-Whitney U and Cliff’s δ results confirm
this observation. The p-value is below the threshold which
means that there is a statistically significant difference between
the removal rates in both groups. The Cliff’s δ shows that,
while small 0.19, this difference is in favour of famous
developers. This means that famous developers tend to remove
slightly more code smells than unfamous ones.

To consolidate this analysis, we computed the correlation
between the developer’s reputation and her code smell intro-
ductions and removals. The results are the following.

Spearman(#followers,%introductions)

{
r = 0.14
p-value < 0.01

Spearman(#followers,%removals)

{
r = 0.15
p-value < 0.01

As the p − values are below the threshold, we can consider
the computed coefficients as statistically significant. The cor-
relation coefficient between the number of followers and the
introduction rate, 0.14, suggests that there is a very weak
positive correlation between them. Likewise, the correlation
between the number of followers and the removal rates is
weak, r = 0.15. This means that the reputation does not have
an impact on the code smell activity. That is, famous devel-
opers are not significantly better contributors in terms of code
smells. Based on these findings, we can reject Hypothesis 5.

Reputable developers are not particularly good contribu-
tors in terms of code smells.

IV. DISCUSSION & THREATS

A. Discussion

We conducted this study with the hypothesis that some
developers are responsible for the accrual of mobile code
smells. In light of our results, we were able to reject this
hypothesis [18], [19], [26]. Even if the numbers show that
61% of the developers are neutral, this percentage is biased
by the huge number of developers who had very few commits.
Indeed, developers who committed regularly are more present
and had more chances to introduce or remove code smells.
This means that the phenomenon of code smells is not
limited to a small group of developers. The results of RQ2
pushed this idea forward. Besides not being a small isolated
group, developers who contributed to code smells are not
necessarily newcomers or unfamous in their communities. This
implies that there is no isolated group of junior developers
to blame for code smells, the responsibility is rather shared
among all regular contributors. Our analysis also showed that
developers who introduce and remove code smells are not
distinct, they are mainly the same group. On top of that, among
these developers, the introduction and removal tendencies are
correlated, even at the smell level. This implies that code
smell removals are not intended. Indeed, a developer who
consciously removes a code smell, would not tend to introduce
it elsewhere. This behaviour appears more like accidental
introductions and removals of code smells. Therefore, we
challenge the suggestion that Android developers “perform
refactorings to improve the code structure and enforce solid
programming principles” [29]. In fact, similar observations
were previously made about the refactoring of OO code smells.
Studies showed that sometimes code smells refactoring is due
to maintenance activities and cannot be considered as a proper
refactoring [41], [49].

Based on this analysis, we suggest that the studied mobile
code smells represent an inadvertent technical debt—i.e., a
debt which is driven by oversight instead of strategic or tactic
choices [48]. That is, developers do not deliberately accept this
technical debt in favour of other objectives, like productivity.
Rather, they introduce the debt with no leverage—i.e., they do
not gain anything in return. To refine and further explore this
hypothesis, we encourage future research works to:

• Analyse the nature of Android code smells removals and
check whether it is a proper refactoring or a side effect
of source code evolution activities.

• Investigate the role of other technical debt drivers, like
prioritisation and releases [48], in the accrual of Android
code smells.

• Study the self-admittance [13] of Android code smells.
The observed correlations also show, with quantitative evi-
dence, that the unawareness described by developers in the
study of Habchi et al. [18] is very prevalent. This oversight
incites us to question the importance of mobile code smells
and the efficiency of the communication channels used by

framework builders.
Effectively, the unawareness of most developers may be due
to the unimportance of these code smells in practice. This
questioning is particularly relevant as the code smells are
performance-oriented. If these code smells effectively im-
pacted apps in practice, the performance degradation would
have attracted developers awareness. This hypothesis has the
following implications on researchers:

• Studies should reevaluate the importance and impact of
mobile code smells in practice. We highly encourage
future works to perform empirical studies on real life
scenarios and real mobile apps to assess the effective
impact of these code smells on performance.

• The definition of code smells should not only be a top-
down process. That is, mobile code smells, which are for
now only based on documentation, should also consider
the viewpoint of developers. We invite researchers to
involve developers in the evaluation of these code smells
and the definition of future ones. The developers’ opinion
would allow us to better evaluate the importance and
severity of these code smells in practice.

The other possible explanation of the prevalent unawareness
towards mobile code smells is the vague communication about
them. It is unlikely that all developers carelessly consider
the framework documentation, especially when it comes to
performance. Hence, we suggest for framework builders to:

• Highlight and stress the importance and impact of code
smells.

• Use more pervasive channels to raise developers aware-
ness about code smells. In particular, framework built-in
tools, like linters, should emphasise the importance and
impact of code smells.

• Researchers and tool makers should work on just-in-time
detection and refactoring tools that run as soon as the
change is committed to prevent the accumulation of code
smells.

B. Threats to Validity

Internal Validity: : For this study, one main major threat
could be to associate code smell introductions or removals
to the wrong developers. This can occur in situations where
the code smell is introduced or removed gradually, making it
complex to determine the introducing or removing commit.
However, as explained previously, we consider in this study
only code smells that can only be introduced or removed
in one commit. Another case that may cause confusion for
smell introductions is merge commits. A merge commit groups
many commits that may introduce and remove code smells.
SNIFFER solves this problem by using a branch-aware commit
order [17]. Therefore, we can always consider that code smell
introductions and removals are associated to the appropriate
commit.

External Validity: : The main threat to external validity
is the representativeness of our dataset. We used a set of
324 open-source Android apps from F-Droid with more than
255k commits. It would have been preferable to consider also

closed-source apps to build a more diverse dataset. However,
we did not have access to any proprietary software that can
serve this study. We also encourage future studies to consider
other datasets of open-source apps to extend this study [16],
[33]. Another possible threat is that our study only concerns
8 Android-specific code smells. Without a closer inspection,
these results should not be generalised to other code smells
or mobile platforms. We encourage future studies to replicate
our work on other datasets and with different code smells and
mobile platforms.

Construct Validity: : In our case, the construct might be
affected by the code smell detection performed by PAPRIKA.
However, PAPRIKA has been validated with a precision of
(0.88) and a recall of (0.93) [28]. On top of that, our validation
showed that PAPRIKA is also effective in the dataset under
study. Thus, we can rely on its performance.

Conclusion Validity: : The main threat to the conclusion
validity in this study is the validity of the statistical tests ap-
plied. We alleviated this threat by applying a set of commonly
accepted tests employed in the empirical software engineering
community [35]. Moreover, we used non-parametric tests that
do not require making assumptions about the distribution of
the data.

V. RELATED WORKS

Mobile code smells: The first reference to mobile-specific
code smells was when Reimann et al. [42] proposed a catalog
of 30 quality smells dedicated to Android. Later, researchers
proposed tools and approaches like PAPRIKA [28] and ADOC-
TOR [38] to detect these code smells. Relying on these tools,
empirical studies were conducted to prove the negative impact
of mobile-specific code smells on app performance [9], [27],
[39]. Other empirical studies focused on understanding the
phenomenon of code smells in mobile apps. In particular,
Mannan et al. [34] compared the presence of OO code smells
in Android and desktop applications. They observed that the
distribution of code smells in Android is more diversified than
in desktop applications. Habchi et al. [19] also opted for a
comparison between the Android and iOS specific code smells.
They observed semantic similarities between the code smells
exhibited by the two platforms. Interestingly, none of these
studies studied code smells from the developers angle. They
only approached this topic in their explanatory hypotheses
when discussing the possible factors of mobile code smells
accumulation. Our study builds on these hypotheses and
addresses the developers role with a large scale analysis.

Developers and code smells: The closest work to our
study is the one of Habchi et al. [18] where they showed
that some Android developers are unaware of the impor-
tance and impact of performance bad practices in mobile
apps. However their findings were based on a qualitative
study and they did not provide any quantitative assessments
of the prevalence of this unawareness. Regarding OO code
smells, Peters et al. [41] conducted a case study on 7 open-
source systems and investigated the refactoring behavior of
developers. They observed that usually one or two developers

refactor more than the others, however the difference is not
large. Later, Tufano et al. [49] analysed the change history
of 200 open-source projects to understand why OO code
smells are introduced. Among other findings, they observed
that newcomers are not necessarily more prone to introducing
new code smells.

Mining the change history: Mining the change history
is used for various purposes in software engineering. Studies
particularly relied on it for topics like defect prediction and
code ownership analysis [7], [24], [25], [47]. However, re-
searchers observed that Git, the de facto VCS platform, is not
mining-friendly [6], [23], [30]. Indeed, Git was not designed
for an accurate retrieval of history changes [32]. For this
purpose, many studies highlighted Git pitfalls and urged the
MSR community to address them [6], [23], [31]. In particular,
a recent study of Kovalenko et al. [32] showed that handling
branches and renamings is crucial for an accurate tracking of
contributions in Git. Our proposed toolkit, SNIFFER, complies
with these guidelines and proposes a renaming and branch
aware analysis of the change history.

VI. CONCLUSION

We presented in this paper the first large-scale empirical
study about the role of developers in the accrual of mobile-
specific code smells. We analysed 8 Android code smells,
324 Android apps, 255k commits, and contributions from
4, 525 developers. This study resulted in several findings that
challenge the conventional wisdom:
Finding 1: The accrual of Android code smells is not the
responsibility of an isolated group of developers. Most regular
developers participated in the introduction of code smells.
Finding 2: There are no distinct groups of code smell intro-
ducers and removers. Developers who introduce and remove
code smells are mostly the same.
Finding 3: While newcomers are not to blame for the accrual
of mobile code smells, reputable developers are not necessarily
good contributors.

These findings highlight important challenges for re-
searchers and framework builders. In particular, researchers
should reevaluate the importance and impact of mobile code
smells, and consider involving developers in the definition of
future code smells. Also, framework builders should put more
efforts in creating an actionable documentation and pervasive
tools to raise developers awareness.

On top of the research implications, this paper proposes
SNIFFER, a novel open-source toolkit [22] that mines the
change history of Android apps to track developers’ con-
tributions. SNIFFER tackles many issues raised by the Git
mining community like branch and renaming tracking. We
also provide all the collected data for this paper in a database
that contains the history of 180.013 Android code smells [21].
We highly encourage the community to build on our findings,
toolkit, and dataset to replicate and perform further studies on
developers and mobile code smells.

REFERENCES

[1] Commit from shopping list app. https://github.com/openintents/
shoppinglist/commit/efa2d0b2214349c33096d1d999663585733ec7b7#
diff-7004284a32fa052399e3590844bc917f, 2014. [Online; accessed
December-2018].

[2] Git diff core delta algorithm. https://github.com/git/git/blob/
6867272d5b5615bd74ec97bf35b4c4a8d9fe3a51/diffcore-delta.c, 2016.
[Online; accessed November-2018].

[3] Android lint checks. https://sites.google.com/a/android.com/tools/tips/
lint-checks, 2017. [Online; accessed August-2017].

[4] Android. Android Lint - Android Tools Project Site. http://tools.android.
com/tips/lint-checks, 2017. [Online; accessed July-2018].

[5] Android. Deprecation of invalidate with rect. https://developer.android.
com/reference/android/view/View.html\#invalidate(), 2017. [Online; ac-
cessed January-2019].

[6] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y.-G. Gueheneuc. Repent: Analyzing the nature of identifier
renamings. IEEE Transactions on Software Engineering, 40(5):502–532,
2014.

[7] R. M. Bell, T. J. Ostrand, and E. J. Weyuker. The limited impact
of individual developer data on software defect prediction. Empirical
Software Engineering, 18(3):478–505, 2013.

[8] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, et al. Managing technical debt in
software-reliant systems. In Proceedings of the FSE/SDP workshop on
Future of software engineering research, pages 47–52. ACM, 2010.

[9] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy.
Investigating the energy impact of android smells. In Software Analysis,
Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on, pages 115–126. IEEE, 2017.

[10] Cast. Reduce technical debt. https://www.castsoftware.com/research-
labs/technical-debt, 2017. [Online; accessed January-2019].

[11] J. Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.
[12] W. Cunningham. The wycash portfolio management system. ACM

SIGPLAN OOPS Messenger, 4(2):29–30, 1993.
[13] E. da Silva Maldonado, E. Shihab, and N. Tsantalis. Using natural

language processing to automatically detect self-admitted technical debt.
IEEE Transactions on Software Engineering, 43(11):1044–1062, 2017.

[14] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in
github: transparency and collaboration in an open software repository.
In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, pages 1277–1286. ACM, 2012.

[15] J. ELM. Design debt economics: A vocabulary for describing the causes,
costs and cures for software maintainability problems. ibm, 2009.

[16] F.-X. Geiger, I. Malavolta, L. Pascarella, F. Palomba, D. Di Nucci, and
A. Bacchelli. A graph-based dataset of commit history of real-world
android apps. In Proceedings of the 15th International Conference on
Mining Software Repositories, pages 30–33. ACM, 2018.

[17] Git. Git Commit oredering. https://git-scm.com/docs/git-log, 2017.
[Online; accessed August-2017].

[18] S. Habchi, X. Blanc, and R. Rouvoy. On adopting linters to deal
with performance concerns in android apps. In ASE18-Proceedings of
the 33rd IEEE/ACM International Conference on Automated Software
Engineering, volume 11. ACM Press, 2018.

[19] S. Habchi, G. Hecht, R. Rouvoy, and N. Moha. Code smells in ios
apps: How do they compare to android? In Proceedings of the 4th
International Conference on Mobile Software Engineering and Systems,
pages 110–121. IEEE Press, 2017.

[20] S. Habchi, N. Moha, and R. Rouvoy. Companion artifacts. https:
//figshare.com/s/26d66505a75a772dd994, 2019. [Online; accessed
January-2019].

[21] S. Habchi, N. Moha, and R. Rouvoy. Database of full code smell history.
https://figshare.com/s/ffa0a64a55e040f48dc9, 2019. [Online; accessed
January-2019].

[22] S. Habchi and A. Veuiller. Sniffer source code. https://github.com/
HabchiSarra/Sniffer/, 2019. [Online; accessed March-2019].

[23] A. E. Hassan. The road ahead for mining software repositories. In
Frontiers of Software Maintenance, 2008. FoSM 2008., pages 48–57.
IEEE, 2008.

[24] A. E. Hassan. Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software Engi-
neering, pages 78–88. IEEE Computer Society, 2009.

[25] L. Hattori and M. Lanza. Mining the history of synchronous changes to
refine code ownership. In Mining Software Repositories, 2009. MSR’09.
6th IEEE International Working Conference on, pages 141–150. IEEE,
2009.

[26] G. Hecht. Détection et analyse de l’impact des défauts de code dans
les applications mobiles. PhD thesis, Université du Québec à Montréal,
Université de Lille, INRIA, 2017.

[27] G. Hecht, N. Moha, and R. Rouvoy. An empirical study of the
performance impacts of android code smells. In Proceedings of the
International Workshop on Mobile Software Engineering and Systems,
pages 59–69. ACM, 2016.

[28] G. Hecht, B. Omar, R. Rouvoy, N. Moha, and L. Duchien. Tracking
the software quality of android applications along their evolution.
In 30th IEEE/ACM International Conference on Automated Software
Engineering, page 12. IEEE, 2015.

[29] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien. Detecting Antipatterns
in Android Apps. Research Report RR-8693, INRIA Lille ; INRIA,
Mar. 2015.

[30] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution. Journal of software maintenance and evolution: Research and
practice, 19(2):77–131, 2007.

[31] M. Kim and D. Notkin. Program element matching for multi-version
program analyses. In Proceedings of the 2006 international workshop
on Mining software repositories, pages 58–64. ACM, 2006.

[32] V. Kovalenko, F. Palomba, and A. Bacchelli. Mining file histories:
should we consider branches? In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
pages 202–213, 2018.

[33] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson,
A. Filipski, and J. Smith. A dataset of open-source android applications.
In Proceedings of the 12th Working Conference on Mining Software
Repositories, pages 522–525. IEEE Press, 2015.

[34] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen.
Understanding code smells in android applications. In Proceedings of the
International Workshop on Mobile Software Engineering and Systems,
pages 225–234. ACM, 2016.

[35] K. Maxwell. Applied statistics for software managers. Prentice Hall,
2002.

[36] C. McAnlis. The magic of lru cache (100 days of google dev). https:
//youtu.be/R5ON3iwx78M, 2015. [Online; accessed January-2019].

[37] I. Ni-Lewis. Custom views and performance (100 days of google dev).
https://youtu.be/zK2i7ivzK7M, 2015. [Online; accessed January-2019].

[38] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia.
Lightweight detection of android-specific code smells: The adoctor
project. In Software Analysis, Evolution and Reengineering (SANER),
2017 IEEE 24th International Conference on, pages 487–491. IEEE,
2017.

[39] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia.
On the impact of code smells on the energy consumption of mobile
applications. Information and Software Technology, 105:43–55, 2019.

[40] R. Pawlak. Spoon: Compile-time annotation processing for middleware.
IEEE Distributed Systems Online, 7(11), 2006.

[41] R. Peters and A. Zaidman. Evaluating the lifespan of code smells using
software repository mining. In Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on, pages 411–416. IEEE,
2012.

[42] J. Reimann, M. Brylski, and U. Aßmann. A tool-supported quality
smell catalogue for android developers. In Proc. of the conference Mod-
ellierung 2014 in the Workshop Modellbasierte und modellgetriebene
Softwaremodernisierung–MMSM, volume 2014, 2014.

[43] J. Reimann, M. Brylski, and U. Aßmann. A Tool-Supported Quality
Smell Catalogue For Android Developers. In Proc. of the confer-
ence Modellierung 2014 in the Workshop Modellbasierte und modell-
getriebene Softwaremodernisierung – MMSM 2014, 2014.

[44] J. Reimann, M. Seifert, and U. Aßmann. On the reuse and recommenda-
tion of model refactoring specifications. Software & Systems Modeling,
12(3):579–596, 2013.

[45] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek. Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys.
In annual meeting of the Florida Association of Institutional Research,
pages 1–33, 2006.

[46] D. J. Sheskin. Handbook of parametric and nonparametric statistical
procedures. crc Press, 2003.

[47] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting
code ownership and its relationship with software quality in the scope of
modern code review. In Proceedings of the 38th international conference
on software engineering, pages 1039–1050. ACM, 2016.

[48] E. Tom, A. Aurum, and R. Vidgen. An exploration of technical debt.
Journal of Systems and Software, 86(6):1498–1516, 2013.

[49] M. Tufano, F. Palomba, R. Oliveto, M. D. Penta, A. D. Lucia, and
D. Poshyvanyk. When and why your code starts to smell bad (and
whether the smells go away). IEEE Transactions on Software Engineer-
ing, PP, 2017.

