Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

An Automation-Friendly Set Theory for the B Method

Guillaume Bury, Simon Cruanes, David Delahaye, Pierre-Louis Euvrard

» To cite this version:

Guillaume Bury, Simon Cruanes, David Delahaye, Pierre-Louis Euvrard. An Automation-Friendly
Set Theory for the B Method. ABZ: Abstract State Machines, Alloy, B, TLA, VDM, and Z, Jun 2018,
Southampton, United Kingdom. pp.409-414, 10.1007/978-3-319-91271-4_ 32 . hal-02082755

HAL Id: hal-02082755
https://hal.archives-ouvertes.fr /hal-02082755
Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/195819243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02082755
https://hal.archives-ouvertes.fr

An Automation-Friendly Set Theory
for the B Method

Guillaume Bury!, Simon Cruanes?, David Delahaye?, and
Pierre-Louis Euvrard?

1 LSV, ENS Paris-Saclay, Inria, Cachan, France
Guillaume.Bury@inria.fr
2 Aesthetic Integration, Austin (Texas), USA
simon@aestheticintegration.com
3 LIRMM, Université de Montpellier, CNRS, Montpellier, France
David.Delahaye@lirmm.fr
Pierre-Louis.Euvrard@lirmm.fr

Abstract. We propose an automation-friendly set theory for the B
method. This theory is expressed using first order logic extended to poly-
morphic types and rewriting. Rewriting is introduced along the lines of
deduction modulo theory, where axioms are turned into rewrite rules
over both propositions and terms. We also provide experimental results
of several tools able to deal with polymorphism and rewriting over a
benchmark of problems in pure set theory (i.e. without arithmetic).

Keywords: B Method, Set Theory, Automated Deduction, Polymor-
phic Types, Rewriting

1 Introduction

In this paper, we present the set theory of the B method [1]| using polymorphic
types and rewriting. Expressed this way, this theory has the benefit of being
quite automatable for several reasons. In particular, the use of polymorphism
allows us to make the theory more synthetic by removing some typing predicates,
which therefore improves proof search. As for rewriting, it is introduced along
the lines of deduction modulo theory [5], where axioms are turned into rewrite
rules over both propositions and terms. Deduction modulo theory has proved to
be also very useful to improve proof search when integrated to usual automated
proof techniques. In this paper, we also aim to advertise that more and more
automated tools are able to deal with polymorphic types and rewriting, and we
provide some experimental results involving the latest versions of these tools.

2 A Set Theory with Polymorphism and Rewriting for B

In the following, we consider the pure set theory part of the B method, i.e. the
material introduced in Chap. 2 of the B-Book [1]. This part of the B theory is

Axioms of Set Theory

(‘T7y) etUp(al,ag) S Xaq,an t—x Cay SAY €ay t
5 Eset(a) Pa(t) — VE:ax €0 s = T Ea't
5 =get(a) t = VT 1T €4 S T Ea t

Set Inclusion
5Cat —>5Cset(a) Pa(t) S5Cat—5CatASFEwa)l

Derived Constructs

T EqSUagt — T EasVTEQtl TEQSNat —T EqsSNTEQL
TES—qt—>TEaSANT &at z Eq o — L
T Eq {a}a —r T =q Q IIED1 a(s) HIPC%(S) T« {Qa}set(a)

Binary Relation Constructs: First Series

p Eset(tup(og,ozg)) u <_>O¢17042 v—

Vo a1.Vy: az.(z,y) Ctup(ar,az) P = T €ay UNY Eay
(y,x) Cwp(az,a) pgll,oq - (:c,y) Cwp(ar,az) P
Z €ay doMay oy () — 3b 1 2.(2,0) Erup(ar,az) P
T €ay raNay 0y (P) — Ja : 01.(a, T) Erplay,ag) P
(z,y) Ctup(aq,a3) Piar,az,a3 § — 3b: az.(z,b) Etup(ag,az) P A (b,y) Etup(az,az) 4
g Oaj,az,a3 P = Piaj,az,a3 4
(%, Y) Etpla,a) ida(u) — T ELUAT =0 Y
(:C,) Ctup(ar,az) S Jag,as P — (xvy) Ctup(arg,az) PAZT €ay 8
(xy) etup(al,ag) P >ay,an t— (:my) Etup(ozl,az) PAY Cas t
Ex, ; Erup(ar,az) § D ar,aaP — (T,Y) Ewp(ar,a0) PA T Eay S

Y
Yy
Yy
z,y Etup(al,ag) pB al,&2t — (Z‘,y) etup(al,ag) p A Yy ¢O<2 t

Fig. 1: Rewriting Rules of the B Set Theory (Part 1)

suitable as it can be easily turned into a theory that is compatible with deduction
modulo theory, i.e. where a large part of axioms can be turned into rewrite rules.
We therefore transform whenever possible the axioms and definitions into rewrite
rules. The resulting theory is summarized in Figs. 1 and 2, where we omit the
set BIG and the sets defined in extension.

As can be seen, the proposed theory is typed, using first order logic extended
to polymorphic types a la ML, through a type system in the spirit of [2]. This
extension to polymorphic types offers more flexibility, and allows us to deal with
theories that rely on elaborate type systems, like the B set theory. The complete
type system used here can be found in [3]. The type constructors, i.e. tup for
tuples and set for sets, and type schemes of the considered set constructs are
provided in Fig. 3 of Appx. A, where Type is the type of types and o the type
of formulas. Type arguments are subscript annotations of the construct, and to
improve readability, we remove the type annotations in tuples when they are
redundant with the membership construct.

Binary Relation Constructs: Second Series

T €ay P[War,ay — Ja: 1.0 €Eay WA (4, %) Erup(ay,az) P
(%,Y) Etup(ar,az) I<Far,02D —
((z,y) Etup(ar,az) N T Zay doma; oy (p)) \ (x,y) Ctup(ar,az) P
(z,(y,2)) Etup(ay tup(az,az)) | Oar,az,as § — (z,y) Etup(ar,az) , A (z,2) Etup(ar,a3) 9

(Ivy)vz) Etup(tup(a,az),a1) Priy a,an (Svt) —

((may)vz) Etup(tup(a,az),a1) (3 Xay,az t) Xtup(a,az),ar SN T =ay 2
((xvy)wz) Etup(tup(ar,az),az) Priz ay,an (s’t) —

(%, 9), 2) Ewp(tup(ar,az),a1) (8 Xar,az t) Xtup(ar,as),ar LAY =ay 2
((#,9), (2,w)) Cup(up(ar.az)mp(az.00) Plla; ag,05.00F —

(T, 2) €wp(ay,az) P A (Y W) Ewp(ag,as) k

Function Constructs: First Series

f GSEt(tUP(al,OQ)) S+ O‘l,OCQt — f eset(tup(ozl,ozg)) S <raq,an t A
Yz i o1 VY, 2 1 02.(T,Y) Erplar,a) f A (T,2) Erwplar,az) [=Y =as 2
f Eset(tup(ar,az)) § ai.az L —
f eset(tup(al,ag)) S+ 0¢170¢2t A domahaz (.f) set(a1) S
[Eset(tup(ar,as)) S a1,a0t —
f Eset(tup(ay,az)) S+ ar,azt A fz;ll,ag Eset(tup(az,o1)) t+ ag,018
f Eset(tup(a1,a2)) 5 ar,ay L —
f Eset(tup(ar,az)) S a1,aat A f Eset(tup(ar,az)) § —Pai,az t
f Eset(tup(ar,az)) § * ai,al —
f 6set(tup(ozl,ag)) S+ a17a2t Aranay,a, (.f) —set(az2) t
J Eset(tup(ar az)) § Paran b —
f Cset(tup(ay,a2)) $ arasl A f Cset(tup(ay,az)) S Fai,as t
[Eset(tup(ar,a2)) S a1,00t —
f eset(tup(al,az)) $r ap,at A f Eset(tup(cxl,az)) S+ aq,anl
f Eset(tup(ar,az)) § ™ a1,a2l —
f Eset(tup(ar,a2)) 5 "ar,ap E AT Eset(tup(ar,az)) § Paraz b

Fig. 2: Rewriting Rules of the B Set Theory (Part 2)

3 Experimental Results

To test the previous theory, we consider 319 lemmas* coming from Chap. 2

of the B-Book [1]. As tools, we consider automated theorem provers able to
deal with polymorphic types and rewriting natively. Our set of tools includes:
Zenon Modulo (version 0.4.2), a tableau-based prover that is an extension of
Zenon to deduction modulo theory; ArchSAT (development version®), a prover
that combines a SAT solver with tableau calculus and rewriting; and Zipperpo-
sition (version 1.5), a prover based on superposition and rewriting. To show the
impact of rewriting over the results, we also include the Alt-Ergo SMT solver
(version 1.01), which deals with polymorphic types but not rewriting.

4 The benchmark is available at: https://github.com/delahayd/bset.
% Git version 7720d8c, available at: https://gforge.inria.fr/projects/archsat.

https://github.com/delahayd/bset
https://gforge.inria.fr/projects/archsat

319 Problems | Zenon Modulo ArchSAT Zipperposition Alt-Ergo
Proofs 138 272 306 232
Rate 43.3% 85,3% 95,9% 72.7%
Time (s) 2.86 268.69 109.88 8.42

Table 1. Experimental Results over the B Set Theory Benchmark

The experiment was run on an Intel Xeon E5-1650 v3 3.50 GHz computer,
with a timeout of 90 s and a memory limit of 1 GiB. The results are summarized
in Tab. 1. These results show the high performances, in terms of proved prob-
lems, obtained by the provers extended to rewriting, Zipperposition and ArchSAT
in particular, compared to the SMT approach of Alt-Ergo. Looking at the cumu-
lative times, Alt-Ergo is not really faster than Zipperposition and ArchSAT, which
take more time to find few more difficult problems (with a timeout of 3 s, they
respectively find 303 and 260 proofs in 17.61 s and 16.61 s, while Alt-Ergo finds
the same number of proofs). The low results of Zenon Modulo are probably due
to the fact that it uses a heuristic to transform the axioms into rewrite rules.

4 Conclusion

In light of the previous experimental results and as perspectives, we aim to apply
our approach, consisting of a B set theory using polymorphic types and rewriting
together with appropriate tools (Zenon Modulo, ArchSAT, and Zipperposition),
to proof obligations coming from the formalization of real-world applications. In
particular, we plan to use the benchmark provided by the industrial partners of
the BWare project [4], which gathers about 13,000 proof obligations.

References

1. J.-R. Abrial. The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0521496195.

2. J. C. Blanchette and A. Paskevich. TFF1: The TPTP Typed First-Order Form with
Rank-1 Polymorphism. In Conference on Automated Deduction (CADE), volume
7898 of LNCS, pages 414-420, Lake Placid (NY, USA), June 2013. Springer.

3. G. Bury, D. Delahaye, D. Doligez, P. Halmagrand, and O. Hermant. Automated
Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo.
In Logic for Programming, Artificial Intelligence and Reasoning (LPAR) — Short
Presentations, volume 35, pages 42-58, Suva (Fiji), Nov. 2015. EasyChair.

4. D. Delahaye, C. Dubois, C. Marché, and D. Mentré. The BWare Project: Building a
Proof Platform for the Automated Verification of B Proof Obligations. In Abstract
State Machines, Alloy, B, VDM, and Z (ABZ), volume 8477 of LNCS, pages 126-127,
Toulouse (France), June 2014. Springer.

5. G. Dowek, T. Hardin, and C. Kirchner. Theorem Proving Modulo. Journal of
Automated Reasoning (JAR), 31(1):33-72, Sept. 2003.

A Typing of the B Set Theory

Type Constructors

tup : oy, az : Type. Type set : Il : Type. Type

Type Schemes of the Set Constructs

-€- :Ia:Type.a — set(a) — o
(-,-) :Hon,az: Type.ar — ae — tup(ai, az2)
-x- :Iag,az : Typeset(ar) — set(az) — set(tup(ai, az))
P(-) : Ha: Type.set(a) — set(set(«))
-=- :Illa:Typea—a—o
BIG : ITa: Type.set(a)
-C-, -C-
Ha Type set(a) — set(a) — o
-J-, -N-, - —-
Ha Type set(a) — set(a) — set(«)
{-} s o : Type.aw — set(a)
] : [T : Type.set(a)
Pi(-) : Ha: Type.set(a) — set(set(«))
- - Iog,az : Typeset(ai) — set(az) — set(set(tup(ai, az)))
7L Hag, as : Typesset(tup(ar, az)) — set(tup(az, 1))
dom(-) : Has, s : Type.set(tup(au, az)) — set(an)
ran(-) : ITau,aq : Type.set(tup(ai, az)) — set(az)
- s [y, az, as : Type.set(tup(ai, az)) — set(tup(as, as)) — set(tup(ai, as))
-o- Mo, az,as : Type.set(tup(az, ag)) — set(tup(ai, az)) — set(tup(ai, as))
id(-) :ITa: Type.set(a) — set(tup(a, o))
-<- :Ilog,az: Typesset(ar) — set(tup(aa, az)) — set(tup(aa, az2))
->- :Iag, ap : Typeset(tup(ar, az)) — set(az) — set(tup(aa, az))
-<g- :Iaj, o Typeset(ar) — set(tup(ai, az)) — set(tup(aa, az))
- - Ilog,az: Typeset(tup(ai, az)) — set(az) — set(tup(aa, az2))
-[] : Ilon, az : Type.set(tup(ai, az)) — set(a1) — set(az)
-<t- o ITog,az : Typeset(tup(ai, a2)) — set(tup(aa, a2)) — set(tup(aa, az2))
-®- :Ilai, a2, a3 : Typeset(tup(ou, o2)) — set(tup(ai, as)) —
set(tup(ai, tup(az, as)))
prit(-) : ITou, az : Type.tup(set(ai),set(az)) — set(tup(tup(ai, az), a1))
pri2(-) : Iai, a2 : Type.tup(set(ai), set(az)) — set(tup(tup(aa, a2), a2))
-||- s o, az, a3, au : Type.set(tup(aa, az)) — set(tup(as, aq)) —
set(tup(tup(au, as), tup(az, as)))
Bl R AT o o T AN
Hai,ar : Type.set(ar) — set(az) — set(set(tup(ai, az2)))
-(-) s Mo, az : Type.set(tup(ai, a2)) = a1 — a2

Fig. 3: Type Constructors and Type Schemes of the Set Constructs

	An Automation-Friendly Set Theoryfor the B Method

