
HAL Id: hal-02072737
https://hal.inria.fr/hal-02072737

Submitted on 19 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic adaptive approximation for stencil
computations

Maxime Schmitt, Philippe Helluy, Cédric Bastoul

To cite this version:
Maxime Schmitt, Philippe Helluy, Cédric Bastoul. Automatic adaptive approximation for stencil com-
putations. CC 2019 - 28th International Conference on Compiler Construction, Feb 2019, Washington,
United States. pp.170-181, �10.1145/3302516.3307348�. �hal-02072737�

https://hal.inria.fr/hal-02072737
https://hal.archives-ouvertes.fr

Automatic Adaptive Approximation for Stencil Computations
Maxime Schmitt

Université de Strasbourg, Inria
Strasbourg, France

max.schmitt@unistra.fr

Philippe Helluy
Université de Strasbourg, Inria

Strasbourg, France
helluy@unistra.fr

Cédric Bastoul
Université de Strasbourg, Inria

Strasbourg, France
cedric.bastoul@unistra.fr

ABSTRACT
Approximate computing is necessary to meet deadlines in some
compute-intensive applications like simulation. Building them re-
quires a high level of expertise from the application designers as
well as a significant development effort. Some application program-
ming interfaces greatly facilitate their conception but they still
heavily rely on the developer’s domain-specific knowledge and re-
quire many modifications to successfully generate an approximate
version of the program. In this paper we present new techniques to
semi-automatically discover relevant approximate computing pa-
rameters. We believe that superior compiler-user interaction is the
key to improved productivity. After pinpointing the region of inter-
est to optimize, the developer is guided by the compiler in making
the best implementation choices. Static analysis and runtime mon-
itoring are used to infer approximation parameter values for the
application. We evaluated these techniques on multiple application
kernels that support approximation and show that with the help
of our method, we achieve similar performance as non-assisted,
hand-tuned version while requiring minimal intervention from the
user.

CCS CONCEPTS
•Theory of computation→Approximation algorithms anal-
ysis; Pattern matching; • Software and its engineering → Com-
pilers; API languages;

KEYWORDS
Approximate Computing, Compilation, Code Optimization, Appli-
cation Programming Interface, Stencil Code

1 INTRODUCTION
Adaptive approximation aims at providing targeted, relaxed compu-
tations while preserving good precision on demanding computation
kernels. Automatic compiler adaptive optimization unlocks the pos-
sibility to use this kind of optimization not available to a majority of
non-expert developers. Adaptive techniques are particularly useful
in the context of applications such as scientific computing and data
analysis where time constraints are important and the demand for
computing capacity grows faster than the available resources. Be-
cause they respect language standards, compilers strictly adheres to
the program semantics and are not allowed to use approximate com-
puting transformations. Only a limited set of compiler options relax
compliance to standards to enable optimization, e.g. considering
that some floating point operators are associative may dramatically
improve automatic parallelization. In this paper we present a new
annotation-based technique that relaxes the program semantics
and lets the compiler automatically optimize the annotated code
section using adaptive approximation techniques.

Compute intensive applications may require a considerable exe-
cution time to produce a result. Approximation techniques provide
a solution to trade result accuracy for execution time. Adaptive
methods is a powerful class of numerical analysis techniques which
targets the approximation in the dynamic regions where their effect
on the output solution is minimal. These methods provide strong
approximation guarantees while lowering the size of the data and
computation to an acceptable level [8]. Adaptive techniques are
well suited for applications with localized disturbances such as
numerical simulations, signal or data processing. In this work, we
exploit the fact that substantial solution variation, which implies
that precise computations should be done in the region where it
happens, may be detected at runtime.

Using adaptive techniques requires a high level of expertise and
a fair amount of application engineering to be used on purpose
and efficiently. To open such optimization to a wider audience, we
propose a semi-automatic, compiler based, optimization which gen-
erates adaptive version of an existing code base. We target Adaptive
Code Refinement (Section 3), an application programming inter-
face that provides annotations to express approximate computing
transformations (code alternatives) and monitoring capabilities for
adaptive methods.

The automatic generation of adaptive code relies on the extrac-
tion of the following features:

• The monitoring of the application’s data at runtime to iden-
tify the region of adaptive interest (Section 4.1). This allows
the compiler’s runtime to pinpoint the application regions
where approximation can advantageously be applied.
• The information about the type of computation performed by
the kernel (Section 4.2). This allows the compiler to generate

alternative code versions, by using approximation methods
to lower the computational complexity with possible devia-
tion of the result of the application.
• The granularity of the adaptive grid at which the code alter-
natives are applied (Section 4.3). This allows the detection
of coarse or fine grained disturbance regions and select the
size that presents the best trade-off between computation
gain and the deviation of the application’s output.

We use the information gathered by our method to automatically
select the best parameters and code alternatives to provide to ACR.
In section 5 we demonstrate that our technique can detect useful
metrics and use them to generate an adaptive version on a range of
representative applications.

In this paper we make the following contributions:
• We propose a novel method to automatically generate adap-
tive code from target compute intensive kernels.
• We identify the information required by a compiler to gener-
ate adaptive codes and provide algorithms to extract them.
• We present a code transformation to automatically generate
approximate version for stencil computation kernels, which
is one of the main class, if not the main class, of computation
kernels in application which supports approximation.
• We provide experimental evidence that our technique is
successful at generating adaptive versions which compete
with hand-tuned versions.

2 MOTIVATING EXAMPLE
Existing automatic approximation tools [2, 3, 10, 33] are able to
search for applicable approximation, but none of them, to the best
of our knowledge, supports adaptive techniques. Our work enables
automatic adaptive optimization through language annotations
and compiler techniques. To illustrate our approach, we consider
the main computational kernel of a steady-state heat equation
solver [17] shown in Figure 1. An example annotation has been
added at line five. This annotation states that the compiler is allowed
to generate approximate version for the code block that follows.

The compiler runs both static and profiling analyses on the
kernel, here the loop nest, and extracts information required to
generate an adaptive version. Three main features are extracted to
allow the compiler to generate the adaptive versions automatically:

(1) Code alternatives — Generate kernel alternatives with dif-
ferent levels of approximation: for this example, the compiler
detects that the kernel uses stencil computation for which it
is able to generate different versions with different approxi-
mation levels.

(2) Adaptive decision — Find a metric to decide at runtime
about the convenient level of approximation to use in a
given subset of the computation space: in this example, there
is only one written array in this code, hence the deviation of
its values drives the selection of the alternative kernels (low
deviation corresponds to low precision and high deviation
corresponds to high precision).

(3) Decision granularity — Select the cell size when decom-
posing the computation space into a regular grid: profiling
information allows to select the convenient cell size to get
the best precision/performance trade-off.

We use the ACR programming interface (Section 3) to generate
the adaptive code from the extracted high level adaptive features.
Section 5.1 shows our technique applied on this example, along
with the generated ACR annotations.

During the execution of the optimized program, a runtime system
selects, for each cell, the best suited alternative with respect to the
dynamic data values, i.e., achieving precise computation only where
it matters. In this example, we reduced the number of floating point
computation by 74.7% and achieve a speedup of 1.81with a deviation
below 10−4, see Section 5 for the complete experimental study.

3 ADAPTIVE CODE REFINEMENT AND
EXTENSIONS

Adaptive Code Refinement (ACR) is a recent language and compiler
approach proposed by Schmitt et al. which provides a simple in-
terface for developers that want to exploit approximate computing
techniques [39, 40]. Our goal is to demonstrate that our technique,
when applied to ACR, leads to an automation of this tool. In this
section we present ACR’s use case, its user interface, the underlying
compiler infrastructure and the code transformation and genera-
tion mechanism that produce alternative versions of the source
code automatically. We introduce a new annotation and special con-
struct parameters that triggers the automatic discovery of pertinent
approximations and ACR parameters.

ACR targets applications with a compute intensive kernel that
updates data multiple times, e.g., numerical simulation or video
frame encoding. In such applications, a relation exists between the
data used by two consecutive kernel calls. ACR exploits this property
to reduce the computation intensity locally, where the expensive
update is known or expected to to have little effect on the result.

3.1 ACR’s Application Programming Interface
ACR framework relies on supplementary semantics provided by
the developer through code annotations. These annotations can be
inserted at hot spots of the application and allows the compiler to
apply additional code transformations, related to approximate com-
puting. The set of annotations is implemented for the C language
using compiler directives (#pragma acr). The following compiler
directives are provided by ACR to annotate the input source code:
#pragma acr grid(Size)

The grid construct provides the ability to break down the
original problem data space into hyper-squares shaped chunks
of the size provided as input. Each of these chunk is called
“a cell”. A cell represents the atomic element over which
transformation and alternative computation selection are
performed.

#pragma acr monitor(Array, Folding_function)
The monitor construct specifies the application’s relevant
data to the compiler for ACR. This data will be used by the
decision mechanism, to drive the dynamic selection of the
approximate alternative computation. The folding function
is a way for the compiler to extract the information from a
cell. This function summarizes the data cell into one unique
observation. An observation is defined as a natural number
whose value represents the level of approximation that a

2

1 double solve_jacobi(size_t sizeX , size_t sizeY ,
2 double t[sizeX][sizeY],
3 double tNext[sizeX][sizeY]) {
4 double max_delta = 0.;
5 #pragma asa auto (1e-4)
6 for (size_t i = 1; i < sizeX - 1; ++i)
7 for (size_t j = 1; j < sizeY - 1; ++j) {
8 tNext[i][j] = 0.25 *
9 (t[i - 1][j] + t[i + 1][j] +
10 t[i][j - 1] + t[i][j + 1]);
11
12 double delta = t[i][j] - tNext[i][j];
13 delta *= delta;
14 max_delta = delta > max_delta ?
15 delta : max_delta;
16 }
17 return sqrt(max_delta);
18 }

450

500

550

600

65
0

70
0

75
0

8
0
0

8
5
0

9
0

0

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Physical domain (x dimension)

P
h
y
s
ic

a
l
d

o
m

a
in

 (
y
 d

im
e

n
s
io

n
)

400

500

600

700

800

900

Temp (°K)

Figure 1: Heat conduction solver using the Jacobi method. The left part of the figure shows the kernel which updates the
temperature and computes the maximum temperature change during an update step. The solver is executed repeatedly until
the simulation settles, which happens whenever the maximum temperature delta is less than a given threshold, e.g., in this
example the maximum difference is less than 10−4 degrees Kelvin. An example simulation output is displayed on the right
part of this figure. In this simulation the border conditions are set to a constant temperature.

cell should withstand. An observation with a value of zero
means that no approximation is allowed.

#pragma acr alternative AltId(Type, TParam)
The alternative construct defines possible alternative com-
putation to be generated by the compiler. The alternative
computation is generated from the original kernel by applica-
tion of specific code transformations. The type of supported
transformations are:
Parameter modifies the value of a constant parameter with
a constant value or another parameter

Code allows the developer to provide an alternative code
block

Zero-compute treats the target code block as if it is empty
Interface-compute disables computation that do not con-
tribute to update the data located on an interface between
two grid cells

Some alternatives take a parameter here represented as
TParam, e.g., parameter type accepts a variable identifier
or a constant value. The user provides a unique alternative
identifier using AltId. This identifier is used within the
strategy construct to select the conditions required to use
this alternative.

#pragma acr strategy Type (SParams, AltId)
This construct defines the compiler’s strategy, i.e., the nec-
essary conditions for which an alternative should be active.
The strategy may be one of the following types:

Static: the alternative will unconditionally be active. The
user can choose whenever to apply it on localized portions
or the whole data space.

Dynamic: the alternative will be active depending on run-
time observation of the monitored data defined with the
monitor construct. This strategy applies at the cell granu-
larity. A cell will use the alternative if the folding function
returns the same observation as the one defined by this
strategy.

In addition to existing ACR pragmas, we propose the following
new Automatic Stencil Approximation (ASA) constructs that al-
lows the compiler to automatically generate ACR annotations with
pertinent alternatives and parameters:
#pragma asa auto (AllowedPrecisionLoss)

This construct replaces all the previously mentioned con-
structs. It asks the compiler to find the best possible alterna-
tives and parameters for the target kernel.
AllowedPrecisionLoss specifies the maximum deviation
for which approximate computation may be used.

#pragma asa interactive (AllowedPrecisionLoss)
This construct is similar to auto but lets the user select be-
tween a range of compiler-proposed alternative and parame-
ters.

These new constructs rely on compiler facilities, here ACR, and
additional information to generate the approximate versions with
little intervention of the user.

3

3.2 ACR’s Compiler Infrastructure
With the additional semantic information provided by the user an-
notations, ACR can generate a statically or dynamically optimized
program. The static version is generated at compile time and the
dynamic version relies on just-in-time compilation to generate a
specialized version of the kernel. ACR allows for a fixed Cartesian
grid overlay to delimit the cells (cf. the grid annotation in Sec-
tion 3.1). The dynamic version allows the compiler to optimize a
kernel where dependencies forbid the static transformation or when
the user instructs the compiler to select the grid size dynamically.

ACR relies on the polyhedral representation of programs to apply
transformations and generate an optimized version of the code.
Figure 2 discloses code examples generated from the static and
dynamic ACR code generators. During the execution of the program,
the monitoring extracts the observation of each cell to decide which
alternative should be used. The dynamic runtime uses this infor-
mation to build a kernel with low control overhead following the
same execution order as the source program (Figure 2b). The static
version uses a guard statement and data collected during execution
to switch between the different alternatives for each cell. Hence,
the execution order is modified and a cell is visited entirely before
continuing to the next one (Figure 2a).

ACR’s dynamic runtime uses a set of threads, each with a specific
role. It consists of: a monitor thread that is responsible to extract
for each cell, from raw data, the alternative to use. A polyhedral
code generation thread that utilizes the information from the
monitor thread to generate an optimized kernel with low control
overhead.1 A compilation thread that takes the output of the
code generation stage and compiles it to a binary format. Finally,
a coordinator thread which is responsible to organize the other
threads, schedule their execution and inject the optimized version
to be used by the application once it is ready.

4 APPROXIMATION EXTRACTION
Using approximate computing either requires deep knowledge of
the user in this field or, if automated, ask the user to delegate the
transformation to the compiler. Each of these two techniques have
their pros and cons. An expert developer will select the best approx-
imation technique suitable for his problem. On the other hand, an
automatic method may discover potential approximation targets
using binary error injection, using genetic/machine learning algo-
rithms or using pattern matching to find a suitable approximation
strategy to be applied to the original algorithm [2, 10, 35]. The goal
is to lower the program’s computation footprint while keeping the
program’s output deviation below a user-defined threshold. The
deviation is defined as the l∞ norm of the difference between two
states corresponding to the same data, i.e.,max(|statei − state′i |).

In this section we provide a new method that automatically ex-
tracts adaptive approximation information from a targeted portion
of a program. Our method also allows interaction between the user
and the compiler to select the best alternatives. Automatic stencil
approximation (ASA) relies on the polyhedral model to analyse the
code. The polyhedral model abstracts a set of statement having
static control (SCoP) [4]. This includes the class of program with

1Note that this does not involve, but is complementary to, polyhedral optimizations
techniques such as parallelization or data locality optimization.

i

j

i1

j1

i2

j2

i3

j3

i4

j4

i

j

i

j

Alt A0
Alt A1
Cell contour

for(i : {i1, i3})
for(j : {j1, j3})
if(cellUseA0(i,j))

for(i′ : {i , i + 1})
for(j′ : {j , j + 1})
A0

else

for(i′ : {i , i + 1})
for(j′ : {j , j + 1})
A1

(a) Static

for(i : {i1, i2})
for(j : {j1, j4})
A0

for(i : {i3, i4})
for(j : {j1, j2})
A0

for(j : {j3, j4})
A1

(b) Dynamic

Figure 2: Example of static and dynamic code generated on
a four-cell example. Three of these cells require the alter-
native A0 and one requires the alternative A1. The static ver-
sion, which is generated at compile time, visits a cell entirely
before going to another. A guard is needed to select the al-
ternative before entering a cell. The dynamic version gener-
ates a specific code at runtime,which follows the application
original schedule shown on the top right.

loops, conditional statements and data accesses which depend on
affine expression of constant parameters and outer-loop variables.

4.1 Precision Level Discovery
The first semantic information required by the compiler to use
approximate techniques is related to the alternative selection mech-
anism, i.e., in which conditions do we allow a less precise versions
of the algorithm to be used. We suppose that the approximate al-
ternative code versions can be ordered according to their level of
approximation, e.g., V1 ≺ V2 ≺ V3 means that V1 is more precise
than V2 that is more precise than V3, representing a total order.
There will be two or more versions, the original code represented
as V1 and its alternatives (Section 4.2). In this section we present
an algorithm to find a function to select the alternative versions at
runtime.

The input data of the decision function is the application’s run-
time data, representing the state of the problem that the user has
to solve. The compiler has to detect which data has the convenient
characteristics to be able to generate a function to select an alter-
native globally or on a localized portion of the application’s data
domain.We propose a set of characteristics extracted from our study
of typical applications from the field of approximate computing.

The first characteristic which usually provides relevant precision
information from the application data is the deviation between the
updates. Mathematically, this characteristic represents the first
derivative of a function [12]. Whenever this rate is measured to be
low, it is a good sign that we could use a less precise update function
in this area of the application’s data domain. Furthermore, this effect
is usually local, and in numerical simulations, singularities spread

4

and do not appear in the middle of uniform regions, hence, missing
a significant event is unlikely. If the effect is localized, we consider
clusters of data as a single entity and apply the alternative to each
updates of this cell (more in Section 4.3).

To discover this first characteristic the compiler has to look for
the following patterns in the source code:

Swapping arrays They are frequently used in physic simulation
and image processingwhere the transformation uses the data
from the previous transformation as input. This characteris-
tic is statically analyzed if the program is simple enough or
dynamically asserted by running the application on datasets
and monitoring the array addresses accessed and recognize
a “n cycle” pattern.

Write-only arrays They are usually the sign of a multi-stage up-
date algorithm, e.g., any advection-diffusion equation which
updates the physical variables in multiple steps/functions or
store statistic information of the application’s state. This is
addressed with a static analysis of the kernel on written-only
data arrays.

A second characteristic, lie in the application’s own statistic
gathering, e.g., multimedia codec gathers information about pre-
vious frames to achieve a better compression ratio, and numerical
simulations may use a physical variable or error rate as a simulation
stopping condition. Statistics are usually gathered globally and have
smaller size than the application’s dataset. The application may
gather the statistics in a dedicated function which could be marked
by the user in the same fashion as the kernel to optimize. Hence,
the compiler can extract correlations between the data updated by
the kernel and the statistics gathered by the application. In this
paper we only consider statistic update located inside the kernel to
optimize. Our statistics gathering follows the following pattern:

Accumulators They can be used to store statistic information and
are most likely used by the application to take algorithmic
decisions. Such accumulators are of particular interest for our
method as they may store the information we are interested
in. Accumulator are many-to-one information gathering.
The compiler may allocate memory to save this information
at a finer granularity if needed.

With these information, the compiler builds the most suitable
precision discovery function by monitoring the output of the differ-
ent functions at runtime. It may ask the user for advice depending
on the annotation the user selected, i.e., either interactive or auto-
matic.

In addition to explicitly selecting the target computation kernel,
the user inputs the level of deviation under which it becomes ac-
ceptable to use approximation, whereas the compiler generates N
alternatives. In that case, the compiler needs to affect a deviation
level, related to the alternative approximation level, for which each
alternative will be selected. Assuming that lower deviation allows
for even more aggressive approximation, we can affect decreasing
deviation values to more approximate alternatives. The alternative
deviation values may be generated following a negative linear or
exponential slope. We rely on an exponential slope to increase the
density of alternative in the neighborhood of the user’s defined
deviation threshold.

Algorithm 1: Example 2D stencil algorithm
1 def Five points stencil:

Data: Input array I [M][N]
Result: Output array O[M − 2][N − 2]
for i ← 1 toM − 1 do

for j ← 1 to N − 1 do
O[i][j] ←
I [i][j]⊕I [i−1][j]⊕I [i+1][j]⊕I [i][j−1]⊕I [i][j+1];

2 def Five points stencil with two iterations merged:
/* operation · distributive over ⊕ */
Data: Input array I [M][N]
Result: Output array O[M − 2][N − 2]
for i ← 1 toM − 1 by 2 do

for j ← 1 to N − 1 do
O[i][j] ← (5 · I [i][j]) ⊕
2 · (I [i + 1][j] ⊕ I [i][j − 1] ⊕
I [i][j + 1] ⊕ I [i − 1][j − 1] ⊕
I [i + 1][j + 1] ⊕ I [i − 1][j + 1] ⊕
I [i − 1][j] ⊕ I [i + 1][j − 1]) ⊕
I [i − 2][j] ⊕ I [i + 2][j] ⊕ I [i][j − 2] ⊕ I [i][j + 2];

4.2 Automatic Alternative Stencil Generation
Alternatives are different versions of the application’s kernel which
uses approximation techniques to reduce the overall kernel calcula-
tion and data access intensity. Such versions suffer a precision loss
compared to the original algorithm. In this section we present a
technique to identify pertinent approximate computing transforma-
tions, generate the alternative versions and classify them by level
of approximation.

Stencil code are a class of iterative kernel that uses nearest-
neighbor computations on a grid or graph data structure, i.e., the
update of a point on the grid depends on the adjacent neighbor
values according to a fixed pattern. Stencils are extremely com-
monly found in scientific computing, machine learning and image
processing applications. E.g., Algorithm 1 shows a five point stencil
kernel on a 2D Cartesian grid. The compiler can rely on a static data
access analysis in order to automatically detect the most common
form of stencils. In our case, we are interested in data read and
write accesses for each statement of the kernel to detect stencil-like
computations. We provide Algorithm 2 to identify the stencils. This
algorithm builds for each written data at a given iteration, the set
of read data that contributes to the computation of the written data
(both inside a statement or transitively through several statements).
It considers each write statement in the lexicographical order and
selects the one with the most reads to the same array. It outputs
the set of written + contributing data, with maximum cardinality.

We propose the following adaptive stencil alternatives which
reduces the stencil computation and data accesses:

Skipping Skipping some stencil computation entirely (e.g. skip it
every N iteration of the computing loop) when the precision
function has monitored a low deviation.

5

Algorithm 2: Search the biggest stencil in a statement set
Data: Ordered statement set S
Data: For each Si ∈ S , read access set Sreadi
Data: For each Si ∈ S , write access set Swritei
Result: Tuple of written and read location of a stencil

1 Biggestread ← ∅;
2 Biggestwrite ← ∅;
3 n ← ∥S ∥;
4 while n > 0 do

/* Statement accesses + transitive accesses */

5 N read ← Sreadn ;
6 repeat
7 N read

prev ← N read;
8 foreach Ni ∈ N

read
prev do

9 foreachWi ∈ statementWrite(S,Ni) do
10 N read ← N read ∪W read

i ;

11 until N read = N read
prev ;

/* Check for stencil pattern for each arrays */

12 G ← groupBy(array,Nread);
13 BestLocalMatch← maxCardinal(G);
14 if ∥Biддestread∥ < ∥BestLocalMatch∥ then
15 Biддestread ← BestLocalMatch;
16 Biддestwrite ← Swriten ;
17 n ← n − 1;
18 return (Biддestwrite,Biддestread)
19 statementWrite(S, N): returns the set of statement in S

which writes at the location N.
20 groupeBy(P, S): returns a set of set grouped by P
21 maxCardinal(S): returns the largest cardinal set in S

Narrowing Reduce the size of a stencil to reduce both its calcula-
tion and memory load.

Border Activation Only activate the stencil computation at the
cell borders, skipping the computation in the center of cells
while allowing information to pass through the interfaces
with their neighbors. Cells having a neighbor with an alter-
native more precise than theirs will use border activation to
capture a possible incoming singularity.

Stencil narrowing may rely on the fusion of multiple stencil
steps to grow the size of the halo. For example, the stencil in Al-
gorithm 1 top has a halo of distance one. It is possible to increase
the size of this stencil halo by merging two stencil loops, resulting
in the bottom stencil in Algorithm 1. A larger halo offers more
possibilities to build an approximate version. The halo could be
reduced by redistributing the stencil weights of the outside most
point of the halo into the remaining weights (narrowing). Another
method consists on keeping only one stencil update every N steps
(skipping).

The analysis of deviation between updates allows adaptive meth-
ods to target the expensive computations in part of the domain
where significant updates are expected [5, 20]. Hence, our algorithm
relies on this feature to apply the previously mentioned alternatives.

Stencil skipping allows the compiler to generate a version that
reduces the computation intensity, hence the precision, by a factor
of N . Stencil narrowing allows to generate a wider range of approx-
imate versions, not available with skipping only. For example, it is
possible to remove P points of a stencil with the lowest absolute
factors to lower the computation/precision. If the number of points
removed is below what stencil skipping deletes from a level N to
N − 1, it corresponds to fully generated intermediate approximate
versions. Stencil merging combined with these techniques allows
to generate enough alternatives for an adaptive purpose. In the
current state of our implementation choosing a high number of
alternative leads to a high overhead, consequently generating only
a limited number of versions gives the best results.

4.3 Granularity Selection
At this point, the compiler has decided upon one precision feature
and multiple associated alternatives. It has yet to decide at which
granularity to take the decision. A fine grid will have a better map-
ping to the application’s problem but will have a higher managing
overhead whereas a grid that is too coarse may miss approximation
opportunities. In this section we present an algorithm to select
a pertinent granularity based on an empirical study of a set of
applications representative of the approximate computing field.

State of the art adaptive techniques use modular grids, i.e., the
grid shape is updated during execution to focus the computation
where it is needed. A modular grid creates special cases at the
interface of two cell with different precisions. These cases need to be
handled by the compiler and complicates the automatic alternative
and grid generation. In this work we only consider Cartesian, static
grid. We discovered that the application’s behaviour to the grid size
can be transposed between distinct input problems and data sizes.

Figure 4 shows the three main recognizable patterns seen while
monitoring different applications. All of them show a local mini-
mum but with a different distribution of performance. Applications
that show one of these three behaviours will present the same
behaviour with different data sizes or problem statements (see Sec-
tion 5). Hence, we propose to match these patterns to categorize
the application among one of these three forms and compute the
ratio between the maximum grid size and the value read at the
local minimum. Our empirical study suggests that this ratio can be
reused with different data sizes to scale the grid size accordingly.
Figure 3 shows that such algorithm is precise enough to approach
the best value for bigger dataset based on data collection on the
small dataset. Hence, the compiler has an estimate of the best grid
size for any dataset size and the curve indicating the slope direction.

With the current static-grid back end, we cannot guarantee the
precision level of the output with respect to any input data. The
guarantee we provide is that no approximated version is used when
the monitored deviation is greater than the one selected by the
user. The user must provide input data to the optimized applica-
tion within the same granularity scaling than the one used during
profiling. The user should run a new automatic profiling step for
different input value scales. Ongoing work aims at removing this
requirement using dynamic grids and mathematical transforma-
tions.

6

0

100

200

300

400

0 50 100 150 200
Grid Size

Ti
m
e
(s
)

Data Size 1000

Data Size 2000

Data Size 500

Interpolated GridSize

Figure 3: Heat solver time in function of the grid size, execu-
tion with multiple dataset sizes. The grid size that performs
the best can be interpolated using a linear regression.

4.4 User-Compiler Interaction
Our ASA compiler takes as input a file containing the source code
with a kernel annotated with an ASA annotation presented in Sec-
tion 3.1. Its output is a new file where the kernel has been annotated
with the relevant ACR pragmas with relevant parameters, and where
new functions corresponding to new code alternatives have been
added if necessary. A user wishing to interact with the compiler, for
any of the three features presented in the sections 4.1 4.2 and 4.3,
can investigate the generated file to see which approximations have
been built. The compiler accepts user ACR annotations in addition to
the ASA annotation and they always prevails over the compiler deci-
sions. This allows an advanced user to provide specific knowledge
to the compiler. The user can also access the data generated by the
compiler, as the monitoring information from the applications (see
Figure 4) and output deviation. The interaction with the optimizing
compiler allows the user to have a high-level feedback about the
monitoring data, the approximation strategy and the adaptive grid
size.

5 EXPERIMENTAL STUDY
In this section we present the experimental results achieved by
our method on application compute intensive kernel on the set of
benchmarks used to evaluate ACR [39] with the addition of the heat
equation simulation. This benchmark set includes typical codes that
are resilient to approximation.We used a source-to-source approach
and targeted the annotations presented in section 3. Because of the
runtime overhead of managing many alternatives, we restricted our
study to the generation of three alternatives (precise, approximated
and border activation). This comeswithout loss of generality, but we
may expect even better results using future ACR compiler versions
with smaller runtime overhead. The experimental setup consists

300

400

500

600

0 250 500 750 1000
Grid Size

Ti
m
e
(s
)

(a) Heat Solver

115

120

125

130

135

0 100 200 300 400 500
Grid Size

Ti
m
e
(s
)

(b) Eulerian Fluid Simulation

19
21
23
25
27

0 100 200 300 400
Grid Size

Ti
m
e
(s
)

Adaptive Time Original Application Time

(c) Finite Difference Time Domain

Figure 4: Running time of three optimized applications as a
function of the grid size. Each application is representative
of a class of programs sharing a similar behaviour when in-
creasing the grid size. In a given class, we could observe that
the behaviour is the same independently of the dataset size
or initial conditions of the simulation.

of an Intel Xeon E5-2620 with 16 gigabytes of ram. We use the ACR
development version2 with GCC 8.2.

5.1 Heat Equation
This application, introduced in Section 2, is a solver for the steady
state heat equation. It is used for material applications and physics
simulations [17]. The main computational kernel of this application
is shown in Figure 1, left.

This application is a good candidate for optimization using ap-
proximate computing techniques. By profiling the application, a
developer may know that the kernel is the biggest contention part of
the program. Hence, this developer may add the annotation present
at line five: #pragma asa auto (1e−4). This annotation states that
the following kernel can be optimized by the compiler to take ad-
vantage of adaptive techniques. In the following of this section, we
explain the compiler process to extract the information necessary
to generate the approximate computing version.

Heat Equation Precision Level Discovery The compiler gen-
erates then executes an instrumented version of the program on a
small user-provided dataset to gather information about the array
accesses at runtime. In this program, it happens that the kernel’s

2http://gauvain.u-strasbg.fr/%7Eschmitt/acr

7

http://gauvain.u-strasbg.fr/%7Eschmitt/acr

written array switches between two addresses.3 The compiler can
automatically generate the comparison function as there are two
arrays to compare. The developer already expressed it’s intention
to allow approximation when deviation is below 10−4. Therefore,
the compiler generates the following ACR annotation to select the
precision level:
#pragma acr monitor(tNext[i][j], min, diffT)
Where the min function selects the inside cell alternative of the
most precise version and diffT is the pre-processing function that
embodies the computation of the deviation between the value of
arrays tNext and t. The monitor compares the deviation to 10−4
and returns zero if the original code has to be executed or one if
approximation is acceptable, allowing for one alternative along the
original code.

Heat Equation Alternative Generation Algorithm 2 detects
the stencil pattern. This stencil being too narrow for further op-
timization, the compiler modifies the kernel to merge two con-
secutive stencil computations to increase the width of the stencil,
creating a loop where the iteration count is defined by a new vari-
able kernel_iter (the value 2 corresponds to the original kernel).
A stencil skipping alternative can be created by modifying the num-
ber of iterations of the kernel:
#pragma acr alternative alt0 (parameter, kernel_iter =2)
#pragma acr alternative alt1 (parameter, kernel_iter =1)
ACR requires additional annotations to link the alternatives to the
value obtained by the monitoring. Therefore, the following annota-
tions link the monitoring folded value zero to the original compu-
tation and the monitoring folded value one to the early-terminated
number of kernel iterations:
#pragma acr strategy dynamic(0, alt0)
#pragma acr strategy dynamic(1, alt1)

Heat Equation Grid Selection The compiler tests the gener-
ated alternative on a small user-provided dataset to assess the via-
bility of this alternative. The compiler requires a metric to evaluate
the level of deviation of the result of the alternative. The preferred
metric for ACR is the relative difference or error with respect to the
original application’s output [43]. The compiler uses this metric to
compare the result of the alternative version against the original
application and requires that the difference be less than five percent
in total. The application is evaluated w.r.t. multiple grid sizes to
obtain the data plotted in Figure 4a. Using this curve, it is possible
to assess the ratio corresponding to the local minimum that will
be used for other datasets, here 24

500 which will be multiplied to the
maximum between sizeX and sizeY to compute the new grid size.

Heat EquationAutomaticMethodEvaluationTable 1 shows
the speedup obtained with our algorithm and the best value ob-
tained by a search over all possible grid values. Results show both
the benefits to exploit adaptive technique for this benchmark and
that the automated process achieves a performance close to the
best hand tuned version (see Section 5.6).

3The corresponding statement is flagged using a specific annotation in our compiler
prototype, but it may be discovered automatically as this is a well known pattern in
such codes.

5.2 Eulerian Fluid Simulation
Figure 5 shows a kernel presented by Stam [42] which solves the
Navier-Stokes equation using an iterative solver. This solvermust be
fast and the precision accurate enough to be human imperceptible
as it is targeted for real time video applications or games.

1 #pragma asa auto (1e-2)
2 for (unsigned k = 0 ; k < P ; ++k) {
3 for (unsigned i = 1; i < M-1; ++i)
4 for (unsigned j = 1; j < N-1; ++j)
5 x[i][j] =
6 (x0[i][j] +
7 a * (x[i-1][j] +
8 x[i+1][j] +
9 x[i][j-1] +
10 x[i][j+1])
11) / c;
12 set_bnd(M, N, x);
13 }

Figure 5: A Gauss-Seidel iterative solver of linear equations.

Fluid Simulation Precision Level Discovery In this kernel,
the compiler has assessed that the arrays x and x0 are swapped
between each call to the kernel. Hence, it generates a function
that will compare the two arrays to compute the update function
derivative:
#pragma acr monitor(x[i][j], min, diffX)

Fluid Simulation Alternative Generation The compiler rec-
ognizes a stencil in the two inner dimensions of the kernel. This
stencil repeats P times during the execution. Therefore, the com-
piler does not have to widen the stencil size but only has to reduce
the number of stencil computation to generate an alternative:
#pragma acr alternative alt0 (parameter, k=P)
#pragma acr alternative alt1 (parameter, k=1)
#pragma acr strategy dynamic(0, alt0)
#pragma acr strategy dynamic(1, alt1)

Fluid Simulation Grid Selection Figure 4b shows the applica-
tion’s behaviour to the grid size. The best ratio extracted from the
curve is 60

500 × max(M,N).

5.3 Cellular Automaton
Game of life is cellular automaton which is ruled by three easy
rules:
• A cell becomes alive if there is at least three alive cells in its
direct surrounding at the previous time step.
• A cell stays alive if it had two or three alive neighbours at
the previous time step.
• Otherwise a cell is considered dead at the next step.

This automaton has recurring patterns and empty areas that creates
potential for optimization [18]. It is possible to create an adaptive
version that does little computations in the empty zones. The main
kernel of our benchmark implementation is shown in Figure 6.

Cellular Automaton Precision Level Discovery The com-
piler detects that the written array is switching between two ad-
dresses and will use it to compute the derivative.
#pragma acr monitor(current_grid [i][j], min, diff)

8

1 #pragma asa auto (0)
2 #pragma acr alternative \\
3 alt_interface(interface_compute)
4 for (int i = 0; i < nb_row; ++i) {
5 for (int j = 0; j < nb_col; ++j) {
6 int num_alive = 0;
7 for (int k = i - 1; k <= i + 1; ++k) {
8 for (int l = j - 1; l <= j + 1; ++l) {
9 num_alive += previous_step_grid[k][l];
10 }
11 }
12 if (previous_step_grid[i][j])
13 num_alive -= 1;
14 }
15 switch (num_alive) {
16 case 3:
17 current_grid[i][j] = 1; break;
18 case 2:
19 current_grid[i][j] =
20 previous_step_grid[i][j]; break;
21 default:
22 current_grid[i][j] = 0; break;
23 }
24 }
25 }

Figure 6: Game of Life algorithm to update the state of the
cell grid from one generation to the next one.

Cellular Automaton Alternative Generation To generate a
non-approximate stencil version which allows the simulation cell
states to spread while disabling the empty regions, the user decides
to add the interface_compute alternative which activates the
neighboring ACR cells in the locations where the simulation cells
are active. The user can help the compiler to select an alternative
by adding a back-end annotation, here an ACR alternative shown in
Figure 6 lines two and three. The compiler can then generate the
link between the monitoring and the added alternative:
#pragma acr alternative alt1 (zero_compute)
#pragma acr strategy dynamic(2, alt1)
#pragma acr strategy dynamic(1, alt_interface)

Cellular Automaton Grid Selection This application follows
the same pattern as the heat solver Figure 4a. The computed best
grid ratio over data size is 275

8000 × max(nb_row , nb_col).

5.4 Finite Difference Time Domain (FDTD)
Finite-difference time-domain implements a solver for the Maxwell-
Faraday equations of electrodynamics differential equations [29].
The kernel Figure 7 shows the update of the value of the electric
plane E as a function of the magnetic field H . This application’s
singularity resides in its two-phases algorithm, the electric field
update followed by the magnetic field update.

FDTD Precision Level Discovery This kernel updates two ar-
rays at the same time, Ex and Ey. The array pointers are notmodified
during the execution of the program. The compiler arbitrarily chose
to monitor Ex (in such case, it is likely that the two updates are
correlated, minimizing the impact of that choice: there is actually
a correlation which can be statically analysed in this benchmark).
The ACR annotation generated is:
#pragma acr monitor(Ex[i][j], min, diff)

1 #pragma asa auto (1e-3)
2 for (unsigned i = 1; i < I-1; ++i) {
3 for (unsigned j = 1; j < J-1; ++j) {
4 Ex[i][j] += alpha_Ex *
5 (Hz[i][j] - Hz[i][j-1]);
6 Ey[i][j] += -alpha_Ey *
7 (Hz[i][j] - Hz[i-1][j]);
8 }
9 }

Figure 7: Kernel of a FDTD update loop of the electric and
magnetic field in a 2D space.

FDTD Alternative Generation For this application, the sten-
cil merging technique could not help because the arrays are not
swapped and the array Hz is not written inside the kernel. Hence,
the only remaining possible alternative optimizations are stencil
skipping and narrowing:
#pragma acr alternative alt1 (zero_compute)
#pragma acr strategy dynamic(1, alt1)

FDTDGrid Selection Figure 4c shows the application’s runtime
with respect to the grid size. For this application, the maximum grid
size is 3000 and the best grid size is located in the plateau between
200 and 300 with 240

3000 × max(I , J)

5.5 K-means clustering
K-means is used for data characterization, e.g., image processing,
and machine learning [24]. Its purpose is to place N observations
into B buckets where the observations being the closest will appear
in the same bucket or centroid. The main kernel of the application
is shown in Figure 8. Firstly, the algorithm places the observations
into the closest bucket using a comparison function. Secondly, the
barycenter of the bucket is updated with the observations belonging
to it. The algorithm caries on until all the observations settles.

K-means Precision Level Discovery The only available array
to monitor is point_centr_map:
#pragma acr monitor(point_centr_map[pos], min, diff)

K-means Alternative GenerationHaving access to the whole
loop, the compiler uses the stencil merging technique to reduce the
iteration count by half in the approximated regions by applying
stencil skipping:
#pragma acr alternative alt0 (parameter, kernel_iter =2)
#pragma acr alternative alt1 (parameter, kernel_iter =1)
#pragma acr strategy dynamic(0, alt0)
#pragma acr strategy dynamic(1, alt1)

K-means Grid Selection We used the K-mean algorithm to
characterize images of different sizes, ranging from 640 × 425 to
4288× 2848. The best ratio extracted for this application is 90

272000 ×
points .

5.6 Performance Evaluation
In this section we compare the application’s performance against
the original code version and a hand-tuned version using the ACR
annotations. Table 1 shows the performance and deviation of the
output results of our method against user search of the parameters.
We can see that, while the performance of AMA is lower than what
a specialist can extract with the ACR annotations, our technique

9

1 do {
2 has_converged = true; // Assume convergence
3 #pragma asa auto (0)
4 for (size_t pos = 0; pos < points; ++pos) {
5 unsigned new_centr = 0;
6 float new_centr_dist = dist(point[pos],
7 centr [0]);
8 for (unsigned i = 1 i < num_centr; ++i) {
9 float centr_dist = dist(point[pos],
10 centr[i]);
11 if (centr_dist < new_centr_dist) {
12 new_centr = i;
13 new_centr_dist = centr_dist;
14 }
15 }
16 if (point_centr_map[pos] != new_centr) {
17 has_converged = false;
18 }
19 point_centr_map[pos] = new_centr;
20 }
21 update_centroid_barycenter(centroid ,
22 num_centroid , data , point_centr_map);
23 } while(! has_converged);

Figure 8: K-Means core algorithm where the observations
points are placed into the clusters and the center of the clus-
ter is updated.

achieves sensible performance gains often close to hand-tuned
versions. The deviation of the output is similar and sometimes
better with with the hand optimized versions and well below five
percent, besides one over-optimization with K-mean where the
automatic method reached nine percent deviation while the hand
tuned version was selected with a bigger grid size which allowed
for less approximation.

ACR uses a multi-threaded infrastructure to generate and compile
the adaptive versions in parallel to the program execution. This
requires resources which may not be exploited due to Amdahl’s
law [19], or be better exploited with AMA. Furthermore, adaptive
methods are complementary to parallelization techniques, and in-
formation from the adaptive grid may be used for a better resource
scattering.

6 STATE OF THE ART
Relaxing Semantics Relaxing the program’s semantics provides
new optimization potential for the compiler. Precimonious is a
tuning assistant which uses this strategy to selectively lower the
precision of floating point arithmetics (e.g., double to float) to opti-
mize memory traffic and computation time [34]. HELIX-UP chooses
to ignore dependencies and synchronizations to increase paral-
lelism in applications [9]. SAGE and Meng’s et al. work allows for
better parallelism on GPU architectures by targeting GPU specific
approximate optimizations and using a best effort computing model
respectively [24, 36]. Loop perforation technique allows the com-
piler to skip loop iterations to gain in performance [41]. Task-based
workflows can be approximated by skipping certain task proba-
bilistically [32]. Rhahimi et al. explored memoization techniques
for error-tolerant applications [25, 31]. Chippa et al. propose an
automatic method to characterize the resilience of application to
approximation [10]. Approximate computing application can also
take advantage of specialized hardware. Esmaeilzadeh et al. used

Application ASA Speedup / Hand ACR Speedup
Output Deviation Output Deviation

Heat 1.25 Training set
Heat 1000 1.68 / < 0.001% 1.76 / < 0.001%
Heat 2000 1.81 / < 0.001% 2.03 / < 0.001%
Fluid 1.1 / 0% Training set

Fluid flame 1.17 / 0.8% 1.27 / 1.51%
Fluid vortex 1.16 / 0.01% 1.19 / 0.01%

FDTD 1.12 / 0% Training set
FDTD 500 1.16 / 0% 1.22 / 0%
FDTD 3000 1.24 / 0.1% 1.4 / 0.5%

GOL 1.44 / 0% Training set
GOL big 2.09 / 0% 2.2 / 0%
K-means 2.14 / 3.58% Training set

K-means med 1.51 / 0.7% 2.50 / 2.62%
K-means big 2.18 / 9.03% 1.57 / 4.48%

Table 1: AMA and hand tuned ACR version performance and
deviation of the output results.

a neural network based optimizer that runs on a neural accelera-
tor [15]. Specialized approximate hardware instructions and mem-
ory location can complement software methods to achieve efficient
approximate computing [11, 14, 16, 26, 27, 38].

Compared to existing techniques, our solution monitors the data
at runtime and takes local choices. Hence, while previous methods
used the same alternative on the whole application’s data domain,
ours makes sure the approximate versions are active on portions of
the computation space where they may be beneficial.

Automatic-Tuning Automatic tuning enables the compiler at
automatically searching for the best parameters that allow for ap-
proximate computing to be efficient. PetaBricks is a programming
language and compiler which uses empirical approach to select the
best kernel among a pre-set of algorithms [1]. PetaBricks’s compiler
has been augmented to automatically generate approximate ver-
sions using a genetic algorithm which targets a minimum deviation
of the output [2, 13]. Sculptor has extended loop perforation to
target specific instruction and apply perforation at a finer grain
with feedback [21]. Paraprox uses pattern recognition to generate
approximate versions of kernels [35]. ASAC constructs a model
to minimize a n-dimensional problem of selecting the values for
approximate variables while keeping an acceptable quality of the
result [33]. ACCEPT proposes a programming model that includes
the approximate annotation in the language’s grammar [37]. Green
provides a set of code annotations that allow developers to use a
range of approximation strategies with bounded error settings [3].

Our technique relies on the same information extraction meth-
ods as some of the previously mentioned works. We improved the
previous works by presenting a novel high-level approximation
optimization applied to stencil-based computation which generates
a set of approximated versions with various performance/precision
tradeoffs. Our solution is also the first one, to the best of our knowl-
edge, to automatically apply adaptive approximation techniques to
a compute intensive kernel.

10

Adaptive Methods Adaptive mesh refinement is a mathemati-
cal method which can be applied to solve partial differential equa-
tions, mainly for physics applications [5, 7]. Historically, the adap-
tivemeshmethodwas tightly coupledwith the application that used
the method, but more recently packages such as PARAMESH [22],
HAMR [28], DAGH [30] and AMRClaw [6, 23] allows developers
to build new application using efficient adaptive mesh refinement
implementations. Porting existing applications to these packages is
time consuming and error prone. ACR provides a set of easy to use,
optional annotations that can be positioned in front of compute
expensive kernel [39, 40]. The annotations instruct the compiler to
generate the adaptive version of the code, however they still require
a significant domain-specific expertise from the programmer to set
them in a pertinent way.

In our work, we propose a set of techniques to automatically
set ACR annotations with convenient parameters, which builds the
first automatic compiler optimization technique based on adaptive
approximation methods.

7 CONCLUSION
With one simple annotation, our method allows for the first time
developers to delegate to the compiler the time consuming task of
optimizing an application’s kernel using adaptive approximation
techniques. We presented three important features that the com-
piler has to extract from the source code to generate a pertinent
adaptive version. Precision level discovery, allows the compiler to
choose a precision level from the application’s dynamic data. This
information is critical to find where the application needs the most
precision and where more or less aggressive approximations can be
used. The alternative generation requires the compiler to determine
what kind of computation is performed by the kernel to apply ap-
propriate code transformations. We used pattern matching to target
stencil computation and proposed to merge multiple stencil steps
to unleash more optimization opportunities. The third information,
the granularity, looks for the best performance/precision tradeoff.
With a grid too thin, the adaptive overhead will be too high and
with a grid too coarse the perturbation will not be captured by the
adaptive grid.

We evaluated our method on a set of representative applications
resilient to inexact computations. We showed that we can extract
enough information from these kernels and their profiling to gen-
erate an adaptive optimized version automatically. We also showed
that the compiler can be instructed to use a specific alternative
when the user sees it fit. Finally, we provided experimental evi-
dence that the generated adaptive versions perform better than the
original version while maintaining a good quality of the result.

Ongoing work includes investigation of adaptive techniques on
more computational patterns. The automatic alternative genera-
tion could, in the future, use several alternatives simultaneously
and evaluate the effect that an alternative has on the application’s
quality of the output, to e.g., statistically provide an upper bound
on the deviation of the result.

REFERENCES
[1] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-

man, and Saman Amarasinghe. 2009. PetaBricks: A Language and Compiler
for Algorithmic Choice. In Proceedings of the 30th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’09). Dublin, Ireland,
38–49.

[2] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and
Saman Amarasinghe. 2011. Language and compiler support for auto-tuning
variable-accuracy algorithms. In Proceedings of the 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. IEEE Computer Society,
85–96.

[3] Woongki Baek and TrishulM. Chilimbi. 2010. Green: A Framework for Supporting
Energy-conscious Programming Using Controlled Approximation. In Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’10). Toronto, Ontario, Canada, 198–209.

[4] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier
Temam. 2003. Putting Polyhedral Loop Transformations to Work. In International
Workshop on Languages and Compilers for Parallel Computing. College Station,
Texas, USA, 209–225.

[5] Marsha J Berger and Phillip Colella. 1989. Local adaptive mesh refinement for
shock hydrodynamics. Journal of computational Physics 82, 1 (1989), 64–84.

[6] M. J. Berger and R. J. LeVeque. 1998. Adaptive Mesh Refinement using Wave-
Propagation Algorithms for Hyperbolic Systems. SIAM J. Numer. Anal. 35 (1998),
2298–2316.

[7] Marsha J Berger and Joseph Oliger. 1984. Adaptive mesh refinement for hyper-
bolic partial differential equations. J. Comput. Phys. 53, 3 (1984), 484 – 512.

[8] Hans-Joachim Bungartz and Michael Griebel. 2004. Sparse grids. Acta numerica
13 (2004), 147–269.

[9] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David M. Brooks. 2015.
HELIX-UP: Relaxing Program Semantics to Unleash Parallelization. In IEEE/ACM
CGO. San Francisco, USA, 235–245.

[10] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan.
2013. Analysis and characterization of inherent application resilience for approxi-
mate computing. In Proceedings of the 50th Annual Design Automation Conference.
ACM, 113.

[11] Vinay K. Chippa, Debabrata Mohapatra, Anand Raghunathan, Kaushik Roy,
and Srimat T. Chakradhar. 2010. Scalable Effort Hardware Design: Exploiting
Algorithmic Resilience for Energy Efficiency. In Proceedings of the 47th Design
Automation Conference (DAC ’10). ACM, Anaheim, California, 555–560.

[12] Richard Courant and Fritz John. 2012. Introduction to calculus and analysis I.
Springer Science & Business Media.

[13] Yufei Ding, JasonAnsel, Kalyan Veeramachaneni, Xipeng Shen, Una-MayO’Reilly,
and Saman Amarasinghe. 2015. Autotuning algorithmic choice for input sensi-
tivity. In ACM SIGPLAN Notices, Vol. 50. ACM, 379–390.

[14] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Archi-
tecture Support for Disciplined Approximate Programming. In Proceedings of the
Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVII). ACM, London, England, UK,
301–312.

[15] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neu-
ral Acceleration for General-Purpose Approximate Programs. In Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-45). IEEE Computer Society, Vancouver, B.C., CANADA, 449–460.

[16] Y. Fang, H. Li, and X. Li. 2012. SoftPCM: Enhancing Energy Efficiency and
Lifetime of Phase Change Memory in Video Applications via Approximate Write.
In IEEE 21st Asian Test Symposium. 131–136.

[17] C.J. Geankoplis. 1978. Transport processes and unit operations. Allyn and Bacon.
[18] R Wm Gosper. 1984. Exploiting regularities in large cellular spaces. Physica D:

Nonlinear Phenomena 10, 1-2 (1984), 75–80.
[19] John L. Gustafson. 1988. Reevaluating Amdahl’s Law. Commun. ACM 31, 5 (May

1988), 532–533.
[20] Weizhang Huang and Robert D Russell. 2010. Adaptive moving mesh methods.

Vol. 174. Springer Science & Business Media.
[21] Shikai Li, Sunghyun Park, and Scott Mahlke. 2018. Sculptor: Flexible Approx-

imation with Selective Dynamic Loop Perforation. In Proceedings of the 2018
International Conference on Supercomputing (ICS ’18). Beijing, China, 341–351.

[22] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and
Charles Packer. 2000. PARAMESH: A parallel adaptive mesh refinement commu-
nity toolkit. Computer Physics Communications 126, 3 (2000), 330 – 354.

[23] Kyle T Mandli, Aron J Ahmadia, Marsha Berger, Donna Calhoun, David L George,
Yiannis Hadjimichael, David I Ketcheson, Grady I Lemoine, and Randall J LeVeque.
2016. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.
PeerJ Computer Science 2 (2016), e68.

[24] JiayuanMeng, Srimat Chakradhar, and Anand Raghunathan. 2009. Best-effort par-
allel execution framework for recognition and mining applications. In IPDPS’09.
1–12.

[25] Donald Michie. 1968. “Memo” functions and machine learning. Nature 218, 5136
(1968), 19.

[26] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. 2014. Load Value
Approximation. In Proceedings of the 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-47). Cambridge, United Kingdom, 127–139.

11

[27] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard.
2014. Chisel: Reliability- and Accuracy-aware Optimization of Approximate
Computational Kernels. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications (OOPSLA ’14).
ACM, Portland, Oregon, USA, 309–328.

[28] Henry Neeman. 2000. HAMR: The Hierarchical Adaptive Mesh Refinement
System. In Structured Adaptive Mesh Refinement (SAMR) Grid Methods, Scott B.
Baden, Nikos P. Chrisochoides, Dennis B. Gannon, and Michael L. Norman (Eds.).
Springer New York, New York, NY, 19–51.

[29] Ardavan F Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, John D
Joannopoulos, and Steven G Johnson. 2010. MEEP: A flexible free-software
package for electromagnetic simulations by the FDTD method. Computer Physics
Communications 181, 3 (2010), 687–702.

[30] Manish Parashar and James C. Browne. 2000. Systems Engineering for High
Performance Computing Software: The HDDA/DAGH Infrastructure for Imple-
mentation of Parallel Structured Adaptive Mesh. In Structured Adaptive Mesh
Refinement (SAMR) Grid Methods, Scott B. Baden, Nikos P. Chrisochoides, Den-
nis B. Gannon, and Michael L. Norman (Eds.). Springer New York, New York, NY,
1–18.

[31] Abbas Rahimi, Luca Benini, and Rajesh K Gupta. 2013. Spatial memoization:
Concurrent instruction reuse to correct timing errors in simd architectures. IEEE
Transactions on Circuits and Systems II: Express Briefs 60, 12 (2013), 847–851.

[32] Martin Rinard. 2006. Probabilistic Accuracy Bounds for Fault-tolerant Com-
putations That Discard Tasks. In Proceedings of the 20th Annual International
Conference on Supercomputing (ICS ’06). ACM, Cairns, Queensland, Australia,
324–334.

[33] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. 2014. ASAC:
Automatic Sensitivity Analysis for Approximate Computing. In Proceedings of
the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES ’14). ACM, Edinburgh, United Kingdom, 95–104.

[34] C. Rubio-González, Cuong Nguyen, Hong Diep Nguyen, J. Demmel, W. Kahan, K.
Sen, D. H. Bailey, C. Iancu, and D. Hough. 2013. Precimonious: Tuning assistant

for floating-point precision. In SC ’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. 1–12.

[35] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.
2014. Paraprox: Pattern-based Approximation for Data Parallel Applications.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14). ACM, Salt Lake
City, Utah, USA, 35–50.

[36] Mehrzad Samadi, Janghaeng Lee, Amir Jamshidi, D. Anoushe Hormati, and
Scott Mahlke. 2013. SAGE: Self-tuning Approximation for Graphics Engines. In
MICRO’13 IEEE/ACM Intl. Symp. on Microarchitecture. Davis, California, 13–24.

[37] Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau, Joshua Yip,
Luis Ceze, and Mark Oskin. 2015. Accept: A programmer-guided compiler frame-
work for practical approximate computing. University of Washington Technical
Report UW-CSE-15-01 1 (2015).

[38] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. 2014. Approximate
Storage in Solid-State Memories. ACM Trans. Comput. Syst. 32, 3, Article 9 (Sept.
2014), 23 pages.

[39] M. Schmitt, P. Helluy, and C. Bastoul. 2017. Adaptive Code Refinement: A
Compiler Technique and Extensions to Generate Self-Tuning Applications. In
2017 IEEE 24th International Conference on High Performance Computing (HiPC).
Jaipur, India, 172–181.

[40] Maxime Schmitt, César Sabater, and Cédric Bastoul. 2017. Semi-Automatic
Generation of Adaptive Codes. In IMPACT 2017 - 7th International Workshop on
Polyhedral Compilation Techniques. Stockholm, Sweden, 1–7.

[41] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
2011. Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. 124–134.

[42] Jos Stam. 2003. Real-Time Fluid Dynamics for Games. In Proceedings of the Game
Developer Conference. 25.

[43] Leo Törnvist, Pentti Vartia, and Yrjö Vartia. 1985. How Should Relative Changes
Be Measured? The American Statistician 39 (02 1985), 43–46.

12

	Abstract
	1 Introduction
	2 Motivating Example
	3 Adaptive Code Refinement and Extensions
	3.1 ACR's Application Programming Interface
	3.2 ACR's Compiler Infrastructure

	4 Approximation Extraction
	4.1 Precision Level Discovery
	4.2 Automatic Alternative Stencil Generation
	4.3 Granularity Selection
	4.4 User-Compiler Interaction

	5 Experimental Study
	5.1 Heat Equation
	5.2 Eulerian Fluid Simulation
	5.3 Cellular Automaton
	5.4 Finite Difference Time Domain (FDTD)
	5.5 K-means clustering
	5.6 Performance Evaluation

	6 State of the Art
	7 Conclusion
	References

