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ROBUST PRECONDITIONERS VIA GENERALIZED EIGENPROBLEMS FOR1

HYBRID SPARSE LINEAR SOLVERS2

E. AGULLO, L. GIRAUD, L. POIREL3

Abstract. The solution of large sparse linear systems is one of the most time consuming kernels in many4
numerical simulations. The domain decomposition community has developed many efficient and robust methods in5
the last decades. While many of these solvers fall into the abstract Schwarz (aS) framework, their robustness has6
originally been demonstrated on a case-by-case basis. In this paper, we propose a bound for the condition number7
of all deflated aS methods provided that the coarse grid consists of the assembly of local components that contain8
the kernel of some local operators. We show that classical results from the literature on particular instances of9
aS methods can be retrieved from this bound. We then show that such a coarse grid correction can be explicitly10
obtained algebraically via generalized eigenproblems, leading to a condition number independent of the number of11
domains. This result can be readily applied to retrieve or improve the bounds previously obtained via generalized12
eigenproblems in the particular cases of Neumann-Neumann (NN), Additive Schwarz (AS) and optimized Robin but13
also generalizes them when applied with approximate local solvers. Interestingly, the proposed methodology turns14
out to be a comparison of the considered particular aS method with generalized versions of both NN and AS for15
tackling the lower and upper part of the spectrum, respectively. We furthermore show that the application of the16
considered grid corrections in an additive fashion is robust in the AS case although it is not robust for aS methods in17
general. In particular, the proposed framework allows for ensuring the robustness of the AS method applied on the18
Schur complement (AS/S), either with deflation or additively, and with the freedom of relying on an approximate19
local Schur complement. Numerical experiments illustrate these statements.20

Key words. preconditioning, SPD linear systems, robust, scalable, coarse space, generalized eigenvalue, parallel21
hybrid (direct/iterative) solver22

AMS subject classifications. 15A06, 65F08, 65F10, 15A12, 65N5523

1. Introduction. Many scientific or engineering applications require at some point the solu-24

tion of large sparse linear systems in parallel. Once the specific problem has been discretized, the25

resulting matrix equation can be solved using either an external general purpose linear solver, or a26

more specific solver tailored to the particular problem. With the first approach, referred to as the27

algebraic approach, the user can benefit with little integration effort from the developments and28

optimizations of black-box libraries which perform very well on modern architectures [4, 19].29

On the other hand, the second approach often allows additional optimizations that further30

exploit additional characteristics of the underlying problem and requires a tighter integration of the31

solver within the application code. A widely used class of methods that fall in this latter category32

are domain decomposition methods (DDM) [10, 20, 28, 30, 35], which are inherently parallel and33

provide robust and scalable solvers for a wide range of physical problems.34

In this article, we aim at combining the advantages of both these approaches. For that, while35

remaining as algebraic as possible, we identify some key information to be provided to the solver36

alongside the matrix. For symmetric positive definite (SPD) problems we show that providing the37

matrix in a distributed fashion, as a sum of symmetric positive semi-definite (SPSD) matrices, is38

enough to build a robust and scalable hybrid solver. This is a common situation when applying a39

finite element method over a partitioned mesh, but the methods presented in this article are not40

limited to this particular case: for instance, more complex discretizations such as the hybridizable41

discountinuous Galerkin method [7] can be used instead.42

The linear system to be solved is43

Ku = f,(1.1)4445
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where K is a n × n sparse SPD matrix that does not need to be known explicitly. Instead, the46

parallel application provides K to the solver as a sum K =
∑N
i=1K

(g)
i of N SPSD matrices K(g)

i .47

Even thoughK(g)
i is of size n×n, in practical applications it has only ni non-zero rows (and columns),48

meaning that this matrix represents the interaction of only a subset of the unknowns from the global49

problem. We define the global domain Ω = {1, . . . , n} as the set of row (or column) indices in K,50

and the subdomain Ωi = {ω(i)
1 , ω

(i)
2 , . . . , ω

(i)
ni } as the set of indices of the non-zero rows and columns51

in K(g)
i (Ωi is the set of vertices in the adjacency graph of K(g)

i ). We introduce the ni×n canonical52

restriction matrix RΩi from Ω to Ωi, such that for any vector u = (u1, . . . , un) ∈ Rn, RΩiu is53

the vector (u
ω

(i)
1
, . . . , u

ω
(i)
ni

) ∈ Rni . Then, we define the ni × ni SPSD matrix Ki = RΩiK
(g)
i RTΩi ,54

referred to as the local matrix of subdomain Ωi, leading to55

K =

N∑
i=1

RTΩi Ki RΩi .(1.2)56

57

The unknowns in any subdomain Ωi can be partitioned into an interior Ii = {ω ∈ Ωi s.t. ∀j 6=58

i, ω /∈ Ωj} and an interface Γi = {ω ∈ Ωi s.t. ∃j 6= i ω ∈ Ωj} = Ωi \ Ii. If an unknown59

ω ∈ Ωi appears in at least one other subdomain, then ω ∈ Γi, otherwise ω ∈ Ii. This yields a60

partition of the global domain Ω = {1, . . . , n} = I1 ∪ · · · ∪ IN ∪ Γ where Γ = Γ1 ∪ · · · ∪ ΓN is the61

global interface.62

Then, eliminating in parallel the interior unknowns following for instance [Section 2, 25] the63

original system (1.1) reduces to a Schur problem defined on the interface Γ64

SuΓ = f̃ ′Γ, S =

N∑
i=1

RTΓi Si RΓi ,(1.3)65

66

where the global Schur matrix S is SPD and the local Schur matrices Si are SPSD. Using the67

classical index notation for referring to sub-blocks of matrices and vectors, we have S = KΓΓ −68 ∑N
i=1KΓIiK−1

IiIiKIiΓ, f̃ ′Γ = fΓ −
∑N
i=1KΓIiK−1

IiIifIi and Si = KΓiΓi − KΓiIiK−1
IiIiKIiΓi . From the69

interface solution uΓ, the solution in Ii can be computed as uIi = K−1
IiIi

(
fIi −K−1

IiIiKIiΓuΓ

)
.70

Algebraically, the problems (1.1) and (1.3) are very similar; their only difference is that even71

when Ki is sparse, Si is in general a dense matrix (as soon as Ki is irreducible). Although eliminating72

the interior unknowns is often associated with specific DDM such as BDD [8, 26] or FETI [13], it is in73

fact an optional step in the solution of Problem (1.1) and most domain decomposition methods can74

be applied either directly on K or, after eliminating the interior unknowns, on S. This elimination75

step may take time and consume memory, but it allows us to reduce the size and the condition76

number of the linear system (S) to be solved [5, 27], making it a useful optional preprocessing.77

Since the theory presented in sections 2 and 3 can be applied to solve either the original problem78

in (1.1) or the reduced Schur problem in (1.3), we write them in a general form as79

Ax = b, A =

N∑
i=1

RTi Ai Ri,(1.4)80

81

where the global SPD matrix A, the local SPSD matrices Ai, and the restriction matrices Ri can82

represent K, Ki and RΩi or S, Si and RΓi when solving (1.1) or (1.3), respectively. When needed,83

a specific method M will be noted M/K or M/S to specify on which problem this method is84
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applied. In both cases, A is SPD, assuming that the Ai are assigned to different computing units,85

Problem (1.4) can be solved in parallel using the preconditioned conjugate gradient method (PCG).86

A good preconditioner M for (1.4) should have the two following properties: (1) M is SPD87

and close to A−1, in the sense that the condition number κ(MA) should be as small as possible;88

(2) it is easy to compute Mu for any vector u (at least much easier than A−1u). DDM are often89

used to build such preconditioners of the form90

MaS =

N∑
i=1

RTi Â
†
iRi(1.5)91

92

where Âi is a local problem associated with A on subdomain i, and † represents a pseudo-inverse.93

These preconditioners have been studied for a long time using the abstract Schwarz (aS) theory94

(see, e.g., [10, 35] for recent overviews). Two particular cases of preconditioners that fit this95

description are the Neumann-Neumann (NN) preconditioner [26], with Âi = D−1
i AiD

−1
i , and the96

Additive Schwarz (AS) preconditioner, with Âi = RiARTi97

MNN =

N∑
i=1

RTi DiA†iDiRi, MAS =

N∑
i=1

RTi
(
RiARTi

)−1Ri,(1.6)98

99

where (Di)
N
i=1 is a partition of unity such that

∑N
i=1RTi DiRi = In and In is the n × n identity100

matrix. These two preconditioners are of particular importance, but any other SPSD matrix can101

be used as the local preconditioner Âi in (1.5).102

Unless Âi perfectly mimics the global action of A in subdomain Ωi, κ(MaSA) may significantly103

increase with the number N of subdomains, leading to a non scalable numerical method.104

Furthermore, if Âi is singular, the pseudo-inverse is only defined up to an element in its null-105

space ker(Âi). To solve these two problems, a coarse space V0 such that RTi ker(Âi) ⊂ V0106

can be introduced, leading to the deflated aS preconditioner107

MaS,D = V0(V T0 AV0)†V T0 + (In − P0)

(
N∑
i=1

RTi Â
†
iRi

)
(In − P0)T(1.7)108

109

where P0 = V0(V T0 AV0)†V T0 A is the A-orthogonal projection onto V0. A simpler additive two-110

level preconditioner can also be obtained by just adding the coarse component to the one-level111

preconditioner112

MaS,2 = V0(V T0 AV0)†V T0 +

N∑
i=1

RTi Â
†
iRi.(1.8)113

114

While previous works had proposed bounds on the condition number κ(MA) on particular115

numerical cases, often relying on analytical assumptions, Le Tallec and Vidrascu [25] derived an116

algebraic bound for a new class of preconditioners, relying on the generalized Rayleigh quotient of117

two local matrices. These preconditioners are called generalized NN in the original article; however,118

because the generalization consists of handling an approximate matrix, we will instead refer to them119

as approximate NN preconditioners in the present article. The approximation is not related to the120

use of inexact solvers to compute the preconditioner, but to the use of an approximation matrix121
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Ã instead of A in the construction of the preconditioner. The approximate NN preconditioner is122

in fact an exact algebraic NN preconditioner for Ã. Then, this approximate preconditioner is used123

to accelerate the convergence of PCG applied on the exact matrix A, guaranteeing a convergence124

towards the actual solution of Equation (1.4).125

This class of approximate NN preconditioners generalizes classical NN but does not cover126

the whole aS class of preconditioners. Note, for instance, that AS cannot be expressed as a NN127

preconditioner. The first contribution (Section 2) of this article is to extend the result from [25]128

by using a generic local preconditioner and cover a broader range of aS methods, which we name129

approximate deflated aS methods and consist of all deflated aS methods whose coarse grid consists of130

the assembly of local components that contain the kernel of some local operators (that are formally131

introduced below, in Definition 1). Interestingly, the bound we exhibit (Theorem 2) highlights the132

key position of NN and AS among other local preconditioners in the Schwarz framework: they133

provide two bounds on the spectrum of the preconditioned operator, and the convergence of any134

aS local preconditioner can be evaluated by comparing it to these two well-known methods.135

This bound depends on generalized Rayleigh quotients which are traditionally estimated using136

functional analysis. Alternatively, we propose to control these Rayleigh quotients algebraically by137

building the coarse space using eigenvectors of well chosen generalized eigenproblems (Theorem 10).138

For that, we follow the Generalized Eigenvalue in the Overlap (GenEO) procedure [33]. This139

second contribution (Section 3) results in an explicit procedure for building a robust coarse space140

of any approximate deflated aS method leading to a bound on the condition number (hence on141

the number of iterations of PCG) independent of the number of subdomains. This result can be142

readily applied to retrieve or improve the bounds previously obtained via generalized eigenproblems143

in the particular cases of AS/K [33], NN/S [34] and optimized Robin (SORAS/K) [18]. It also144

generalizes these results to the approximate case. The idea of building a coarse space by solving145

local eigenproblems in each subdomain was introduced in [15, 29]; it was successfully applied for146

other DDM such as FETI-DP [12] or BDDC [9] in [22, 23, 24].147

The third contribution (Section 4) of this paper is that the application of the considered coarse148

grid correction in an additive fashion is robust in the approximate AS case (although it is not robust149

for aS methods in general). The bound we obtain (Theorem 12) can be applied for retrieving the150

bound obtained in [33], when the coarse correction is applied additively to the AS method on the151

original matrix (AS/K). When working on the Schur matrix (AS/S) [6], the bound is still valid152

and leads, as commented in [15], to a smaller coarse space compared to AS/K.153

Numerical experiments illustrate our discussion in Section 5. A high performance implementa-154

tion of the coarse grid correction of one particular, consistently robust method (AS/S) has further-155

more been implemented in the high-performance MaPHyS1 hybrid (direct/iterative) sparse linear156

solver [2, 3] to eventually assess its performance on a modern parallel computer (Section 5.5) and157

make this scalable method available to the scientific community.158

The paper is organized as follows. Section 2 introduces a new class of approximate (deflated)159

aS preconditioners and provides a bound on their condition number, which depends on generalized160

Rayleigh quotients. Applying the GenEO procedure on two well chosen generalized eigenproblems,161

Section 3 proposes a procedure to explicitly compute the coarse space while bounding these Rayleigh162

quotients leading to a bound on the condition number (hence on the number of iterations of PCG)163

independent of the number of subdomains. Section 4 shows that a similar result (and procedure)164

can be obtained when the coarse grid correction is additively applied, in the case of approximate165

1See https://gitlab.inria.fr/solverstack/maphys/
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AS problems. Numerical experiments illustrate our discussion in Section 5 before concluding in166

Section 6.167

2. Approximate abstract Schwarz preconditioners. In this section, we first define a class168

of approximate aS preconditioners, which combine a local preconditioner Âi, an approximate matrix169

Ã and a coarse space V0 in Section 2.1. We then provide a bound on the condition number of this170

class of methods in Section 2.2, whose proof is provided in Section 2.3.171

2.1. Context.172

Definition 1 (Approximate abstract Schwarz preconditioner M̃aS,D).173

In order to build such a preconditioner for Problem (1.4), we need the three following ingredients:174

1. a set of symmetric positive semi-definite (SPSD) local preconditioners Âi,175

2. an approximation Ã of A such that176

∃ (Ãi)Ni=1, Ã =

N∑
i=1

RTi ÃiRi and Ãi is SPSD,(2.1)177

∃ ω−, ω+ > 0, ∀v ∈ V ω− vTAv ≤ vT Ãv ≤ ω+ vTAv,(2.2)178179

3. and a coarse space V0 such that180

∃ (V 0
i )Ni=1, V0 =

N∑
i=1

RTi V 0
i with ker(Âi) + ker(Ã(NN)

i ) ⊂ V 0
i ,(2.3)181

182

where Ã(NN)
i = D−1

i ÃiD
−1
i .183

We can then define a coarse matrix Ã0 = V T0 ÃV0, a coarse projection P̃0 = V0Ã†0V T0 Ã and the184

approximate aS preconditioner is then defined as185

M̃aS,D = V0Ã†0V T0 + (In − P̃0)

(
N∑
i=1

RTi Â
†
iRi

)
(In − P̃0)T .(2.4)186

187

Note that the matrix Ã(NN)
i introduced in (2.3) is the local matrix in the approximate NN pre-188

conditioner M̃NN,D with the algebraic decomposition from (2.1). The matrices Di can be any189

partition of unity as in (1.6). Ã(NN)
i is a scaled version of the local matrix Ãi in the approximation190

Ã of A.191

When no approximation is used, after a suitable initialization, M̃aS,D can be replaced by192

(In − P̃0)
(∑N

i=1RTi Â
†
iRi

)
in the PCG iterations, as noted in [26].193

2.2. Convergence result for M̃aS,D. In each subdomain, we note Ni = #{j 6= i, RiÃRTj 6=194

0} the number of neighbors through the connectivity graph of Ã. We also define two local subspaces195

V̂ ⊥i and Ṽ ⊥i as the orthogonal spaces of V 0
i for the inner products inferred by Âi in range(Âi) and196

Ã(NN)
i in range(Ã(NN)

i ) respectively. Then,197

range(Ri) = V̂ ⊥i ⊕ V 0
i = Ṽ ⊥i ⊕ V 0

i ,(2.5)198

∀u ∈ V 0
i , ∀v ∈V̂ ⊥i , ∀w ∈ Ṽ ⊥i uT Âiv = uT Ã(NN)

i w = 0.(2.6)199200
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Finally, for any SPSD matrix B and vector u, we note |u|B =
√
uTBu the B-seminorm of u; if B is201

SPD, we note it ||u||B.202

Theorem 2 (Convergence result for approximate aS).203

The condition number of the preconditioned matrix M̃aS,DA is bounded by204

κ(M̃aS,DA) ≤ ω+

ω−

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Âi

|v|2
Ã(NN)
i

max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 ,205

206

where Ã(NN)
i = D−1

i ÃiD
−1
i and Ã(AS)

i = RiÃRTi .207

We see three factors in this bound:208

• The first one, with ω+ and ω−, controls the quality of the approximation Ã. If no approx-209

imation is used, then Ã = A and ω− = ω+ = 1.210

• The second one is a generalized Rayleigh quotient between the local preconditioner Âi and211

the approximate NN preconditioner Ã(NN)
i = D−1

i ÃiD
−1
i defined in [25].212

• The last one is a generalized Rayleigh quotient between the local preconditioner Âi and an213

approximate AS preconditioner Ã(AS)
i = RiÃRTi .214

As for Ã(NN)
i above with NN, Ã(AS)

i = RiÃRTi is an algebraic generalization of the local matrix215

in the AS preconditioner in Equation (1.6), built upon the approximation Ã instead of A.216

Proof. The proof of Theorem 2 is a direct consequence of lemmas 6 and 8 in Section 2.3, using217

the definition of218

κ(M̃aS,DA) =
λmax(M̃aS,DA)

λmin(M̃aS,DA)
.219

220

Corollary 3 (Convergence results for approximate AS and approximate NN).221

We define the approximate AS and NN preconditioners M̃AS,D and M̃NN,D by replacing Âi222

with Ã(AS)
i or Ã(NN)

i respectively in Equation (2.4). We also define Nc = max1≤i≤N (Ni + 1).223

Then, the condition numbers of M̃NN,DA and M̃AS,DA are bounded by224

κ(M̃AS,DA) ≤ ω+

ω−

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

 Nc,225

κ(M̃NN,DA) ≤ ω+

ω−
max

1, sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

 Nc.226

227

Proof. The proof of Corollary 3 is a consequence of lemmas 6 and 7 for AS, and lemmas 5 and 8228

for NN.229

Note that the bound for M̃NN,D in Corollary 3 is the same as in [Theorem 1, 25]. This bound230

is tighter than the bound obtained by setting Âi = Ã(NN)
i in Theorem 2; this comes from the fact231

that the bound in Lemma 5 is also tighter than its generalization in Lemma 6.232

The similarity of the bounds for AS and NN in Corollary 3 shows that the convergence of233

these two methods are governed by the same quantity supv∈Ṽ ⊥i
|v|2
Ã(AS)
i

/|v|2
Ã(NN)
i

. As a result, with234
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the same coarse space, we expect the AS/S method [6] to show the same convergence behavior235

as the BDD method (NN/S) [26] or its dual counterpart FETI [13]. Although AS require more236

communication than NN (each subdomain i has to send the matrix block RjRTi ÃiRiRTj to each237

neighbor j) to setup the preconditioner, one advantage of using AS over NN is that the local238

preconditioner Ã(NN)
i is often singular in some domains while Ã(AS)

i remains SPD, and Ã(AS)
i

−1ui239

is easier and faster to compute than Ã(NN)
i

†ui.240

2.3. Proof of Theorem 2. To estimate the condition number of M̃aS,DA, we need to bound241

the spectrum of this operator from above and below. The lower bound is a consequence of the242

Stable Decomposition Lemma as stated in [35].243

Lemma 4 (Stable decomposition lemma).244

If there exists a constant C0, local matrices Bi and extension operators Ii, such that ker(Bi) ⊂245

ker(Ii) and every u ∈ V admits a decomposition246

u =
N∑
i=0

Iiui, {ui ∈ Vi, 0 ≤ i ≤ N} that satisfies

N∑
i=0

|ui|2Bi ≤ C
2
0 ||u||2A.247

248

Then249

λmin(MA) ≥ C−2
0 , where M =

N∑
i=0

IiB†i I
T
i .250

251

Proof. see, e.g., Lemma 2.5 in [35].252

Then, although it is not directly used in the proof of Theorem 2, we first expose in Lemma 5253

a lower bound for the spectrum of NN (Âi = Ã(NN)
i ) as it provides a good insight on the reason254

behind the Rayleigh quotients in the bound presented in Lemma 6 for the general case.255

Lemma 5 (Lower bound for the approximate Neumann-Neumann preconditioner).256

Let M̃NN,D = V0Ã†0V T0 + (In − P̃0)

(
N∑
i=1

RTi Ã
(NN)
i

†
Ri

)
(In − P̃0)T .257

Then,258

λmin(M̃NN,DA) ≥ 1

ω+
.259

260

Proof. This is a consequence of Lemma 4 (see Theorem 1 in [25]).261

If, instead of Ã(NN)
i , another local preconditioner Âi is used, there is no change on the bound262

if we restrict the operators to the coarse space V0 since the application of the local preconditioner263

is preceded and followed by projections (In − P̃0) and (In − P̃0)T . However, in the orthogonal of264

the coarse space, the bound has to change and reflect the difference between Ã(NN)
i and Âi. As is265

proved in Lemma 6, the lower bound on the spectrum of M̃aS,DA can be deduced from the bound266

for M̃NN,DA in Lemma 5 by adding a correction related to the generalized Rayleigh quotient267

between Ã(NN)
i and Âi in the orthogonal of the coarse space.268
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Lemma 6 (Lower bound for the approximate abstract Schwarz preconditioner).269

λmin(M̃aS,DA) ≥ 1

ω+

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Âi

|v|2
Ã(NN)
i

−1

.270

271

Proof. We want to split u into a sum of local contributions, while being able to uniformly272

control the Âi-norm of these contributions ui with the global A-norm of u to apply Lemma 4. For273

any u and i ≥ 1, we decompose DiRiu = u0
i + u⊥i where u0

i ∈ V 0
i and u⊥i ∈ Ṽ ⊥i . We then define274

u0 = (V T0 ÃV0)†V T0 Au such that V0u0 = P̃0u. We can use the facts that
∑N
i=1RTi DiRi = In and275 ∑N

i=0RTi u0
i ∈ V0 ⊂ ker(In − P̃0) to obtain the decomposition276

u = P̃0u+ (In − P̃0)u = V0u0 + (In − P̃0)

N∑
i=1

RTi DiRiu277

= V0u0 + (In − P̃0)

N∑
i=1

RTi (u0
i + u⊥i ) = V0u0 + (In − P̃0)

N∑
i=1

RTi u⊥i278

=

N∑
i=0

Iiui where I0 = V0, Ii = (In − P̃0)Ri and ui = u⊥i .279

280

Since P̃0 is a Ã-orthogonal projection, it holds that:281

|u0|2Ã0
= |u0|2V T0 ÃV0

= |V0u0|2Ã = |P̃0u|2Ã ≤ |u|
2
Ã(2.7)282

283

Let284

C = max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Âi

|v|2
Ã(NN)
i

= max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Âi

|v|2
D−1
i ÃiD

−1
i

.285

We can then use equations (2.6), (2.1) and (2.7):286

|u⊥i |2Âi ≤ C|u
⊥
i |2D−1

i ÃiD
−1
i

≤ C|u⊥i + u0
i |2D−1

i ÃiD
−1
i

= C|Riu|2Ãi ,287

N∑
i=1

|u⊥i |2Âi ≤ C
N∑
i=1

|Riu|2Ãi = C|u|2∑N
i=1RTi ÃiRi

= C|u|2Ã,(2.8)288

|u0|2Ã0
+

N∑
i=1

|u⊥i |2Âi ≤ (1 + C) |u|2Ã ≤ ω+(1 + C)|u|2A,289

290

and the local norms are controlled by the global norm. Then, applying Lemma 4, we get291

λmin(M̃aS,DA) ≥ 1

ω+

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Âi

|v|2
Ã(NN)
i

−1

.292

293

Now that we proved a lower bound for the spectrum of M̃NN,DA, we will prove an upper294

bound in Lemma 8. We first recall a classic upper bound for AS preconditioners in Lemma 7 since295

it explains the origin of the Rayleigh quotient in the bound for the general case.296
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Lemma 7 (Upper bound for the approximate Additive Schwarz preconditioner).297

Let M̃AS,D = V0Ã†0V T0 + (In − P̃0)

(
N∑
i=1

RTi Ã
(AS)
i

−1
Ri

)
(In − P̃0)T .298

Then,299

λmax(M̃AS,DA) ≤ 1

ω−
max

1≤i≤N
(Ni + 1).300

Proof. This lemma is a particular case of Lemma 8 which is proven below.301

Lemma 8 (Upper bound for the approximate abstract Schwarz preconditioner).302

λmax(M̃aS,DA) ≤ 1

ω−
max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 .303

304

Proof. First, let us remark that305

M̃aS,DÃu = V0Ã†0V T0 Ãu+ (In − P̃0)

N∑
i=1

RTi Â
†
iRi(In − P̃0)T Ãu = u0 + (In − P̃0)

N∑
i=1

RTi ui306

307

where u0 = P̃0u and ui is the orthogonal projection of Â†iRi(In − P̃0)T Ãu onto range(Âi) along308

ker(Âi) ⊂ V 0
i ⊂ ker

[
(In − P̃0)RTi

]
.309

As a consequence, ui ∈ V̂ ⊥i :310

uTi ÂiV 0
i = uT Ã(In − P̃0)RTi Â

†
i ÂiV

0
i = uT Ã(In − P̃0)RTi V 0

i = 0.311312

Then,313

|M̃aS,DÃu|2Ã = |u0|2Ã + |(In − P̃0)

N∑
i=1

RTi ui|2Ã ≤ |u0|2Ã + |
N∑
i=1

RTi ui|2Ã314

≤ |u0|2Ã +

N∑
i=1

(Ni + 1)|RTi ui|2Ã = |u0|2Ã +

N∑
i=1

(Ni + 1)|ui|2RiÃRTi315

316

where we used the fact that317

0 ≤
∑

1≤i,j≤N
RTi ÃRj 6=0

|RTi ui −RTj uj |2Ã = 2

 ∑
1≤i,j≤N
RTi ÃRj 6=0

|RTi ui|2Ã −
∑

1≤i,j≤N
RTi ÃRj 6=0

uTi RiÃRTj uj

318

≤ 2

(
N∑
i=1

(Ni + 1)|RTi ui|2Ã − |
N∑
i=1

RTi ui|2Ã

)
.(2.9)319

320

Let us define321

C = max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 = max

(
1, max

1≤i≤N
(Ni + 1) sup

v∈V̂ ⊥i

|v|2
RiÃRTi
|v|2
Âi

)
.322
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We can now write323

|M̃aS,DÃu|2Ã ≤ C|u0|2Ã + C

N∑
i=1

|ui|2Âi = CuT P̃T0 Ãu0 + C

N∑
i=1

uT Ã(In − P̃0)RTi Â
†
i Âiui324

= CuT ÃM̃aS,DÃu ≤ C|u|Ã|M̃aS,DÃu|Ã325

|M̃aS,DÃu|Ã ≤ C|u|Ã,326327

and use the same strategy as in [25] to obtain our result:328

λmax(M̃aS,DA) = max
v∈V

|v|2A
|v|2
M̃−1

aS,D

≤ max
v∈V

1

ω−

|v|2
Ã

|v|2
M̃−1

aS,D

≤ max
v∈V

1

ω−

|M̃aS,DÃv|Ã
|v|Ã

≤ C

ω−
,329

λmax(M̃aS,DA) ≤ 1

ω−
max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 .330

331

3. Building the coarse space via generalized eigenproblems. The bound in Theorem 2332

has originally been estimated through functional analysis after a coarse space has been chosen. A333

more algebraic approach is to build the coarse space V0 by solving a generalized eigenproblem in334

each subdomain in order to control the Rayleigh quotient as proposed by [33, 34] for AS/K and335

NN/S, respectively. This approach has also been successfully applied to other aS variants such336

as the SORAS method [18], in which case two eigenproblems are needed. The case where the337

correction is applied additively as in [11, 15, 33] for AS is treated in Section 4.338

The connection between the GenEO method and Theorem 2 comes from the following lemma:339

Lemma 9 (Bound on the Rayleigh quotient).340

Let B be a SPSD matrix, C a SPD matrix and η > 0 be a parameter.341

If Vη = span
(
{p, Bp = λCp, λ ≤ η}

)
and V ⊥Bη = {u ∈ range(B),∀v ∈ Vη, uTBv = 0},342

then sup
u∈V ⊥Bη

|u|2C
|u|2B

≤ 1

η
.343

Proof. Since C is SPD, the generalized eigenproblem Bp = λCp has solutions (λk, pk) with344

pTk Cpl = δkl and pTk Bpl = λkδkl.345

Now, let u ∈ V ⊥Bη . We can project u on the basis (pk)k: u =
∑
k αkpk.346

If k is such that λk ≤ η, then pk ∈ Vη and 0 = uTBpk = λkαk. As a consequence, αk = 0347

because if λk = 0, pk ∈ ker(B) =
(
range(B)

)⊥ ⊥ u and αk = uT pk = 0. This leads to348

|u|2C
|u|2B

=

∑
λk>η

α2
k∑

λk>η
λkα2

k

≤ 1

η
.349

350

Following the GenEO methodology, we propose to build the coarse space V0 by solving two gen-351

eralized eigenproblems to control the condition number of approximate aS preconditioners through352

two parameters α > 0 and β ≥ 1.353
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Theorem 10 (Condition number of aS preconditioners). If Âi is SPD and the coarse space354

is defined as V0 =
N∑
i=1

RTi V 0
i with355

V 0
i = span

(
{pik, Ã(NN)

i pik = λikÂipik, λik ≤ α−1}356

∪ {pik, Âipik = λikÃ
(AS)
i pik, λik ≤ (Ni + 1)β−1}

)
357358

then, we can bound the condition number359

κ(M̃aS,DA) ≤ ω+

ω−
(1 + α)β.360

Proof. Using Lemma 9 and the definition of Ṽ ⊥i and V̂ ⊥i in 2.2, we can bound the Rayleigh361

quotients362

sup
v∈Ṽ ⊥i

|v|2
Âi

|v|2
Ã(NN)
i

≤ α, sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

≤ β

Ni + 1
.363

364

Replacing these bounds in Theorem 2 gives the result.365

Corollary 11. In the NN or AS cases, for any α ≥ 1, we can define366

V 0
i = span

(
{pik, Ã(NN)

i pik = λikÃ
(AS)
i pik, λik ≤ α−1}

)
.367368

Then, Corollary 3 and Lemma 9 give369

κ(M̃AS,DA) ≤ ω+

ω−
(1 + α) Nc, κ(M̃NN,DA) ≤ ω+

ω−
α Nc.370

371

If α−1 = minλik 6=0(λik), then V 0
i = ker(Ã(NN)

i ) = Di ker(Ãi) and the resulting coarse space for NN372

is exactly the same as in the BDD algorithm.373

With small variations in the generalized eigenproblems considered, Theorem 10 and Corollary 11374

retrieve or improve previous GenEO results and generalize them to the approximate case: AS/K375

[32, 33], NN/S [34] and SORAS [18].376

4. Additive Coarse Correction.377

4.1. Context. The preconditioner M̃aS,D separates the part of the solution that is in V0378

(on which a direct coarse solve is performed through Ã†0), from its Ã-orthogonal part (on which379

the local preconditioner MaS =
∑N
i=1RTi Â

†
iRi is used to accelerate convergence). Eigenvalues380

or Rayleigh quotients λ corresponding to vectors in the coarse space V0 are shifted to 1 by the381

coarse solve, and to 0 by the projection steps (In − P̃0) and (In − P̃0)T , so the overall effect of the382

deflated preconditioner is to shift them to 1 exactly. If we skip these projection steps, we obtain an383

approximate additive two-level preconditioner M̃aS,2 similar toMaS,2 presented in Equation (1.8).384

In this case, without the projection steps eigenvalues are shifted to 1 + λ. As a result, this coarse385

correction applied on big eigenvalues only makes them bigger, thus hampering convergence. This386

additive coarse correction can only be effective to tackle the lower part of the spectrum since small387

eigenvalues λ� 1 are shifted to 1 + λ ≈ 1.388
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The one-level AS method has already an upper bound on the spectrum (see Lemma 7), and389

only the lower bound needs to be recovered, making it an ideal candidate for an additive coarse390

correction. In this section, we show that in the approximate AS case, when Âi = Ã(AS)
i = RiÃRTi ,391

the projection steps can be removed without losing robustness. Namely, we still have a bound for the392

condition number of the additive two-level AS method independent of the number of subdomains.393

Theorem 12 (Condition number of the 2-level approximate AS preconditioner).394

Let MAS,2 = V0Ã†0V T0 +

N∑
i=1

RTi Ã
(AS)
i

−1Ri and Nc = max1≤i≤N (Ni + 1).395

Then, we can bound the condition number396

κ(MAS,2A) ≤ ω+

ω−

Nc + 1 + (Nc + 2) max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

 (Nc + 1).397

398

For any α > 0, if we choose399

V 0
i = span

(
{pik, Ã(NN)

i pik = λikÃ
(AS)
i pik, λik ≤ α−1}

)
,400401

it holds that402

κ(MAS,2A) ≤ ω+

ω−
[Nc + 1 + α(Nc + 2)] (Nc + 1).403

404

Theorem 12 generalizes [Theorem 4.40, 33] to the approximate case, while improving the405

bound.406

A spectral coarse space composed of eigenvectors of a generalized eigenproblem was earlier407

proposed in [11, 15]. In those studies, the authors also discuss the analytical and numerical interest408

of using AS,2/S instead of the more traditional AS,2/K to reduce the size of the coarse space. In409

comparison, our method is more algebraic in the sense that it does not need a stable interpolation410

operator, nor the mass matrix.411

Proof. If we apply Lemma 7 without a coarse space and consider V0 as another subdomain in412

the decomposition, we get413

λmax(MAS,2A) ≤ 1

ω−
(Nc + 1).414

The lower bound is a consequence of Lemma 4. We define u0
i ∈ V 0

i and u⊥i ∈ Ṽ ⊥i such that415

DiRiu = u0
i +u⊥i as in the proof of Lemma 6. We now introduce u0 such that V0u0 =

∑N
i=1RTi u0

i ,416

and u = V0u0 +
∑N
i=1RTi u⊥i .417

We get from Equation (2.8) that418

N∑
i=1

|u⊥i |2Ã(AS)
i

=

N∑
i=1

|u⊥i |2Âi ≤ C|u|
2
Ã with C = max

1≤i≤N
sup
v∈Ṽ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

=
|v|2
RiÃRTi

|v|2
D−1
i ÃiD

−1
i

.419

420
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Then, we can use the same method as in Equation (2.9):421

|u0|2Ã = |u−
N∑
i=1

RTi u⊥i |2Ã ≤ (Nc + 1)

(
|u|2Ã +

N∑
i=1

|RTi u⊥i |2Ã

)
422

= (Nc + 1)

(
|u|2Ã +

N∑
i=1

|u⊥i |2RiÃRTi

)
≤ (Nc + 1)(1 + C)|u|2Ã423

|u0|2Ã +

N∑
i=1

|u⊥i |2RiÃRTi ≤ [Nc + 1 + (Nc + 2)C] |u|2Ã ≤ ω+ [Nc + 1 + (Nc + 2)C] |u|2A.424

425

We then use Lemma 4 with I0 = V0, Ii = RTi and Bi = ITi ÃIi to get the bound426

λmin(MAS,2A) ≥ 1

ω+

Nc + 1 + (Nc + 2) max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
RiÃRTi
|v|2
Ã(NN)
i

−1

.427

428

We can then conclude with Lemma 9.429

5. Numerical experiments.430

5.1. Experimental setup. The methods introduced in sections 2, 3 and 4 are tested on a431

problem similar to what is presented in [33]. We use the Finite Element Method (FEM) with Q1432

elements to solve a heterogeneous diffusion equation ∇ · (k∇u) = 1 in a 3D stratified medium. The433

domain [0, N ] × [0, 6] × [0, 1] is discretized on a regular mesh of (5N + 1) × 31 × 6 nodes. The434

domain is divided into N identical subdomains along the first axis. Along the second axis, it is435

divided into 10 layers (of 5N × 3 × 5 elements each) of alternating conductivity k = 1 and k = K436

(K is a heterogeneity parameter). A Dirichlet boundary condition is applied on the left of the437

domain (x = 0), a Neumann condition on every other boundary. Using a FEM discretization on438

each subdomain gives rise naturally to a set of local SPSD matrices and a global matrix that is439

SPD. The geometry and 1D partitioning of this test case are chosen so as to emphasize the effects of440

using a coarse grid correction: indeed, without a coarse correction, the number of iterations grows441

as O(N1/d) where d is the dimension of the partitioning. Using a 3D partitioning of the global442

domain, one would need more than 7M subdomains (1923) to illustrate the same effect as in the443

experiments presented here with a 1D partitioning and 192 subdomains. The layered structure of444

the domain is introduced to deteriorate the condition number of the local subproblems. Since all445

subdomains (except the first and last ones) are identical, the bound on the condition number of the446

method in Theorem 2 is independent of N if at least the kernels of Ã(NN)
i and Âi are included in V 0

i ;447

a coarse space that only includes these kernels (as in BDD for instance) thus yields a method that448

can be considered as robust in this regard, while being considerably simpler to compute than the449

coarse space proposed in this article. However, the condition number still depends on the inverse450

of the smallest eigenvalues not included in the coarse space, which can be quite close to 0 if the451

local problems are ill-conditioned (i.e., if K is big). As a result, the condition number, although452

independent of N , can still be too large for the iterative solver to converge in a reasonable number453

of iterations. Building the coarse space by solving the generalized eigenproblems as proposed in454

Section 3 yields a more robust method in the sense that the condition number of the method can455

be controlled independently of both N , K, and the particular choice of a local preconditioner. We456

consider three aS methods: the AS and NN preconditioners introduced in Equation (1.6) and a457
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Shifted (Sh) preconditioner whose local matrix is obtained by shifting the diagonal of Ãi by 1 to458

remove its potential singularity: M̃Sh =
∑N
i=1RTi (Ãi + Ini)

†Ri where Ini is the identity matrix459

of same size as Ai. If built on the Schur matrix, M̃Sh is a (non-optimized) Robin preconditioner.460

The optimization of the Robin condition as proposed in [16] is not considered here as it is out of461

the scope of this paper. It is introduced as an example of a more generic aS preconditioner than462

AS and NN; as such, two generalized eigenproblems need to be solved to compute the coarse space463

for Sh as opposed to only one for AS and NN. Each of these method is assessed with A = K or464

A = S. Equation (1.4) can therefore either result from:465

• the FEM discretization (1.1) of the global problem, in which case the preconditioner is said466

to be applied on the original matrix K and the abstract Schwarz method is noted aS/K;467

• or the substructuring system (1.3) obtained by eliminating the interior variables from Equa-468

tion (1.1), in which case the preconditioner is said to be applied on the Schur matrix S and469

the method is noted aS/S.470

We study the numerical behaviour of these methods under the constraint of a bounded condition471

number or an imposed coarse space size in sections 5.2 and 5.3, respectively. We then study472

the approximate case with an empirical approach in Section 5.4, using a so-called sparsification473

technique. Our numerical results overall confirm [11, 15] regarding the numerical interest of using474

AS,2/S instead of the more traditional AS,2/K method to reduce the size of the coarse space.475

Section 5.5 eventually illustrates the parallel behavior of that promising variant.476

The partition of unity Di is computed using the diagonal values of Ai. The condition numbers477

of the preconditioned matrices are estimated using the eigenvalues of the tridiagonal Lanczos ma-478

trix computed during the PCG iterations (see, e.g., [14]). The stopping criterion is based on the479

normwise backward error ||b−Axk||/||b|| ≤ 10−6.480

5.2. Imposing an a priori bound on the condition number. We proved in Section 3 that481

it is possible to control the condition number κ(M̃aS,DA) of aS methods through some parameters482

α and β. For now, we do not use any approximation (whose effects are the object of Section 5.4),483

hence Ãi = Ai and ω− = ω+ = 1. In order to compare the three methods, we first choose a bound484

χ and then we choose α and β such that κ ≤ χ:485

• for AS (resp. NN), Corollary 11 states that κ ≤ (1 + α)Nc (resp. κ ≤ αNc). We choose486

α = χ/Nc − 1 (resp. α = χ/Nc).487

• for Sh (or any other aS preconditioner), Theorem 10 states that κ ≤ (1+α)β and we choose488

α =
√

1/4 + χ− 1/2 and β =
√

1/4 + χ+ 1/2.489

When we do not impose an upper bound (χ = ∞), no coarse space is used and results are490

presented only for AS and Sh. We observe (Figure 1) that the condition number κ grows quadrat-491

ically with the number of subdomains N and that the number of iterations to reach convergence492

(Figure 2) is proportional to the number of subdomains (note the log scale for the $x$-axis). This493

lack of scalability is the main motivation for using a two-level method. We also note that, with-494

out a coarse space, our AS preconditioner outperforms the Sh preconditioner, especially when the495

heterogeneity K is high: the AS preconditioner performs a more appropriate local solve than the496

very basic Sh preconditioner. As expected, the condition number is also lower when working on the497

Schur matrix S instead of K, since all the interior unknowns are solved using a direct method and498

do not appear anymore in the iterative process.499

When we impose an upper bound on the condition number (χ = 10, 000 or χ = 100), we observe500

that the condition number κ does indeed drop below the prescribed bound χ, independently of the501

number of subdomains N , the local preconditioner AS, NN or Sh, the heterogeneity K and the502
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Fig. 1. Imposing an a priori bound χ on the condition number using deflation. Whatever the chosen target χ,
we ensure that the condition number of the iterative problem κ(MA) remains below χ. Each preconditioner (AS,
NN, Sh) can be applied either on the original matrix K (aS/K), left, or in a substructuring context on S (aS/S),
right.

choice of operating on K or S. However, this a priori control on the condition number comes at503

the expense of having to use a direct solve on a coarse space V0 whose dimension can be quite504

large. Each subdomain computes a local coarse space V 0
i of dimension n

(i)
v (Figure 3) and the size505

of the global coarse space therefore grows linearly with the number of subdomains. Since without506

deflation (χ = ∞) the Sh preconditioner applied to the original matrix K does not perform very507

well in the heterogeneous case, the size of the coarse space necessary to obtain a condition number508

below the target χ is very large (up to 87 vectors per subdomain). However, using a better local509

preconditioner such as AS or NN can greatly reduce the size of the coarse space, as well as working510

on the Schur matrix S instead of K.511

5.3. Imposing an a priori coarse space size. We showed in the previous section that we512

can effectively control the condition number κ of the method by building the coarse space using513

two parameters α and β as presented in Theorem 10. However, this can lead to an impractically514

large coarse space and we now consider the context where the size nv of the local subspace in each515

subdomain is chosen a priori. Instead of choosing the coarse space by comparing the eigenvalues516

to a threshold, we thus keep the eigenvectors associated with the nv smallest eigenvalues. Once the517

coarse space is computed, we know what threshold would have led us to keep the same number of518

vectors and we can get, a posteriori, a bound on the condition number of the method: if λnv+1 is519

the lowest eigenvalue corresponding to a vector not in the coarse space, Theorem 10 ensures that520
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Fig. 2. Number of iterations when imposing an a priori bound χ on the condition number.

κ(MSh,D A) ≤ Nc(1 + 1/λnv+1)/λnv+1. As in Section 5.2, this bound can be improved for NN and521

AS preconditioners using Corollary 11 and Theorem 12:522

• κ(MNN,D A) ≤ Nc/λnv+1;523

• κ(MAS,D A) ≤ Nc(1 + 1/λnv+1);524

• κ(MAS,2 A) ≤ (Nc + 1) [Nc + 1 + (Nc + 2)/λnv+1].525

The Schur matrix S is smaller and better conditioned [5, 27] than the original matrix K.526

Furthermore, in a 2-level domain decomposition framework, eliminating the interior unknowns527

significantly improves the convergence by reducing the size of the coarse space needed to take into528

account the physical hetoregeneity in the domain [15]. In accordance with these theoretical results,529

Figure 4 highlights the benefits of operating on S (Figure 4, right) instead of K (left): the condition530

number is consistently smaller when applying any aS method on S instead of K. Without a coarse531

space (nv = 0, top), the results are consistent with Figure 1, top (χ = ∞): the condition number532

κ increases with the number of subdomains N . Choosing nv = 1, our coarse space reduces to a533

classical partition-of-unity coarse space [31] and is sufficient in the homogeneous case (K = 1, plain534

lines); we notice that NN,D/S then reduces to classical BDD where the condition number does535

not depend on N but remains fairly large for large values of K. However, in the heterogeneous536

cases (K = 100 or 10, 000, dashed lines), this simpler coarse space is not enough to get a scalable537

method: one eigenvector per high-conductivity inclusion is needed in the coarse space to build a538

robust method [15]. In our case, with 5 high-conductivity layers passing through all the subdomains,539

nv = 5 eigenvectors are enough to bound the condition number for AS/S and NN/S. Using the540

Sh/S method, since two eigenproblems are solved in each subdomain, 10 vectors are needed to get541
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Fig. 3. Maximum size of the local coarse space when imposing an a priori bound χ on the condition number.
Note that AS and NN overlap with each other. In most cases, only few vectors per subdomain are enough but the
least robust methods can induce a relatively large local coarse space V 0

i in some cases.

a good convergence (bottom right).542

With a large enough coarse space, the three methods NN,D/S, AS,2/S and AS,D/S perform543

quite similarly, with a slight advantage for NN. However, when the coarse space is too small (nv = 1544

and K = 10, 000 for instance), AS,2/S and AS,D/S have a significantly smaller condition number545

than NN,D/S, and they appear more robust. As a consequence, we will choose for our proposed546

high performance implementation to focus on the AS,2/S method (Section 5.5).547

5.4. Approximate case: Empirical study of the impact of sparsification. The con-548

vergence results for approximate aS methods in sections 2, 3 and 4 apply for both aS/K and aS/S549

cases. However, for a matter of conciseness, we now only focus on the latter context for illustrating550

the impact of approximation, as the above experiments showed the numerical benefits of operating551

on the Schur complement. For that, we approximate the dense matrix Si with a sparse matrix S̃i, by552

dropping some entries in the matrix. This process is called sparsification. In a very heterogeneous553

medium (K � 1), some entries in S corresponding to couplings between unknown separated by a554

low-conductivity layer, are negligible. We use the symmetry-preserving strategy of dropping sij if555

|sij | ≤ ε(sii + sjj), where ε is a parameter that controls the sparsity (see, e.g., [6]).556

The benefits of sparsification are evaluated by assessing the proportion nnz(LLT ) of non-zero557

elements in the Cholesky factorization Ŝi = LLT of the local preconditioner. In Figure 5, we558

evaluate the impact of sparsification on the robustness of the method. It appears that, up to a559

certain level, we are still able to find a robust coarse space despite having significantly reduced560
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Fig. 4. Condition number when imposing an a priori size nv for the local coarse space V 0
i . We are still

able to significantly reduce the condition number of the methods. The best convergence results are obtained with the
AS,D/S method.

the memory footprint of the preconditioner. For instance, with a sparsity parameter of ε = 0.001,561

although 88.8% of the entries in the factorization of the preconditioner are dropped, our coarse562

space with nv = 5 vectors per subdomain still significantly improves the convergence.563

These results are very promising as they show we can efficiently apply an approximate scheme564

to reduce the complexity of two-level aS methods. However, the considered sparsification technique565

is delicate for ensuring an a priori condition number. Approximation through hierarchical matri-566

ces [17] might better fit this objective, for bounding ω− and ω+ and ensure theorems 10 and 12567

apply. This is left for future work (see [1] for preliminary investigations in this direction) and we do568

not consider approximation techniques in the high performance implementation we propose below.569

5.5. Performance of AS,2/S on a modern parallel computer. The excellent numerical570

properties exhibited above by the AS,2/S method motivated the design of an high-performance571

code of that variant. For that, we relied on the MaPHyS package and we added a coarse grid572

correction to the baseline, one-level AS/S variant [3] for the purpose of the present study. MaPHyS573

is a parallel hybrid (direct/iterative) sparse linear solver. Its Setup step relies on third-party sparse574

direct solvers for efficiently performing the elimination of the interior variables and computing the575

local Schur complement Si. Subdomains are processed concurrently, each subdomain being associ-576

ated with a process. The computation of the one-level preconditioner (still within the Setup step)577

is then performed with neighbor-to-neighbor communications. The Solve step consists of classical578

preconditioned conjugate gradient iterations. In particular, global synchronizations are only re-579

18



●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

ε = 0

nnz(LLT) = 100 %

ε = 1e−05

nnz(LLT) = 14.5 %

ε = 1e−04

nnz(LLT) = 11.5 %

ε = 0.001

nnz(LLT) = 11.2 %

ε = 0.01

nnz(LLT) = 8.6 %

n
v =

0
n

v =
1

n
v =

5

2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192

1

10

100

1

10

100

1

10

100

Number of subdomains: N

C
on

di
tio

n 
N

um
be

r:
 κ

(M
S

)

Heterogeneity K
10000

Preconditioner
● AS2

ASD
NND

Fig. 5. Up to a certain level, the sparsification does not break the robustness of the method: using a big enough
coarse space (nv = 5), it is possible to discard 88.8% of the entries in the factorization of the preconditioner without
losing convergence.

quired for computing dot products while the matrix-vector product can be performed concurrently580

on each subdomain and the application of the (one-level) preconditioner only requires neighbor-to-581

neighbor communications. We extended MaPHyS to ensure a coarse grid correction as follows. In582

the Setup step, the generalized eigenproblems are processed concurrently on each subdomain; the583

matrix associated with the resulting coarse space is then assembled and factorized using a third-584

party parallel sparse direct solver. In the Solve step, a coarse solve is added in the application of the585

preconditioner at each iteration. Due to the nature of the coarse space, these operations add global586

communications and synchronizations in the algorithm and particular care must be taken in their587

implementation in order to achieve good scalability and parallel efficiency. Several parallelization588

strategies for the coarse correction are currently investigated and will be discussed in a future work.589

In the current experiment, the coarse matrix A0 is assembled and factorized redundantly on disjoint590

sub-communicators (obtained by splitting the global one) in order to reduce the number of global591

communications during the solve step.592

We now present a weak scalability study conducted on test cases similar to the ones introduced593

in Section 5.1, but with larger subdomains. Each subdomain is indeed a cube discretized on594

a 31 × 31 × 31 mesh with 29,791 unknowns. There are now 6 alternating conductivity layers595

(K = 10, 000), and we consider a scenario with an imposed coarse space size (as in Section 5.3)596

using 3 vectors per subdomain. No approximation is performed. The same stopping criterion as597

above is used. The experiments have been conducted on the Occigen machine at CINES. Each node598

is composed of two Haswell (E5-2690V3) 12-core processors running at 2.6 GHz. A subdomain is599
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associated with a process, binded on a CPU core. MaPHyS was compiled with Intel 17.0 and Intel600

MPI 2017.0.098. All dense operations are performed with the Intel Math Kernel Library (MKL)601

2017 (including the Lapack dsygvx routine for solving the eigenproblems, that allows one to only602

compute a targeted subset of eigenpairs). Sparse factorizations are performed with the MUMPS603

5.0.2 sparse direct solver [4] together with the ParMetis 4.0.3 partitioner [21].604

Table 1 compares the behavior of our extension of MaPHyS relying on the proposed coarse grid605

correction described above (AS,2/S) with the baseline, one-level version of MaPHyS [3] (AS/S).606

The number of subdomains N , which is equal to the number of MPI processes and CPU cores used607

for the respective computation, the total number of unknowns n = (30N + 1)×31×31 and the size608

of the coarse space n0 are provided in the table along with the maximum (among all subdomains)609

time in seconds needed to perform the Setup step, the Solve step or both steps (Total) and the610

number of PCG iterations performed during the Solve step, for both the AS/S method (left) and611

the AS,2/S method (right). The Setup step includes the time spent in the factorization of the612

local matrices and the computation of the local Schur complement matrix using a sequential sparse613

direct solver, the assembly and factorization of the local Schur complement, the solution of the614

generalized eigenproblems, the construction and the factorization of the coarse matrix. The Solve615

step corresponds to the PCG iterations and the final computation of the interior unknowns. We616

observe that the addition of the coarse correction increases the Setup time and the individual cost617

of each iteration (up to a factor 2), mainly due to the induced global communications. On the618

other hand, the number of iterations of AS,2/S remains stable, leading to a drastically overall619

reduced Solve time compared to the baseline AS/S method (up to a factor 37 when the 44,283,841620

unknowns are distributed among 1,536 subdomains). As a consequence, in a scenario consisting of621

solving a linear system with a single right-hand side, the coarse grid usage reduces the total time622

to solution (Setup + Solve) when the number of subdomains (and CPU cores) is equal to or higher623

than 384. In another common application scenario where multiple (say, p), successive, right-hand624

sides must be solved, the total time to solution (Setup + p Solve) may then essentially be governed625

by the Solve step if p is large. In that latter case, the benefits of the coarse grid may then thus be626

tremendous on large scale computers.627

Table 1
A weak scalability study was performed using the MaPHyS parallel solver. The Setup, Solve and Total times are

the max among all subdomains, in seconds (s). Each subdomain is associated with one MPI process binded on one
CPU core. N is the number of subdomains, n is the size of K and n0 is the size of the coarse space. Without coarse
correction, the Setup time remains stable, whereas the Solve time grows linearly with the number of domains. The
coarse correction adds to the Setup time but keeps the number of iterations constant, thus improving the scalability.
Without coarse correction, no convergence was achieved on 3,072 domains.

AS/S AS,2/S
N n n0 Setup Solve Total # iter Setup Solve Total # iter
24 692k 72 3,64 0,47 4,12 33 6,13 0,30 6,44 15
48 1.4M 144 3,67 0,87 4,54 62 6,52 0,30 6,83 15
96 2.8M 288 3,79 1,62 5,41 119 6,52 0,31 6,84 15

192 5.6M 576 3,75 3,17 6,92 233 6,59 0,33 6,92 15
384 11.1M 1.1k 3,87 5,02 8,90 371 6,61 0,32 6,93 14
768 22.1M 2.3k 3,78 8,30 12,1 609 6,61 0,33 6,95 14

1536 44.3M 4.6k 4,13 15,1 19,2 1,077 6,96 0,40 7,38 14
3072 88.6M 9.2k - - - - 7,24 0,42 7,70 14
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6. Conclusion. In this paper, we have proposed a new class of aS preconditioners, so-called628

approximate aS preconditioners. These preconditioners are fully algebraic in the sense that they629

do not require any other information apart from SPSD subdomain matrices. This class is wide as630

it consists of all aS preconditioners, provided that their coarse space results from the assembly of631

local components that contain the kernel of some local operators (Definition 1). In particular, it632

generalizes the class of approximate NN preconditioners introduced in [25] (named generalized NN633

in the original paper). We exhibited a bound on the condition number of all approximate deflated aS634

preconditioners (Theorem 2). This bound depends on generalized Rayleigh quotients and generalizes635

the result from [25] beyond the class of approximate NN methods. Applying a GenEO procedure636

on two well chosen generalized eigenproblems, we proposed to explicitly compute the coarse space637

while bounding these Rayleigh quotients leading to a bound on the condition number (hence on the638

number of iterations of PCG) independent of the number of subdomains. We also showed that a639

similar bound can be obtained when the coarse space is applied additively for the subclass of newly640

introduced approximate AS methods.641

The results presented in this paper can be readily derived to retrieve the bounds previously642

obtained via generalized eigenproblems in the particular cases of AS/K [11, 33], NN/S [34] and643

optimized Robin (SORAS) [18]. It also generalizes these results when used with approximate local644

solvers. Furthermore, they allowed us to define a coarse space for the AS method applied on the645

Schur complement (AS/S) [6], leading to an extremely robust substructuring method, for which646

the coarse space can be applied either with deflation or additively, and with the freedom of relying647

on an approximate local Schur complement. Numerical experiments illustrated these statements.648

In particular, they motivated an high-performance design of a coarse grid correction for AS/S. We649

implemented it within the MaPHyS package. Parallel experiments showed the significant benefits650

that the resulting AS,2/S solver could bring.651

A challenge opened by the present study is to determine an explicit procedure to perform the652

approximation while achieving a given a priori bound on the condition number. We also plan to653

study the effects of the method on the spectrum and on the empirical convergence of non symmetric654

test cases.655
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Régional d’Aquitaine, Université de Bordeaux and CNRS (and ANR in accordance to the pro-660

gramme d’investissements d’Avenir). Experiments presented in Section 5.5 were performed on the661

GENCI Occigen cluster at CINES by Matthieu Kuhn and Gilles Marait. We would also like to662

thank the anonymous referees whose constructive comments enabled us to significantly improve663

the manuscript. Finally, this work was partially supported by the French research agency ANR in664

the framework of the DEDALES project (ANR-14-CE23-0005), in particular the PhD thesis of the665

third author (in the alphabetical order) was funded by this project.666

References.667

[1] E. Agullo, E. Darve, L. Giraud, and Y. Harness, Low-Rank Factorizations in Data668

Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices,669

SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 1701–1725, https://hal.670

inria.fr/hal-01940053.671

[2] E. Agullo, L. Giraud, A. Guermouche, and J. Roman, Parallel hierarchical hy-672

21

https://hal.inria.fr/hal-01940053
https://hal.inria.fr/hal-01940053
https://hal.inria.fr/hal-01940053


brid linear solvers for emerging computing platforms, Comptes Rendus Mécanique, 339673
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