
HAL Id: hal-02082806
https://hal.inria.fr/hal-02082806

Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching Security with CTF-like challenges
Cédric Lauradoux

To cite this version:
Cédric Lauradoux. Teaching Security with CTF-like challenges. Rendez-vous de la Recherche et de
l’Enseignement de la Sécurité des Systèmes d’Information, May 2017, Erquy, France. �hal-02082806�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195819198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02082806
https://hal.archives-ouvertes.fr

Teaching Security with CTF-like challenges
Cédric Lauradoux

Univ. Grenoble Alpes, INRIA
Email: cedric.lauradoux@inria.fr

Abstract—We present a course given at ENSIMAG which is
an introduction to security. The originality of this course is that
challenges are given to the students during the labs and at the
mock/final exams. It may give you ideas for your courses.

I. TARGETED AUDIENCE

The course is followed by 60 students of the Embedded
systems and connected devices program of ENSIMAG known
as SEOC. This course is also the first time that the students
are exposed to security. The background of the students is
heterogeneous: some students have good programming skills
but others have virtually no programming experience. This
program is shared between ENSIMAG and Phelma which
explain this variability on the students programming level.
Due to this constraint, the course and the labs are restricted
to command lines and bash scripts.

II. COURSE CONTENT

During 6 weeks, the course is organized as follows. On
Wednesday, the students follow a 1.5 h lecture. Students are
split into two groups for the labs (Group 1 Thursday) and
(Group 2 Friday). The course is oriented on system security
and addresses five topics: file format, forensics, symmetric
cryptography, asymmetric cryptography and password secu-
rity. The last week is dedicated to a mock exam to prepare the
students to the final exam. The full content of the course is
described in Table I and is accessible at https://bit.ly/2v3Tr7N.

Lecture 1: Intro. + File format Lecture 4: Asymm. crypto
Lab 1: fuzzing, archive bomb, Lab 4: hybrid encryption,
decompression bomb, chameleon, signature, certificat.
werewolf.
Lecture 2: Forensics + Hashing Lecture 5: Password security
Lab 2: sleuthkit, file system, Lab 5: digest breaking, john,
carving, secure deletion, crawling, wget, cewl.
covert channels.
Lecture 3: Symmetric crypto. Mock exam
Lab 3: mode of encryption, Partial Correction
password, salt, fuzzing.

TABLE I
MAIN CONCEPTS INTRODUCED DURING THE LECTURES AND THE LABS.

A. Labs organization

Students have virtual machine at their disposal with
the latest version of Kali Linux. The main softwares
used during the class are: dd, hexdump, openssl,
exiftool, sleuthkit, foremost, strings, shred,
john (Jumbo), wget and cewl.

The labs are very short (1.5h), so their difficulty is pro-
gressive. During the first half hour, the students have direct
illustrations of the softwares they will used. They just need
to enter commandline and observe the results. In the next
half hour, they will do one or two guided exercises. During
the remaining time of the lab, the students have to solve
challenges. The time distribution here is approximative.

Students start to do challenges at Lab 2: they need to use
the skills from the previous labs to obtain the new one. It can
be for instance decrypting a file to get the text, exploring a
file system or breaking a digest to recover the password of the
zipped text. These challenges are very basic to validate the
fundamental knowledge of the students.

B. Motivations
The course is concentrated on the notion of file. Through

my years of teaching, I realize that many of my students
(even the best) who followed my “more classical” lectures
on security were still confused by the notion of files. They
have issues when they need to put into practice all the
theoritical framework of security they have learned. This is
particularly true with cryptography: the students have no issues
understanding lectures on symmetric encryption and modes of
operation, but when they have to encrypt a file they are in total
disarray and make blunders. By centering everything around
the file, it gaves me the opportunity to put the students in front
of concrete situations they must solve.

C. Reading materials
The first lab is based on two articles on security of file

format [4] and decompression bombs [3]. The textbook of
Takanen et al. [6] on fuzzing is given to the students who want
to explore this domain. Forensics and carving are explained
in the second lab using references to Chapter 3 of [1] (the
complete book is a great reference but this chapter is available
for free). Lab 3 and 4 are dedicated to cryptography and have
been inspired by exercises from [5], [7].

Finally, the last lecture on password security is based on an
excellent tutorial given by Blase Ur and Michelle Mazurek at
Usenix SOUPS 2016 (the slides are available at http://users.
umiacs.umd.edu/∼mmazurek/soups16 tutorial.htm). The only
difference is that the lab is using john instead of hashcat.

III. EXAMPLES

We give two examples exercises or challenges that the
students need to do/solve during the labs. The first example is
the most original one on file format. The second example is
on forensics with a final twist on file format.

A. Fuzzing file’s metadata and chameleon

One of the main activity of the first lab consists to play with
the tarball file format. Students discover the structure of
the header of a tarball using the manual http://www.gnu.
org/software/tar/manual/html node/Standard.html. Then, they
have to complete a draft of bash script. The goal of this script
is to perform a crude fuzzing on the header of a tarball by
injecting random values. The script is composed of 3 parts:

• injection of random data in a given field of the header
(using dd and done by the students)

• computation of a valid checksum (given to the students)
• analysis of the result (done by the students)

Once their script is completed, they can use it on a valid
tarball file. This very simple introduction to fuzzing shows
them that some fields can be filled with random data without
affecting the user’s experience.

They also need to transform this script to read the header
of a tarball. The file covert.tar is given to them
and they can discover a message hidden in the linkname
field. The conclusion of this exercise is the creation of a
chameleon [4]: a file with multiple format signature. They
inject a gzip’ed version of the eicar.com file into the
filename field of innocuous tarball file chameleon.tar.
The compressed file eicar.com.gz consists of 98 byte. A
software can detect the file as a compressed gzip file or a
tarball depending on its format detection logic. Students
test the gzip’ed version the eicar.com and their chameleon
file chameleon.tar on https://www.virustotal.com. The
result observed during the labs is 43/56 anti-viruses detect
eicar.com.gz as the eicar.com file but the result drops
to 18/56 anti-viruses for chameleon.tar: 25 anti-viruses
can be still abused by a chameleon.

500B

gzip file (≤ 100 bytes)
mode uid guid mtime
cksum flag linkname

magic version uname gname
devmajor devminor prefix

Fig. 1. Header of tarball chameleon.

The rest of the lab includes decompression bombs, archive
bombs [3] exercices and more generally the exploration of
more file’s metadata using exiftool.

B. Forensics (and some pdf fun)

After taking some time to get familiar with the basic com-
mands (mmls,fsstat,fls and icat) of the sleuthkit,
students start to investigate a file named system.dd. It
appears to be a FAT16 file system labeled NOHOPEFORYO.

Students recover all the tar.bz2 files using icat. Then,
the most adventurous students try to open a.tar.bz2. It is
actually a compressed archive (it contains 401 files containing
each 30MB of random data ≈ 12GB, to freeze their virtual
machine). The smartest students have a look at the $MBR
which says that openning a.tar.bz2 is not a good idea.
They turn to b.tar.bz2 which is a temporary file resulting

from creating a.tar.bz2. It contains only a few random
meaningless files (it does not freeze the virtual machine).

Listing 1. First image
$ fls system.dd
r/r 3: NOHOPEFORYO (Volume Label Entry)
r/r * 5: b.tar.bz2
r/r 7: c.tar.bz2
r/r 9: a.tar.bz2
v/v 1604467: $MBR
v/v 1604468: $FAT1
v/v 1604469: $FAT2
V/V 1604470: $OrphanFiles

Finally, they decompress c.tar.bz2 and obtain the image
new.fs. This time, it contains a ext2 file system. All
the students think it is going to be easy money that it is
as simple as icat new.fs 12 > suite.pdf. They are
disappointed to obtain an empty file.

Listing 2. Second image
$ fls new.fs
d/d 11: lost+found
r/r * 12: suite.pdf
V/V 7585: $OrphanFiles

As explained during the lecture, carving (foremost) is
always there when you have no hope. foremost is able to
recover a broken pdf file. Most of the students have used
online tools to repair the pdf files but it can be done using
mutool clean target.pdf repaired.pdf 1.

IV. EXAMS

The exam is organized as a series of challenges that the
students have to solve on a desktop. The goal of each student is
to recover 7 student’s logins following the course. The answers
of each student are randomly chosen to secure the exam. For
the mock exam, all the students share the same logins.

The challenges are organized using a tree structure (Fig. 2).
Each edge of the tree is a challenge and each node is a file. The
challenge connecting a node to its left child is simpler than
the challenge connecting the right child. Solving successfully a
challenge provides one login except for the challenge between
File 1 and File 4. Reaching File 3 and its left child only
requires to apply what was done during the labs: the student
is granted 11 points for recovering 3 logins. Solving the other
challenges provide extra points (+2 points and +3 for the
most difficult challenge). It is challenging for the best students
without putting aside the other students.

A. Sampled exercise: forensics + encryption

Students have received an image of FAT32 partition. If they
mount the partition, they observe many files with extension
.jpg.enc: the file command detects them as data file

File 1

File 2

File 3

11 +2

+2

File 4

+2 +3

Fig. 2. Organization of the challenges in the mock and final exams.

and they look random. The files are meaningless at the
first sight. After exploring the deleted files, students discover
some evidence that some files were deleted using srm and a
bash script named ransomware.bash. This basic malware
encrypts all jpg files located in the current directory using
openssl (AES in CTR mode with 128-bit key). At the
beginning of the script, a key and an initiatization vector are
generated using the command whoami. Most of the students
recover each file by hand using openssl. The best students
realize that running the malware again but changing the targets
jpg by .jpg.enc is enough to recover the original files
thanks to the nice properties of the CTR mode. The jpg files
are pictures of students sampled from the students gallery.
They can recover the corresponding logins but the issue is
that only one of them is valid. They can discover that a digest
is hidden in the unallocated space of the partition using the
strings command which matches one jpg file. I admit
that this last step is tricky but it aims at reminding them that
strings is a powerful tool.

Students often realize that writing a ransomware is difficult:
how to generate the key and the initialization vector ? How
to ensure that the targeted user is unable to recover the key ?
How to make the ransomware creator get the key ?

V. FEEDBACKS

A. Teacher

With the labs reaching a stable version, most of the work in
the course is done. There are two demanding parts: verifying
compatibility issues and creating the mock and real exams.

In the first year this course was given with this agenda and
content, it was also the time of major revision for openssl.
I was using my computer to generate the challenges using a
different version of openssl, the one used by the students.
It creates lots of compatibility issues which are now handled
properly by openssl.

Sacrifying a week (lectures + one lab for each student) to
make a mock exam is valuable for the students otherwise they
have difficulties to combine all the skills acquired. The side
effect is that you need to create two original exams every year.

B. Students

This is the second year that this course has followed this
format. ENSIMAG provides a survey to the students to grade

their course. 25 students commented the course and 24 rate it
on a scale between Excellent and Bad (see Table II).

Excellent Good Satisfactory Unsatisfactory Very
unsatisfactory Bad No answer

9 8 4 3 1

TABLE II
EVALUATION OF THE COURSE BY THE STUDENTS.

Most of the comments are extremely positive. Two negative
reviews consider the lectures useless and would prefer to have
only labs. This comment is also shared in positive reviews:
the students would prefer to have more labs than lectures.
The last negative review is about my own personality and not
the content of the course: it is not relevant here.

VI. CONCLUSION

How to improve the course ? First, it was asked to transform
the lectures into labs according to the wishes of the students (I
actually agree with them). With 3 extra labs, the goal could be
to add two networking labs and one lab on malwares and host-
based intrusion detection system (yara+inotify-tools
for instance). Another possible direction is to use the extra labs
to make an in-depth forensics analysis of Windows or Linux
system. The security of the exam could also be improved by
randomizing the order of the challenges for each student (today
only the answers are randomized).

ACKNOWLEDGMENT

The author wants to thank Jean Louis Roch for giving him
the opportunity to teach at Ensimag and for giving him carte
blanche for the content of the course. This work is supported
by the French National Research Agency in the framework of
the Investissements d’Avenir program (ANR-15-IDEX-02).

REFERENCES

[1] Cory Altheide and Harlan Carvey. Digital Forensics with Open Source
Tools. Syngress Publishing, 1st edition, 2011. Chapter 3 available for free
at https://booksite.elsevier.com/samplechapters/9781597495868/Chapter
3.pdf.

[2] Gildas Avoine, Pascal Junod, Philippe Oechslin, and Sylvain Pasini.
Sécurité informatique, cours et exercices corrigés. Vuibert, 2015.

[3] Margaux Canet, Amrit Kumar, Cédric Lauradoux, Mary-Andréa Rako-
tomanga, and Reihaneh Safavi-Naini. Decompression Quines and Anti-
Viruses. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, CODASPY 2017, pages 23–34. ACM,
March 2017.

[4] Suman Jana and Vitaly Shmatikov. Abusing File Processing in Malware
Detectors for Fun and Profit. In IEEE Symposium on Security and Privacy,
SP 2012, pages 80–94. IEEE Computer Society, May 2012.

[5] Douglas Stinson, Serge Vaudenay, Gildas Avoine, and Pascal Junod.
Cryptographie - Théorie et pratique / 2ème édition. 2003. French
translation of: Cryptography Theory and Practice, 2nd edition, Chapman
& Hall/CRC, 2002.

[6] Ari Takanen, Jared DeMott, and Charlie Miller. Fuzzing for Software
Security Testing and Quality Assurance. Artech House, Inc., Norwood,
MA, USA, 1 edition, 2008.

[7] Damien Vergnaud. Exercices et problèmes de cryptographie. Sciences
Sup. Dunod, 2012.

