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Coverability and Termination
in Recursive Petri Nets

Alain Finkel1?, Serge Haddad1,2??, and Igor Khmelnitsky1,2

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
2 Inria, France

Abstract. In the early two-thousands, Recursive Petri nets have been
introduced in order to model distributed planning of multi-agent systems
for which counters and recursivity were necessary. Although Recursive
Petri nets strictly extend Petri nets and stack automata, most of the
usual property problems are solvable but using non primitive recursive
algorithms, even for coverability and termination. For almost all other
extended Petri nets models containing a stack the complexity of cover-
ability and termination are unknown or strictly larger than EXPSPACE.
In contrast, we establish here that for Recursive Petri nets, the cover-
ability and termination problems are EXPSPACE-complete as for Petri
nets. From an expressiveness point of view, we show that coverability
languages of Recursive Petri nets strictly include the union of coverabil-
ity languages of Petri nets and context-free languages. Thus we get for
free a more powerful model than Petri net.

Keywords: Recursive Petri nets · Expressiveness · Complexity · Cov-
erability · Termination.

1 Introduction

Verification problems for Petri nets. Petri net is a useful formalism for
analysis of concurrent programs for several reasons. From a modelling point of
view (1) due to the locality of the firing rule, one easily models concurrent ac-
tivities and (2) the (a priori) unbounded marking of places allows to represent a
dynamic number of activities. From a verification point of view, all usual prop-
erties are decidable. However Petri nets suffer two main limitations: they cannot
model recursive features and the computational cost of verification may be very
high. More precisely, all the known algorithms solving reachability are non prim-
itive recursive (see for instance [20]) and it has been proved recently that the
reachability problem is non elementary [4]. Fortunately some interesting proper-
ties like coverability, termination and boundedness are EXPSPACE-complete [21]
and thus still manageable by a tool. So an important research direction consists
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of extending Petri nets to support new modelling features while still preserving
decidability of properties checking and if possible with a reasonable complexity.

Extended Petri nets. Such extensions may partitionned between those whose
states are still markings and the other ones. The simplest extension consists
in adding inhibitor arcs which yields undecidability of all verification problems.
However adding a single inhibitor arc preserves the decidability of the reacha-
bility, coverability, and boundedness problems [22,3,2]. When adding reset arcs,
the coverability problem becomes Ackermann-complete and boundedness unde-
cidable [23].

In ν-Petri nets the tokens are coloured where colours are picked in an infinite
domain: their coverability problem is double Ackermann time complete [17]. In
Petri nets equipped with a stack, the reachability and coverability problems
are not only TOWER-hard [4,15] but their decidability status is still unknown.
In branching vector addition systems with states (BVASS) a state is a set of
threads with associated markings. A thread either fires a transition as in Petri
nets or forks, transferring a part of its marking to the new thread. For BVASS,
the reachability problem is also TOWER-hard [16] and its decidability is still
an open problem while the coverability and the boundedness problems are 2-
EXPTIME-complete [6]. In Petri nets with a stack, the reachability problem may
be reduced to the coverability problem and both are at least not elementary
while their decidability status is still unknown [15]. The analysis of subclasses
of Petri nets with a stack is an active field of research [1,19,5,24]. However for
none of the above extensions, the coverability and termination problems belong
to EXPSPACE.

Recursive Petri nets (RPN). This formalism has been introduced in order
to model distributed planning of multi-agent systems for which counters and
recursivity were necessary for specifying resources and delegation of subtasks [7].
Roughly speaking, a state of an RPN consists of a tree of threads where the local
state of each thread is a marking. Any thread fires an elementary or abstract
transition. When the transition is elementary, the firing updates its marking
as in Petri nets; when it is abstract, this only consumes the tokens specified
by the input arcs of the transition and creates a child thread initialised with
the starting marking of the transition. When a marking of a thread covers one
of the final markings, it may perform a cut transition pruning its subtree and
producing in its parent the tokens specified by the output arcs of the abstract
transition that created it. In RPN, reachability, boundedness and termination
are decidable [10,11] by reducing these properties to reachability problems of
Petri nets. So the corresponding algorithms are non elementary. Model checking
is undecidable for RPN but becomes decidable for the subclass of sequential
RPN [12]. In [13], several modelling features are proposed while preserving the
decidability of the verification problems.

Our contribution. We first study the expressive power of RPN from the point
of view of coverability languages (reachability languages were studied in [10]). We
first introduce a quasi-order on states of RPN compatible with the firing rule and
establish that it is a not a well quasi-order. We show that the languages of RPN
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are quite close to recursively enumerable languages since the closure under ho-
momorphism and intersection with a regular language is the family of recursively
enumerable languages. More precisely, we show that coverability (as reachabil-
ity) languages of RPN strictly include the union of context-free languages and
Petri net coverability languages. On an other side, we prove that coverability
languages of RPN and reachability languages of Petri nets are incomparable. In
addition, we establish that the family of languages of RPN is closed by union,
homomorphism but not by intersection with a regular language.

From an algorithmic point of view, we show that coverability and termination
are EXPSPACE-complete, as for Petri nets. Thus the increasing of expressive
power does not entail a corresponding increasing in complexity. In order to solve
the coverability problem, we show that if there exists a covering sequence there
exists a ‘short’ one (i.e. with a length at most doubly exponential w.r.t. the size
of the input). The core of the proof consists in turning an arbitrary covering
sequence into a structured one where all threads perform their firings in one
shot. In order to solve the termination problem, we consider two cases for an
infinite sequence depending (informally speaking) whether the depth of the trees
corresponding to states is bounded or not along the sequence.
Outline. In section 2, we introduce RPNs and state ordering and establish
basic results related to these notions. In section 3, we study the expressiveness
of coverability languages. Then in sections 4 and 5, we show that the coverability
and termination problems are EXPSPACE-complete. In section 6, we conclude
and give some perspectives to this work. All missing proofs can be found in the
appendix.

2 Recursive Petri Nets

2.1 Presentation

An RPN has a structure akin to a ‘directed rooted tree’ of Petri nets. Each
vertex of the tree, hereafter thread, is an instance of the RPN and possessing
some marking on it. Each of these threads can fire three types of transitions.
An elementary transition updates its own marking according to the usual Petri
net firing rule. An abstract transition consumes tokens from the thread firing
it and creates a new child (thread) for it. The marking of the new thread is
determined according to the fired abstract transition. A cut transition can be
fired by a thread if its marking is greater or equal than some marking in a finite
set of final markings. Firing a cut transition, the thread erases itself and all of
its descendants. Moreover, it creates tokens in its parent, which are specified by
the abstract transition that created it.

Definition 1 (Recursive Petri Net). A Recursive Petri Net is a 6-tuple N =
〈P, T,W+,W−, Ω,F〉 where:

– P is a finite set of places;
– T = Tel]Tab is a finite set of transitions with P∩T = ∅, and Tel (respectively
Tab) is the subset of elementary (respectively abstract) transitions;
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– W− and W+ are the NP×T backward and forward incidence matrices;
– Ω : Tab → NP is a function that labels every abstract transition with a

starting marking;
– F is a finite set of final markings.

Figure 1 graphically describes an example of an RPN with:

P = {pini, pfin, pbeg, pend} ∪ {pbi , pai : i ≤ 2};
Tel = {tb1 , tb3 , ta1 , ta3 , tsa, tsb} ; Tab = {tbeg, tb2 , ta2};
F = {pend, pbeg}.

and for instance W−(pini, tbeg) = 1 and Ω(tb2) = pbeg (where pbeg denotes the
marking with one token in place pbeg and zero elsewhere).

For brevity reasons, we denote by W+(t) a vector in NP , where for all p ∈ P
W+(t)(p) = W+(p, t), and do the same for W−(t).

pbeg

pa1

pa2

pend

pb1

pb2

pini

pfin

ta1

ta2pbeg

ta3

tb1

tb2 pbeg

tb3

tsb

tsa

tbeg pbeg

0 (the root rs)

0

pend

tbeg

tb2

s - A state of N

F = {pend, pbeg}

RPN N

Fig. 1. An example of an RPN with the palindrome language on Σ = {a, b} (see the
proof of Proposition 2).

A state s of an RPN is a labeled tree representing relations between threads
and their associated markings. Every vertex of s is a thread and edges are labeled
by abstract transitions.

Definition 2 (State of an RPN). A state s = 〈V,M,E,Λ〉 of an RPN N =
〈P, T,W+,W−, Ω,F〉 is a 4-tuple where:

– V is a finite set of vertices;
– M : V → NP is a function that labels vertices with markings;
– E ⊆ V × V is a set of edges such that (V,E) is a Λ-labeled directed tree;
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– Λ : E → Tab is a function that labels edges with abstract transitions.

In the following, we denote by: Vs := V , Ms := M , Es := E and Λs := Λ.
For example, on the the right side of Figure 1 there is a state of the RPN N .

The state consists of three threads with markings 0,0, and pend (where 0 is the
null marking) and two edges with the labels tbeg, tb2 . Since a state consists of a
directed tree, it has a root thread denoted by rs.

Let s be a state of some RPN. Since a state has the structure of a directed
tree every thread u has a predecessor, denoted by prd(u), except the root. We
call the vertices v for which there exists (u, v) ∈ E a child of u. The descendants
of a thread u consists of threads in the sub-tree rooted in u including u itself.
We denote this set by Dess(u). Similarly the ancestors of u are the threads for
which u is a descendant of, i.e. Ascs(u) = {v | u ∈ Dess(v)}. Denote by ⊥
the empty tree. As usual two markings m,m′ ∈ NP over a set of places P are
partially order as follows: m ≤ m′ if for all places p ∈ P , m(p) ≤ m′(p).

The RPN moves from one state to another by one of the threads firing an
elementary, abstract or cut transition. Let us present the first two kinds:

Definition 3 (operational semantics). Let N = 〈P, T,W+,W−, Ω,F〉 be
an RPN, s be a state with some thread v and t be a transition (elementary or
abstract). We say that t ∈ T is fireable by v from s = 〈V,M,E,Λ〉 if M(v) ≥
W−(t) . In this case, its firing leads to the state s′ = 〈V ′,M ′, E′, Λ′〉, denoted

s
(v,t)−−−→ s′, where s′ is defined below:

– If t ∈ Tel then s′ = 〈V,M ′, E, Λ〉 where M ′(u) = M(u) for all u ∈ V \ {v}
and M ′(v) = M(v)−W−(t) +W+(t);

– If t ∈ Tab then:
• V ′ = V ∪ {w} where w is a fresh identifier (w 6∈ V );
• M ′(u) = M(u) for all u ∈ V \{v}, M ′(v) = M(v)−W−(t) and M ′(w) =
Ω(t);

• E′ = E ∪ {(v, w)};
• Λ′(e) = Λ(e) for all e ∈ E and Λ((v, w)) = t.

Figure 2 illustrates the cases of an abstract and elementary transition firing.
The first transition tbeg ∈ Tab, is fired by the root. Its firing results in a state
for which the root has a new child (denoted by v) and a new outgoing edge
with label tbeg. The marking of the root is decreased to 0 and v gets the initial
marking Ω(tbeg) = pbeg. The second firing is due to an elementary transition
tb1 ∈ Tel which is fired by v. Its firing results in a state for which the marking
of v is changed to M ′s(v) = Ms(v) +W+(tb1)−W−(tb1) = pb1 .
We now introduce the last type of transition: cut transition. Given a state s =
〈V,M,E,Λ〉 and a thread v ∈ V , we denote by s\v the state s′ = 〈V ′,M ′, E′, Λ′〉 ,
with:

– V ′ = V \Dess(v);
– M ′ is the restriction of M on V ′, and if v 6= r, M ′(prd(v)) = M(prd(v)) +
W+(Λ(prd(v), v));
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– E′ = E ∩ (V ′ × V ′);
– Λ′ is the restriction of Λ on E′.

Note that if v is the root of the tree then s\v = ⊥.

Definition 4 (τ cut transition). Let N = 〈P, T,W+,W−, Ω,F〉 be an RPN,
s = 〈V,M,E,Λ〉 be a state of N and v ∈ V . We say that τ is fireable by v from

s and reaches s′, denoted by s
(v,τ)−−−→ s′, if and only if there exists m ∈ F such

that M(v) ≥ m and s′ = s\v.

For example, in Figure 2 the fifth transition to be fired is the cut transition τ ,
fired by the thread with the marking pend (denoted by w). Its firing results in a
state where the thread w is erased and its parent has its marking increased by
W+(tb2) = pb2 .

A firing sequence is a sequence of transition firings, written in detailed way:

s0
(v1,t1)−−−−→ s1

(v2,t2)−−−−→ · · · (vn,tn)−−−−→ sn, or when the context allows it, in a more con-
cise way like s0

σ−→ sn for σ = (v1, t1)(v2, t2) . . . (vn, tn). Infinite firing sequences
are similarly defined. A thread is final (respectively initial) w.r.t. σ if it occurs in
the final (respectively initial) state of σ. We say that v ∈ Desσ(u) if there exists
i ≤ n such that v ∈ Dessi(u). We call σ′ a subsequence of σ, denoted by σ′ v σ,
if there exists i1 < i2 < . . . ik ≤ n such that: σ′ = (vi1 , ti1)(vi2 , ti2) . . . (vik , tik).

pini 0

pbeg v

tbeg

0

pb1

tbeg

0

0

pbeg

tbeg

tb2 0

0

pend w

tbeg

tb2

0

pb2

tbeg

0

pend

tbeg

pfin

tbeg tb1 tb2
tsa

τtb3τ

Fig. 2. Firing sequence for the RPN in Figure 1

Remark 1. In the rest of the paper, anywhere we write ”RPN N”” we will mean
N = 〈P, T,W+,W−, Ω,F〉, unless we explicitly write differently.

2.2 An order for Recursive Petri Nets

We now define a quasi-order on the states of an RPN. Given two states s, s′ of
an RPN N we say that s is smaller or equal than s′ if there is a subtree in s′



Coverability and Termination in Recursive Petri Nets 7

which is isomorphic to s, where markings are greater or equal on each vertex,
and such that the labels on the edges fulfill W+(t) ≥W+(t′).

Definition 5. Given two states s = 〈V,M,E,Λ〉 and s′ = 〈V ′,M ′, E′, Λ′〉 of an
RPN N , we say that s � s′ if and only if there exists an injective total function
f : V → V ′ such that:

1. For any edge (u, v) ∈ E, we have (f(u), f(v)) ∈ E′;
2. For any edge (u, v) ∈ E, we have W+(Λ(u, v)) ≤W+(Λ′(f(u), f(v)));

3. For any thread v ∈ V , we have M(v) ≤M ′(f(v)).

Figure 3 illustrates this quasi-order. The state on the right is greater than
the one on the left, if W+(t) ≥W+(t′).

2 · p1

p2

t

p1

p2

t′
�

Fig. 3. Example of order between two states.

Lemma 1. The relation � is a quasi-order.

This quasi-order is not a partial order since there could be abstract transitions
t 6= t′ with W+(t) = W+(t′).

A quasi-order ≤ on the states of an RPN is strongly compatible(as in [8]) if

for all states s ≤ s′ and firing s
(v,t)−−−→ s1 there exist s′1 and a firing s′

(v′,t)−−−→ s′1
with s1 ≤ s′1.

Lemma 2. The quasi-order � is strongly compatible.

Note that, even though this quasi-order is compatible it may contain an
infinite set of incomparable states (i.e. an infinite antichain). For example, see
Figure 4 where any two states si and sj are incomparable. Indeed for any i < j:
(1) si 6� sj since |Vsj | > |Vsi | there cannot be any injective function from Vsj to
Vsi , and (2) sj 6� si since for any injective function from Vsi to Vsj at least one
of the threads with the marking p would be mapped to a thread with marking
0.

Since RPNs are not well ordered they are not well-structured transition sys-
tems [8] for which coverability is often solved in EXPSPACE. Therefore to solve
coverability, one needs to find another way.
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s1

s2

sn
..
.

p 0 p

t t

p 0 0 p

t t t

p 0 0 0 p

t t t t

Fig. 4. An example for an antichain of states

3 Expressiveness

Expressiveness of a formalism may be defined by the family of languages that
it can generate. In [10], expressiveness of RPNs was studied using reachability
languages. In the next section, we are going to establish that the coverability
problem for RPNs has a lower complexity than the one of the reachability prob-
lem for RPNs. Thus we want to study the coverability languages in order to
determine whether this lower complexity has an impact on the expressiveness of
the RPN formalism. So we equip any transition t with a label λ(t) ∈ Σ ∪ {ε}
where Σ is a finite alphabet and ε is the empty word. The labelling is extended
to transition sequences in the usual way with the cut transitions labelled by the
empty word. Thus given a labelled marked RPN N and a finite subset of states
Sf , the (coverability) language L(N , Sf ) is defined by:

L(N , Sf ) = {λ(σ) | ∃ s0
σ−→ s � sf ∧ sf ∈ Sf}

i.e. the set of labellings for sequences covering some state of Sf in N .
As already announced, languages of RPNs are closed by union.

Proposition 1. Coverability languages of RPNs are closed by union.

The next theorem has two interesting consequences: the languages of RPNs
are not closed by intersection with a regular language and this family is quite
close to recursively enumerable languages.

Theorem 1. Let L be a recursively enumerable language. Then there exists an
RPN language L1, a regular language R2 and a homomorphism h such that
L = h(L1 ∩R2).

Proof. The result was stated in Proposition 9 of [9] for reachability languages
but it also works for coverability languages since the reachability condition of
the proof could easily be transformed into a coverability condition. ut

Obviously the coverability languages of RPNs include the one of PNs. In
order to show its expressive power, let us introduce context-free grammars and
languages. Let G = (V,Σ,R, S) be a context-free grammar defined by V the non



Coverability and Termination in Recursive Petri Nets 9

terminal symbols including S, the start symbol and Σ the terminal symbols. The
set of rules R is defined by R = {r1, . . . , rn} such that ri = (vi, ui), with vi

ri−→ ui,
vi ∈ V and ui ∈ (V ∪Σ)∗ a word of length ni. W.l.o.g. one assumes that the start
symbol S does not occur in the right-hand side of any production rule of G and
that ni > 0 except possibly for a rule S → ε. Given a word αviβ ∈ (V ∪Σ)∗, an

application of rule ri yields the word αuiβ, denoted αviβ
ri−→ αviβ. A derivation

from α to β is a consecutive application of a sequence of rules, and is denoted
α

σ−→ β. The associated language L(G) is defined by:

L(G) = {w ∈ Σ∗ | ∃σ S σ−→ w}

Proposition 2. Context-free languages are included in coverability languages of
RPNs.

The next lemma witnesses a Petri net language interesting from an expres-
siveness point of view.

Proposition 3. Let Σ = {a, b, c} and L1 = {ambncp | m ≥ n ≥ p}. Then L1 is
the coverability language of some Petri net and is not a context-free language.

Using the previous results, the next theorem emphasises the expressive power
of coverability languages of RPNs.

Theorem 2. Coverability languages of RPNs strictly include the union of cov-
erability languages of PNs and context-free languages.

Proof. The inclusion is an immediate consequence of Proposition 2. Consider
the language L2 = L1 ∪ {ww̃ | w ∈ {d, e}∗} where w̃ is the mirror of w.

Since (1) by Proposition 1, coverability languages of RPNs are closed by union,
(2) L1 is a PN language, and (3) the language of palindromes is a context-free
language, we deduce that L2 is an RPN language.

PN and context-free languages are closed by homomorphism. Since the projec-
tion of L2 on {a, b, c} is the language of Proposition 3, L2 is not a context-free
language. Since the projection of L2 on {d, e} is the language of palindroms, L2

is not a PN language (see [14]). ut

The next proposition establishes that, as for Petri nets, coverability does not
ensure the power of “exact counting”.

Proposition 4. Let Σ = {a, b, c} and L3 = {anbncn | n ∈ N}. Then L3 is the
reachability language of some Petri net and is not the coverability language of
any RPN.

Proof. Consider the net below and pf be the single marking to be reached. Then
its language is L3.
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•
ε ε pf

a b c

Assume that there exists a pair (N , Sf ) such that L3 = L(N , Sf ). Define the
subset of abstract transitions Tε such that for t ∈ Tε there exists a firing sequence
labelled by ε starting from a single thread marked by Ω(t) that reaches the empty
tree. Adding a set of elementary transitions {tε | t ∈ Tε} where t and tε have
same incidence does not modify the language of the net. For all n, let σn be
a coverability sequence such that λ(σn) = anbncn and σ′n be the prefix of σn
whose last transition corresponds the last occurrence of a. Denote sn the state
reached by σ′n and the decomposition by σn = σ′nσ

′′
n. Among the possible σn, we

select one such that sn has a minimal number of threads.
Case 1. There exists a bound B of the depths of the trees corresponding to
{sn}n∈N. Let SB be the set of states of depth at most B. Observe that S0 =
NP and SB can be identified to NP × Multiset(Tab × SB−1). Furthermore the
(component) order on NP and the equality on Tab are well quasi-orders. Since well
quasi-ordering is preserved by the multiset operation and the cartesian product,
SB is well quasi-ordered by an quasi-order denoted <. By construction, s ≤ s′

implies s � s′. Thus there exist n < n′ such that sn � sn′ which entails that
σ′n′σ

′′
n is a covering sequence with trace an

′
bncn yielding a contradiction.

Case 2. The depths of the trees corresponding to sn are unbounded. Let C be
a strict upper bound of the depths of the initial state and the final states. There
exists n such that the depth of sn is greater than (4|Tab| + 1)C. Thus in sn,
there are threads v1, v2 and v3 and v4 in the same branch at levels respectively
i1C, i2C, i3C and i4C with 0 < i1 < i2 < i3 < i4 created along σn by the firing
of the same abstract transition t. Denote Tr the subtree of the final state of σn
that matches the state to be covered and Br the branch leading to Tr in the
final state. Due to the choice of C, there exists 1 ≤ i ≤ 4 such that:

– Bri, the branch from vi to vi+1, does not intersect Tr;
– either Bri does not intersect Br or Bri is included in Br.

For k ∈ {i, i+1}, consider the trace wk of the sequence performed in the subtree
rooted in vk by the firings of σn.
Case wi = wi+1. Then one can build another covering sequence with trace
anbncn by mimicking in vi the behaviour of vi+1 leading to another state sn with
less threads yielding a contradiction, since sn was supposed to have a minimal
number of threads.
Case wi 6= wi+1. Let w 6= ε the trace of the sequence performed in the subtree
rooted in vi without the trace of the sequence performed in the subtree rooted in
vi+1. Then one can build another covering sequence σ by mimicking in vi+1 the
behaviour of vi. The trace of σ is an interleaving of anbncn and w which implies
that w = aqbqcq for some q > 0. Furthermore σ can be chosen in such a way
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that the firing subsequences in the subtrees rooted at vi and vi+1 are performed
in one shot which implies that its trace is . . . aqaqwi+1b

qcqbqcq . . . yielding a
contradiction. ut

The following corollary shows that extending coverability languages of Petri
nets substituting (1) coverability by reachability or (2) Petri nets by RPNs are
somewhat “orthogonal”.

Corollary 1. The families of reachability languages of Petri nets and the cov-
erability languages of RPNs are incomparable.

Proof. One direction is a consequence of Proposition 4 while the other direction
is a consequence of Proposition 2 observing that the language of palindromes is
not the reachability language of any Petri net. ut

The next corollary exhibits a particular feature of RPNs languages (e.g. not
fulfilled by Petri nets or context-free languages)

Corollary 2. Coverability languages of RPNs are not closed by intersection with
a regular language.

Proof. Due to Proposition 4, coverability languages of RPNs are strictly included
in recursively enumerable languages. Since it is closed by homomorphism, The-
orem 1 implies that it is not closed by intersection with a regular language. ut

4 Coverability Is EXPSPACE-Complete

LetN be anRPN and sini, star be two states ofN . The coverability problem asks
whether there exists a firing sequence sini

σ−→ s � star. Such a sequence σ with
initial and target states, is called a covering sequence. The section is devoted to
establishing that this problem is EXPSPACE-complete. The EXPSPACE-hardness
follows immediately from the EXPSPACE-hardness of the coverability problem
for Petri nets [18].

In [21], Rackoff showed that the coverability problem for Petri nets belongs
to EXPSPACE. More precisely, he proved that if there exists a covering sequence,
then there exists a ‘short’ one:

Theorem 3 (Rackoff [21]). Let N be a Petri net, mini, mtar be markings and

σ be a firing sequence such that mini
σ−→ m ≥ mtar. Then there exists a sequence

σ′ such that mini
σ′−→ m′ ≥ mtar with |σ′| ≤ 22

cn logn

for some constant c and n
being the size of (N ,mtar).

So to solve the coverability problem on Petri nets, one guesses a sequence of

length at most 22
cn logn

, checking at the same time whether it is a covering se-
quence in exponential space. Which shows that the coverability problem belongs
to NEXPSPACE = EXPSPACE by Savitch’s theorem.
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We follow a similar line and more specifically, we show that if there exists
a covering sequence sini

σ−→ s � star in an RPN N , then there exists a ‘short’
covering sequence σ′.

First, we establish that the final state of a covering sequence can be chosen
with a limited number of threads (Proposition 5). Then we enlarge the RPN

N with new elementary transitions getting N̂ , leaving the coverability problem
unchanged. The interest of N̂ is that a covering sequence (when it exists) can
be chosen with a particular form that we call well-sequenced without increasing
its length (Proposition 6). In order to come back to N , we establish that the

firing of an additional transition of N̂ can be simulated by a short sequence in
N (Proposition 7). Proposition 8 combines these intermediate results to get an
upper bound for a short covering sequence.

Let σ be a firing sequence. A thread is extremal w.r.t. σ if it is an initial
or final thread. We show that we can bound the number of extremal threads
in a covering sequence. In the sequel, the size of the input of the coverability
problem is denoted by η, i.e. the accumulated size of the RPN, the initial and
target states. Recall that Ascs(v) is the set of ancestors of v in s.

Proposition 5. Let N be an RPN and sini
σ−→ s � star be a covering sequence.

Then there is a sequence sini
σ′−→ s′ � star such that |Vs′ | ≤ 3η.

Proof. If star = ⊥ then σ′ = ε is the appropriate sequence. Otherwise de-
note f : Vstar → Vs the injective mapping associated with star � s. Let
U = Ascs(f(rstar )) \ {f(rstar )} be the branch in s leading to the vertex cor-
responding to the root of star. Consider the set V = Vs \ (U ∪ f(Vstar )). Then
one can delete in σ all transitions fired from threads in Desσ(V ) and those that
created the threads of V and still get a covering sequence.

u

σ1 σ2 σ3 σ4

�

σ1 σ′3

�

Choosing not to fire σ2 and σ4 and the abstract transition
that creates u in σ3, still provides a covering sequence.

The thread that fires σi

f−1(Vstar ) U

Now assume that on the branch U , two edges (u1, v1) and (u2, v2) are labelled
by the same transition where u2 is a descendent of u1 and v1 /∈ Vsini . Then
one can delete all transitions fired in the subbranch from v1 to u2 and subtitute
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transitions (v2, t) by transitions (v1, t) and still get a covering sequence. So
|U \ Vsini | ≤ |Tab|.

u1

v1

t

u1

v1

v2

t

t

u1

v1

v2

t

t

σ1 σ2 σ3

�

u1

v1

t

u1

v1

t
σ′1 σ3

�

Changing v2 to v1 we can fire σ3

without firing σ2.

Thus: |Vs| ≤ |Vsini |+ |U \ Vsini |+ |Vstar | ≤ |Vsini |+ |Tab|+ |Vs| ≤ 3η ut

Let Tret ⊆ Tab, the set of returning transitions be defined by: t ∈ Tret if there
exists a firing sequence (called a return sequence): st

σt−→ ⊥, where Vst = {vt},
Mst (vt) := Ω (t), and Est = Λst = ∅. For any t ∈ Tret, we define σt to be some
arbitrary shortest return sequence.

As mentioned before, we get N̂ from N by adding elementary transitions as
follows.

Definition 6 (N̂ ). Let N = 〈P, T,W+,W−, Ω,F〉 be an RPN. Then N̂ is an

RPN where N̂ =
〈
P, T̂ , Ŵ+, Ŵ−, Ω,F

〉
, where T̂ is T with additional elemen-

tary transitions, and Ŵ+, Ŵ− are updated accordingly: T̂el = Tel]{tr : t ∈ Tret},
and for any new transition tr, Ŵ−(tr) = W−(t) and Ŵ+(tr) = W+(t).

The key ingredient of the existence of a short sequence is that in N̂ every
sequence can be turned into a well-sequenced sequence reaching the same state.
Along such a sequence, (1) there are only extremal threads, (2) firings are per-
formed in one shot by threads, and (3) only initial threads disappear and final
threads perform firings of abstract transitions.

Definition 7. Let N be an RPN and σ be a firing sequence. Then σ is well-
sequenced if σ = σ1(v1, τ)σ2(v2, τ) . . . σ`(v`, τ)σ`+1σ

ab
`+1 . . . σkσ

ab
k where:

– The threads vi are initial for 1 ≤ i ≤ `;
– The threads vi are final for `+ 1 ≤ i ≤ k;
– The firing sequence σi ∈ ({vi} × Tel)∗ for 1 ≤ i ≤ k;
– The firing sequence σabi ∈ ({vi} × Tab)∗ for `+ 1 ≤ i ≤ k.

Proposition 6. Let N be an RPN and s
σ−→ s′ be a firing sequence. There exists

a well-sequenced firing sequence s
σ̂−→ s′ in N̂ , with |σ̂| ≤ |σ|.
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Proof (sketch, full proof in the appendix). By construction, σ is fireable from

s to s′ in N̂ . Therefore all we are left with turning σ into a well-sequenced
sequence.
Assume that an extremal thread u fires t ∈ Tab which creates a non-extremal
thread v disappearing by the cut transition (v, τ) occurring in σ. For all such
v’s let us (1) delete from σ the step (u, t), and all the firings from Desσ(v) and
(2) replacing the step (v, τ) by (u, tr). After this operation, no cut transition
matches the firing of an abstract transition. Assume that an initial and not final
thread u fires abstract transitions. Then one deletes these firings and all firings
in the descendants of u. So along σ, there are only extremal threads.
Let us establish the other requirements on σ by induction on the number of
extremal threads. There are three cases when adding a new thread with maximal
depth:

1. This thread is an initial thread and a leaf in the final state. Then we can
push the sequence of firings it performs to the end of the sequence.

2. The thread is final and not initial. Hence the subsequence of firings it per-
forms in σ consists of elementary transition firings that can be fired at the
end of σ. Furthermore, the abstract transition that created it can be fired
at the end of the firing sequence of its parent.

3. This thread is initial and not final (i.e. in {v1, . . . , v`}). Hence the subse-
quence of firings it performs in σ consists of elementary transition firings
possibly ended by a cut transition. If the cut transition occurs, the subse-
quence can be fired immediately. Otherwise, it can be omitted.

This concludes the proof. ut

In order to recover from a sequence in N̂ a sequence in N , for every t ∈
Tret one has to simulate the firings of a transition tr by sequence σt. Therefore
bounding the length of σt is critical.

Proposition 7. Let N be an RPN and t ∈ Tret. Then the returning sequence

σt fulfills |σt| ≤ 2·2
dn logn

for some constant d and n = size(N ).

Proof. Let us enumerate Tret = {t1, . . . , tK} in such a way that i < j implies
|σti | ≤ |σtj |. Observe first that the shortest returning sequences do not include
firings of abstract transitions not followed by a matching cut transition since it
could be omitted as it only deletes tokens in the thread. We argue by induction
on k ≤ K that:

|σtk | < 2k·2
cn logn

where c is the Rackoff constant

For k = 1, we know that σt1 has a minimal length over all returning sequences.
Hence there are no cuts in σt1 except the last one. Due to the above observation,
σt1 only includes firing of elementary transitions. Thus the Rackoff bound of
Theorem 3 applies for a covering of some final marking.
Assume that the result holds for k − 1. Due to the requirement on lengths,
σtk only includes cuts from threads created by ti ∈ Tret with i < k. Thus by
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Proposition 6 we get a sequence σ̂tk · (vtk , τ) in N̂ . The sequence σ̂tk consists of
only elementary steps and does not contain any transition tri with i ≥ k. The
marking reached by σ̂tk covers some final marking, hence by Theorem 3 there

exists a covering sequence σ̂′tk such that |σ̂′tk | ≤ 22
cn logn

. Since σ̂tk does not
contain firing of tri with i ≥ k this also holds for σ̂′tk . Substituting any firing of
tri by the sequence σti , one gets a corresponding sequence σ′tk in N . Using the
induction hypothesis, one gets that the length of this sequence:

|σ′tk | ≤ |σ̂t′k |2
(k−1)·2cn logn

≤ 22
cn logn

· 2(k−1)·2
cn logn

≤ 2k·2
cn logn

From minimality of σtk , one gets |σtk | ≤ |σ′tk | ≤ 2k·2
cn logn

which concludes the
proof since

max
t∈Tret

{|σt|} ≤ 2|Tret|·2
cn logn

≤ 2n2
cn logn

≤ 22
(2c)n logn

.

ut

Combining all previous results, we can now bound the length of a shortest
covering sequence:

Proposition 8. Let N be an RPN, and sini
σ−→ s � star. Then there exists a

covering sequence of length shorter than 22
eη log η

, where e is some constant and
η = size(N , sini, star).

Proof. Using Proposition 5 we can assume that |Vsini ∪ Vs| ≤ 3η. Using Propo-

sition 6 one gets a well-sequenced sequence sini
σ̂−→ s in N̂ , such that:

σ̂ = σ1(v1, τ)σ2(v2, τ) . . . σ`(v`, τ)σ`+1σ
ab
`+1 . . . σkσ

ab
k ,

where σabi = (vi, ti,1) . . . (vi, ti,ni). Observe that k ≤ |Vsini ∪ Vs|.
We now show that there is a short covering sequence in N̂ . Let f : Vstar → Vs
the function associated with s � star. Each of the σi is a sequence whose final
marking of vi covers some marking:

1. For i ≤ `, a final marking of the net;
2. For i > ` and vi /∈ f(Vstar ),

∑
jW

−(ti,j);

3. For i > ` and vi ∈ f(Vstar ),
∑
jW

−(ti,j) +Mstar (f
−1(vi)).

Since all σi contain only elementary steps, using Theorem 3, one gets as sequence

σ′i with |σ′i| ≤ 22
cη log η

covering the marking specified by the three cases above.

Define the sequence s
σ̂′−→ s′ where each σi is replaced by σ′i. Using case 3, for

all v ∈ Vstar Ms′(f(v)) ≥ Mstar (v). Therefore s′ � star, and the length of σ̂′ is
at most:

|σ̂′| =
k∑
i=1

|σ′i|+
∑̀
i=1

|(vi, τ)|+
k∑

i=`+1

|σabi | ≤ 3η22
cη log η

+ 3η + 3η ≤ 22
2cη log η

.
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Substituting any firing of tri by σti in σ̂′ we get a covering sequence σ′ in N .
Using Proposition 7, its length fulfills:

|σ′| ≤ |σ̂′| · 2·2
dn logn

≤ 2·2
en logn

for some constant e. ut

Using Proposition 8 we establish the complexity of the coverability problem.

Theorem 4. The coverability problem for RPNs is EXPSPACE-complete.

Proof. According to Proposition 8, if there is a covering sequence then there

is one with length at most 22
eη log η

and no more than 4η threads. Hence one
guesses a sequence of at most this length and checks simultaneously whether
it is a covering sequence in exponential space. This shows that the coverability
problem belongs to NEXPSPACE = EXPSPACE by Savitch theorem. ut

5 Termination Is EXPSPACE-Complete

LetN be anRPN and sini be an initial state ofN . The termination problem asks
whether there exists an infinite firing sequence starting from sini. In [21] Rackoff
showed that the termination problem on Petri net is solvable in exponential
space:

Theorem 5 (Rackoff). The termination problem for Petri nets is EXPSPACE-
complete.

We aim to show that the termination problem for RPN is EXPSPACE-complete.
EXPSPACE-hardness follows immediately from EXPSPACE-hardness of the ter-
mination problem for Petri nets [18].

We first introduce and solve the constrained termination problem which asks
whether there exists an infinite firing sequence starting from sini which does not
delete any threads of sini. Accordingly, a constrained firing sequence is a firing
sequence that does not delete any initial thread. The size of the input of the
termination problem is denoted by η.

A main ingredient of the proof is a construction of an abstract graph related
to the firing of abstract transitions. To this aim, let m be a marking then s[m]
is the state with a single thread whose marking is m.

Definition 8 (abstract graph). Let N be an RPN and sini be an initial state.
Let GN ,sini = (Va, Ea,Ma) be a labelled directed graph defined by:

1. Va = {vt | t ∈ Tab} ] Vsini ;
2. Ma : Va → NP where for all v in Vsini , Ma(v) = Msini(v)

and for all t in Tab, Ma(vt) := Ω(t);
3. Ea ⊂ Va×Va such that for all t ∈ Tab and v ∈ Va, (v, vt) ∈ Ea if there exists

a firing sequence σ from the state s[Ma(v)] ending by a firing (v, t).
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Equivalently assertation 3 means that the edge (v, vt) belongs to Ea if there

exists a covering sequence s[Ma(v)]
σ−→ s � s[W−(t)]. Thus building the abstract

graph amounts to solving a quadratic number of coverability problems. Using
Theorem 4, one can build it in EXPSPACE.

Let us illustrate the abstract graph in Figure 5 corresponding to the RPN of
Figure 1. Here the initial state is s[pini]. For clarity, we have renamed the abstract
transitions as follows: t := tbeg, ta := ta2 , tb := tb2 . For instance, the existence
of the edge from vt to vta is justified by the firing sequence (vt, ta1)(vt, ta).

v vt
vta

vtb

Fig. 5. An abstract graph for the RPN in Figure 1

Let σ be an infinite firing sequence. We say that σ is deep if it reaches a state
s whose depth is greater than |Tab|+ |Vsini |. Otherwise, we say that σ is shallow.
To solve the constrained termination problem it suffices to show whether the
RPN has such an infinite sequence, either shallow or deep.

The next lemma establishes that lassos of the abstract graph are witnesses
of deep constrained infinite sequences in an RPN:

Lemma 3. Let N be an RPN and sini be an initial state. Then there is a deep
constrained infinite sequence starting from sini if and only if there is a path from
u ∈ Vsini to a cycle in GN ,sini .

We now show that for any shallow sequence σ there is a thread v which fires
infinitely many times in σ.

Lemma 4. Given N an RPN with an initial state s, and σ a shallow sequence.
Then there is a thread v that fires infinitely many times in σ.

Next, show that given a state consisting of one thread, one can check in
EXPSPACE the existence of a shallow sequence which fires infinitely many times
from this (root) thread.

Lemma 5. Let N be an RPN and m be a marking. Then one can check whether
there exists an infinite sequence starting from s[m] with the root firing infinitely
many times.

Proof. There is a sequence firing infinitely many times from the root in N start-
ing from s[m] if and only if there is one in N̂ starting from s[m]. Define N̂ e

to be the Petri net with the same places as N̂ , and whose set of transitions is
the union of the elementary transitions of N̂ and the set {t− | t ∈ Tab} where
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W−(t−) = W−(t) and W+(t−) = 0. We claim that there is a sequence firing

infinitely many times from the root in N̂ starting from s[m] if and only if there

is an infinite sequence in N̂ e starting from m.
For one direction, assume there exists such σ in N̂ . One eliminates in σ the cut
steps by increasing occurrence order as follows. Let (vi, τ) be a cut step and
(vj , tj) be the step that creates vi. Then one deletes all the steps performed by
the descendants of vi and replaces (vj , tj) by (vj , t

r
j). Let σ′ be the sequence

obtained after this transformation. In σ′, the root still fires infinitely often since
no firing performed by the root has been deleted (but sometimes substituted by
an elementary firing). Moreover, σ′ has no more cut steps. One eliminates in σ′

the abstract firings by increasing occurrence order as follows. Let (r, ti) be an
abstract firing that creates thread v. Then one deletes all the steps performed
by the descendants of v and replaces (r, ti) by (r, t−i ). Let σ′′ be the sequence
obtained after this transformation. In σ′′, the root still fires infinitely often since
no firing performed by the root has been deleted (but sometimes substituted by
an elementary firing). Moreover σ′′ has only elementary steps. So it is an infinite

sequence of N̂ e.
The other direction is immediate. By Theorem 5, one can check in EXPSPACE
whether there exists an infinite sequence on N̂ e with initial marking m. ut

Summing the results for shallow and deep sequences we get:

Proposition 9. The constrained termination problem of RPN belongs to
EXPSPACE.

Proof. The algorithm proceeds as follows. It builds in EXPSPACE the abstract
graph and it checks whether there is a constrained deep infinite sequence using
the characterisation of Lemma 3. In the negative case, it looks for a constrained
shallow infinite sequence. To this aim, it checks in EXPSPACE for any reachable
vertex v from Vsini in GN ,sini , whether there exists an infinite sequence starting
from s[Ma(v)] with the root firing infinitely many times. The complexity follows
from Lemma 5 while its correctness follows from Lemma 4. ut

We now prove that the termination problem is EXPSPACE by reducing it in
EXPSPACE to an exponential number of instances of the constrained termination
problem with similar size:

Theorem 6. The termination problem of RPN is EXPSPACE-complete.

Proof. W.l.o.g. we assume that N has been enlarged to N̂ since the termination
problem remains unchanged by this transformation. Let σ be an infinite firing
sequence and U be the subset of initial threads that disappear along σ. Let σ′ be
the shortest finite prefix of σ such that all threads of U have disappeared. Using
Proposition 6, σ′ can be assumed to be well-sequenced. Consider σU , the prefix of
σ′ which deletes the threads of U and sU the state reached by σU . State sU is de-
fined as follows: VsU = Vs \U , EsU (respectively ΛsU ) is the restriction of Es (re-
spectively Λs) to VsU and MsU (v) = Msini(v) +

∑
(v,u)∈Esini∧u∈U

W+(Λ(v, u)).
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Using the same proof as in Proposition 8 the length of some σU (when it exists)
is at most doubly exponential.
An infinite firing sequence starting from s exists if and only if there exists an
infinite constrained sequence from one of its reachable sU ’s’. For any U ⊆ V
one checks whether sU is reachable from s, and, in the positive case, solves the
constrained termination problem for sU . This can be done in EXPSPACE. Finally,
there are only 2η possible subsets U ⊆ Vs, repeating the process described above
for every subset U solves the termination problem of RPN in EXPSPACE.

ut

6 Conclusion

We have proven that RPN is a strict generalisation of both Petri nets and
stack automata without increasing the complexity of coverability and termi-
nation problems. It remains several open problems about languages of RPN
and decidability/complexity of checking properties. Here is a partial list of open
problems: Is the family of covering languages of RPN included in the family
of reachability languages of RPN? How to decide whether a word belongs to
a coverability or reachability language of a RPN? What is the complexity of
the boundedness and finiteness problems? Since the ordering posses an infinite
antichain, but there exist short witnesses for coverability, does there exist an
effective finite representation of the downward closure of the reachability set?
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Mazowiecki. The reachability problem for Petri nets is not elementary (extended
abstract). CoRR, abs/1809.07115, 2018.

5. Jürgen Dassow and Sherzod Turaev. Petri net controlled grammars: the case of
special Petri nets. J. UCS, 15(14):2808–2835, 2009.
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7 Appendix

7.1 Proofs of Section 2

Lemma 1. The relation � is a quasi-order.

Proof. Let, s, s′, s′′ be states of an RPNN with s = 〈V,M,E,Λ〉, s′ = 〈V ′,M ′, E′, Λ′〉
and s” = 〈V ”,M”, E”, Λ”〉. Let us show that the relation � is a quasi order.

1. Reflexivity: the identify function Id on V insures that s � s.

2. Transitivity: Given s � s′ � s′′, there exist two functions f : V → V ′ and
f ′ : V ′ → V ”. Let g : V → V ” be the function g = f ′ ◦ f . The function g is
injective, and it preserves the structure of the tree in s. Any edge (u, v) ∈ E
satisfy:

W+(Λ”(g(u), g(v))) = W+(Λ”(f ′(f(u)), f ′(f(v))))

≥W+(Λ′(f(u), f(v)))

≥W+(Λ(u, v)).

For any v ∈ V , we have M(v) ≤ M ′(f(v)) ≤ M”(f ′(f(v))) = M”(g(v)).
Therefore s � s′′.

ut

Lemma 2. The quasi-order � is strongly compatible.

Proof. Let us prove that for any two states s � q and an elementary step s
(v,t)−−−→

s′, the elementary step (f(v), t) is also fireable from q and we have q
(f(v),t)−−−−−→ q′

with s′ � q′.We consider three cases according to the type of the elementary
transition t in (v, t).

1. t ∈ Tel. First, (f(v), t) is fireable from q since:

Mq(f(v)) ≥Ms(v) ≥W−(t).

Now since the set of threads and the edges didn’t change we let f ′ = f , and
get the clauses 1 and 2 from the definition of � hold. The only change in
s′ and q′ is the marking of the vertex v and f(v) respectably. Therefore its
enough to show that Mq′(f(v)) ≥Ms′(v). But this is true since:

Mq′(f
′(v)) = Mq(f(v))+W+(t)−W−(t) ≥Ms(v)+W+(t)−W−(t) = Ms′(v).

Therefore clause 3 also holds and hence we get that s′ � q′.

2. t ∈ Tab. The step (f(v), t) is fireable from q for the same reason as for the
previous step. Since it was an abstract transition, there is a new vertex in
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Vs′ and in Vq′ , denote it by us′ and uq′ respectively. Let f ′ : Vs′ → Vq′ be
the function:

f ′(v) :=

{
f(v) v ∈ Vs
uq′ v = us′

.

The changes in s′ and q′ are in the marking of the threads v and f(v), the
new threads us′ , uq′ and their respective edges (v, us′) and (f(v), uq′). Hence
it is enough to show that f ′ ’respects’ theses changes i.e. :
(a) For the marking of the thread v, we have:

Mq′(f
′(v)) = Mq(f(v))−W−(t) ≥Ms(v)−W−(t) = Ms′(v).

(b) For the marking of the thread us′ we have

Ms′(us′) = Ω (t) = Mq′(uq′) = Mq′(f(us′)).

(c) For the new edge (v, us) ∈ E′s we have that

(f ′(v), f ′(us)) = (f(v), uq′) ∈ Eq′ .

Where its label in q′ is the same one as in s′ since they both were created
by the same abstract transition t.

Therefore clauses 1,2,3 from the definition of � hold and hence we get that
s′ � q′.

3. The elementary step (v, t) is a cutting step, i.e. t = τ . Same as in the first
two cases (f(v), τ) is fireable from q. Since t is a cutting step, the changes
in s′ and q′ are the following: we remove all the threads in Dess(v) and
Desq(f(v)) respectively, and change the marking of the threads preds(v) and
predq(f(v)). Denote by f ′ : Vs′ → Vq′ the function f ′(v) := f(v). We first
note that predq(f(v)) = f(preds(v)) because there is only one father for each
thread and by clause 1 of the definition of � we have that (preds(v), v) ∈ Es
if and only if (f(preds(v)), f(v)) ∈ Eq. Since we only have less edges in s′

and since we take a projection of f we get clauses 1 and 2 immediately. The
marking on preds(v) has:

Mq′(pred(f ′(v))) = Mq(pred(f(v))) +W+(Λq(f(pred(v), f(v))) ≥
≥Ms(pred(v)) +W+(Λs(pred(v), v)) = Ms′(pred(v)).

Therefore clause 3 also holds and hence we get that s′ � q′.
ut

7.2 Proofs of Section 3

The next lemma simplifies the proof that coverability languages of RPN are
closed by union.
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Lemma 6. Let L(N , Sf ) be a RPN language. Then there exists a RPN N ′
whose initial state consists of a single thread and a finite subset of states S′f
such that L(N ′, S′f ) = L(N , Sf ).

Proof. Let s0 = 〈V,M,E,Λ〉 be the initial state of N . N ′ is built from N by
adding a subset of places {pe | e ∈ E} and a subset of abstract transitions
{te | e ∈ E} all labelled by ε. Let e = (u, v) ∈ E and denote t = Λ(e). Then
W−(te) = pe, W

+(te) = W+(t) and Ω(te) = M(v) +
∑
e′|∃w e′=(v,w) pe′ . S

′
f

is obtained from Sf by extending the markings occurring in the states of Sf
to be null on the subset {pe | e ∈ E}. Finally the single thread r of s′0 fulfills
M ′(r) = M(r) +

∑
e′|∃w e′=(r,w) pe′ .

Let us prove that L(N , Sf ) ⊆ L(N ′, S′f ). Consider a covering sequence σ for
(N , Sf ). One starts to fire all transitions of {te | e ∈ E} in a top-down way to
get a state s′1 such that (when omitting places {pe}) both s0 � s′1 and s′1 � s0
so that we identify the corresponding threads. Let us denote σ0 this sequence.
Then σ0σ is a covering sequence for (N ′, S′f ) with λ(σ0σ) = λ(σ).

Let us prove that L(N ′, S′f ) ⊆ L(N , Sf ). Consider a covering sequence σ for
(N ′, S′f ). By construction of N ′, all occurrences of transitions of {te | e ∈ E}
can be pushed at the beginning of the sequence leading to a covering sequence
σ′ = σ1σ2 where σ1 consist of such occurrences. Then σ1 can be completed by the
missing occurrences still in a top-down way producing σ′1 and yielding a covering
sequence σ′′ = σ′1σ2. Moreover the state s1 (when omitting places {pe}) reached
from σ′1 can be identified to s0. Thus σ2 is a covering sequence for (N , Sf ) with
λ(σ2) = λ(σ). ut

Proposition 1. Coverability languages of RPNs are closed by union.

Proof. Consider two RPNs with final states (N , Sf ) and (N ′, S′f ) such that
(w.l.o.g. due to Lemma 6) their initial state consists of a single thread. One

denotes m0 and m′0 the marking of these threads. Let us define N̂ as follows.
Its set of places is the disjoint union of P and P ′ with three additional places
p0, p and p′. Its set of transitions is the disjoint union of T and T ′ with four
additional elementary transitions tb, tc, t

′
b and t′c.

• For all t ∈ T , Ŵ−(t) = W−(t) + 1 · p and Ŵ+(t) = W+(t).

• For all t ∈ T ′, Ŵ−(t) = W ′−(t) + 1 · p′ and Ŵ+(t) = W ′+(t).

• For all t ∈ Tab, Ω̂(t) = Ω(t) + 1 · p.
• For all t ∈ T ′ab, Ω̂(t) = Ω′(t) + 1 · p′.
• Ŵ−(tb) = Ŵ−(tb) = 1 · p0, Ŵ+(tb) = m+ 1 · p, Ŵ+(tb) = m′ + 1 · p′

• Ŵ−(tc) = 1 · p, Ŵ+(tc) = 2 · p, Ŵ−(t′c) = 1 · p′, Ŵ+(t′c) = 2 · p′
• F̂ = {m+ 1 · p | m ∈ F} ∪ {m+ 1 · p | m ∈ F ′}
• Ŝf is obtained from the union Sf ∪ S′f by adding a token in place p (resp p′)

of all markings of states of Sf (respectively S′f ).

• For all t ∈ T , λ̂(t) = λ(t), for all t ∈ T ′, λ̂(t) = λ′(t).

• For all t ∈ {tb, tc, t′b, t′c}, λ̂(t) = ε.

• The initial state of N̂ consist of a single thread whose marking is 1 · p0.
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Let us prove that L(N , Sf )∪L(N ′, S′f ) ⊆ L(N̂ , Ŝf ). Let σ be a covering sequence

(N , Sf ). The corresponding covering sequence σ̂ of L(N̂ , Ŝf ) is built as follows.
Initially, one fires (r, tb)(r, tc)

`r where `r is the number of firings occuring in σ
triggered by r. Then after the creation of a thread v, one inserts (v, tc)

`v firings
where `v is the number of firings occuring in σ triggered by r. It is routine to
check that σ̂ is covering sequence. The proof for L(N ′, S′f ) is similar.

Let us prove that L(N̂ , Ŝf ) ⊆ L(N , Sf ) ∪ L(N ′, S′f ). Observe that any firing
sequence must start by a firing of tb or t′b. Let tbσ̂ be a covering sequence of

(N̂ , Ŝf ). Consider the sequence σ obtained by deleting all the firings of tc in
σ. It is routine to check that σ̂ is covering sequence for (N , Sf ). The case of
covering sequence starting by t′b is similar. ut

A leftmost derivation always applies rules on the leftmost non terminal sym-
bol of a word of (V ∪ Σ)∗. Using only leftmost derivations let unchanged the
language.

Proposition 2. Context-free languages are included in coverability languages of
RPNs.

Proof. Let G = (V,Σ,R, S) be a context-free grammar.

We define a labelled marked net NG as follows.
• The set of places is defined by:

P = {bv, ev | v ∈ V } ∪ {pi,j | 1 ≤ i ≤ n ∧ 0 ≤ j < ni}
• F = {mv}v∈V \{S} where mv(ev) = 1 and for all p 6= ev, mv(p) = 0.
• The set of transitions is defined by T =

⋃
i≤n Ti where all abstract transitions

are labelled by ε and:

– If ni = 0 then Ti = {ti,0} with W−(ti,0) = bS and W+(ti,0) = eS ,
ti,0 ∈ Tel and λ(ti,0) = ε;

– Otherwise Ti = {ti,0, ti,1, . . . , ti,ni} with
1. W−(ti,0) = bvi and W+(ti,0) = pi,0; ti,0 ∈ Tel and λ(ti,0) = ε;
2. for all 1 < j < ni W

−(ti,j) = pi,j and W+(ti,0) = pi,j+1;
3. W−(ti,ni) = pi,ni−1 and W+(ti,ni) = evi ;
4. for all 1 < j ≤ ni if ui,j ∈ V then ti,j ∈ Tab and Ω(ti,j) = bui[j]

else ti,j ∈ Tel, λ(ti,j) = ui[j].

• The initial marking is a single vertex whose marking consists of a token in
place bS . We want to show that L(G) = L(NG, {sf}) where sf consists in a
single thread whose marking consists in a token in place eS .

The result of a (possibly partial) leftmost derivation, not leading to empty word,
is represented by:

(w, uik [jk, nk], uik−1
[jk−1, nk−1], . . . , ui1 [j1, n1])

with (1) for all ` ≤ k 0 < n`, (2) 1 ≤ jk ≤ nk + 1, and (3) for all ` < k
1 < j` ≤ n`+1 where:

– w ∈ Σ∗ is the subword already generated;
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– (i1, j1) · · · (ik, jk) are the current nested rules with the index of the next
symbol to be processed (none when j` = n` + 1).

The leftmost derivations are simulated by the net as follows. There is a firing
sequence with trace w leading to a reachable state defined by:

– if k = 0 then a single node whose marking is a token in place eS ;
– if k ≥ 1 and jk = nk + 1 then a single branch of length k − 1 labelled

by ti1,j1−1, . . . tik−1−1,jk−1−1 with all markings empty except the last one
consisting of a token in evk ;

– if k ≥ 1, jk ≤ nk and uik [jk] ∈ Σ then a single branch of length k − 1
labelled by ti1,j1−1, . . . tik−1−1,jk−1−1 with all markings empty except the
last one consisting of a token in pik,jk ;

– if k ≥ 1, jk ≤ nk and uik [jk] ∈ V then a single branch of length k labelled by
ti1,j1−1, . . . tik,jk−1 with all markings empty except the last one consisting of
a token in buik [jk];

Let us describe the simulation.

– If jk ≤ nk and uik [jk] ∈ V then the derivation consists in choosing some rule
rik+1

= uik [jk]→ uik+1
leading to

(w, uik+1
[1, nk+1], uik [jk + 1, nk], . . . , ui1 [j1, n1]).

This is simulated by the firing of elementary transition tik+1,0 possibly fol-
lowed by the firing of abstract transition tik+1,1 when uik+1

[1] ∈ V ;
– If jk ≤ nk and uik [jk] ∈ Σ then the derivation consists in concatenating the

letter uik [jk] to the word w leading to
(wuik [jk], uik [jk + 1, nk], uik−1

[jk−1, nk−1], . . . , ui1 [j1, n1]).
This is simulated by the firing of elementary transition tik,jk+1 possibly
followed by the firing of abstract transition tik,jk+1 when jk + 1 ≤ nk and
uik [jk + 1] ∈ V ;

– If jk = nk + 1 then the derivation consists in deleting the empty word
uik [jk, nk] leading to (w, uik−1

[jk−1, nk−1], . . . , ui1 [j1, n1]).
This is simulated by the cut transition in the leaf of the branch producing the
token specified by the postcondition of tik−1,jk−1−1 possibly followed by the
firing of abstract transition tik−1,jk−1

when jk−1 ≤ nk−1 and uik−1
[jk−1] ∈ V ;

The case of the empty word is straightforward.
Conversely the simulation from traces of firing sequences to words generated by
(possibly partial) leftmost derivations are done in a similar way. ut

Proposition 3. Let Σ = {a, b, c} and L1 = {ambncp | m ≥ n ≥ p}. Then L1 is
the coverability language of some Petri net and is not a context-free language.

Proof. Let us recall (a weak version of) Ogden lemma. For any context-free lan-
guage L there exists an integer N such for any word w ∈ L with N marked
positions, there exists a decomposition w = w1w2w3w4w5 such that w2w4 con-
tains at least a marked position and for all n ≥ 0, w1w

n
2w3w

n
4w5 ∈ L.
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Assume that L is a context-free language and consider the word w = aNbNcN

with all c positions marked. So w = w1w2w3w4w5 with the decomposition fulfill-
ing the requirements of Ogden lemma. Since w′ = w1w

2
2w3w

2
4w5 ∈ L, w2 and w4

are mono-letter words. Furthermore one of these words is equal to cq for some
q > 0. If w2 = cq then w4 = cq

′
and thus w′ contains too much c’s to belong to

L. If w4 = cq then either w2 = aq
′
, w2 = bq

′
or w2 = cq

′
. Whatever the case, w′

misses either a’s or b’s to belong to L.

•
ε ε pf

a b c

Consider the net above and the coverability language associated with the empty
marking. It is routine to check that this language is L. ut

7.3 Proofs of Section 4

Proposition 6. Let N be an RPN and s
σ−→ s′ be a firing sequence. There exists

a well-sequenced firing sequence s
σ̂−→ s′ in N̂ , with |σ̂| ≤ |σ|.

Proof. By construction of N̂ , σ is fireable in N̂ .
First assume that we have an extremal thread u which fires t ∈ Tab creating a
non final thread v that disappears by a matching cut transition (v, τ) ∈ σ. One
builds σ′ by (1) deleting from σ the step (u, t), (2) deleting all the firings from

Desσ(v) in σ and (3) replacing the step (v, τ) by (u, tr). We claim that s
σ−→ s′.

Indeed in u the step (u, tr) has the same incidence in u as the step (u, t) followed
by (v, τ) (thus ‘anticipating’ (v, τ) only add tokens in intermediate states) and
the other deleted firings are performed by threads in Desσ(v) which do not exist
anymore. Denote σ∗ the sequence obtained by iterating the process for all such
cases.
Let us establish that we can transform σ∗ into σ̂ fulfilling in the requirements
for being well-sequenced, by induction on |Vs ∪ Vs′ |, i.e. the number of extremal
states.
If |Vs ∪ Vs′ | = 0, σ∗ = ε, hence well-sequenced. Assume that we have shown the
proposition for any σ∗ with |Vs∪Vs′ | < n, and that now we have σ∗ which fulfills
|Vs ∪Vs′ | = n. We consider three cases according to the newly added leaf thread
u (in s or s′) applying the induction for u with maximal depth:

1. u ∈ Vs′ ∩ Vs. Denote by σ∗u ⊂ σ∗ the subsequence consisting of the firings
performed by u in σ∗ and σ∗r the subsequence of σ∗ obtained by removing
σ∗u. Due to the first transformation, σ∗u consists of elementary transitions
Since u is both an initial and final thread in σ∗, σ∗u can be fired at the end
(or indifferently at the beginning) of σ∗. Observe that σ∗r is a firing sequence
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from s without u to s′ without u. So the induction applies: let σ̂r be the
well-sequenced sequence corresponding to σ∗r . So σ̂rσ

∗
u is the sequence we

are looking for.
2. u ∈ Vs′ \ Vs. Let (v, t) be the step which creates the thread u. Denote by
σ∗u ⊂ σ∗ the subsequence consisting of the firings performed by u in σ∗ and
σ∗r the subsequence of σ∗ obtained by removing (v, t) and σ∗u. σ∗u consists
of elementary transitions. Since u is a final thread in σ∗, σ∗u can be fired at
the end of σ∗. Observe that σ∗r is a firing sequence from s to s′ without u
where the marking of v is increased by W−(t). So the induction applies: let
σ+
r be the well-sequenced sequence corresponding to σ∗r and σ̂r be σ+

r with
the firing (v, t) inserted at the end of the subsequence of firings performed
by v in σ+

r . Then σ̂rσ
∗
u is the sequence we are looking for.

3. u ∈ Vs \ Vs′ . Denote by σ∗u ⊂ σ∗ the subsequence consisting of the firings
performed by u in σ∗ and σ∗r the subsequence of σ∗ obtained by removing
σ∗u.
• If σ∗u does not end by a cut transition then σ∗r is a firing sequence from s
without u to s′. Let σ̂r be the well-sequenced sequence corresponding to σ∗r .
But σ̂r is also a sequence from s to s′.
• If σ∗u ends by a cut transition and u is the root then σ∗u is the sequence we
are looking for.
• If σ∗u ends by a cut step, v is the parent of u and Λ(v, u) = t then σ∗r is
a firing sequence from s without u where the marking of v is increased by
W+(t) to s′. So the induction applies: let σ̂r be the well-sequenced sequence
corresponding to σ∗r . So σ∗uσ̂r is the sequence we are looking for.

Since we did not add any new step, |σ̂| ≤ |σ|. ut

7.4 Proofs of Section 5

Lemma 3. Let N be an RPN and sini be an initial state. Then there is a deep
constrained infinite sequence starting from sini if and only if there is a path from
u ∈ Vsini to a cycle in GN ,sini .

Proof. Assume that σ is a deep sequence. Hence, it reaches a state s̃ whose
tree has a path γ starting from the root, with |γ| > |Tab| + |Vsini |. Let us
denote it by γ := (vi)

m
i=1. This path can be decomposed as γ = (vi)

k−1
i=1 (vi)

m
i=k

with for all i < k, vi ∈ Vsini , for all i ≥ k, vi /∈ Vsini , and m − k > |Tab|.
For all i ≥ k denote by ti the abstract transition that creates vi. Using γ,
one builds a path γat = vk−1vtk . . . vtm in Gat as follows. First vk−1 ∈ Vs and
Msini(vk−1) = Mat(vk−1). Since along σ the thread vk−1 fires the tk to create
vk, there is an edge between vk−1 to vtk in Gat. For any k ≤ i ≤ m the thread
vi is created with the marking Ω(ti) = Mat(vti). Since vi+1 is a child of vi,
somewhere on the sequence σ the thread vi fires the abstract transition ti+1.
Therefore there is an edge between vti to vti+1

in Gat.
The path γat starts from vk−1 ∈ Vs and has length strictly greater then |Tab|+1.
Since every vertex on the path γat except vk−1 is some vt with t ∈ Tab there at



28 A. Finkel and S. Haddad and I. Khmelnitsky

least a vertex vt occuring twice in γat. Therefore there is a path from vk−1 ∈ Vs
to a cycle in Gat.
Conversely assume that there is a path from v ∈ Vs to a cycle in Gat. Then there
is an infinite path γat = {vi}∞i=0 in Gat(N , s), where for any i ≥ 1 denote by ti the
abstract transition associated the vertex vi. We now translate this infinite path
to an deep sequence on N with initial state sini. Note that v0 ∈ Vsini and that

Msini(v0) = Mat(v0). By definition of Eat there is a sequence s
σ1−→ s′0 where the

abstract transition t1 is fireable from v0 in s′0. We get s
σ1−→ s′0

(v0,t1)−−−−→ s2. Denote
by v1 the thread created by t1. The threads marking has Ms1(v1) = Mat(v1),
therefore on can continue translating the path γat in the same way as the first
edge. Since for any (vi, vi+1) on γat we create a new thread from vi one gets an
deep sequence. Since the built sequence does not delete no initial thread, it is
also constrained. ut

Given two vertices in a graph, the distance between them is the length of the
shortest path going from one to the other.

Lemma 4. Given N an RPN with an initial state s, and σ a shallow sequence.
Then there is a thread v that fires infinitely many times in σ.

Proof. Assume for contradiction that there is no thread v which fires infinitely
many times in σ. Let σ be:

s0
(u1,t1)−−−−→ s1

(u2,t2)−−−−→ s2
(u3,t3)−−−−→ . . .

Denote by V0 := Vs0 . Since V0 is finite and no v ∈ V0 fires infinitely many times
along σ there exists an index m0 such that for any i > m0, ui /∈ V0. Let us show
how to build inductively a set Vk and an index mk, with the following properties:

– For all i > mk, ui /∈
⋃k
i=0 Vk;

– For all v ∈ Vk the distance between v and the root is at least k;
– Vk is finite.

Let Vk = Vsmk−1
\∪k−1i=0 Vi. By construction, Vk is finite. Moreover, any thread in

Vk has been created by a thread ui ∈ Desσ(Vk−1). Hence it is at least of distance
k from the root. Finally, since no thread fires infinitely many times on σ there
is an index mk such that for all i > mk ui /∈ Vk.
Let n = |Tab|+ |Vs|+ 1. The distance between smn and the root is greater than
|Tab|+ |Vs| yielding a contradiction. ut
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