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Investigating Machine Learning Algorithms for
Modeling SSD 1/0 Performance for
Container-based Virtualization

Jean-Emile Dartois, Jalil Boukhobza, Anas Knefati and Olivier Barais

Abstract—One of the cornerstones of the cloud provider
business is to reduce hardware resources cost by maximizing
their utilization. This is done through smartly sharing pro-
cessor, memory, network and storage, while fully satisfying
SLOs negotiated with customers. For the storage part, while
SSDs are increasingly deployed in data centers mainly for
their performance and energy efficiency, their internal mech-
anisms may cause a dramatic SLO violation. In effect, we
measured that I/O interference may induce a 10x performance
drop. We are building a framework based on autonomic
computing which aims to achieve intelligent container place-
ment on storage systems by preventing bad 1/O interference
scenarios. One prerequisite to such a framework is to design
SSD performance models that take into account interactions
between running processes/containers, the operating system
and the SSD. These interactions are complex. In this paper,
we investigate the use of machine learning for building such
models in a container based Cloud environment. We have
investigated five popular machine learning algorithms along
with six different I/O intensive applications and benchmarks.
We analyzed the prediction accuracy, the learning curve,
the feature importance and the training time of the tested
algorithms on four different SSD models. Beyond describing
modeling component of our framework, this paper aims
to provide insights for cloud providers to implement SLO
compliant container placement algorithms on SSDs. Our
machine learning-based framework succeeded in modeling
I/O interference with a median Normalized Root-Mean-
Square Error (NRMSE) of 2.5%.

Index Terms—Cloud Computing, Performance and QoS,
I/O Interference, Solid State Drives, flash memory, Container,
Machine Learning

I. INTRODUCTION

Companies are increasingly turning to cloud comput-
ing services for hosting their applications in order to
reduce their Total Cost of Ownership (TCO) and increase
their flexibility [42]. In this domain, container adoption
is growing and Docker [45] is one of the most popular
technologies used: three years ago, Docker had about
3% market share, but by 2017 it was running on 15% of
the hosts [1]. Containers are used in private and public
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clouds such as OVH !, Microsoft Azure and Google
Compute Engine.

In a container-based system, applications run in isola-
tion and without relying on a separate operating system,
thus saving large amounts of hardware resources. Re-
source reservation is managed at the operating system
level. For example, in Docker, Service Level Objectives
(SLOs) are enforced through resource isolation features
of the Linux kernel such as cgroup [44].

Efficiently sharing resources in such environments is
challenging in order to ensure SLOs. Several studies have
shown that, among the shared resources, I/Os are the
main bottleneck [3], [29], [54], [54], [60], [60], [71], [72]. As
a consequence, Solid State Drives (SSDs) were massively
adopted in cloud infrastructure to provide better per-
formance. However, they suffer from high performance
variations due to their internals and/or on the applied
workloads.

We define three types of I/O interferences on a given
application I/O workload in SSD based storage systems.

First, an I/O workload may suffer interference due
to SSD internal mechanisms such as Garbage Collection
(GC), mapping, and wear leveling [30]. We have mea-
sured that, for a given I/O workload, depending on the
SSD initial state, the performance can dramatically drop
by a factor of 5 to 11 on different SSDs because of the GC
(see Section II-D). Second, an application I/O workload
may also undergo I/O interference related to the ker-
nel I/0O software stack such as page cache read-ahead,
and I/O scheduling. For instance, in [63], the authors
showed that by using different I/O schedulers (CFQ
and deadline) on two applications running in isolation,
the throughput may drop by a factor of 2. Finally, the
workload may also suffer I/O interference related to a
neighbor application’s workload. For instance, workload
combination running within containers may decrease the
1/0O performance by up to 38% [71].

Many studies have been conducted to tackle I/O in-
terference issues [58], [74]. These solutions are mainly
preventive and are designed at different levels. At the
device level, the authors of [36], [37] have proposed
optimizations related to SSD algorithms and structure
such as isolating VMs on different chips. Unfortunately,
to the best of our knowledge, this type of SSD is not
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commercialized and no standard implementation is pro-
posed. At the system level, some studies [3], [63] have
attempted to modify the I/O scheduler and the Linux
cgroup 1/0 throttling policy. Finally, at the application
level, in [48], the authors presented an approach for
modeling I/O interference that is closely related to ours.
However, the authors focused on HDDs and did not
consider SSDs and their specific I/O interferences.

We are designing a framework to enable container
placement in a heterogeneous cloud infrastructure to
satisfy users SLO and avoid I/O performance issues
related to above-mentioned interferences for SSDs. This
framework relies on a self-adaptive autonomic loop. It is
mainly based on two components, a first component that
monitors container 1/Os, and analyzes the I/O patterns
and a second component that relies on I/O performance
models to decide about the container placement and
executes the issued plan that will fully satisfy user
requirements by avoiding bad 1/O interference. A crucial
part in such a framework is the I/O performance models
that are used by the planner. This paper mainly focuses
in designing these models.

In this paper, we present the investigations achieved
about the use of machine learning for building pre-
dictive I/O performance models on SSDs in order to
anticipate 1/O interference issues in container based
clouds. We evaluated five learning algorithms based on
their popularity, computational overhead, tuning dif-
ficulty, robustness to outliers, and accuracy: Decision
Trees (DT), Multivariate Adaptive Regression Splines
(MARS), Adaptive Boosting (AdaBoost), Gradient Boost-
ing Decision Tree (GBDT), and Random Forest (RF).
Finding the adequate algorithm for modeling a given
phenomenon is a challenging task which can hardly be
achieved prior to investigation on real data. Indeed, the
relevance of the chosen algorithm depends on several
criteria such as the size, the quality or the nature of
the modeled phenomenon. We have investigated six I/O-
intensive applications: multimedia processing, file server,
data mining, email server, software development and
web application. The used dataset represents about 16
hours of pure I/Os (removing I/O timeouts) on each
of the four tested SSD. We evaluated the relevance of
the tested algorithms based on the following metrics:
prediction accuracy, model robustness, learning curve,
feature importance, and training time. We share our
experience and give some insights about the use of
machine learning algorithms for modeling I/O behavior
on SSDs.

The remainder of the paper is organized as fol-
lows. Section II presents some background knowledge.
Then, our methodology is described in Section III. Sec-
tion IV details the experimental evaluation performed.
Section V discusses some limitations of our approach.
Section VI reviews related work. Finally, we conclude in
Section VIL

II. BACKGROUND AND MOTIVATION

This section gives some background on SSDs,
container-based virtualization and Machine learning.
Then, we motivate about the relevance of our study with
regard to I/0 interference.

A. SSD internals and performance

The main flash memory constraints that affect SSD
internals mechanism design is the erase-before-write
rule and the limited number of erase cycles a flash
memory cell can sustain [10]. In effect, a page cannot
be updated without prior erase operation. Data updates
are performed out-of-place with a mapping scheme to
keep track of data position. These mapping schemes are
different from one SSD to another and may induce large
performance differences. Out-of-place updates also make
it necessary to have garbage collection (GC) mechanisms
to recycle previously invalidated pages. GC also have a
great impact on performance, especially in case of bursts
of random writes as those operations delay application
I/0 request completion. On the other hand, the limited
lifetime of flash memory cells makes it crucial to use wear
leveling techniques. In addition, SSDs make use of paral-
lelism within flash chips/dies/planes through advanced
commands in order to maximize the throughput.

The complexity of SSD architectures and their wide
design space have two major impacts with respect to per-
formance. First, the performance may vary dramatically
from one SSD to another, and second, for a given SSD,
performance also varies according to the interaction of a
given I/O workload, with other workloads, with system
related mechanisms, and with SSD internal mechanisms.
These variations may induce a significant impact on

SLOs.

B. Container-based I/O Virtualization

Containers are now widely used to modularize each
application into a graph of distributed and isolated
lightweight micro-services [62]. As a result, each micro-
service has the illusion that it owns the physical re-
sources, yet the system lets them share objects (e.g., files,
pipes, resources).

Docker [45] is generally used as a lightweight con-
tainer system. It provides a common way to package and
deploy micro-services [20]. The Linux kernel provides
the cgroup functionality that makes it possible to limit
and prioritize on resource usage (CPU, memory, block
I/0, network, etc.) for each container without the need
for starting any virtual machine [70]. cgroup provides a
specific I/O subsystem named blkio, which sets limits on
and from block devices.

Currently two I/O control policies are implemented in
cgroup and available in Docker: (1) a Complete Fairness
Queuing (CFQ) I/O scheduler for a proportional time
based division of disk throughput, and (2) a throttling
policy used to bound the I/0 rate for a given container.



In the case of SSD with a SATA interface, both policies
are available. For NVMe [53], only the throttling policy is
available. By default, the latest version of Docker (version
17.03.0-ce) uses cgroup v1. In this version, the 1/O control
only works on synchronous I/O traffic. Unfortunately,
most tested applications do not use such I/Os. As a
consequence, we cannot properly limit the bandwidth
of each container. This limitation is addressed in cgroup
v2 but is not yet supported by Docker.

C. A short introduction to Machine learning

Machine learning investigates automatic techniques
to make accurate predictions based on past observa-
tions [5]. Datasets contain a set of parameters called
features, used to build a prediction model for some
specific output response metrics. I/O access patterns
(random/sequential) and operation types (read/write)
are examples of features while the throughput is the
output response.

There are three different categories in machine learn-
ing: supervised, unsupervised and reinforcement learn-
ing. In supervised learning, the algorithm uses features
and their corresponding response values in order to
model relationships between features and responses. It
includes two types of problems, Classification: for cate-
gorical response values (e.g., an email is spam or not),
and Regression: for continuous-response values (e.g.,
I/0 throughput). In unsupervised learning, the algorithm
only relies on the input features as the corresponding
responses are not available. The goal is to let the learning
algorithm find by itself how data are organized or clus-
tered. In reinforcement learning, the algorithm interacts
dynamically with its environment in order to reach a
given goal such as driving a vehicle.

Our objective in this study is to build a predictive
model that detects existing relationships between 1/0
features (e.g., block size, R/W rate, mixed workloads)
and system responses (throughput). As a consequence,
our problem fits in the supervised learning category.
Since we want to predict SSD throughput which is a
continuous value, we used regression-based algorithms.

D. Motivation

We performed some experiments to observe I/O inter-
ference due to SSD internals, and neighbor applications.
The system configuration used can be found in Section
IV-B

Concerning SSD-related interference, we focused on
the SSD initial state impact. In fact, varying the initial
state makes it possible to trigger the GC execution. We
designed microbenchmarks using fio [6] relying on the
Storage Networking Industry Association (SNIA) speci-
fication [66]. This specification includes a secure erase, a
workload-independent preconditioning to attain the so-
called SSD Steady State. We performed intensive random
writes with a 4KB request size.

Figure 1 shows the measured IOPS. One can observe
three states for each device: fresh out of box, transition
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Fig. 1. 1/O performance of random writes for 4 SSDs

and steady state. More importantly, we can observe from
5x to 11x performance drop when the system sustains
continuous bursts of random writes (far below values
reported in datasheets). This is due to GC latency as
it takes more time to recycle blocks when the volume
of free space is low. In reality, the system keeps on
oscillating between the three states according to the
sustained 1/0O traffic and the efficiency of the GC.

We have also performed some experiments to identify
the I/O interference due to neighbor workloads (on
the same SSD). We ran three different containers in
parallel and observed the throughput for one specific
reference container that runs sequential write operations.
For the other two containers, we built up four scenarios
; random write/read, and/or sequential write/read. The
volume of generated I/O requests was the same for each
experiment. As described in Section II, cgroup v1 cannot
limit properly asynchronous I/O traffic. So, containers
were not bound by cgroup in terms of I/O performance.

Figure 2 shows the performance of the reference con-
tainer for the four scenarios on four different SSDs.
We observe that the performance drop between the
maximum and minimum throughput obtained for the
reference container represents 22% in the best case (SATA
disk with which CFQ can be used) and up to 68% in the
worst case with a small dispersion (i.e., an interquartile
range of 0.04125 in case of the Evo 850 SSD for two
executions). This value represents the variation due to
the neighboring containers only.

As a consequence, placing a set of containers on a set
of SSDs is a real issue that needs to be investigated to
avoid high SLO violations.

To conclude, we have illustrated two types of I/O in-
terference, first the sensitivity to the write history which
induces I/0O interaction with the GC (SSD internals),
and second the I/0 interactions between I/0 workloads
which may strongly impact the performance. This moti-
vated us to investigate ways to model 1/O throughput
taking into account these interactions in order to avoid
SLO violations.



BB [seqWrite]+seqRead+randRead HEM [seqWrite]+randRead+randWrite
B [seqWrite]+seqRead+randWrite il [seqWrite]+seqWrite+seqWrite

(5]
o
o

1

2

o

=400 2

= s

> 2]

I=% pe] oo

<300 e s
2 Ko

= o] (]

3 o5t (5
sy E

o et ()
] L]

=200 o e

c e L]

= s L]
3] K
oy ]

< ] s

© 100 o] o]

O s )
) s

oS o] e
] e

Q g L]

= fs it fod

Intel 750 960 Pro 960 Evo
(SATA) (NVMe) (NVMe) (NVMe)
Device

Fig. 2. 1/0O Interference of mixed workloads

III. MopEeLING SSD I/ PERFORMANCE: A MACHINE

LEARNING APPROACH

A. Overall project

uses

2)

3)

4)

5)

Analyze: containers’ I/O traces are continuously
analyzed and preprocessed for the next step.
Plan: the framework relies on one hand on the
containers I/O patterns from the analyze step and
current containers placement, and on the other
hand on the I/O SSD performance model (see
the knowledge part) in order to issue a container
placement plan. This performance model is up-
dated continuously when needed according to the
monitored 1/Os. This may be done either by per-
forming Online learning or by updating the model
whenever new applications (new 1/0O interferences)
are run or new storage devices are plugged in.
Execute: the proposed container placement is
scheduled and executed on the real system by
calling the adequate APIs of the used infrastructure
manager, such as Kubertenes [33].

Knowledge: in our framework, the knowledge part
is related to the SSD I/O performance model built
and that drives the overall placement strategy (of
the plan phase).
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Fig. 3. Overall project

We seek at developing a framework to enable container
placement in a heterogeneous cloud infrastructure in
order to satisfy users SLO and avoid I/O performance
glitches.

To achieve this, we devise a self-adaptive container-
based MAPE-K (Monitor-Analyze-Plan-Execute-
Knowledge) [35] loop, an extensively used reference
architecture for cloud computing optimization [43],
[49], [51] (like the OpenStack Watcher project we have
previously developed 2 that was specific to virtual
machines).

The MAPE-K loop is composed of four main steps
depicted in Figure 3:

1) Monitor: our framework collects containers’” I/0

requests using a previously designed block-level
I/0 tracer 3.

2http: / / github.com/openstack/watcher
3https: / /github.com/b-com/iotracer

This paper focuses on the Knowledge part of the loop.
The SSD I/O performance models are built thanks to
the Model builder component that relies on machine
learning algorithms. This paper details our methodology
for designing such a component and gives a return of
experience about our investigations.

B. Approach scope and overview

To build a predictive model that is able to forecast
SSD 1I/0 performance in container-based virtualization
environment, one needs to fix the scope of the model.
From the application point of view, we used six data-
intensive applications and a micro-benchmark: video
processing, file server, data mining, email server, soft-
ware development and web application, this is detailed
in Section III-C. From a system point of view, our study
does not focus on I/O variations related to system
configuration change (such as read-ahead prefetching
window size or I/O scheduler). System related parame-
ters (e.g., kernel version, filesystem, docker version, etc.)
were fixed for our experiments and are detailed in the
Evaluation section. Finally, from the storage device point
of view, we have experimented with 4 SSD models, both
SATA and NVMe, to explore the difference in predictive
models as compared to the used technology/interface.

Figure 4 describes the overall approach followed with
three different steps:

o Dataset generation step: A challenge in model build-
ing is to use representative data to build an accurate
predictive model. In our study, we created datasets
by monitoring containers running real applications
and benchmarks, see Section III-C.

o Learning step: we built the I/O performance model
based on a subset of collected I/O traces/data
(supervised learning) using five machine learning
algorithms discussed in Section III-D. In the learning



step, one needs to pre-process the data (I/O traces
collected) in order to extract the input features and
the responses from the traces. Then, one needs to
split the data to decide about the part that will be
used to train the model and the one used to evaluate
it, see Section III-D

o Evaluation step: In this step, we evaluated the accu-
racy of the trained model, see Section IV.

C. Dataset generation step

In the dataset generation phase, we have mainly two
steps (see Figure 4): generating the workload by execut-
ing different applications and collecting the I/O traces.
For the sake of our study, we have generated our own
datasets. Indeed, we did not find any dataset available
off the shelf that represent typical combinations of 1/O
requests issued from container environments.

We selected six data intensive applications that were
deployed in a container-based environment covering var-
ious use-cases and I/0O interferences. Those applications
behave differently from an I/O point of view. We also
used micro-benchmarks as defined by [67] presented in
section II-D to generate more I/O interference scenarios.
Table II summarizes the benchmarks used.

We used four different scenarios to induce different
I/0 interferences for the 6 applications:

1) each application was run alone within a container.
This was done to determine each application’s
performance reference without interference (due to
other I/O workloads).

2) up to 5 instances of the same application were run
at the same time, each instance was ran within a
dedicated container on the same host. This was
done in order to generate 1/O interference between
the same applications. We decided to limit the
number of instances to 5 in order to be able to
allocate in a fair manner the processor time across
the containers. In addition, according to [1] 25% of
the companies run less than 4 containers simulta-
neously per host with a median of 8 containers.

3) applications were run in a pairwise fashion to test
all possible combinations. This means that with
six applications, we executed 15 combinations (e.g.,
file server with data mining, file server with web
application, etc.). This was done to deliberately
generate 1/O interference per pair between the
applications.

4) the six applications were run at the same time in
six containers.

These scenarios were executed three times in order to
be representative. Additionally to these applications, we
used micro-benchmarks to enrich the I/O interference
scenarios.

1) Generating workload phase: The used applications
are briefly described per category (see Table II). To
generate the dataset, we used the tools Nginx [55],
MySQL [47], and WordPress [11] for the web application,

FileBench [65] for the email and fileserver, ffmpeg [7] for
the video application, Parsec benchmark suite [8] for the
freqmine application, GNU Compiler Collection [64] for
the compile application.

Server application: We chose three typical enterprise
server applications: an n-tiers web application
(WordPress), file and email servers (Filebench).
WordPress is an Open Source content management
system based on Nginx, PHP, and MySQL. In the
case of a WordPress website, we varied the number
of concurrent readers/writers between 1 and 50.
Varying the number of users has a direct impact
on the storage system by issuing multiple MySQL
connections, and performing multiple table read-
s/writes. Moreover, MySQL generates many trans-
actions with small random I/O operations. The tool
that generates the traffic was run on a separate host.
We used Filebench to evaluate email and file servers
to generate a mix of open/read/write/close/delete
operations of about 10,000 files in about 20 directo-
ries performed with 50 threads.

Media processing: ffmpeg is a framework dedicated to
audio and video processing. We used two videos,
a FullHD (6.3 GB) and an HD (580MB) video. For
the transcoding of the H.264 video, we varied the
PRESET parameter between slow and ultrafast. This
parameter has a direct impact on the quality of the
compression as well as on the file size. We encoded
up to 5 videos within 5 containers simultaneously.
Writing the output video generated a high number
of write operations at the device level and may
generate erase operations when files are deleted at
the end of video transcoding.

Data mining: This application employs an arrays-based
version of the FP-growth (Frequent Pattern-growth)
method for Frequent itemset Mining. It writes a
large volume of data to the storage devices.

Software development: Linux kernel compilation uses
thousands of small source files. Its compilation de-
mands intensive CPU usage and short intensive
random I/O operations to read a large number of
source files and write the object files to the disk. For
the sake of our study we compiled the Linux kernel
4.2.

2) Collecting Containers 1/O metrics: In order to collect
the I/O data, we used a block-level 1/O tracer * which
has a small overhead [50]. It is a kernel module running
on the host that automatically detects and monitors new
containers I/Os. We chose the block level to build a
performance model of the storage system, and so only
I/0Os satisfied by the SSD were considered. Table I shows
a sample of the traced 1/O requests. All traced I/Os were
inserted in a time series database, see Figure 4.

4https: / / github.com/b-com/iotracer
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TABLE 1

SAMPLE OF I/O REQUESTS STORED IN THE TIME SERIES DATABASE

Timestamp [milliseconds] | Container ID | Access Type | Address | Accessed Data Size [bytes] | Access Level
1503293862000 340e0a2d67aa W 83099648 524288 BLK
1503293863000 340e0a2d67aa W 83100672 524288 BLK

TABLE II TABLE III
APPLICATIONS AND BENCHMARKS USED SOME CHARACTERISTICS OF THE LEARNING METHODS USED. KEY: A= Goop,
O=FAIR, AND ¥=POOR.
Name Category Description

web Server application N-tiers web application Characteristic DT | MARS | AdaBoost | GBDT | RF

email Server application Email server Robustness to outliers A v o A A

fileserver Server application File server in input space

video Multimedia processing | H.264 video transcoding Handling of missing values | A A A A A

freqmine Data mining Frequent itemset mining Computational complexity A A v v v
compile Software development | Linux kernel compilation Prediction accuracy v o A A A
micro-benchmark Synthetic Benchmark 1/0 workload generator

D. Learning step

Choosing the right learning algorithm for a specific
problem is a challenging issue. Many state-of-the-art
studies such as [21] have discussed the way to select
the appropriate learning algorithm(s) depending on the
datasets and the type of problem to solve.

Classical algorithms such as linear discriminant analysis
and nearest neighbor techniques, have been criticized on
some grounds [13]. For instance, they cannot handle
categorical variables and missing data. Other algorithms
such as support vector machines depend on the careful
selection of hyperparameters and the implementation
details [32]. Neural networks suffer from higher compu-
tational burden, proneness to over-fitting, the empirical
nature of the model development, and the fact that they
are hard to debug [68]. In [27], the authors described
characteristics of different learning algorithms that we
have summarized in Table III, we extracted a list of five
algorithms that could fit our needs.

In addition to the prediction accuracy criteria, we
selected these five algorithms based on the following
criteria:

o Robustness to outliers: In storage systems, we are
concerned about outliers as on average most of /0
requests do not use the whole available performance

of the devices.

o Handling of missing values: The large number of
possible combinations of 1/O workloads require a
learning algorithms that can handle missing values.

o Computational complexity: We cannot train the al-
gorithms on every combinations once and for all, so
we need to be able to recompute the model quickly
online to reduce the number of SLA violations.

1) The learning algorithms used: For convenience, we
used the following notation:

o Inputs (features) z; (i = 1,2,...,n) is a vector of 9
variables influencing the 1/O performance (where
n is the total number of data samples available),
see Section III-D2 for more details about the feature
selection.

o Responses y; (i =1,2,...,n) is the measured perfor-
mance in term of throughput.

o Hyperparameters : The accuracy of a model de-
pends strongly on the dataset and the learning
algorithm used. It also depends on the algorithm
tuning parameters, called hyperparameters. These
parameters impact the complexity of the learning
model, and they are estimated so as to minimize
the error.

We evaluated two methods in order to configure the
hyperparameters. The first one consists simply of us-



ing the configuration recommended by the authors
(of the algorithm) when available. The second one
consists of using the K -fold cross-validation method
[40]. Then we chose the configuration giving the best
prediction.

The idea of the K-fold cross-validation method is
to divide the training set into K roughly equal-
sized parts. For the k" (k = 1,...,K) part, we fit
the model to the other K — 1 parts and calculate
the prediction error of the fitted model. We combine
the K estimates of prediction error. f~* denotes the
fitted model (for k£ = 1,..., K), the cross validation
estimate of the error is:

K
V=D Y - ) @

k=1 iekthpart

So, the hyperparameters of the model f~* are es-
timated such as to minimize the criterion (1). We
used for our simulations K = 5 which is the value
recommended in [14].

be viewed as a generalization of stepwise linear
regression or a modification of the CART method
to improve its performance in the regression.
MARS uses expansions in a piecewise linear basis
functions of the form max(0, z —t) and max(0,{—x).
MARS model has the following form:

M
f(fﬂ) =c+ Z thm(x)7 (3)

m=1

where h,,(z) (m = 1,...,m) takes one of the follow-
ing two forms:

« a spline function that has the form
max(0,z; — t) or max(0,t — x;), where z; is a
feature and t is an observation of z;. MARS
automatically selects z; and ¢.

« a product of two or more spline functions.

To build the model (in Equation 3), we have two
main phases: First, the forward phase is performed
on the training set, starting initially with ¢y. Then,
for each stage, the basis pair which minimizes the

training error is added to a set M. Considering a
current model with m basis functions, the next pair
added to the model has the form:

In what follows, we will describe each of the five ma-
chine learning algorithms used and give some elements
about hyperparameters configuration.

Decision trees (DT) This method was developed at the

University of Michigan by Morgan et al. in the
early 1960s and 1970s ( [22], [46]). DT partitions the
feature space into a set of rectangles, and then fits a
simple model in each one. In this study, we used
the method CART (Classification and Regression
Trees) [13] which is a popular method in decision
trees. It encodes a set of if-then-else rules in a binary
tree which are used to predict output variables given
the data features. These if-then-else rules are created
using the training data which aims to maximize the
data separation based on a loss function related to
classification or regression scores.

CART method can be evaluated as a linear combi-
nation of the indicator function of sub-regions R,,
that form a partition of the feature space:

M
f(x) = le(x € Rm)v ()

m=1

where I is the indicator function having 1 for «
of R, and 0 for z not in R,,. The weights c,,
and the regions R,, are learned from data such as
to minimize the loss function. M is the maximum
depth of the tree. We increase M such that the
nodes are expanded until all leaves contain less
than a certain minimum number of samples (5 in
our simulations). The DT is composed of two main
stages, creating a tree to learn from all the training
samples and then pruning it to remove sections that
are non significant variables that would decrease the
accuracy.

Multivariate adaptive regression splines (MARS) This

method was introduced by Friedman [26], it can

Cm+1he(x) max(0, x; — t) + cmpohe(z) max(0,t — x;),

where hy € M. Each ¢, is estimated by the least-
squares method. This process of adding basis func-
tions continues until the model reaches the maxi-
mum number (M) fixed. Finally, the backward phase
improves the model by removing the less significant
terms until it finds the best sub-model. Model sub-
sets are compared using the less computationally
expensive method of Generalized Cross-Validation
(GCYV). This criterion is defined as:

N
1 R
GCV = PR D yi—f@) @
- TN i=1

in which r is the number of basis functions, d is
a penalty for each basis function included in the
developed sub-model, NV is the number of training
datasets, and f(z;) denotes the MARS predicted
values.

In our simulation, we used the penalty d = 3
which is recommended by Friedman [26]. For each
deletion step, a basis function is pruned to minimize
Equation 4, until the best model is found.

Boosting Methods The basic idea of these methods is

that they combine the outputs of many “weak”
estimator into a single estimator that, hopefully, will
be much more accurate than any of the “weak” ones.
A weak estimator is one whose error rate is only
slightly better than random guessing. Freund and
Schapire [23] proposed the most popular boosting
algorithm for a binary classification problem which
is called AdaBoost.M1 . Zhu et al. [75] extended this
algorithm to the multi-class case without reducing



it to multiple two-class problems. Drucker [18] ex-
tended the AdaBoost algorithm to regression prob-
lems which is the algorithm used in our study. In
AdaBoost, the weak learners are decision trees with
a single split, called decision stumps. The adaboost
model for regression (adaboost.R) has the form:

f(z) = weighted median{h;(z), t=1,..,T} (5)

where h; is a weak regression algorithm. adaboost.R
uses multiple iterations to produce a stronger rule,
the weights adjust themselves to improve the esti-
mator performance. The algorithm scales the con-
tribution of each regressor by a factor 0 < v < 1
called the learning rate. There is a trade-off between
the number of weak regression machine and the
learning rate.

In our simulation we used 7' = 200 and five fold
cross validation to estimate v.

Gradient boosting Since the analysis of the properties
and performance of boosting methods are rather
difficult [59], a gradient-descent based formulation
of boosting methods were proposed [24], [25] to
establish a connection with the statistical model.
These methods build the model in a stage-wise
fashion like other boosting methods do, and it gen-
eralizes them by allowing optimization of an arbi-
trary differentiable loss function. Here we used the
Gradient Boosting Decision Trees (GBDT) proposed
by Friedman [25]. We used the same methodology
in adaboost.R to estimate the learning rate and the
number of tree regressors in this model.

Random Forests (RF) They were introduced by
Breiman [12]. RF are a substantial modification of
decision trees that build a large collection of de-
correlated trees, and then averages them. They are
a combination of tree predictors such that each tree
depends on the values of a random vector sampled
independently and with the same distribution for
all trees in the forest. The performance of RF is very
similar to boosting in many problems, and they
are simpler to train and tune [31]. This algorithm
depends on the number of trees 7' and on the
following parameters for each tree:

o m : The number of features to consider when
looking for the best split;
e Nmin : The minimum number of samples re-
quired to split an internal node.
In our simulations, we used the following values
recommended by [27] : T" = 200, nmin = 5 and
m equal to the floor value of p/3, where p is the
number of features in the dataset.

2) Data Pre-processing: The goal of the pre-processing
step is to create the matrix of input features noted z
and the vector of the observed responses noted y (i.e.,
throughput) from the I/O traces stored in the time series
database.

The observed response y (throughput) is calculated
from the captured I/O trace. We need to define a time

window that would represent one data sample to be
used by the learning algorithm. The objective is to have
a time window during which we correlate I/O activities
of every single container with regards to the others. One
needs to compromise on the size of this time window.
If it is too large, it would capture too many events
and I/O interactions, thus the learning phase will lose
in precision. A time window that is too small would
generate a too large dataset with a large proportion of
samples that do not contain relevant information. We
chose a middle-ground and used a time window of 10
seconds. We computed the response vector y = (y;)7,

as follows: !
Vi =10 Z dy (6)
T; <t<T;+10%

where y; is the throughput in MB/s obtained by one
container and T; is the starting time in milliseconds of
the monitoring period. The variable 4 is the number of
time windows within a single sampling window.

The selection of the input features x is a key step to
build a good predictive model. One needs to consider
the variables that have an influence on the I/O perfor-
mance for the learning algorithms to find the (hidden)
relationships between x and y (see Section II-C). We have
selected 9 features listed below based on [48], [66], [71]:

As previously discussed, We have three types of 1/O
interferences that may affect the throughput: (a) interfer-
ence due to SSD internals, (b) interference related to the
kernel I/O software stack, and (c) interference due to the
co-hosted applications workloads. One needs to extract
the features from the traces in order to represent such
interferences.

o Interference (a): this interference is related to the
impact of internal mechanisms of SSDs on perfor-
mance, especially the GC. The more the SSD sus-
tains write operations, the more the GC is initiated,
the higher this impact. As a consequence, we chose
to capture this feature with the write operations
history of the SSD. Indeed, this history gives indi-
cations about the state of the SSD.

o Interference (b): As previously mentioned, system
related parameters were fixed in this study. How-
ever, as we trace at the block level layer, the impact
of the page cache and the I/O scheduler is already
taken into account.

o Interference (c): they are inferred from the traces as
we get the performance of each container knowing
what the other collocated containers are doing and
the overall performance sustained by the SSD.

For each y; we computed the corresponding row of z;

that captures the I/O interference as follow:

o Device write history : This feature represents the
cumulative volume of data written on the device
in bytes. We used it to capture SSD internal write
operations. Indeed, the more the SSD sustains write
operations, the more the GC is initiated, the higher
the impact on the application 1/Os.



TABLE IV

Pre-processeD Data, X': INPUTS (FEATURES) AND Y': OUuTPUT

X Y
Device Write Device Device Container Container Random Container Container Random Container Container Throughput
History Volume | Throughput in 1/0 1I/0 Write Rate Written bytes read Rate Read Bytes Block Size
MB/sec requests requests in Bytes
20156469248 298.14 152652 152652 0 625262592 0 0 4096 298.14
322122547200 319 652 505 0 264765440 0 0 524288 248.37

o Device throughput: Overall data transfer rate of the
device.

o Device 1/O requests: Number of 1/O requests satisfied
by a given device.

o Container 1/O requests: Number of I/O requests per
second for each running container.

o Container random write rate: Rate of random write
I/0 requests for each running container.

o Container written bytes: Number of bytes written for
each running container.

o Container random read rate: Rate of random read I/0O
operations for each running container.

o Container read bytes: The number of bytes read for
each running container.

o Container block size distribution: Block size distribu-
tion for each running container.

Table IV shows a sample of the pre-processing result.

3) Data splitting: The aim of Data splitting step is to
divide the data into two distinct datasets, one for training
and one for testing purposes.

We randomly used 75% of the data to train our model
through the learning algorithms and the remaining
25% were used for validation purpose as recommended
by [14]. We ran this selection step 100 times in order
to evaluate the robustness of the tested algorithms. The
accuracy of the model may change according to the
data splitting performed. A robust algorithm is one that
provides a good model regardless of the data splitting
being performed.

IV. EvarLuaTion

This section describes the results of our experiments.
Through this experiment, we try to answer four research
questions:

o RQ1: What is the accuracy and the robustness of
the tested algorithms?

o RQ2: How does the accuracy change with regards
to the size of the training dataset (learning curve)?

o RQ3: What are the most important features in
building the model?

o RQ4: What is the training time overhead?

A. Evaluation metric

One of the most common metric to evaluate the quality
of a model is the Root Mean Square Error (RMSE):

RMSE = \/,% iy (yi — 93)?

Where y; is the measured and g; the modeled through-
put. The RMSE indicator penalizes large deviations be-
tween predicted values and observed values. In order to
be able to compare SSDs with different performance. We
used a Normalized Root Mean Square Error (NRMSE),
given by:

RMSE

Ymax —

NRMSE =

Ymin
B. Experimental setup

All experiments were performed on a server with an
Intel(R) Xeon(R) E5-2630 v2 CPU clocked at 2.60GHz
with 130GB of RAM. Concerning the storage system, we
used four SSDs: one with a SATA interface (Samsung 850
Evo 256GB MLC) and three others with NVMe interfaces
(Intel 750 1.4TB MLC, Samsung 960 Pro 1TB MLC and a
960 Evo 500GB TLC).

We used the Ubuntu 14.04.4 LTS GNU Linux distribu-
tion with a kernel version 4.2.0-27. We used the ext4 file
system for all the experiments. The virtualization system
used was Docker version 1.12.2.

For our tests, we have used the AUFS storage driver
for managing Docker image layers. However, each con-
tainer mounts a host directory as a data volume on a
locally-shared disk for data-intensive workloads. These
data volumes are dependent on the filesystem of the
underlying host (ext4) which are recommended for I/O-
intensive workloads [20]. Finally, all containers get the
same proportion of block I/O bandwidth.

We made use of the xgboost [16] version 0.6 and scikit-
learn [52] version 0.18 libraries which provide state-of-
the-arts machine learning algorithms.

C. Datasets characteristics

This section provides an overview of the used datasets
characteristics. For each SSD, the dataset is composed
of the six data-intensive applications and a micro-
benchmark with the different scenarios presented in
Section III-C.

At the block level, 75% of the size of the traced I/0Os
is between 20KB and 110KB with a median of 64KB
which represents most of the typical enterprise block
sizes according to the SNIA [19]. The read /write ratios of
the tested workloads also covered most of the enterprise
applications, see Table V.

In addition, we made sure that the volume of the data
written to the disks exceeded by far the size of the disks
in order to span the different SSD performance states
shown in Figure 2.



TABLE V

MEASURED WORKLOAD CHARACTERISTICS

Name Read/Write Ratio [%] [ Seq/Rand Ratio [%] | Block Sizes for 80% of I/Os
web 76/24 10/90 8KB, 16KB, 32KB
email 10/90 1/99 4KB, 8KB, 12KB, 16KB
fileserver 83/17 30/70 4KB, 8KB, 12KB
video 40/60 92/8 512KB
freqmine 2/98 99/1 4KB, 8KB, 512KB
compile 9/91 65/35 4KB, 8KB

D. Prediction accuracy and model robustness

As explained in Section III-D3, we ran each algorithm
100 times by randomly selecting each time 75% of the
dataset (comprising all the applications) to build the
model and the remaining 25% to evaluate its accuracy.
For each execution, we used 6000 training samples each
consisting of 10 seconds of workload (more than 16 hours
of pure I/Os excluding I/O timeouts). The accuracy
is evaluated through the median NRMSE while the
robustness is given by the dispersion.
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Fig. 5. Box-plot of NRMSE for each algorithm on all SSDs.

Figure 5 shows the boxplots for each learning al-
gorithm according to the storage device used. A first
observation is that the more accurate models (median
NRMSE represented by the red line within each box)
were achieved with AdaBoost, GBDT, and RF with an
NRMSE median error of about 2.5%.

A second interesting observation is that the ranking of
the learning algorithms is the same regardless of the SSD
being used. This is a very interesting result that means
that different SSD behaviors can be captured with the same
learning algorithms.

A third observation is that AdaBoost, GBDT, and RF
also provide a smaller dispersion compared to the other
algorithms. Indeed, the models built with those algo-
rithms are less sensitive to the data distribution between
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the training set and the testing set. This means that the
models built with these algorithms are more inclined to
be resilient to any 1/O pattern change, which is a very
interesting property.

Note that RF and DT gave their results with fixed
hyperparameters rather than using cross-validation (see
Section II-D1).

Overall one can observe that most of the algorithms
used provide an NRMSE lower than 5% when using the
6000 training samples.

E. Learning curve

The learning curve shows the evolution of the model
accuracy (i.e., NRMSE) according to the number of train-
ing samples [5], [27].

In order to build our learning curve, we performed
a progressive sampling by increasing dataset sizes
Niraining = 150 to Np,qp with an increase step of 100
samples (where N,,q, is the total number of samples
available). At each step, we ran 100 times the algorithm
by randomly selecting the data for each iteration. Note
that the minimum size of the training set was fixed to
150 samples which is the size recommended in [27] in
order to obtain a good performance when using 5-fold
cross validation to estimate the hyperparameters.

In Figure 6 we show the accuracy of the algorithms
according to the training set size. First, we observe as
expected that for each algorithm, the accuracy improves
with the increase of the training set size. Second, the
best algorithms Adaboost, GBDT and RF have a similar
convergence slope. Another interesting result is that the
best algorithm ranking is the same for small and large
training samples sets used. This ranking corresponds to
the one established in the previous section regardless of
the used SSD.

Third, we observed that for the first training samples
(<1000), the accuracy was not good. This could be
explained by the fact that with such a small dataset it
is hard to avoid over-fitting but also that the outliers are
more difficult to avoid, especially with MARS which is
not robust to outliers. We can conclude that we need at
least about 3 hours (i.e., about 1100 training samples) of
pure I/Os to reach a good level of accuracy.

In a production infrastructure, one may define an
off-line SSD warm up period using micro-benchmarks,
macro-benchmarks or simply by running target applica-
tions on the SSD before integrating the disks into the
system. This makes it possible to generate the training
samples in order to reach a minimum acceptable accu-
racy. In addition, in our study, the model is continuously
updated according to the workload using a feedback
loop. This allows to continuously refine the learning
samples.

F. Feature importance

In this section we want to assess the share of each
feature in the model we have developed. The feature
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Fig. 7. Feature importance

importance technique can be used to assess the contri-
bution of the selected features to the predictability of the
response (i.e., throughput) [5], [27]. The features reaching
the highest score are the ones contributing the most to
build the model.

Among the five selected learning algorithms, we used
RF to compute the feature importance as it proved to be
one of the most accurate ones for the tested datasets.

As described in [13] with RF, one of the ways to
compute the feature importance is by measuring the
prediction accuracy level set when we randomly swap
the values of a given feature. If the accuracy variation
is low, then the feature is not important. Figure 7 shows
the median feature importance of our predictive models.

We notice in Figure 7 that about 46% of the throughput
prediction is based on the Device Write History and the
Device throughput features. We also observe that about
27% of the prediction is due to the Container Written bytes
and Container block Size features.

In addition, Device I/O requests and Container 1/O re-
quests contribute to about 17 %. Finally, Container Random
Write Rate, Container Random Read Rate and Container
Read bytes are the less significant features.This means
that one may create a model which is accurate enough
without considering those features.

Overall, we notice that regardless of the SSD used, we
obtained the same ranking concerning the importance of
the features, especially the ones having a high percent-
age.

G. Training time

The training time is an important metric if one needs
to recompute the models for some reason. This may be
done either to perform online learning, or to update the
model after some new applications are run or some new
storage devices plugged in.

Figure 8 shows the median computation time taken
to train each of the five learning algorithms. It turns
out that MARS took the longest time for training, with
a median time of about 40 seconds (for 6000 training
samples). This is due to the complexity of MARS which
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Fig. 8. Median computation time used for the training of different
learning algorithms

is O(m?), where m is the number of basis functions (see
Section III-D1). Then, with a training time of 30 seconds
GBDT is slower than Adaboost (25 seconds). DT and RF
executed in less than 4 seconds.

The duration is highly related to the choice of hyper-
parameters (e.g. number of folders in K-cross validation,
fixed parameters, etc.).

As compared to the time spent to build the model,
the amount of time necessary to make the prediction
based on the latter was much shorter (i.e., less than 40
milliseconds).

V. LIMITATIONS

There are some potential issues that may have an
impact on the results of this study and that could also
be considered for future research:

o System parameters such as file system, kernel ver-
sion, prefetching window size, continuous or peri-
odic trimming of SSD devices were not varied. These
parameters might have an impact on the model
building.

o We did not consider CPU and Memory related
metrics in our approach. In [39] authors show that
passing from one to two cores may increase the
throughput performance from 870K IOPS to 1M
IOPS with a local Flash disk. So, these variables may
have an impact on I/O performance in case the CPU
is overloaded and cannot satisfy 1/O requests for
instance.

o The used I/O tracer does not monitor file system
metadata [56], this could make our model underes-
timate the issued I/Os.

o The size of invalid space in a flash memory may
have an impact on the performance. In addition to
the write history, one may use the number of invalid
blocks, for example using Smartmontools [4], as a
new feature.

VI. RELATED WORK

Avoiding I/0 interference can be achieved using sev-
eral strategies. The first solution is to get a performance
model that can capture I/O interference. Another so-
lution is to modify the system behavior or the SSD
behavior to limit the risk of interference.

12

Common performance modeling studies have targeted
hard drives using analytic modeling [9], [57], [61], sim-
ulation [15], [38], benchmarking [2], [67], and black-
box approaches [69], [73]. Many analytic and simula-
tion approaches were based on understanding internal
organization of storage devices. However, the internal
design employed by SSDs are often closely-guarded in-
tellectual properties [28]. To overcome this issue, black
box approaches have been used [34], [69], [73]. In [34],
Huang et al. proposed a black box modeling approach
to analyze and evaluate SSD performance, including
latency, bandwidth, and throughput. In our work, we
have included more input features (5 more). In particular,
we have included features related to write history and
interference between containers, which turned out to be
relevant in our work.

To better predict the SSD behavior, some state-of-the-
art studies have tried to tackle this problem at different
levels, mainly at low level SSD controller and system
level. The first class of solutions tries to implement some
low level techniques to minimize the interference at
the flash memory chip level, for instance by physically
storing container data in specific flash chips [37]. My-
oungsoo et al [36] proposed to create a host interface
that redistributes the GC overheads across non-critical
I/0O requests. The second class of solutions operates at
the system level, Sungyong Ahn et al [3] have modified
the Linux cgroup 1/O throttling policy by affecting an
I/0 budget that takes into account the utilization history
of each container during a specific time window. The
third class of solutions proposes an application-based
solution, in [17] and [41] the authors propose to avoid
I/0 interference by coordinating the applications 1/0O
requests. Noorshames et al. [48] present an approach for
modeling I/O interference that is the most closely related
to ours. However, the authors focused on HDDs and did
not consider SSD-related performance models.

While the first class of solutions is hardly usable for
cloud providers using off-the-shelf SSDs, the second
ones could be cumbersome to implement and tune for
different devices. Our proposed approach complements
state-of-the-art solutions and can be used independently
from low-level optimizations.

VII. SUMMARY AND PERSPECTIVES

According to our study, it turned out that Machine
learning is a relevant approach to predict SSD 1/0
performance in a container-based virtualization. We eval-
uated five learning algorithms. The features used for
the regression were extracted from six data-intensive
applications and micro-benchmarks. We experimented
with 4 SSDs. We draw several conclusions that may help
Cloud providers to design a machine learning based
approach to avoid SLO violation due to I/O performance
issues:



Prediction accuracy and models robustness (RQ1
Findings):

o GDBT, Adaboost and RF gave the best performance
with an NRMSE of 2.5% using 6000 training sam-
ples. From the three algorithms, RF was the most
accurate.

o The ranking of the tested algorithms was the same
regardless of the SSD used.

o Adaboost, GDBT and RF provided the smallest dis-
persion proving there robustness to a changing 1/0
pattern.

o We used fixed hyperparameters to tune RF and DT.
This makes these algorithms simpler to use.

Learning curve (RQ2 Findings):

o The prediction accuracy is enhanced for every algo-
rithm as we add more training samples.

o The ranking of the algorithms accuracy remained
the same regardless of the number training samples
(RF, GDBT and Adaboost).

o We need at least a dataset of about 3 hours of
pure 1/Os to reach a good level of accuracy and
a minimum of 150 samples to run the algorithms.

Feature Importance (RQ3 Findings):

o The importance of the features was not balanced.
The most important ones were the Device write
history, device throughput, container written bytes and
container block size. These features are available off
the shelf. Surprisingly, the random write rate did
not prove to be very important.

o The ranking of features importance was the same
for all SSDs, especially the most important ones.

Training Time (RQ4 Findings):

o The training time of RF and DT was the shortest
one.

e The training time of all algorithms was small
enough to be used in runtime to update the model.
This is a good property if we have to recompute the
model for a new device, a new system configuration,
or a new I/O pattern.

Predicting I/O performance in container-based virtu-
alization is necessary to guarantee SLO. We will use the
results of our approach to develop a strategy to improve
container placement in cloud infrastructure in order to
avoid performance issues before users are impacted.

We also plan to integrate new metrics (e.g., disk la-
tency) and also new features to train our model such
as the number of invalid blocks, file-system aging, CPU,
memory.

We will also work toward considering reinforcement
learning to integrate the three steps/modules (i.e., Ana-
lyze, Plan, Execute) in the same framework by applying
directly new container placement strategy in the Cloud
infrastructure in order to maximize a given reward met-
ric.

While in this paper we limited the experiments to 5
containers, a perspective could be to add more containers
and to evaluate the potential limitations.
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Other experiments are also underway to apply the
same types of experiments for virtual machines deploy-
ment using KVM.
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