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Abstract: Heterogeneous computing systems became a popular and powerful platform, con-
taining several heterogeneous computing elements (e.g. CPU+GPU). In this paper, we consider
that we have two platforms, each with an unbounded number of processors. We want to execute
an application represented as a Directed acyclic Graph (DAG) using these two platforms. Each
task of the application has two possible execution times, depending on the platform it is executed
on. Also, there is a cost to transfer data from one platform to another between successive tasks.
The goal here is to minimize the finish execution time of the last task of the application (usually
called makespan). We show that the problem is NP-complete for graphs of depth at least 3 but
polynomial for graphs of depth at most 2. Finally, we focus on particular classes of graphs, by
providing polynomial-time algorithms for bi-partite graphs, trees and 2-series-parallel graphs with
different assumptions on communication delays.
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Ordonnancement sur deux ressources illimitées avec coûts
de communication

Résumé : Les systèmes de calculs hétérogènes (par exemple CPU+GPU) sont des plateformes
populaires. Dans ce travail, nous considérons une machine avec deux plateformes homogènes de
calcul, chacune contenant un nombre illimité de ressources de calcul. Nous cherchons à exécuter
une application représentée par un graphe de dépendance dirigé et acyclique sur ces plateformes.
Chaque tâche de l’application a deux possible modèle d’exécution en fonction de la plateforme
sur laquelles elles sont exécutées. En plus nous considérons un coût de communication entre
deux tâches successives si elles ne sont pas exécutées sur la même plateforme. Nous travaillons
à minimiser le temps d’exécution de l’application.

Nous montrons que le problème est NP-complet pour les graphes de profondeur au moins
trois, mais polynomial pour les graphes de profondeur au plus deux. En plus, nous montrons
qu’il est possible de calculer des solutions optimales en temps polynomial pour certaines classes
de graphes définies récursivement (arbres, graphes série-parallèles).

Mots-clés : ordonnancement, DAG, temps d’exécution, plateforme hétérogène, CPU, GPU
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1 Introduction

The past few years have seen an increase demand for developing efficient large computational
resources to process large amount of computations related to high performance parallel applica-
tions. Thus, High Performance Computers (HPC) became a popular and powerful commercial
platform, containing several heterogeneous processing elements. Consequently, more and more
attention has been focused on scheduling techniques for solving the problem of optimizing the
execution of parallel applications on heterogeneous computing systems.

In this work we revisit the work by Barthou and Jeannot [1]. We consider that we have two
platforms, each with an unbounded number of processors. We want to execute an application
represented as a Directed Acyclic Graph (DAG) using these two platforms. Each task of the
application has two possible execution times, depending on the platform it is executed on. Finally,
there is a cost to transfer data from one platform to another one between successive tasks.

In their work, Barthou and Jeannot [1] considered that each task could be executed on both
platforms and were able to compute in polynomial time an optimal schedule. Here we study the
problem where tasks cannot be re-executed.

While this problem arises more from a theoretical understanding of the process, we can
envision several directions linked to the usage of supercomputers (a.k.a High-Performance Com-
puters) where it could be useful.

High-Performance Computers consist of millions of nodes often either homogeneous, or of
two types of nodes (e.g. CPU+GPU)1.

With the increase of computing power, applications are able to generate increasingly more
data. However, the bandwidth for the Parallel File System to be able to deal with this data
does not increase as fast as the computing power. To deal with this, novel techniques are being
implemented (In-Situ/In-Transit analysis [2]) that allow to analyze this data in real-time on
separate node. This analysis then informs the main computation (a.k.a simulation). Typically,
the analysis can be either done on the same nodes as where the simulation is performed (in-situ),
or on different nodes that can be more efficient (in-transit), but this implies a cost to transfer
data. Note that typically the number of nodes allocated to the simulation is many orders of
magnitude higher than the number of analysis task, there are no real restriction on the number
of nodes that the analysis pipeline can use.

Another direction where we believe our results can be used is the convergence Big Data-
HPC. Several supercomputing centers have started to implement a convergence between Big-
Data/Cloud and HPC, where numerous small applications are run on a supercomputer [3, 4, 5].
In this context, cloud applications are treated as second class citizen, where they can use the
computing power not being used by actual HPC applications. From a typical Cloud-Computing
application, the number of nodes needed for each of its task is again many orders of magnitude
below that of a supercomputer. Hence one could expect that the main challenge for those jobs
will be to determine the type of node that they need (and its property), rather than focusing on
the number of available nodes.

Results: Our main contributions are the following. In the model formalized in Section 2, we
show that the problem is NP-complete for graphs of depth at least 3 but polynomial for graphs of
depth at most 2. We show that the problem cannot be approximated to a factor smaller than 3/2
unless P=NP. Finally, we provide polynomial-time algorithms for several classes of graphs. Those
results are presented in Section 3. Finally, after providing some related work in communication-
aware scheduling in Section 4, we provide concluding remarks and future directions.

1See for example the supercomputers at Argonne National Laboratory https://www.alcf.anl.gov/
computing-resources (accessed 09/2018)
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4 Ait Aba, Aupy, Munier

2 Model

2.1 Application Model

An application is represented by a Directed Acyclic Graph (DAG) G = (V,E), such that for all
(v1, v2) ∈ E, v2 cannot start its execution before the end of the execution of v1.

2.2 Platform Model

We consider a parallel platform of two types of machines: machines of type A and machines of
type B. For each type of machine we consider that there are an unbounded number of them.

2.3 Cost and objective functions

We define two cost functions: tA : V → R+ (resp. tB : V → R+) that define the time to execute
a task v ∈ V on a machine of type A (resp. B).

We also define two communication cost functions: cAB : E → R+ (resp. cBA : E → R+),
such that for all (v1, v2) ∈ E, if v1 is scheduled on a machine of type A (resp. B) and v2 is
scheduled on a machine of type B (resp. A), then v2 needs to wait cAB(v1, v2) (resp. cBA(v1, v2))
units of time after the end of the execution of v1 to start its execution.

The goal is to find a schedule of each task that minimizes the execution time (or makespan).
Because there is an unbounded number of processor of each type, it corresponds to finding an
allocation σ : V → {A,B} of all tasks on each type of processors. The makespan is then obtained
by computing the longest path of the graph G including the corresponding duration of the tasks
and the computations costs.

Definition 1 (Length of path). For a path p = v1 → v2 → · · · → vp of G and a schedule σ we
define len(p, σ):

len(p, σ) = tσ(v1)(v1) + cσ(v1)σ(v2)(v1, v2) + tσ(v2)(v2) + · · ·
+ tσ(vp)(vp)

The following lemma gives the makespan MS(G, σ) of a schedule associated with the alloca-
tion σ. It is based on the fact that there is an unbounded number of processors, and that there
is no delay due to tasks being conflicted on a shared machine.

Lemma 1.
MS(G, σ) = max

p∈{paths of G}
len(p, σ)

3 Results

In this section, we start by showing that the problem is strongly NP-complete for graph of depth
3, before providing some algorithms for specific graphs.

3.1 Complexity

Theorem 1. The problem of deciding whether an instance of our main problem has a schedule
of length 2 is strongly NP-complete even for graphs of depth 3.

Inria
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We perform the reduction from the 3-Satisfiability (3-SAT) problem which is known to
be NP-complete [6]: given C1, · · · , Cm be a set of disjunctive clauses where each clause contains
exactly three literals overX = {x1, · · · , xn} a set of boolean variables. Is there a truth assignment
to X such that each clause is satisfied?

In the following, we write each clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 where (xi1 , xi2 , xi3) ∈ X3, and
x̃k = xk or x̄k. We are looking for a truth assignment such that

∧m
i=1 Ci is true.

Proof. From an instance I1 of 3-SAT: C1, · · · , Cm over {x1, · · · , xn}, we construct the following
instance I2 for our problem.

For all i ∈ {1, · · · , n}, we define 2 tasks v0
ib and v∞i , and an edge (v0

i , v
∞
i ). Then for each

clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , 3 tasks vii1 , v
i
i2
, vii3 are created and the following set of edges:

{(vii1 , v
i
i2

), (vii2 , v
i
i3

), (vii1 , v
∞
i1

), (v0
i2
, vii2), (v0

i3
, vii3)}. For any j ∈ {1, · · · , n}, v?j denotes the set

of all the instanciations of xj in G.
Overall, the graph G = (V,E) of depth 3 has 2n+ 3m vertices and n+ 5m edges.
We then define the execution and communication costs that can be written in unit size: ∀j ∈

{1, · · · , n}, tA(v∞j ) = tB(v∞j ) = tA(v0
j ) = tB(v0

j ) = 0 and cAB(v0
j , v
∞
j ) = cBA(v0

j , v
∞
j ) = 3. For

all edges (vij , v
∞
j ), (v0

j′ , v
i′

j′) ∈ E, we add the communication costs cAB(vij , v
∞
j ) = cBA(vij , v

∞
j ) =

cAB(v0
j′ , v

i′

j′) = cBA(v0
j′ , v

i′

j′) = 3. Then for Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 we define the time costs:

tA(viij ) = 1− tB(viij ) =

{
1 if x̃ij = x̄ij
0 if x̃ij = xij

(1)

and we set cAB(vii1 , v
i
i2

) = cBA(vii1 , v
i
i2

) = cAB(vii2 , v
i
i3

) = cBA(vii2 , v
i
i3

) = 0.
Finally, in the instance I2, we want to study whether there exists a schedule σ whose makespan

is not greater than 2.
We show an example in Figure 1 of the construction of the graph. Here, the clause C1 = x1∨

x̄4∨x2 is associated with the vertices v1
1 , v1

4 and v1
2 and the arcs set {(v1

1 , v
1
4), (v1

4 , v
1
2), (v1

1 , v
∞
1 ), (v0

4 , v
1
4), (v0

2 , v
1
2)}.

Moreover, tA(v1
1) = tA(v1

2) = 0, tA(v1
4) = 1, tB(v1

1) = tB(v1
2) = 1 and tB(v1

4) = 0. Note that
v?1 = {v0

1 , v
∞
1 , v1

1 , v
2
1 , v

3
1}, v?2 = {v0

2 , v
∞
2 , v1

2 , v
3
2}, v?3 = {v0

3 , v
∞
3 , v2

3 , v
3
3} and v?4 = {v0

4 , v
∞
4 , v1

4 , v
2
4}.

Next lemmas provide dominance properties on feasible schedules of I2:

Lemma 2. Let S be the set of schedules such that, ∀σ ∈ S, all tasks from v?j are scheduled by
the same type of machines, i.e, for any couple (vαj , v

β
j ) ∈ vj × vj, σ(vαj ) = σ(vβj ). Any feasible

solution σ of I2 belongs to S.

Proof. Let us suppose by contradiction that a feasible solution σ 6∈ S. Two cases must then be
considered:

• If there exists j ∈ {1, · · · , n} with σ(v0
j ) 6= σ(v∞j ), then there is a communication delay of

3 between them and len(v0
j → v1

j , σ) = 3.

• Otherwise, ∀j ∈ {1, · · · , n}, σ(v0
j ) = σ(v∞j ). Thus, there exists a task vij with σ(vij) 6=

σ(v0
j ). If vij is associated to the first term of the clause Ci, then (v0

j , v
i
j) ∈ E and len(v0

j →
vij , σ) = 3. Otherwise, (vij , v

∞
j ) ∈ E and len(vij → v∞j , σ) = 3.

The makespan of σ is at least 3 in both cases, the contradiction.

Lemma 3. For any schedule σ ∈ S, MS(G, σ) = maxi∈{1,··· ,m} len(vii1 → vii2 → vii3 , σ).

Proof. To do this, we study the length of paths of G.

RR n° 9264
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v11 v12v14

v23 v24 v21

v31 v32 v33

v01 v∞1

v02 v∞2

v03 v∞3

v04 v∞4

Figure 1: Transformation of (x1 ∨ x̄4 ∨ x2)
∧

(x̄3 ∨ x̄4 ∨ x1)
∧

(x1 ∨ x2 ∨ x3) (m = 3 clauses, n = 4
variables) into the associated graph G = (V,E).

• Let j ∈ {1, · · · , n}, len(v0
j → v∞j , σ) = 0 since σ(v0

j ) = σ(v∞j ).

• Let i ∈ {1, · · · ,m} associated with the clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 :

1. Let consider first the path vii1 → v∞i1 . By Lemma 2, σ(vii1) = σ(v∞i1 ) and thus
cσ(vii1

)σ(v∞i1
)(v

i
i1
, v∞i1 ) = 0. Since len(v∞i1 , σ) = 0,

len(vii1 → v∞i1 , σ) = len(vii1 , σ) ≤ len(vii1 → vii2 → vii3 , σ).

2. Let consider now the path v0
i2
→ vii2 → vii3 . Similarly, σ(v0

i2
) = σ(vii2) hence

len(v0
i2 → vii2 → vii3 , σ) = len(vii2 → vii3 , σ) ≤ len(vii1 → vii2 → vii3 , σ).

3. Lastly, for the path (v0
i3
→ vii3), since σ(v0

i3
) = σ(vii3),

len(v0
i3 → vii3 , σ) = len(vii3 , σ) ≤ len(vii1 → vii2 → vii3 , σ),

which concludes the lemma.

Inria



Scheduling on Two Unbounded Resources with Communication Costs 7

Assume that λ is a solution of I1, let us show that the schedule defined as follow, ∀j ∈
{1, · · · , n}, ∀vαj ∈ v?j ,

σλ : vαj 7→

{
A if λ(xj) = 1

B if λ(xj) = 0

has a makespan not greater than 2 and thus is a solution. Following Lemma 3, we must prove
that ∀i ∈ {1, · · · , n}, len(vii1 → vii2 → vii3 , σλ) ≤ 2.

For any clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , since λ(Ci) = 1, there exists j ∈ {1, 2, 3} such that
λ(x̃ij ) = 1. Two cases must be considered:

1. If x̃ij = xij , then by definition tA(viij ) = 0. Since λ(xij ) = 1, σλ(viij ) = A and thus
len(viij , σλ) = tA(viij ) = 0.

2. Otherwise, x̃ij = x̄ij and tB(viij ) = 0. Now, as λ(xij ) = 0, σλ(viij ) = B and thus
len(viij , σλ) = tB(viij ) = 0.

len(viij , σλ) = 0 in both cases, so len(vii1 → vii2 → vii3 , σλ) ≤ 2.

Assume now that we have a solution σ of I2, let us show that λσ(xj) = [σ(v∞j ) = A] is
a solution to I1.

Following Lemma 2, σ ∈ S. Moreover, for any clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , the corresponding
path of G verifies len(vii1 → vii2 → vii3 , σ) ≤ 2. Thus, there is j ∈ {1, 2, 3} with len(viij , σ) = 0.
Two cases must be considered:

1. If x̃ij = xij then by definition tA(viij ) = 0 and tB(viij ) = 1. So, σ(viij ) = A and thus
λσ(xij ) = 1.

2. Else, x̃ij = x̄ij and thus tA(viij ) = 1 and tB(viij ) = 0. So, σ(viij ) = B and thus λσ(x̄ij ) = 1.

So, at least one term of Ci is true following λσ, λσ is then a solution to I1.
This concludes the proof that the problem is strongly NP-complete.

Corollary 1. There is no polynomial-time algorithm for the problem with a performance bound
smaller than 3

2 unless P = NP.

Proof. By contradiction, let us suppose that there exists a polynomial-time algorithm with a
performance ratio ρ < 3

2 . This algorithm can be used to decide the existence of a schedule a
length at most 2 for any instance I. We deduce that there exists a polynomial time algorithm to
decide the existence of a schedule of length strictly less than 3, which contradicts Theorem 1.

3.2 Polynomial algorithms

Bi-partite graphs We have shown that the problem is NP-hard if the graph has depth 3. The
natural question that arises is whether it is already NP-hard for graphs of lower depth. We show
that it can be solved in polynomial time for graphs of depth 2 (bipartite graphs).

Theorem 2. BiPartAlgo(G) provides an optimal solution in polynomial time when G has
depth 2.

RR n° 9264



8 Ait Aba, Aupy, Munier

The intuition of the proof is that in the case of a biparte graph G = (V,E), the paths are
exactly the edges of G. Hence we measure the makespan of all possible allocations for all edges
(four allocations per edge i, j: (σ(i), σ(j)) ∈ {A,B}2 = {(A,A), (A,B), (B,A), (B,B)}). We call
this set: WgPaths.

WgPaths =
{

(len(i→ j, σ), i, j, σi, σj)
∣∣ (2)

(i, j) ∈ V, (σ(i), σ(j)) ∈ {A,B}2, σ(i) = σi, σ(j) = σj

}
.

Note that this set can be constructed in polynomial time (see Algorithm 1).

Algorithm 1 Constructing the set WgPaths
1: procedure MkWgPaths(V,E)
2: WgPaths← {}
3: for (i, j) ∈ E do
4: for (σi, σj) ∈ {A,B}2 do
5: tσiσj ← tσi(i) + cσiσj (i, j) + tσj (j)

/*tσiσj = len(i→ j, σ) when σ(i) = σi and σ(j) = σj*/

6: WgPaths← WgPaths ∪
(
tσiσj , i, j, σi, σj

)
7: end for
8: end for
9: return WgPaths

10: end procedure

Finally to minimize the makespan, we iteratively remove the allocation that would maximize
the makespan. We check that there still exists a possible schedule.

Algorithm 2 Polynomial algorithm for G = (V,E) a bipartite graph
1: procedure BiPartAlgo(G)
2: WgPaths← MkWgPaths(G)
3: Palg ← True; Ptmp ← True

/* Palg and Ptmp are clauses with n variables*/

4: for
(
tσiσj , i, j, σi, σj

)
∈ WgPaths, by decreasing value of tσiσj do

5: Ptmp ← P ∧
(
[Xi = 1B(σi)] ∨ [Xj = 1B(σj)]

)
/* where 1B(x) = 0 if x = A, 1 otherwise*/

6: if Ptmp is satisfiable then
7: Palg ← Ptmp
8: else
9: Break

10: end if
11: end for
12: X1, · · · , Xn ← Solve(Palg)
13: return σλ : i 7→ λ(Xi) · A+ (1− λ(Xi)) · B
14: end procedure

Inria



Scheduling on Two Unbounded Resources with Communication Costs 9

In what follows, we use the following notation. For a schedule σ and a time D:

WP(D) =
{

(i, j, σi, σj) s.t.
(
tσiσj

, i, j, σi, σj
)
∈ WgPaths

and tσiσj > D
}

PD(σ) =
∧

(i,j,σi,σj)∈WP(D)

[(σ(i) 6= σi) ∨ (σ(j) 6= σj)]

Intuitively, WP(D) is the set of paths and allocations of length greater than D.

Lemma 4. Let σ be a schedule of makespan D, then PD(σ) is satisfied.

This result is a direct consequence of the fact that there should be no path of length greater
than D. Hence for (i, j, σi, σj) ∈ WP(D), we know that we do not have simultaneously in the
schedule: (σ(i) = σi) ∧ (σ(j) = σj).

Hence,

¬
∨

(i,j,σi,σj)∈WP(D)

[(σ(i) = σi) ∧ (σ(j) = σj)]

=
∧

(i,j,σi,σj)∈WP(D)

[(σ(i) 6= σi) ∨ (σ(j) 6= σj)]

= PD(σ)

Proof of Theorem 2. Consider an instance G of the problem. Let Dalg be the deadline of the
schedule returned by BiPartAlgo(G), and Palg be the set of clauses computed by it (line 12).

Let Walg = {(i, j, σi, σj)|(tσiσj , i, j, σi, σj) ∈ WgPaths} s.t.

Palg =
∨

(i,j,σi,σj)∈Walg

[(σ(i) = σi) ∧ (σ(j) = σj)] . (3)

Then by construction of Palg, we have the following properties:

1. Forall ε > 0,
WP(Dalg) ⊂Walg ⊂WP(Dalg−ε)

This is because we add paths by decreasing the value of makespan (line 4).

2. There exists (Dalg, i0, j0, σi0 , σj0) ∈ WgPaths s.t.

Palg is satisfiable,

Palg
∨

[(σ(i0) = σi0) ∧ (σ(j0) = σj0)] is not satisfiable.

This is the stopping condition on line 9.

We show the optimality of Algorithm 2 by contradiction. If it is not optimal, then Dopt <
Dalg, and

Walg ∪ (i0, j0, σi0 , σj0) ⊂WP(Dopt).

Furthermore, according to Lemma 4, PDopt(σopt) is satisfied, hence σopt is also a solution to
Palg

∨
[(σ(i0) = σi0) ∧ (σ(j0) = σj0)]. This contradicts the fact that it does not admit a solution

hence contradicting the non optimality.
Finally, the complexity of MkWgPaths(V,E) is Θ(|E|). In Algorithm 2, we unwind the

loop for (line 4) 4|E| times, and we verify if Ptmp is satisfiable in line 6 with a complexity of
Θ(n + k) where k is the number of clauses is Ptmp. Since the number of iterations is bounded
by 3|E|, the complexity of Algorithm 2 is O(|E|2).

RR n° 9264
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1

2 3

4 5 6 7 8

v ∈ V tA(v) tB(v)
1 2 3
2 3 2
3 4 2
4 5 2
5 3 3
6 5 1
7 2 5
8 3 1

a ∈ E cAB(a) cBA(a)
(3, 8) 2 3
(3, 7) 3 3
(3, 6) 3 4
(2, 4) 2 2
(2, 5) 3 2
(1, 2) 1 4
(1, 3) 4 3

Figure 2: An out-tree G, duration of tasks and communication costs.

Tree-shaped graphs We assume now that the DAG G = (V,E) is an out-tree rooted by
r ∈ V . For any task u ∈ V , the sub-tree rooted by u is the sub-graph Gu of G which vertices are
the descendants of u.

For any task u ∈ V , let us denote by DA(u) (resp. DB(u)) the lower bound of the minimal
makespan of Gu assuming that σ(u) = A (resp. σ(u) = B). Let us suppose that the arc (u, v) ∈ E.
Observe that, if DA(v) ≤ cAB(u, v) + DB(v), then DA(u) ≥ tA(u) + DA(v). In the opposite,
DA(u) ≥ tA(u) + cAB(u, v) +DB(v) and thus DA(u) ≥ tA(u) + min(DA(v), cAB(u, v) +DB(v)).
Similarly, DB(u) ≥ tB(u) + min(DB(v), cBA(u, v) +DA(v)).

For any task u ∈ V , we set Γ+(u) = {v ∈ V, (u, v) ∈ E}. For any allocation function σ,
let σ̄(u) = A if σ(u) = B, σ̄(u) = B otherwise. Then, for any task u ∈ V , we get Dσ(u)(u) =
tσ(u)(u) + maxv∈Γ+(u) min(Dσ(u)(v), cσ(u)σ̄(u) +Dσ̄(u)(v)).

Theorem 3. An allocation σ may be built such that the corresponding schedule of length D(r)
verifies D(r) = min(DA(r), DB(r)) and thus is optimal.

Proof. Let us suppose that lower bounds DA(u) and DB(u) for u ∈ V are given. Let us define
the allocation σ as σ(r) = A if DA(r) ≤ DB(r) and σ(r) = B in the opposite. For any task v 6= r
with (u, v) ∈ E, we set σ(v) = σ(u) if Dσ(u)(v) < Dσ̄(u)(v) + cσ(u)σ̄(u)(u, v), and σ(v) = σ̄(u)
otherwise.

For any task u, we prove that length D(u) of the schedule of Gu for the allocation σ verifies
D(u) = Dσ(u)(u). If u is a leaf, D(u) = tσ(u)(u) = Dσ(u)(u).

Now, let suppose that Γ+(u) 6= ∅ and that, for any arc (u, v) ∈ E, if σ(u) = σ(v),
cσ(u)σ(v)(u, v) = 0. Then, if we set ∆σ(u, v) = D(v) + cσ(u)σ(v)(u, v), we get by induction
∆σ(u, v) = Dσ(v)(v)+cσ(u)σ(v)(u, v) and by definition of σ, ∆σ(u, v) = min(Dσ(u)(v), Dσ̄(u)(v)+

cσ(u)σ̄(u)(u, v)). Now, D(u) = tσ(u)(u) + maxv∈Γ+(u) ∆σ(u, v) and thus by definition of Dσ(u),
D(u) = Dσ(u), which concludes the proof.

A polynomial time algorithm of time complexity Θ(n) can be deduced by computing first
DA, DB and then σ.

Example. Let us consider as example the out-tree pictured by Figure 2. Figure 3 shows the
lower bound DA and DB and a corresponding optimal schedule.

Series-Parallel graphs Let us consider a two terminal Series Parallel digraph (2SP in short)
as defined in [7, 8]. Each element of this class has a unique source s and a unique sink t with
s 6= t. It is formally defined as follows where G and H are two 2SP graphs.
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Scheduling on Two Unbounded Resources with Communication Costs 11

v ∈ V DA(u) DB(u)
1 10 10
2 7 5
3 8 7
4 5 2
5 3 3
6 5 1
7 2 5
8 3 1

A

B

1 3 7

2 4 8

5 6

Figure 3: Lower bounds DA and DB. An optimal schedule is presented for the allocation
σ(1) = A, σ(2) = B, σ(3) = A, σ(4) = B, σ(5) = B, σ(6) = B, σ(7) = A and σ(8) = B.

• The arc (s, t) ∈ 2SP ;

• The series composition of G and H is denoted by G.H and is built by identifying the sink
of G with the source of H;

• The parallel composition is denoted by G +H and identifies respectively the sinks and the
sources of the two digraphs.

Figure 4 pictures a 2SP graph and its associated decomposition tree.

1

2

3

4

5

+
. .

+

.

(1, 2) (2, 3)

(1, 3)

(3, 5) (1, 4) (4, 5)

Figure 4: A 2SP graph and its associated decomposition tree. Leaves correspond to arcs, while
internal nodes are series or parallel compositions.

For any element G ∈ 2SP with a source s and a sink t and for any couple (α, β) ∈ {A,B}2,
let us denote by Dαβ(G) a lower bound defined as follows of the minimum length of a schedule
of G with σ(s) = α and σ(t) = β. For any graph G with a unique arc e = (s, t), for any couple
(α, β) ∈ {A,B}2,

Dαβ(G) =

{
tα(s) + tβ(t) + cαβ(s, t) if α 6= β
tα(s) + tβ(t) otherwise.

Now, if G andH are two 2SP , then for the series composition, we setDαβ(G.H) = minγ∈{A,B}(D
αγ(G)+

Dγβ(H) − tγ(t)) where t is the sink of G. Similarly, for the parallel composition, we set
Dαβ(G +H) = max(Dαβ(G), Dαβ(H)).

We define the allocation function σ associated with a 2SP graph G and the corresponding
length D(G) as follows. We set D(G) = min(α,β)∈{A,B}2(Dαβ(G)). We also set σ(s) and σ(t)
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12 Ait Aba, Aupy, Munier

the allocation function of the source and the sink of G as D(G) = Dσ(s)σ(t)(G). Now, for any
series composition, let us suppose that s and t (resp. s′ and t′) are the source and the sink of
G (resp. H). We also suppose that σ(s) and σ(t′) are fixed. Then, for G.H, t = s′ and we get
σ(t) = γ ∈ {A,B} such that D(G.H) = Dσ(s)σ(t)(G) +Dσ(s′)σ(t′)(H)− tσ(t)(t).

If G is a 2SP graph of source s and sink t, any vertex v ∈ V − {s, t} is involved in a series
composition, and thus σ is completely defined.

Theorem 4. For any 2SP graph G of source s and sink t, D(G) = Dσ(s)σ(t)(G).

Proof. The equality is clearly true if G is an arc (s, t). Indeed, we get in this case D(G) =
min(α,β)∈{A,B}2(Dαβ(G)) = Dσ(s)σ(t)(G).

Now, let us suppose that s and t (resp. s′ and t′) are the source and the sink of G (resp.
H) and that D(G) = Dσ(s)σ(t)(G) and D(H) = Dσ(s′)σ(t′)(H). For a parallel composition,
D(G +H) = max(Dσ(s)σ(t)(G), Dσ(s′)σ(t′)(H)) = Dσ(s)σ(t)(G +H) as s = s′ and t = t′.

For the series composition, D(G.H) = D(G) +D(H)− tσ(t)(t) = Dσ(s)σ(t)(G.H), since t = s′,
which concludes the proof.

Corollary 2. A polynomial-time algorithm of time complexity Θ(|E|) can be deduced by com-
puting lower bounds Dαβ, (α, β) ∈ {A,B}2 for each graph issued from the decomposition of G
and a corresponding allocation σ.

4 Related Work
We discuss in this section the different works related to scheduling either with two types of
machines, with an unbounded number of processors, or/and with communication costs. Note
that these topics have been widely studied in the past, so we focus on the work closest to our
problem.

Hybrid parallel platforms Different works have considered the problem of hybrid parallel
platforms, that is where there are k-types of homogeneous machines, each with a limited number
of processors in order to minimize the makespan. This problem is a recurring problem when con-
sidering CPU/GPU platforms (k = 2). Even with no communication delays, the problem is also
NP-hard if the number of processors is limited. For independent tasks, a 2-approximation algo-
rithms have been proposed by Marchal et al. [9] and Kedad et al. [10]. A similar approximation
was given by Lenstra et al. [11] for fully heterogeneous platforms with no communication delays.
Kedad et al. [12] developed a tight 6-approximation algorithm for general structure graphs on
hybrid parallel multi-core machines, composed of CPUs with additional accelerators (GPUs).
This work was later revisited by Amaris et al.[13] who showed that by separating the allocation
phase and the scheduling phase, they could obtain algorithms with a similar approximation ratio
but that performs significantly better in practice. Using a platform with processors of K different
speeds, a 2(K + 1)-approximation algorithm has been developed by Chudak et al. [14].

Finally, Ait Aba et al. [15] have extended the work of Amaris et al.[13] to take into account
communications in the case of an hybrid platform. They provide a non polynomial-time two-
phases approach with a performance guarantee of 6. The first phase consists in solving the
assignment problem to find the type of processor assigned to execute each task (CPU or GPU)
using a mixed integer linear program. In the second phase, a list scheduling algorithm has
been proposed to generate a feasible schedule using two rounding policies. Note that the same
allocation phase can be used for our model, which would reduce the approximation ratio to 2.
However because it is not polynomial, for the same complexity one could obtain directly the
optimal solution.
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Duplications to reduce communications Duplication has been often used in the context
of scheduling with communication costs. Indeed, executing a task on more than one processors
allows for its successor to be ready sooner by not waiting for the data transfer. Bajai and
Agrawal [16] proposed a task duplication based scheduling algorithm for network of heterogeneous
systems. This algorithm combines cluster based scheduling and duplication based scheduling to
find the optimal solution, provided a set of conditions on task computation and communication
time could be satisfied. Kwok and Ahmad [17] wrote a large survey of many algorithms for
scheduling in the presence of communication delays with duplication and a limited number of
processors.

In the context of an unlimited number of processors, one can only consider a finite number of
performance profile (computation cost) and of communication cost for the problem to remain in
NP. In the case where all processors have the same processing power and there is a cost for any
communication the problem remains NP-complete. However, Darbha and Agrawal [18] provide
an optimal solution TDS (Task Duplication based Scheduling) when the communications satisfy
some constraints (namely they are not too large compare to the computation costs). This work
was later extended by Park and Choe [19] for the opposite case, meaning that the communications
are significantly larger than computations.

This work was then studied for hybrid platforms (with two types of machines) by Barthou
and Jeannot [1]. They provide a O(4|E|+2|V |) polynomial-time algorithm in this context. They
further discuss a possible extension of their work to the case where the number of processors
of each type is limited by differentiating the allocation part (using their algorithm) and the
scheduling part. [20] has developed a genetic algorithm (GA) approach to the problem of task
scheduling for multiprocessor systems.

Communication without duplication While it makes sense to allow duplication when the
number of processors is unbounded to reduce the makespan, it may lead to other problem, such
as additional energy consumption and significant memory footprint. In these case it may be
interesting to study the same problem where duplication is not allowed.

There are many works that study the NP-complete problem of scheduling graphs on parallel
platforms with communication work in order to minimize the makespan. The most famous
heuristic developed for this problem is HEFT [21] which has no performance guarantee but that
performs particularly well. Other heuristics for this problem can be roughly partitioned in two
classes: clustering and list scheduling algorithms.

Clustering algorithms [22, 23] usually provide good solutions for communication-intensive
graphs by scheduling heavily communicating tasks onto the same processor. After grouping
tasks into a set of clusters using different clustering policies, clusters are mapped onto processors
using communication sensitive or insensitive heuristics. Note that these solutions cannot be
necessarily adapted to our problem because with an infinite number of processors of each type,
the risk is to see in the end a single cluster. However in the future it may be an interesting
direction to develop efficient algorithms.

List scheduling algorithms [24] are often used to handle a limited number of processors. For
our general problem, most of them [25, 26, 27, 28] can be decomposed in two main phases. The
first one assigns priorities based on certain task properties, typically run time and/or communi-
cation delays. The second phase assigns tasks to processors following priorities.

Experimentally, a comparison of different list scheduling algorithms can be found in the work
of Kushwaha and Kumar [28]. Wang and Sinnen [29] provide a wide comparison of clustering
and list scheduling algorithms for limited and unlimited number of processors.

We summarize all references in Table 1 depending on the constraint models or platforms.
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Table 1: List of works on different applications and platforms to minimize the execution time.
We call hybrid a platform with k types of processors where there are no communication costs
within a type.

Application

Platform
Unlimited processors Limited processors

Homogeneous Hybrid Heterogeneous Hybrid

processors platforms processors platforms

NP-c (folklore) 2-approx

Independent tasks P (folklore) P (folklore) [11] [9, 10]

(k = 2)

Dependant task without NP-c (folklore) NP-c (folklore)

communication delays P (folklore) P (folklore) 2(K + 1)−approx [14] 6-approx [12, 13]

(k = 2)

Dependant task with NP-c (general) P [1] NP-c NP-c

communication delays P (special cases): (k = 2) [20, 16] Heuristics [1]

with duplication [18, 19]

Dependant task with NP-c [This work]: NP-c NP-c

communication delays [23, 30] NP-c [22, 28, 25] [15]

without duplication P (special cases) [26, 27]

5 Future directions

With this work we have studied the problem of scheduling a Directed Acyclic Graph on a un-
bounded hybrid platforms. Specifically our platform consists of two machines, each with an
unbounded number of resources. Moving data from one machine to the other one has a commu-
nication cost. We have shown the intractability of the problem by reducing this problem to the
3-satisfiability problem. We have shown that there does not exist 3/2-approximation algorithms
unless P=NP. We have further provided some polynomial time algorithms for special cases of
graphs.

The model presented here can be interesting in the context of high-performance comput-
ing where one wants to schedule critical analysis DAGs that need significantly fewer compute
resources than the main simulations (In-Situ/In-Transit analysis).

There are several extensions that we can see to this work. In the context of two unbounded
platforms, it would be interesting to find some polynomial time algorithms with proven bounds
to the optimal. We do not expect to be able to find one in the general case, but we hope that
with some constraints between the communication costs and computation cost (as is often done
in the context of scheduling DAGs with communications), one may able to find such algorithms.

We also plan to study different versions of this problem that make sense in other context.
For example in the context of smartphone applications, we can model the frontend/backend
context where the phone (Machine 1) has a limited number of available processors, but can rely
on sending some of the computation on a backend machine (cloud-based), with an unbounded
number of processors. Similarly to here, the problem is a data and communication problem:
given the cost to transfer data from one machine to the other one, what is the most efficient
strategy.

Inria



Scheduling on Two Unbounded Resources with Communication Costs 15

References

[1] D. Barthou and E. Jeannot, “Spaghetti: Scheduling/placement approach for task-graphs on
heterogeneous architecture,” in Euro-Par 2014 Parallel Processing. Springer International
Publishing, 2014, pp. 174–185.

[2] M. Dorier, M. Dreher, T. Peterka, J. M. Wozniak, G. Antoniu, and B. Raffin, “Lessons
learned from building in situ coupling frameworks,” in Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization. ACM,
2015, pp. 19–24.

[3] M. Asch, T. Moore, R. Badia, M. Beck, P. Beckman, T. Bidot, F. Bodin, F. Cappello,
A. Choudhary, B. de Supinski et al., “Big data and extreme-scale computing: Pathways to
convergence-toward a shaping strategy for a future software and data ecosystem for scientific
inquiry,” The International Journal of High Performance Computing Applications, vol. 32,
no. 4, pp. 435–479, 2018.

[4] X. Yang, C. Wu, K. Lu, L. Fang, Y. Zhang, S. Li, G. Guo, and Y. Du, “An interface for
biomedical big data processing on the tianhe-2 supercomputer,” Molecules, vol. 22, no. 12,
2017.

[5] I. Raicu, I. T. Foster, and Y. Zhao, “Many-task computing for grids and supercomputers,”
in Many-Task Computing on Grids and Supercomputers, 2008. MTAGS 2008. Workshop on.
IEEE, 2008, pp. 1–11.

[6] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer com-
putations. Springer, 1972, pp. 85–103.

[7] J. Valdes, R. Tarjan, and E. Lawler, “The recognition of series parallel digraphs,”
SIAM Journal on Computing, vol. 11, no. 2, pp. 298–313, 1982. [Online]. Available:
https://doi.org/10.1137/0211023

[8] B. Schoenmakers, A new algorithm for the recognition of series parallel graphs, ser. CWI
report. CS-R. CWI, 1995.

[9] L. Marchal, L.-C. Canon, and F. Vivien, “Low-cost approximation algorithms for schedul-
ing independent tasks on hybrid platforms,” Ph.D. dissertation, Inria-Research Centre
Grenoble–Rhône-Alpes, 2017.

[10] S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram, “A family of scheduling al-
gorithms for hybrid parallel platforms,” International Journal of Foundations of Computer
Science, vol. 29, no. 01, pp. 63–90, 2018.

[11] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms for scheduling
unrelated parallel machines,” Mathematical programming, vol. 46, no. 1-3, pp. 259–271,
1990.

[12] S. Kedad-Sidhoum, F. Monna, and D. Trystram, “Scheduling tasks with precedence con-
straints on hybrid multi-core machines,” in IPDPSW. IEEE, 2015, pp. 27–33.

[13] M. Amaris, G. Lucarelli, C. Mommessin, and D. Trystram, “Generic algorithms for schedul-
ing applications on hybrid multi-core machines,” in European Conference on Parallel Pro-
cessing. Springer, 2017, pp. 220–231.

RR n° 9264

https://doi.org/10.1137/0211023


16 Ait Aba, Aupy, Munier

[14] F. A. Chudak and D. B. Shmoys, “Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds,” Journal of Algo-
rithms, vol. 30, no. 2, pp. 323–343, 1999.

[15] M. Ait Aba, L. Zaourar, and A. Munier, “Approximation algorithm for scheduling appli-
cations on hybrid multi-core machines with communications delays,” in IPDPSW. IEEE,
2018.

[16] R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous environment,”
IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 2, pp. 107–118, 2004.

[17] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs
to multiprocessors,” ACM Computing Surveys (CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[18] S. Darbha and D. P. Agrawal, “Optimal scheduling algorithm for distributed-memory ma-
chines,” IEEE transactions on parallel and distributed systems, vol. 9, no. 1, pp. 87–95,
1998.

[19] C.-I. Park and T.-Y. Choe, “An optimal scheduling algorithm based on task duplication,”
in Parallel and Distributed Systems, 2001. ICPADS 2001. Proceedings. Eighth International
Conference on. IEEE, 2001, pp. 9–14.

[20] A. S. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone, “An incremental genetic algorithm
approach to multiprocessor scheduling,” IEEE Transactions on parallel and distributed sys-
tems, vol. 15, no. 9, pp. 824–834, 2004.

[21] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity task
scheduling for heterogeneous computing,” IEEE transactions on parallel and distributed sys-
tems, vol. 13, no. 3, pp. 260–274, 2002.

[22] C. Boeres, V. E. Rebello et al., “A cluster-based strategy for scheduling task on hetero-
geneous processors,” in Computer Architecture and High Performance Computing, 2004.
SBAC-PAD 2004. 16th Symposium on. IEEE, 2004, pp. 214–221.

[23] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on an unbounded number of
processors,” IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 9, pp. 951–
967, 1994.

[24] M. R. Garey and D. S. Johnson, “Complexity results for multiprocessor scheduling under
resource constraints,” SIAM Journal on Computing, vol. 4, no. 4, pp. 397–411, 1975.

[25] L. F. Bittencourt, R. Sakellariou, and E. R. Madeira, “Dag scheduling using a lookahead vari-
ant of the heterogeneous earliest finish time algorithm,” in Parallel, Distributed and Network-
Based Processing (PDP), 2010 18th Euromicro International Conference on. IEEE, 2010,
pp. 27–34.

[26] M. A. Khan, “Scheduling for heterogeneous systems using constrained critical paths,” Par-
allel Computing, vol. 38, no. 4-5, pp. 175–193, 2012.

[27] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heterogeneous systems by
an optimistic cost table,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 3, pp. 682–694, 2014.

[28] S. Kushwaha and S. Kumar, “An investigation of list heuristic scheduling algorithms for
multiprocessor system.” IUP Journal of Computer Sciences, vol. 11, no. 2, 2017.

Inria



Scheduling on Two Unbounded Resources with Communication Costs 17

[29] H. Wang and O. Sinnen, “List-scheduling vs. cluster-scheduling,” IEEE Transactions on
Parallel and Distributed Systems, 2018.

[30] T. Yang and A. Gerasoulis, “A fast static scheduling algorithm for dags on an unbounded
number of processors,” in Proceedings of the 1991 ACM/IEEE conference on Supercomput-
ing. ACM, 1991, pp. 633–642.

RR n° 9264



RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Model
	Application Model
	Platform Model
	Cost and objective functions

	Results
	Complexity
	Polynomial algorithms

	Related Work
	Future directions

