
HAL Id: hal-02078072
https://hal.archives-ouvertes.fr/hal-02078072

Submitted on 25 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STAKECUBE: Combining Sharding and Proof-of-Stake
to build Fork-free Secure Permissionless Distributed

Ledgers
Antoine Durand, Emmanuelle Anceaume, Romaric Ludinard

To cite this version:
Antoine Durand, Emmanuelle Anceaume, Romaric Ludinard. STAKECUBE: Combining Sharding
and Proof-of-Stake to build Fork-free Secure Permissionless Distributed Ledgers. International con-
ference on networked systems (NETYS), Jun 2019, Marrakesh, Morocco. �hal-02078072�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195822999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02078072
https://hal.archives-ouvertes.fr

STAKECUBE: Combining Sharding and
Proof-of-Stake to build Fork-free Secure

Permissionless Distributed Ledgers

Antoine Durand1, Emmanuelle Anceaume2, and Romaric Ludinard3

1 IRT SystemX, Paris-Saclay, France antoine.durand@irt-systemx.fr
2 CNRS/Université Rennes, France emmanuelle.anceaume@irisa.fr
3 IMT Atlantique, France romaric.ludinard@imt-atlantique.fr

Abstract. Our work focuses on the design of a scalable permissionless
blockchain in the proof-of-stake setting. In particular, we use a distributed
hash table as a building block to set up randomized shards, and then lever-
age the sharded architecture to validate blocks in an efficient manner. We
combine verifiable Byzantine agreements run by shards of stakeholders
and a block validation protocol to guarantee that forks occur with negligi-
ble probability. We impose induced churn to make shards robust to eclipse
attacks, and we rely on the UTXO coin model to guarantee that any stake-
holder action is securely verifiable by anyone. Our protocol works against
adaptive adversary, and makes no synchrony assumption beyond what is
required for the byzantine agreement.

Keywords: Blockchain · Proof-of-Stake · Distributed Hash Table · Sharding

1 Introduction

Permissionless blockchains, also called distributed ledgers, initially appeared as
the technological solution for the deployment of the Bitcoin digital cryptocur-
rency and payment system [23]. Permissionless blockchains aim at achieving
the impressive result of being a persistent, distributed, consistent and continu-
ously growing log of transactions, publicly auditable and writable by anyone.
Despite the openness of the environment and thus the inescapable presence of
malicious behaviors, security and consistency of permissionless blockchains do
not demand the presence of a trusted third party.

This is a real achievement, which mainly results from the tight combination
of two ingredients: a randomized election of the next block of transactions to be
appended to the blockchain and a short latency broadcast primitive. While the
latter one relies on the properties of peer-to-peer networks, the former one has
so far been commonly implemented by solving proof-of-work (PoW), a crypto-
graphic puzzle that is provably secure against a large proportion of participants
that may wish to disrupt the system, and allows to keep the rate at which blocks
are created parametrizable and independent of the size of the system. This sec-
ond aspect is important to guarantee that the ratio between the message transmis-
sion delay and the block time interval remains low enough whatever the system
activity, guaranteeing accordingly an easy management of conflicting blocks, if
any.

Unfortunately, resilience of PoW-based solutions fundamentally relies on
the massive use of computational resources, which is a real issue today. Lot

of investigations have been devoted to find a secure alternative to PoW, but
most of them either rely on the intensive use of a large quantity of physical
resources (e.g., proof-of-space [5], proof-of-space/time [22]) or makes com-
promises in their trust assumptions (e.g. proof-of-elapsed-time [18], delegated
proof-of-stake [14]). In contrast, solutions based on proof-of-stake (PoS) seem
to be a quite promising way to build secure and permissionless blockchains. In-
deed, proof-of-stake rely on a limited but abstract resource, the crypto-currency,
in such a way that the probability for a participant to create the next block of
the blockchain is generally proportional to the fraction of currency owned by
this participant. It is an elegant alternative in the sense that all the information
needed to verify the legitimacy of a stakeholder to create a block (i.e., crypto-
currency possession) is already stored in the blockchain. Finally, by being a
sustainable alternative (creating a block requires a few number of operations),
scalability concerns, exhibited by PoW-based solutions, should be a priori more
tractable.

An important condition for a PoS-blockchain to be secure is randomness.
The creator of the next block must be truly random, and the source of ran-
domness must not be biaised by any adversarial strategy. So far, this has been
achieved by two main approaches: chain-based consensus and block-wise Byzan-
tine agreement with respectively Ourobouros [8] and Algorand [16] as main
representatives. In the former approach, a snapshot of the current users’ status
is periodically taken, from which the the next sequence of leaders is computed.
In the latter one, a Byzantine agreement per block, relying on the properties of
verifiable random cryptographic schemes, is achieved. High robustness against
adaptive adversarial strategies results from the dynamic participation of thou-
sands of users, each one participating for a single step of the algorithm.

In this paper we present a new blockchain protocol called STAKECUBE
which aims at improving scalability of the block-wise Byzantine agreement
approach by combining sharding techniques, users presence and stake trans-
fer to operate in a PoS setting. The key idea of STAKECUBE is to organise
users (i.e. stakeholders) into shards— such that the number of shards scales
sub-linearly with the total number of active UTXOs— and within each shard,
to randomly choose a constant size committee in charge of executing the dis-
tributed algorithms that contribute to the creation of blocks. Each block at height
h in the blockchain is by design unique (no fork), and once a block is accepted
in the blockchain, the next one is created by a sub-committee of shards whose
selection depends on the randomness from the last accepted block.

To make such a solution correct in presence of a Byzantine adversary, we
guarantee that the adversary cannot predict the shards in which users will sit,
and that the sojourn time of users in their shard is limited. Doing so is an ef-
fective way to protect the system against eclipse attacks [2,6]. We introduce the
notion of unpredictable and perishable users’ credentials. Then to cope with this
induced churn, shards’ views are updated, signed and installed once, and this oc-
curs right before the acceptation of a new block. Finally, the creation of blocks is
efficiently handled by an agreement among a verifiable sub-committee of shards.
We might expect that solely relying on stakeholders (i.e., owners of the coins of
the crypto-currency system) to the secure construction of the blockchain makes
sense due to their incentive to be fully involved in the blockchain governance,
rather than delegating it to powerful miners. However the analysis against ratio-
nal players is left as future work.

2

The remaining of the paper organised as follows. Section 2 presents related
work, Section 3 details our model and assumptions while Section 4 formalises
the addressed problem. Section 5 describes an high-level view of the required
building blocks of STAKECUBE while Section 6 presents the design principles
of the proposed solution. A security analysis is provided in Section 7 before
concluding in Section 8.

2 Related work

Omniledger [20] is the closest work to ours. It is a PoS-compatible, sharded,
distributed ledger, resilient against a weakly dynamic adversary that corrupts up
to 1

4 of participants. In contrast to our approach, Omniledger assumes a strongly
synchronous setting, and each shard maintains its own ledger and, global syn-
chronisation of transactions is achieved through an atomic commit protocol tai-
lored to their usage. Ouroboros [19], representative of the chain-based approach,
is a synchronous PoS protocol resilient against a weakly dynamic adversary that
owns 1/2−ε of stake. Moreover, Ouroboros has been recently improved to work
in the partially synchronous setting against a dynamic adversary [8,7], but keep-
ing the same design principles as the original one. In Ouroboros, a unique leader
is elected at each round to broadcast its block which contrasts with our sharded
approach were the block creation process is distributed. Snow White [13] is
a synchronous PoS protocol resilient against a weakly dynamic adversary that
owns 1/2 of the active stake. This protocol also relies on a leader election. Al-
gorand [16], is a representative of the blockwise Byzantine agreement approach.
It provides a distributed ledger against an strongly adaptive adversary without
assuming strong synchrony assumptions. However, by its design, agreement for
each block of the blockchain is achieved by involving a very large number of
stakeholders (i.e. several thousands) so that each one needs to effectively partic-
ipate only for one exchange of messages.

3 Model

We assume a large, finite set of users whose composition may change over time.
Users do not have synchronized clocks, but their individual clocks drift at the
same rate. Users communicate by propagating messages within the system. The
delivery of network messages is at the discretion of the adversary, but subject to
synchrony assumptions. Our construction in itself makes no synchrony assump-
tion except for what is required for the Byzantine resilient building blocks. Since
our construction uses multiple building blocks, synchrony assumptions may be
changed if they are instantiated differently than suggested. Users have access to
basic cryptographic functions, including a cryptographic hash function h, and a
CPA-secure signature scheme. Function h is modeled as a random oracle.

Users own some minimal amount of stake (i.e. money), which gives them
the right to participate to STAKECUBE. We adopt (a simplified version of) what
is commonly known as the Bitcoin Unspent Transaction Output (UTXO) model.
An UTXO can be roughly seen as a user’s account credited by some stake. An
UTXO is uniquely characterized by a public key pki and its associated amount
of stake si. Each public key is related to the digital signature schema Σ with
the uniqueness property, which allows stakeholders to use the public keys (or

3

a hash thereof) of their UTXOs as a reference to them, as demonstrated in the
”Public Keys as Identities principle” of Chaum [10]. Note that the number of
users evolves according to the UTXO set. At any time, a user can own multiple
UTXOs. UTXOs can be debited only once, and once debited, an UTXO does not
exist anymore. To simplify discussion, transactions outputs does not contains
h(pki) but directly pki.

Threat model: A weakly adaptive adversary We assume the presence of Byzan-
tine (i.e. malicious) users which controls up to µ < 1/3− ε of the total amount
of stake currently available in the system. Here, ε quantifies the gain in the ef-
fective adversarial power, related to the security parameter. This model, named
the ”Stake Threshold Adversary” by Abraham and Malkhi [1], is an alternative
to the common Threshold Adversary Model, which bounds the total number of
parties the adversary controls relative to the total population of the system, and
an extension (or modification) of the Computational Threshold Adversary in-
troduced by Bitcoin, which bounds the proportion of the computational power
owned by parties. Byzantine users can deviate from the protocol. They are mod-
eled by an adversary. The adversary can perfectly coordinates all the malicious
users. It can learn the messages sent by honest users (i.e. non malicious users),
delay them, and then chooses messages sent by malicious ones. Further the ad-
versary is weakly adaptive: it can select at any time which users to corrupt in
replacement of corrupted ones (i.e. corruptions are ”moving”), however a cor-
ruption becomes effective T blocks after the adversary has selected the user to
be corrupted. The adversary is computationally bounded so that it can neither
forge honest nodes’ signatures nor break the hash function and the signature
scheme. Finally, we assume that all users (honest and malicious) share an initial
knowledge that we call genesis block which contains an initial arbitrary UTXO
set.

4 The addressed problem

STAKECUBE aims at allowing any honest user i to locally maintain a sequence of
blocks Bi

0,B
i
1, . . . ,B

i
h, where h represents the index (or the height) of the block

in the sequence. This sequence is i’s local copy of the distributed ledger, and
satisfies both Safety and Liveness properties. In addition, the orchestration of the
shards allows STAKECUBE to satisfy both Scalability and Efficiency properties.
STAKECUBE is parametrized with an arbitrary security parameter κ , so that all
its properties are guaranteed with probability at least 1− e−O(κ).

Property 1 (Safety). If honest user i accepts a block Bi
h at height h in its copy of

the ledger then, for any honest user j that accepts a block at height h in its copy
ledger, B j

h = Bi
h.

Property 2 (Liveness). If a honest user submits transaction tx, then eventually tx
appears in a block accepted in the copy of all honest users.

In STAKECUBE, participation of honest users is conditional to the posses-
sion of UTXOs. Participation is voluntary: Any honest user can join a shard
(determined by the protocol), whenever she wishes, with the objective of even-
tually being involved in the Byzantine resilient protocols executed in this shard.

4

Participation is temporary: The sojourn time of an honest user in a shard is de-
fined by the time it takes for STAKECUBE to create T blocks. Once she leaves,
she can participate again by joining another shard, and does so until she spends
her UTXO. As users may own multiple UTXOs, they can simultaneously and
verifiably sit in different shards. In the following, a user that issued a join re-
quest with its current credential is called an active user. STAKECUBE satisfies
Scalability and Efficiency properties. This is achieved by the properties of our
block creation process. Adding a new block takes two byzantine fault tolerant
protocols to be run in parallel within each shard, one network wide diffusion by
each shard, one inter-shard byzantine agreement, and finally one broadcast for
the block.

Property 3 (Scalability). All Byzantine fault tolerant protocols we rely on have
an (overall) O(n3) communication complexity. However in STAKECUBE these
protocols are executed by committees whose size is small and fixed. Because
the number of shard is O(

√
N), the overall communication cost is O(NC3

1 +C3
2),

with C1 and C2 some constants depending on κ . Thus, each participant’s average
communication cost is sublinear.

Property 4 (Efficiency). All Byzantine fault tolerant protocols we rely on uses
a constant number of rounds. Thus adding a new block also takes a constant
number of rounds. Because a transaction, once diffused, will be included in the
next block and that blocks are final, it takes at most two blocks to include a new
transaction.

5 A set of ingredients

To solve the addressed problem, STAKECUBE relies on the orchestration of the
following ingredients.

Cryptographic primitives Digital signature together with random hash func-
tions allow the implementation of verifiable random functions (VRF) [21]. In
a VRF, a secret key sk allows the evaluation of hash function h on input x as
well as the computation of a non-interactive proof that shows that the sk is the
only one that can compute y. Verification of the proof is done with respect to the
public key pk only. The proofs must remain sound even when pk was computed
maliciously and h(sk,x) must remain pseudorandom even when an adversary
can query values of h and proofs for them for any input value x′.

Byzantine Vector consensus A vector consensus protocol [12] is a byzantine
resilient protocol where n participants agree on a vector representing the input
value of each participant. Validity condition states that in presence of f ≤ b(n−
1)/3c byzantine nodes, the vector contains at least f + 1 non-null values, and
for each non-null value vi 6= ⊥,1 ≤ i ≤ n, this value was initially proposed by
participant i.

Random beacon A Random beacon is a service that provides a public source
of randomness. It was first proposed by Rabin [24] in the context of contract
signing. In our case, we need the random beacon to be emulated by a distributed
protocol without trusted third parties. That is, a protocol that satisfies the follow-
ing security properties:

1. Guaranteed output delivery. All honest participants eventually output a value.

5

2. Unpredictable. Any adversary’s ability to predict any information about the
beacon prior to it being published is negligible.

3. Unbiased. For all adversarial strategies, the output is statistically close to a
uniformly random string.

4. Publicly verifiable. The protocol also produces a proof that can be verified
by third parties to be convinced that a beacon is indeed the output of the
protocol.

Suitable instantiations for the distributed setting includes SCRAPE [9] and Rand-
Herd [25]. In the following we denote by µcore the minimum of the fractional
resiliency of the vector consensus and random beacon protocols.

Verifiable Byzantine agreement We use a verifiable byzantine agreement in
order to agree on the next signed block despite corrupted shards. Our main re-
quirement for this algorithm is to be optimistic, i.e. efficient in the absence of
faults. Indeed, the analysis in Section 7 shows that the probability for a shard
to be corrupted exponentially decreases with shards core size. Any verifiable
Byzantine algorithm satisfying our assumptions can be used. We rely on the
solution proposed by Shen et al [11] since it is leader-based, efficient and tol-
erant to temporary partitions. The fractional resiliency of this protocol is noted
µcorrupted .

Distributed Hash Table (DHT). Distributed hash tables (DHTs) build their
topology according to structured graphs, and for most of them, the following
principles hold: each node of the system has an assigned identifier, and the iden-
tifier space, e.g., the set of 256-bit strings, is partitioned among all the nodes of
the system. Nodes self-organize within the graph according to a distance func-
tion based on the identifier space.

Sharded DHT. The notion of Sharded DHT is similar to a regular DHT, ex-
cept that each vertex of the DHT is a set of nodes instead of a single node. That
is, nodes gather together into shards, and shards self-organize into a DHT graph
topology. Sharded DHTs can be made robust to adversarial strategies as achieved
in SChord [15], and PeerCube [3], and robust to high churn as achieved in Peer-
Cube [3] by running Byzantine tolerant algorithms within each shard. For these
reasons, we rely on PeerCube architecture, while weakening its model by remov-
ing the assumption of a global trusted party supplying verifiable random identi-
fier, and by removing the assumption of a static adversary. For self-containment
reasons, we now recall the main design features of PeerCube. Briefly, this is
DHT that conforms to an hypercube. Each vertex (i.e. shard) of the hypercube is
dynamically formed by gathering nodes that are logically close to each other ac-
cording to a distance function applied on the identifier space. Shards are built in
way to ensure that the respective common prefix of their members is never a pre-
fix of one-another. This guarantee that each shard has a unique common prefix,
that in turn serves as a shard’s label. The shard’s label characterizes the position
of the shard in the overall hypercubic topology, as in a regular DHT. Shards size
is upper and lower bounded. Whenever the size of shard S exceeds a given value
smax, S splits into shards of higher degree, and whenever the size of S falls under
a given size of smin nodes, S merges with another shard into a single new shard
of lower degree. Each shard self-organizes into two sets, the core set and the
spare set. The core set is a fixed-size random subset of the whole shard. It is re-
sponsible for running the Byzantine agreement protocols, to guarantee that each
shard behaves as a single and correct entity (by for example forwarding all the

6

join and lookup requests to their destination), despite malicious participants [4].
Members of the spare set merely keep track of shard state. Joining the core set
only happens when some existing core member leaves, in which case the new
core set member is randomly elected among the spare set. By doing this, nodes
joining the system weakly impact the topology of the hypercube [3].

6 Design Principles of STAKECUBE

STAKECUBE allows the creation of a permissionless distributed ledger in a PoS
setting. The key idea of STAKECUBE is to organise users (i.e. stakeholders) into
shards— such that the number of shards scales sub-linearly with the total number
of active UTXOs— and within each shard, to randomly choose a constant size
committee in charge if executing the distributed algorithms that contribute to the
creation of blocks. Each block at height h in the blockchain is unique, and once
a block is accepted in the blockchain, the next one is created by a sub-committee
of shards whose selection depends on the random seed of the last accepted block.

To be able to tolerate the presence of a Byzantine adversary, we must guar-
antee that the adversary cannot predict the shards in which users will sit, and
that the sojourn time of users in their shard is limited. To achieve this, we intro-
duce the notion of unpredictable and perishable users’ credentials in Section 6.1.
Then to cope with this induced churn, we show how to update, sign a install the
shards’ views in Section 6.2. This process occurs right before the acceptation of
a new block. Finally, the creation of blocks is efficiently handled by an agree-
ment among a verifiable sub-committee of shards (see Section 6.3).

6.1 Unpredictable and perishable users’ credentials

As described in Section 5, Peercube critically relies on a (global) trusted party
supplying verifiable random identifiers to nodes. In this section, we detail how
to construct those in our decentralized setting, using the already known public
keys and some common randomness present in each block.

For each unspent public key, i.e. for each UTXO, owned by a user, a se-
quence of unpredictable and perishable credentials are tightly assigned to her.
Validity of a credential spans T blocks, with T some positive integer. The cre-
dential σ assigned to user i for its UTXO (pki,ski) is computed as follows. Let
Bh0 be the block at height h0 of the blockchain such that pki was created in Bh0 ,
i.e., it exists a transaction in Bh0 such that pki appears in the output list of that
transaction. For any blockchain height h ≥ h0 + T , such that UTXO (pki,ski)
still exists when Bh is accepted in the blockchain,

σpki(h) := H(pki||Bh′ .ρ), where h′ := h0 + b
h−h0

T
cT, (1)

with Bh′ .ρ a random number whose computation is detailed in Section 6.3. Sup-
pose that i’s UTXO (pki,ski) is created in block Bh. Then by Relation 1, i’s first
credential for UTXO (pki,ski) is computed based on the content of block Bh+T
and perishes at block Bh+2T . Then, i’s second credential for (pki,ski) is com-
puted based on the content of block Bh+2T and perishes at block Bh+3T , and so
on until i spends (pki,ski).

User i’s credential uniquely characterizes the shard to which user i is al-
lowed to sit, and this shard is the one whose label prefixes i’s current credential

7

σpki(h). By the non-inclusion property of PeerCube [3], there does not exist a
shard whose label is the prefix of another shard, and thus, there is a unique shard
whose label prefixes credential σpki(h). When her current credential expires, i
leaves the shard she is in, and if she wants to continue to participate to STAKE-
CUBE, joins a new shard based on her new credential.

There are a couple of details that should be noted.

1. User i does not need to participate in STAKECUBE for the entire life of her
UTXO (pki,ski). She can join STAKECUBE (i.e. join a shard) at any time
h under credential σpki(h), however once a user joins her shard, she must
stay online (and actively participates if she is a core member) until σpki(h)
expires. As a result, there exists no explicit leave request, it simply consists
in not issuing a join request upon credential renewal. A consequence of this
rule is that, in case user i participates under credential σpki(h) and spends
her UTXO (pki,ski) before σpki(h) expires, then i continues to participate
under σpki(h) until σpki(h) expires. Note that because a transaction only
grants credentials after a delay, this rule does not allow a user to simulta-
neously own multiple credentials for the same stake. Note also that if i is
disconnected for a small amount of time this does not jeopardized the safety
of the shard only its liveness.

2. Recall that the adversary has a bounded fraction µ of stake in STAKECUBE.
To defend STAKECUBE against Sybil attacks (i.e., the fact that the adversary
creates a considerable number of UTXOs with the objective of overpopulat-
ing each shard with malicious owners of those UTXOs), we require that each
UTXO cannot be credited with more than M stake, with M some predefined
constant. Consequently, by the fact that for any h > 0 one credential σ(h)
represents exactly one UTXO, there is a bound µcred > µ on the fraction
of malicious credentials in STAKECUBE, which is reached when all mali-
cious UTXOs have 1 stake and all honest ones maximize their stake, i.e.,
each honest UTXO has M stake. Note that UTXOs with M′ stake, such that
M′ > M may be handled by granting them dM′/Md credentials, although
we do not treat this case explicitly. Section 7 analyzes the distribution of
malicious credentials among shards.

Regarding the behavior of the adversary, there are a couple of remarks to note.

1. At any time, the adversary might spend some selected UTXOs in order to
create new ones and thus new credentials with the objective of targeting
some shards. However, because of the initial T blocks delay required to ob-
tain the first credential for an UTXO (see Relation 1), any newly created
UTXO will give rise to a credential only after all existing credentials are re-
newed as well. Therefore, the adversary has no preferred strategy regarding
transactions and forced renewal.

2. Each block Bh contains a random seed, denoted by Bh.ρ , which cannot, by
construction, be neither biased nor predictable before the block is created
(how such seeds are generated is detailed in Section 6.3), the adversary can-
not determine nor influence the value of renewed credentials. Consequently,
for any blockchain height h≥ 0 and for any pki, σpki(h+T) is unpredictable
while for any 0 ≤ h′ ≤ h, the sequence (σpki(h

′+T))0≤h′≤h is computable
and verifiable from the blockchain.

8

6.2 Shard membership

As described above, during the period of time that elapses between the creation
of an UTXO to its spending, the UTXO owner can participate to the blockchain
construction by successively joining a series of shards. In practice this may give
rise to a voluminous amount of join requests, which might be highly prejudicial
to STAKECUBE’s scalability and efficiency if each joining request led to the in-
sertion of the newcomer in the core which run the distributed operations. Rather,
by relying on PeerCube design (see Section 5), a newcomer joins the spare set
of the shard as a candidate for being elected as a member of the core set of
the shard, and participate then to the distributed algorithms. Management of the
view composition, and election in the core set is the purpose of the remaining of
the section.

View of a shard. The view of a shard S reflects the composition of both its core
and spare sets, denoted respectively Sc, Ss. Update of the view is strongly corre-
lated to blockchain events: any block appended to the blockchain is preceded, in
each shard, by the update and the installation of the shard view. In the following,
the view of shard S installed right before block Bh is appended to the blockchain
is denoted by viewS(h). We have viewS(h) = (Sc(h),Ss(h)), where Sc(h) (resp.
Sc(h)) represent the composition of S’s core set (resp. spare set) at time h.

Update of the shard view. When a newcomer (i.e. a user under a valid creden-
tial) issues a request to join her shard S, her request is propagated and broadcast
to the members of Sc. Core members i locally store the join request in their
buffer bi of pending requests. Note that expiration of credentials do not need
to be locally memorized, prior to being handled by the view update algorithm,
since by Relation 1, credentials can only expire when a new block is appended
to the blockchain. Let viewS(h− 1) be the current view of S when a (honest)
core member i ∈ Sc(h−1) receives some valid block Bh (Section 6.3 details the
creation of blocks). The following three steps are successively executed:

1. A Byzantine vector agreement protocol is run among Sc(h−1) members to
decide on the set of newcomers: core members i propose their local buffer
bi, and the outcome of the protocol is a vector v(h) of newcomers such that
non-null values for honest core members i are equal to their buffer bi. Each
honest core member i replaces its local buffer bi with the union of the users
of the decided vector. We have bi = ∪b j∈v(h),b j 6=⊥b j.

2. Each user i ∈ Sc(h− 1) removes from bi the set of rS(h) of users whose
credential expires with Bh. User i initializes a new spare set Ss(h) with bi∪
Ss(h−1)\ rS(h), and orders Ss(h).

3. Each user i ∈ Sc(h−1) initializes a new core set Sc(h) with Sc(h) = Sc(h−
1)\rS(h). If Sc(h−1)∩rS(h) 6= /0, some previous core members i∈ Sc(h−
1) have credential that expire with Bh. As a consequence, an election among
the users of Ss(h) is carried out for i’s replacement, so as to keep |Sc(h)|=
smin. The core election works as follows:
(a) A random beacon protocol is run among Sc(h− 1) members to decide

on a common random seed ρ .
(b) A pseudo-random number PRG(ρ) generator is initialized with ρ as

seed.

9

(c) PRG(ρ) is used to draw a random number j ∈ J1, |Ss(h)|K. The j-th
member of Ss(h) is removed from Ss(h) and added to Sc(h). This pro-
cess is repeated until |Sc(h)|= smin.

Once these steps are completed, each core member j installs her new view
view j

S(h) with the new values of Sc(h) and Ss(h), signs it, and sends it to the
spare members. Once a spare receives µcoresmin+1 signatures on the same view,
it installs it. In the meantime, each core member j resets its buffer b j = /0.

Note that multiple join requests may lead a shard S to split into two shards,
or, on the contrary, may lead two shards S ′ and S ′′ to merge within a single one
S . The treatment of such topological changes are omitted in the above procedure
for space reasons, but can be derived from the description that appears in [2].

To summarize, the shard membership procedure ensures that, for any shard
S of STAKECUBE, all members of S install the same view viewS(h) before
appending block Bh to their copy of the blockchain.

Diffusing views. Merely installing the new view for each shard is not sufficient.
We need the other shards of STAKECUBE to maintain this knowledge to be able
to verify any signed information exchanged during inter-shard communication
(e.g. during the block proposal procedure). Therefore, whenever a new view
viewS(h) is installed along with its µcoresmin +1 signatures, it is also broadcast
to the whole network as a notification of the view update. Note that shards only
store the last view viewS ′(h) of any other shard S ′ and not its whole history.

6.3 Construction of the next block of the blockchain

In the following we propose a byzantine resilient cross-shard mechanism to
agree on a unique valid block, despite the presence of at most fshard corrupted
shards (see section 7 for the computation of fshard). Indeed, the presence of an
adaptive adversary may compromise the safety of some shards by succeeding
in having more than a proportion µcore of malicious users sitting in the core of
some shards. Although the probability of such event can be made arbitrarily low
(see the analysis presented in Section 7), we must handle it. The presence of
corrupted shards put us in the same situation as in a consensus protocol: given
the same initial chain, any shard is able to create the next block, and the decision
must be a unique block, despite malicious users lying or not responding. As will
be now described, this is efficiently and robustly achieved by running a Verifi-
able Byzantine agreement among a subset of shards of STAKECUBE selected by
relying on block’s seed.

Reaching consensus on the next block. The process of creating a new block
Bh starts right after Bh−1 has been accepted (see Section 6.2). A committee of
shards, denoted in the sequel by C, is elected among the shards of STAKECUBE.
The election of each of these shards relies on the seed of block Bh−1, derived
from the random beacon protocol (see Section 5). Once elected, the committee
executes a verifiable Byzantine agreement to decide on the unique block Bh to
be appended to the blockchain. The main steps of this process are as follows:

1. All shards compute the elected committee C, similarly to the core election
procedure (see Section 6.2):

10

(a) Let L be the set of shards’s label such that viewS ′(h− 1) has been re-
ceived. L is then ordered through a canonical order.

(b) A pseudo-random number generator PRG(Bh−1.ρ) is initialized, where
Bh−1.ρ is the seed of the last block Bh−1.

(c) PRG(Bh−1.ρ) is used to draw a random number j ∈ J1, |L|K. The j-
th member of L is removed from L and added to C (initially initial-
ized to /0). This process is repeated until C contains sC shards, with
sC = (fshard/µcorrupted)+1. Recall that fshard is the maximal number of
corrupted shards in STAKECUBE (whose computation is presented in
Section 7), and µcorrupted is the fraction of malicious nodes tolerated by
the verifiable Byzantine Agreement protocol (see Section 5).

2. Then, committee C members run the verifiable Byzantine Agreement pro-
tocol, with their proposed block Bh as input (the next paragraph describes
the construction of the proposed block). Finally the decision is a block bh
signed by 2 fshard +1 shards.

3. Block bh is broadcast in STAKECUBE and appended to STAKECUBE users’
local copy of the blockchain.

Security remark: By sC’s value, committee C cannot be corrupted, indepen-
dently of the shards selected by the election. Committee C is still composed
by randomly selected shards because it naturally spreads the load of creating a
block, while preventing corrupted shards from trying to manipulate the election
process to get in the committee and slow it down. Note that the random seed is
already available and thus does not need to run a distributed random beacon.
Efficiency remark: We rely on a leader-based BA algorithm to benefit from
its optimistic efficiency. Indeed, since fshard can be made arbitrarily small (see
Section 7), and committee C members are randomly selected, we expect the first
leader to almost always be an honest shard.

Construction of the proposed block. We finally describe how each shard S of
C constructs the block Bh to be proposed as input of the verifiable Byzantine
agreement protocol. The construction results from an agreement among the core
members of S on the content of the block and on the generation of the block’s
seed. Let viewS(h) = (Sc(h),Ss(h)) be the current view of shard S. The main
steps of this creation process are as follows:

1. Each core member in Sc(h) proposes (i) its list of pending transactions and
(ii) its VRF value seeded with Bh−1.ρ together with the VRF proof, to the
Byzantine Vector consensus protocol. The decision value is a vector of in-
puts values, such that non-null values for honest core members are equal to
their list of pending transactions and their VRF value and VRF proof.

2. Construction of block Bh is then realized as follows
– The hash of the previous block Bh−1 is inserted in Bh’s header.
– The union of transactions from the decided vector defines Bh’s body.
– The hash of the concatenation of the VRF values of the decided vector

defines the seed Bh.ρ of Bh.
– The list of VRF proofs of the decided vector is inserted in Bh’s header

as a proof of randomness for seed Bh.ρ .

The reason why we do not use the random beacon protocol is because it is
supposed to be generated in a non corrupted set. Here we have different require-
ments:

11

– We want the seed to stay close to random even in the case of corrupted
shard. This does come at the cost of giving the adversary a bounded number
of choices for the seed.

– We do not mind the fact that the adversary aborts the computation of the
seed, because a malicious shard can already decide to not create a block
anyways.

7 Security Analysis

In this section we analyse the probability that some of the shards of STAKE-
CUBE are corrupted, that is that their core set contain more than µcoresmin ma-
licious users. In the following we denote by ν the fraction of corrupted shards.
To conduct such an analysis, we examine a simplified scenario. We approximate
the behavior of STAKECUBE by taking the amortized execution over one period
of T blocks. That is, we study the corruption probability when all the shards are
built and the cores are elected, once. In particular, this is equivalent to the case
were all credentials are synchronously renewed at the same block say block Bh.
Note that, for a fixed number of active users, the number of credential renewals,
core election, and topological changes is statistically the same for every period
of length T .

7.1 Corruption probability of a core during a period of T blocks

Let s be the size of shard S, µshard be a bound on the ratio of malicious users
within S, and µcore be the fractional resiliency of the vector agreement protocol
and random beacon one, with 0 ≤ µshard < µcore ≤ µ . We compute an upper
bound on the probability that the fraction of malicious users in the core is higher
than µcore by the end of the period.

As seen in Section 6.2, the core set is elected by randomly taking smin cre-
dentials from the shard S, without replacement. Let Y the random variable equal
to the number of malicious credentials within the core, i.e., Y follows an hyper-
geometric distribution.

∀k ∈ J0,sminK,P[Y = k] =

(bsµshardc
k

)(bs(1−µshard)c
smin−k

)(s
smin

) .

We are interested in deriving the probability that, after T blocks, i.e. after T
core renewals, the core set S is corrupted. The core set corruption refers to the
situation where the proportion of malicious credentials in the core exceeds µcore.
Applying the Hoeffding bound [17] on the previous relation leads to

P[
Y

smin
≥ µcore]≤ e−2(µcore−µshard)

2smin .

Thus, assuming that the fraction of malicious users in a shard is below µshard ,
the corruption probability over T blocks exponentially decreases when smin in-
creases.

12

7.2 Distribution of malicious credentials among all shards

The above section assumes that the fraction of malicious users in all shards is
below µshard . In this section we compute an upper bound on the probability that
this assumption does not hold. To do so, we make simplification assumptions
on how the shards are formed. First, we assume there are K shards of size S,
i.e. N := SK credentials in total. Second, we assume that the shards configuration
relevant to the period results from the credentials filling at random all the shards.
Recall that µcred is the overall ratio of malicious credentials.

Let us consider the random variable Y corresponding to the number of mali-
cious credentials in a given shard. Let us consider a set {Y1, . . . ,YK} of random
variables identical to Y , and let Y = (Y1, . . . ,Yk)∈ {0,S}K a vector made of these
random variables. The vector Y represents the distribution of malicious creden-
tials in STAKECUBE. Random variable Y follows a multivariate hypergeometric
distribution: Each of the N = SK credentials is assigned a shard, and we analyse
the shard assignment of a random sample of size Nµcred . We define set I as the
set of vectors representing STAKECUBE where Nµcred credentials are malicious.
We have:

I = {x ∈ [0,S]K |
K

∑
i=1

xi = Nµcred} and ∀x ∈ I,P[Y = x] =
(

N
Nµcred

)−1 K

∏
i=1

(
S
xi

)
.

We are interested in computing the probability that a given shard 1≤ j ≤ K
contains more than m malicious credentials. Let us define Im, j = {x∈ I | x j ≥m}.
We have:

P[Y ∈ Im, j] = P[Y ∈ I,Y1 ≥ 0, . . . ,Yj ≥ m, . . . ,YK ≥ 0]

=
S

∑
k=m

(
S
k

)(
N

Nµcred

)−1

∏
1≤i≤K,i 6= j

(
S
xi

)
Knowing that ∑1≤i≤K,i6= j xi = Nµcred − k and ∑1≤i≤K,i 6= j S = N−S, we can

apply Vandermonde’s identity:

∀ j,P[Y ∈ Im, j] =
S

∑
k=m

(
N

Nµcred

)−1(S
k

)(
N−S

Nµcred− k

)
We now get our result by applying first the (univariate) Hoeffding bound, and
then the union bound.

∀ j,P[Y ∈ ISµshard , j]≤ e−2(µshard−µcred)
2S

Thus the probability that at least one shard of the system contains more than
µshardS malicious credentials is bounded by

P[Y ∈ ∪K
j=1ISµshard , j]≤ Ke−2(µshard−µcred)

2S = e−(2(µshard−µcred)
2S−lnK).

As required, term ∪K
j=1ISµshard , j is the set of shards assignations to malicious

credentials, such that at least one shard has a fraction greater than or equal to
µshard of malicious credentials.

Moreover, due to the union bound, this upper bound also holds if the shards
have different sizes and S is the minimum, hence, we can simply use S = smin.
As for K, the worst case is reached when there is a maximal number of shards,
i.e. K = N/smin.

13

7.3 Putting it all together

In the previous subsection we obtain exponentially decreasing bounds on the
probability that at least one shard is corrupted, i.e., proving security when the
bound on the number of malicious shards fshard is set to 0. We let for future
work the generalization of this calculation with arbitrary values of fshard , which
would give us tighter parameters.

The adversary has a fraction µ of stake. Requiring each credential to be
associated to at most M stake gives us the the following (worst case) ratio of
malicious credentials, which is reached when all malicious UTXOs have 1 stake
and all honest ones maximize their stake, i.e., each honest UTXO has M stake.
We then have

µcred =
1

1+M−1(µ−1−1)
.

Thus M should be as small as possible to decrease the adversary effective stake.
However low values of M requires users to participate with multiple credentials
in parallel, increasing the communication cost for individual users. Knowing µ

and security parameter κ , the parameters µshard and smin can be obtained by
solving:

µshard ≤ µcred +

√
κ− ln N

smin

2smin
and smin ≥

κ

2(µcore−µshard)2 .

8 Conclusion & future work

In this paper we have presented STAKECUBE a new blockchain protocol which
aims at improving scalability of the block-wise Byzantine agreement approach
by combining sharding techniques, users presence and stake transfer to operate
in a PoS setting. Each block at height h in the blockchain is by design unique
(no fork), and once a block is accepted in the blockchain, the next one is created
by a sub-committee of shards whose selection depends on the random seed of
the last accepted block.

The next step is to take into account the stake associated with each credential
as weights into both the core election and the election of the shard in charge
of creating the next block. This will allow us to get rid of the µcred − µ gain
in adversarial power, while keeping the remaining of the security arguments
similar.

References

1. Abraham, I., Malkhi, D.: The blockchain consensus layer and bft. Bulletin of the
European Association for Theoretical Computer Science (123) (2017)

2. Anceaume, E., Sericola, B., Ludinard, R., Tronel, F.: Modeling and Evaluating Tar-
geted Attacks in Large Scale Dynamic Systems. In: International Conference on De-
pendable Systems and Networks (DSN) (2011)

3. Anceaume, E., Ludinard, R., Ravoaja, A., Brasileiro, F.: PeerCube: A Hypercube-
Based P2P Overlay Robust against Collusion and Churn. In: Proceedings of the IEEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASO)
(2008)

4. Anceaume, E., Ludinard, R., Sericola, B.: Performance evaluation of large-scale dy-
namic systems. ACM SIGMETRICS Performance Evaluation Review 39(4) (2012)

14

5. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of Space: When Space
Is of the Essence. In: Proceedings of the International Conference on Security and
Cryptography for Networks (SCN) (2014)

6. Awerbuch, B., Scheideler, C.: Towards scalable and robust overay networks. In: Pro-
ceedings of the International Workshop on Peer-to-Peer Systems (IPTPS) (2007)

7. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proc. of the
2018 ACM SIGSAC Conference on Computer and Communications Security (CCS)
(2018)

8. Bernardo, D., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Proc. of International Con-
ference on the Theory and Applications of Cryptographic (EUROCRYPT) (2018)

9. Cascudo, I., David, B.: SCRAPE: Scalable randomness attested by public entities.
In: Proc. of the International Conference on Applied Cryptography and Network
Security (ACNS) (2017)

10. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–90 (1988)

11. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand agreement: Super Fast and
Partition Resilient Byzantine Agreement. Tech. rep. (2018), https://eprint.
iacr.org/2018/377

12. Correia, M., Neves, N.F., Verı́ssimo, P.: From consensus to atomic broadcast: Time-
free Byzantine-resistant protocols without signatures. The Computer Journal 49(1)
(2006)

13. Daian, P., Pass, R., Shi, E.: Snow White: Provably Secure Proofs of Stake. Cryp-
tology ePrint Archive, Report 2016/919 (2016), https://eprint.iacr.org/
2016/919

14. EOS.IO: Technical white paper v2 (2019), https://github.com/EOSIO/
Documentation/blob/master/TechnicalWhitePaper.md, accessed:
2019-03-10

15. Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In: Proceed-
ings of the Annual European Symposium on Algorithms (AESA) (2005)

16. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
Byzantine Agreements for Cryptocurrencies. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP) (2017)

17. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:
The Collected Works of Wassily Hoeffding (1994)

18. Intel: Hyperledger Sawtooth description (2019), https://sawtooth.
hyperledger.org/docs/core/releases/latest/architecture/
poet.html, accessed: 2019-03-10

19. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A Provably Secure
Proof-of-Stake Blockchain Protocol. Cryptology ePrint Archive, Report 2016/889
(2016), https://eprint.iacr.org/2016/889

20. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niledger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Sym-
posium on Security and Privacy (SP) (2018)

21. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: Proceedings
of the IEEE Symposium on Foundations of Computer Science (1999)

22. Moran, T., Orlov, I.: Proofs of space-time and rational proofs of storage. In: Cryptol-
ogy ePrint Archive, Report 2016/035 (2016)

23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://
bitcoin.org/bitcoin.pdf (2008)

24. Rabin, M.O.: Transaction protection by beacons. Journal of Computer and System
Sciences 27(2), 256–267 (1983)

25. Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J.,
Ford, B.: Scalable bias-resistant distributed randomness. In: 2017 IEEE Symposium
on Security and Privacy (SP). pp. 444–460. Ieee (2017)

15

https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2016/919
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://eprint.iacr.org/2016/889
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	 StakeCube: Combining Sharding and Proof-of-Stake to build Fork-free Secure Permissionless Distributed Ledgers

