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ABSTRACT
Mobile crowdsensing is a powerful mechanism to aggregate hyper-
local knowledge about the environment. Indeed, users may con-
tribute valuable observations across time and space using the sen-
sors embedded in their smartphones. However, the relevance of the
provided measurements depends on the adequacy of the sensing
context with respect to the phenomena that are analyzed. This pa-
per concentrates more specifically on assessing the sensing context
when gathering observations about the physical environment be-
yond its geographical position in the Euclidean space, i.e., whether
the phone is in-/out-pocket, in-/out-door and on-/under-ground.
We introduce an online learning approach to the local inference of
the sensing context so as to overcome the disparity of the classifi-
cation performance due to the heterogeneity of the sensing devices
as well as the diversity of user behavior and novel usage scenar-
ios. Our approach specifically features a hierarchical algorithm for
inference that requires few opportunistic feedbacks from the user,
while increasing the accuracy of the context inference per user.
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1 INTRODUCTION
Mobile crowdsensing empowers ordinary citizens to contribute
data sensed or generated from their mobile devices [3, 8]. It allows
acquiring hyperlocal knowledge at scale, thanks to the proliferation
of mobile devices and the ubiquity of wireless broadband connec-
tion. Numerous sensor types embedded in today’s smartphones
contribute valuable quantitative observations about the urban envi-
ronment (e.g., noise, temperature, atmospheric pressure, humidity,
light, magnetism). The observations further come along with the
related spatial and temporal data, which allows for the analysis
of hyper-local environmental knowledge. However, the quality of
the contributed measurements challenges the aggregation of such
a knowledge, which depends on the accuracy of the contributing
sensors and the adequacy of the sensing context [20]. Addressing
the latter requires a supporting inference mechanism, which is the
focus of our paper.

The accurate monitoring of the physical environment through
crowdsensing obviously requires knowing the "location" of the
sensing device with respect to the phenomenon being observed.
However, the location must not be limited to the geographical co-
ordinates in the Euclidean space. Indeed, the "user behavior at the
location" has a significant impact on the quality of the quantita-
tive observations contributed through mobile crowdsensing [9]. To
know whether the smartphone/sensing device is in-/out-pocket,
in-/out-door and under-/on-ground is particularly important be-
cause the smartphone/sensing device needs to be in a position that

enables -yet does not interfere with- sensing the physical character-
istics of the surrounding [15]. The sensing context must distinguish
between in-pocket and out-pocket observations because the for-
mer leads to a quite significant deviation from the ground truth
and are thus not readily usable [14]. The same applies to in-door
versus out-door measurements since aggregating them together to
analyze environmental phenomena obviously leads to unreliable
results [12]. Similarly under-ground and on-ground scenarios con-
tribute observations that must be distinguished. Figure 1 illustrates
the impact (significant bias) of the above elements of the "sens-
ing context" on physical measurements that are collected at the
"same" geographical location. The context information allows keep-
ing more observations -and even correcting them- for aggregating
environmental knowledge, rather than filtering out drastically the
crowdsensed data [5].

The existing work on the inference of the crowdsensing context
focuses on a single context element, while it is essential to accu-
rately characterize the sensing context as a whole, that is, to identify
whether a contributed observation is sensed with the device: in-
pocket/out-pocket, in-door/out-door and under-ground/on-ground.
Machine learning is an obvious candidate to systematize such a
characterization. The challenge is then to ensure that the classifier
accounts for the diversity of the crowd contributors. Indeed, there
is a large variation in the characteristics of the contributing devices,
in the behavior of the contributing users, and even in the usage
scenarios. As a result, the classifier for context inference must be
adaptive to each participating user, considering the user’s behavior,
device and contribution scenarios. This paper introduces such a
user-centric approach to the inference of the sensing context, where
online learning allows customizing the classifier on the user’s de-
vice, while minimizing the user’s involvement that is essential to
motivate the engagement of a sufficiently large crowd. The paper
contribution is as follows:

• We derive the features that best serve classifying each sens-
ing context, taking into account the sensors available on to-
day’s smartphones. We then analyze the performance of can-
didate updatable learning algorithms to initialize the three
resulting classifiers, taking into account their accuracy as
well as their runtime and memory efficiency (§ 3).
• The personalization solution follows, which includes the
hierarchical inference of all three context elements (in-/out-
pocket, in-/out-door and under-/on-ground) that are relevant
to environmental monitoring using crowdsensing, and the
opportunistic update requiring very few feedbacks from the
user (§ 4).
• We validate the effectiveness of the approach using sim-
ulation to assess the accuracy of the context inference in
relation with the negative user feedback. We confront our
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Figure 1: Impact of the sensing context on environmental observations

hierarchical solution with a multi-class classifier and we also
assess its energy and runtime efficiency (§ 5).

To the best of our knowledge and as surveyed in the next section,
no other work on the inference of the sensing context addresses
the classification of the three context elements simultaneously, and
deals with the efficient personalization of the classifiers on the
crowdsensing device.

2 RELATEDWORK
Inferring the sensing context with respect to the physical environ-
ment under scrutiny has deserved little attention, while related
solutions focus on a single context element and consider different
eligible features.

Features for context inference. Detecting whether a phone is
in-pocket/bag or out-pocket/bag may be inferred using various
embedded sensors. Reference [19] leverages features from embed-
ded proximity and light sensor signals, while reference [14] uses
additional data from a 3-axis accelerometer. Inferring whether an
observation is made in-door or out-door may also rely on various
sensors. For instance, previous work simply utilizes the GPS sig-
nal [2, 14]. Alternatively, the sensing service in [6] leverages three
on-board sensing resources, i.e., light sensors, magnetic sensors,
and cell tower signals. A similar solution is adopted in [10] although
using the proximity instead of the magnetic sensor. As for the detec-
tion system in [7], it uses two features, i.e., the received signals of
Wifi and the light density. The solution in [1] leverages these two
features as well as activity recognition, while the approach in [16]
exclusively uses radio signals and requires the signal strength of
four neighboring GSM base stations. Comparatively, under-/upper-
ground classification has deserved much less attention. Here, the
quick barometric pressure change is suitable for detecting in-door
floor transition [11], and underground scenario in particular as the
air pressure allows estimating the altitude [4].

As outlined above, diverse embedded sensors may serve charac-
terizing the context of the mobile sensing, while the resulting in-
ferences differ with respect to their accuracy and energy-efficiency.
The analysis of the state of the art further shows that the most
relevant observations are those related to the physical and commu-
nication environment. Still, it is critical to account for the variation
in the availability of features across the contributing devices. Our

approach addresses this requirement by being self-adaptive to the
diversity of users (and devices). The user-centric classification on
the user’s device may be performed on any subset of the above set
so as to account for the diversity of devices and related embedded
sensors. The set may further be customized and freely recomposed,
trading off energy efficiency and accuracy, to offer adaptiveness.

Generic context inference. Various algorithms have been con-
sidered for the inference of the mobile sensing context, among
which rule-based solutions. A classifier based on the non-linearity
of the sensor readings is presented in [19] for the in-pocket/out-
pocket classification. Rule-based classifiers are also introduced for
the in-door/out-door case but differ in the number of sub-detectors
and their approach to aggregation. The algorithm in [6] uses three
sub-detectors while the one in [7] uses two sub-detectors. The
approach in [1] is also rule-based but hierarchical and switches
among three rule-based modules so as to distinguish the contribut-
ing scenarios at a finer grain. Independent of the specifics of the
rule-based approach, adequate thresholds for the classifier must
be set, which is done empirically [2, 10, 11]. An alternative to the
rule-based approach for the context inference is to leverage ma-
chine learning algorithms. For instance, Rana et al. [14] use the
K-Nearest Neighbor algorithm (KNN) with the trained classifier
being evaluated using cross validation. A range of machine learning
algorithms for the classification of in-door vs out-door is investi-
gated in [16], including the Decision Tree, Random Forest, Support
Vector Machine, KNN, Logistic Regression, Naive Bayesian, and
Neural Network; they conclude that KNN performs the best with
an average accuracy.

As outlined above, the existing work on context inference fo-
cuses on the classification of a single element of the sensing context.
Further, they evaluate the accuracy using a single dataset. None of
them addresses the personalization of the classifiers so as to cope
with the diversity of the contributing devices, users and scenar-
ios. Differently, our solution solves three classification problems
together, and is implemented as an on-device service providing the
sensing context to crowdsensing applications. We emphasize the
customization of the context inference per user, which requires
an online learning algorithm to keep the classifier evolving on the
local device.
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Towards the personalized inference of sensing contexts. Su-
pervised learning for one analyzed environment does not always
translate to another environment. Thus, the baseline learningmodel
needs to evolve according to the environment in which it is used.
For instance, the user-specific touch input model in [17] is updated
using calibration input requested to the users. The method for in-
door/out-door detection in [13] employs semi-supervised machine
learning without user involvement to learn new information. It
uses co-training classifiers requiring two Naive Bayes, resulting in
a double computational cost on the device. Although the estimation
of the class of a new instance does not involve the user, it is not the
ground truth. Rather than excluding user involvement, we believe
that the opportunistic participation of the user to gather the ground
truth allows a more effective personalization of the classifiers.

We introduce three classifiers, aka, learning models, to compre-
hensively characterize the mobile context, that is, whether the sens-
ing device is: in-pocket/out-pocket, in-door/out-door, and under-
ground/on-ground.We denote the corresponding classifiersMpocket ,
Mdoor , andMдround . We specifically leverage an online learning
approach to deal with the diversity of the contributing devices, users
and usage scenarios, while offering a resource-efficient solution
that minimizes the required user participation.

3 CLASSIFIER INITIALIZATION
Following the above state of the art analysis and taking into account
the sensors embedded in today’s smartphones, we find out the
most relevant feature set for each of our three classifications using
the dataset DATASET1. DATASET1 contains 20k labeled entries
contributed by a single user; it includes all the candidate features
and covers uniformly the three contexts to be classified.

3.1 Feature Selection
As illustrated in Table 1, not all the features are relevant to each of
the three classifications Mpocket , Mdoor and Mдround . We select
the features that induce both high information gain and gain ratio.

Feature set forMpocket . The top three features for theMpocket
classification are proximity, temperature and light density. Proxim-
ity is widely used for the in-pocket detection. Light density remains
an obvious, although less significant, candidate. While temperature
is an additional relevant feature, not all devices are able to provide
it.

Feature set for Mdoor . The Mdoor classification uses GPS ac-
curacy, abstract RSSI, GSM RSSI, Wifi RSSI, light density and tem-
perature. Although GPS is the most relevant feature to distinguish
in- and out-door scenarios, it is also the most power consuming
feature. Rather than totally disabling it, it can be occasionally used
depending on the preference of the user. Wireless RSSI shows a
lower, but still significant, contribution to classification because it
is impacted by walls and obstacles (Non-line-of-sight) in buildings.

Feature set for Mдround . Even though the under-ground sce-
nario is considered as a sub-case of the in-door scenario, it requires
abstract RSSI, GPS accuracy, temperature, GSM RSSI, pressure, Wifi
RSSI and humidity. Pressure and humidity are decisive as long as
the device provides them. The wireless RSSI contributes because the

network connectivity is usually weak in an under-ground compared
to on-ground environment.

3.2 Initial Training
We train the Mpocket , Mdoor and Mдround classifiers using the
most significant features associated with each of them. Although
performing a training for each smartphone/sensor model would
lead to a better classification, this is hardly feasible given the di-
versity of smartphones/sensors. Our classifiers must be effective
both in terms of classification accuracy and time/space cost, espe-
cially with respect to their local inference/update on the device.
There are various algorithms eligible to address the classification
problem although fewer are updatable. We have specifically se-
lected six candidate updatable algorithms: Hoeffding Tree (Very Fast
Decision Tree), IBk (Instance Based K-nearest neighbors classifier),
KStar (Instance-based Learner), LWL (Locally Weighted Learning),
updatable Naive Bayes, and SGD (Stochastic Gradient Descent) [18].
Using DATASET1, we have compared the candidate algorithms for
Mpocket ,Mdoor andMдround according to the following metrics:
Size -the serialized model size; CVCA -the 10-fold Cross Validation
Classification Accuracy; OLR -the Online Learning Runtime and IR
-the Inference Runtime.

Due to the lack of space, we provide in Table 2 the result obtained
withMдround ; same trends are observed forMpocket andMdoor .
In particular, all the algorithms provide a high CVCA. Depending
on the algorithm, the sterilized size significantly differs because IBk,
KStar and LWL are storing the training instances in the learning
model, so the size of the classifier gets proportional to the size of
the training dataset. IBk and LWL have a greater OLR compared
to others. IBk, KStar and LWL all have much longer IR than Ho-
effding Tree, Naive Bayes and SGD. The OLR and IR remain low
for Hoeffding Tree, Naive Bayes and SGD. We finally selected the
Hoeffding Tree as training algorithm because it is characterized
by the highest accuracy and lowest space/time costs. The initial
classifier is trained once on a computer.

4 ONLINE PERSONALIZATION
The classifiers for the sensing context need to be personalized,
i.e., deployed on the smartphones so as to evolve according to the
specifics of the device, user and even scenario contributing the
crowdsensed observations. In particular, the online learning and
classifiers update cope with the following aspects:

(1) Biases in the feature value across diverse device models: The
values collected for the same feature on different devices can
show significant biases due to the diversity of device models.

(2) Availability of features depending on the device and user prefer-
ence: The feature availability depends on both the capability
of the given device and the configuration set by the owner
who decides which embedded components are switched
on/off.

(3) Classification on new scenarios not covered during the initial
training: The classification may not work in a new physical
region, another season, another city, etc. In other words,
the initial classifier may not cover scenarios that will be
encountered across time and space.
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Metric Feature Proximity Temperature Light density GPS accuracy Abstract RSSI GSM RSSI Wifi RSSI Pressure Humidity
Mpocket info. gain 0.931 0.344 0.310 - - - - -

gain ratio 0.720 0.172 0.155 - - - - -
Mdoor info. gain - 0.228 0.255 0.974 0.794 0.738 0.320 - -

gain ratio - 0.114 0.127 0.715 0.493 0.370 0.180 - -
Mдround info. gain - 0.485 - 0.434 0.547 0.463 0.181 0.376 0.276

gain ratio - 0.243 - 0.318 0.340 0.232 0.170 0.188 0.138
Table 1: Potential features and information gain / gain ratio above 0.1

Metric/Model H.Tree IBk KStar LWL Naive Bayes SGD
Size (kB) 13 1763 1763 1763 4 6
CVCA (%) 100 100 100 98.060 97.105 100
OLR (ms) 0.024 4.628 0.062 6.720 0.009 0.111
IR (ms) 0.061 15.160 238.916 128.149 1.223 0.018

Table 2: Evaluation of the learning algorithms forMдround

Initial Model

Online Model 2Online Model 1

Feedback

In-Door

In-Pocket

On-Ground Under-Ground

Out-Pocket

Out-Door

Figure 2: Online learning for personalization - The initial
model is deployed on the participating devices, and becomes
a local user-centric model on each device, which is evolving
through feedbacks; The feedback is collected only following
some inference results and the inferences are hierarchical

Figure 2 summarizes the design rationale of our online learning
solution: the initially trained classifier is deployed on the partic-
ipating devices at the time of the installation of the embedding
crowdsensing middleware/application, e.g., [5]. While the infer-
ence of the sensing context is running on the device, feedback is
requested to the user to assess the correctness of the inference
result. The collected opportunistic feedback is then converted to a
labeled training instance that updates the current learning models.
We boost the online learning by creating a new instance from the
feedback and using it multiple times for the model update. The
feedback requirement should be limited as much as possible to min-
imize the burden on the user, while still enhancing the accuracy of
our three classifiers Mpocket , Mdoor and Mдround over time. We
achieve this by applying a hierarchical inference and update of the
three classifiers (Algorithm 1). This follows from the predominant
role of the in-pocket classifier over the two others and of the in-door
classifier over the under-ground one when sensing the physical en-
vironment. In more detail, a crowdsensed measurement is relevant
for the analysis of most environmental phenomenon if out-pocket;
an in-pocket device has less opportunity to be contributing to the
mobile crowdsensing, e.g., [15]. The in-door/out-door detection is

Algorithm 1 Hierarchical inference and update

Input: A feature vector ®f with a feedback u ∈ U (options)
Output: The integrated inference result c shown to the user

u ∈ ∅ ⊂ U possible if the user does not give feedback
1: c ← null
2: if Mpocket ( ®f ) = inpocket then
3: c ← inpocket andU ← {outpocket}
4: if u = outpocket ∈ U then
5: updateMpocket using instance ( ®f ,u)
6: end if
7: else if Mdoor ( ®f ) = outdoor then
8: c ← outdoor + outpocket andU ← {indoor }
9: if u = indoor ∈ U then
10: updateMdoor using instance ( ®f ,u)
11: end if
12: else if Mдround ( ®f ) = underдround then
13: c ← underдround + indoor + outpocket and ...

U ← {onдround}
14: if u = onдround ∈ U then
15: updateMдround using instance ( ®f ,u)
16: end if
17: else
18: c ← onдround + indoor + outpocket and ...

U ← {underдround,outdoor }
19: if u = underдround ∈ U then
20: updateMдround using instance ( ®f ,u)
21: else if u = outdoor ∈ U then
22: updateMdoor using instance ( ®f ,u)
23: end if
24: end if
25: return c and run from line 1 for next loop

meaningful only when the device is out-pocket and ready for sens-
ing. Further, the under-ground/on-ground case is a sub-scenario of
the in-door situation. Also, while requesting the user’s feedback
about a single inference may be acceptable, requesting the feedback
about three inferences is too much to ask.

5 IMPLEMENTATION AND EVALUATION
We have implemented the proposed online personalization as an
Android application. We rely on the WEKA library [18] that im-
plements the Hoeffding Tree algorithm. The initial classifier is
serialized and imported into the Android application, so as to be
loaded at runtime and updated locally. The application collects
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features, infers the sensing context, collects feedbacks and updates
the classifiers accordingly. The application also implements a fea-
ture extractor and a user interface for requesting feedbacks. The
final solution relies on the Hoeffding Tree and uses only negative
feedbacks hierarchically so as to keep the amount of feedbacks to a
minimum and limit the burden put on the end user.

5.1 Accuracy and Number of Feedbacks
We use a new dataset, DATASET2, which includes 20k labeled en-
tries collected from a single user and that uniformly covers the
combination of the 3 contexts. Compared toDATASET1,DATASET2
collects data at different places and time periods, and uses a differ-
ent device model whose sensors come from distinct manufacturers;
further, during the data collection, the user switched off/on theWifi
and the GPS modules. We assess the accuracy of our hierarchical
algorithm according to the number of negative user feedbacks (i.e.,
when the inference is wrong). We performed 500 runs of experiment
where, at each run, we randomly select 30 entries ofDATASET2 and
the ground truth serves assessing the correctness of the inference.
Over the 500 runs, at most 9 inferences were wrong forMpocket ,
12 forMdoor , and 13 forMдround . Also, as depicted in Figure 3, the
classification accuracy gets better 99%, 86% and 71% of the time over
the 500 runs for Mpocket , Mdoor and Mдround , respectively. The
enhanced accuracy forMpocket andMдround is high compared to
the initial accuracy, and is less significant for Mdoor . While the
accuracy forMpocket remains stable, the classification accuracy for
Mdoor andMдround slightly varies before reaching 91% and 90%,
respectively. Summarizing, our hierarchical algorithm enhances the
classification accuracy most of the time while limiting the amount
of (negative) feedbacks requested to the end user.

5.2 Hierarchical vs Multi-class Classifiers
An alternative to our approach lies in performing a single and
multi-class classification, which distinguishes 8 combinations of
in/out-pocket, in/out-door and under/on-ground. To compare the
multi-class classifier with our hierarchical classifiers, we performed
100 runs of experiment using the settings of § 5.1. As illustrated
in Figure 4, the mean of the enhanced accuracy (triangles in plot)
always remains below 45%. Also, the initial and enhanced classifica-
tion accuracy of a multi-class classifier is 1/2 time lower compared
to hierarchical classifiers (Figure 3). Besides, the multi-class classi-
fier requires more feedbacks compared to the hierarchical classifiers:
Up to 28 feedbacks are required. Also, with the multi-class classifier,
the user must select among 7 options instead of one or two op-
tions. As illustrated in Figure 5, our hierarchical classifier involves
a much shorter update and a slightly shorter inference compared
to the multi-class classifier because the hierarchical classifiers do
not always perform all the classifications.

Overall, using hierarchical classifiers offers many advantages:
(1) Using a specific classifier for each context element implies that
the classification accuracy remains high for each of them; (2) Each
classifier only relies on the most relevant features, which reduces
the inference and update execution time; (3) A classifier is easily
added/removed/replaced when a new context element is handled
for the benefit of the crowdsensing application; (4) Hierarchical
classifiers limit the number of inferences that are triggered; (5)

The user feedback required for the personalization of hierarchical
classifiers is simple and reduced.

5.3 Energy and Resource Efficiency
The power consumed by the GPS module, proximity sensor and
Wifi component is relatively high (resp. 50, 3 and 2 mA) compared
to the one consumed by the light/ magnetic/pressure/humidity
sensor, which remains bellow 1.2 mA. Figure 6 evaluates the impact
of disabling these three power-consuming components for which
we rely on another dataset, DATASET3, that includes 20k entries
obtained when these three components are disabled. When the
GPS, proximity and Wifi are disabled, the classification accuracy
drops down with a decrease of respectively 50%, 40% and 20%. With
feedbacks, the mean classification accuracy increases by 10%, 8%
and 1% respectively, while the maximum classification accuracy
with feedbacks reaches 74%, 99% and 98% respectively. Overall,
our approach personalizes the classifiers and deals with (power-
consuming) features that may be disabled by the user.

Our implementation requires 100MB of memory on a smart-
phone (Qualcomm Snapdragon 636) and leads to an increase of
5% of the CPU. The inference and update of contexts necessitate
around 3MB of memory and an increase of 5% of the CPU. The
inference execution time is on average 0.2ms , 0.1ms and 0.1ms for
Mpocket , Mdoor and Mдround , respectively, while the execution
time necessary to update the model is 7.3ms , 7.5ms and 10.0ms on
average. Summarizing, our approach allows adapting the tradeoffs
between power consumption and accuracy, while inducing limited
resource consumption on the smart phone.

6 CONCLUSION
Context-awareness is essential to the development of mobile crowd-
sensing applications that can be informed when a suitable sensing
context is detected so as to maximize the effectiveness of the crowd-
sensing application without requesting the end-user to explicitly
provide contextual details. This paper proposes to classify the con-
text under which the crowdsensor operates and infer whether the
smartphone is in/out-pocket, in/out-door and under/on-ground.
We leverage online supervised learning to deal with the diversity
of devices, the different user behaviors and novel scenarios. We
compare six online learning models to select the algorithm achiev-
ing the best efficiency, which is expressed in terms of classification
accuracy, runtime and memory consumption. In particular, we in-
troduce a hierarchical algorithm that requests few feedbacks and
hence reduces the burden put on the user. Experiment results show
that despite few feedbacks, there is a high probability to get a
good/enhanced classification accuracy. Furthermore, compared to
a single multi-class classifier, our hierarchical approach of context
inference and update is more efficient in terms of both execution
time and feedback collection. Our approach is also flexible because
the sensing context can be inferred even when some sensor(s) or
communication module(s) are unavailable or switched off.

5
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(b) 86% enhancement of Mdoor
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(c) 71% enhancement of Mдround

Figure 3: Box plots showing the improvement of the hierarchical H.Tree classification accuracy wrt the number of feedbacks
compared to the original accuracy obtained without feedback (dashed line)
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Figure 4: Multi-class H.Tree classifica-
tion accuracy box plot according to the
number of feedbacks
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