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B
IG DATA applications play an increasing role in High Performance
Computing (HPC). They are perfect candidates for co-scheduling, as

they obey flexible speedup models, alternating I/O operations and intensive
computation phases. In this chapter, we discuss co-scheduling on failure-prone
platforms. Checkpointing helps to mitigate the impact of a failure on a given
application, but it must be complemented by redistributions to re-balance
the load among all applications. Co-scheduling usually involves partitioning
the applications into packs, and then scheduling each pack in sequence, as
efficiently as possible. The objective is therefore to determine a partition into
packs, and an assignment of processors to applications, that minimize the
sum of the execution times of the packs. On the theoretical side, we assess the
problem complexity. On the practical side, we design several polynomial-time
heuristics to deal with the general problem with failures and redistribution
costs. The proposed heuristics show very good performance while executing
in very short time, hence validating the approach.

1.1 INTRODUCTION
With the advent of multicore platforms, HPC applications can be efficiently
parallelized on a flexible number of processors. Usually, a speedup profile de-
termines the performance of the application for a given number of processors.
For instance, the applications in [23] were executed on a platform with up to
256 cores, and the corresponding execution times were reported. A perfectly
parallel application has an execution time tseq/p, where tseq is the sequential
execution time, and p is the number of processors. In practice, because of the
overhead due to communications and to the inherently sequential fraction of
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the application, the parallel execution time is larger than tseq/p. The speedup
profile of the application is assumed to be known (or estimated) before exe-
cution, through benchmarking campaigns.

Big data applications play an increasing role in HPC. They are perfect can-
didates for co-scheduling, as they obey flexible speedup models a la BSP, alter-
nating I/O operations and intensive computation phases. A simple scheduling
strategy on HPC platforms is to execute each application in dedicated mode,
assigning all resources to each application throughout its execution. How-
ever, it was shown recently that rather than using the whole platform to run
one single application, both the platform and the users may benefit from co-
scheduling several applications, thereby minimizing the loss due to the fact
that applications are not perfectly parallel. Sharing the platform between two
applications already leads to significant performance and energy savings [31],
which become even more important when the number of co-scheduled appli-
cations increases [1].

Furthermore, large-scale platforms are prone to failures. Indeed, for a plat-
form with p processors, even if each node has an individual MTBF (Mean Time
Between Failures) of 120 years [22], we expect a failure to strike every 120/p
years, for instance every hour for a platform with p = 106 nodes. Failures are
likely to destroy the load-balancing achieved by co-scheduling algorithms: if
all applications were assigned resources by the co-scheduler so as to complete
their execution approximately at the same time, the occurrence of a failure
will significantly delay the completion time of the corresponding application.
In turn, several failures may well create severe imbalance among the appli-
cations, thereby significantly degrading performance. To cope with failures,
the de-facto general-purpose error recovery technique in HPC is checkpoint
and rollback recovery [17]. The idea consists in periodically saving the state of
the application, so that when an error strikes, the application can be restored
into one of its former states. The most widely used protocol is coordinated
checkpointing, where all processes periodically stop computing and synchro-
nize to write critical application data onto stable storage. The frequency at
which checkpoints are taken should be carefully tuned, so that the overhead
in a fault-free execution is not too important, but also so that the price to pay
in case of failure remains reasonable. The Young and Daly formulas [32, 13]
provide good approximations of the optimal checkpointing interval.

In this chapter, we discuss co-scheduling on failure-prone platforms. Check-
pointing helps to mitigate the impact of a failure on a given application, but
it must be complemented by redistributions to re-balance the load among ap-
plications. Co-scheduling usually involves partitioning the applications into
packs, and then scheduling each pack in sequence, as efficiently as possible.
The objective is therefore to determine a partition into packs, and an assign-
ment of processors to applications, that minimize the sum of the execution
times of the packs. Given a pack, i.e., a set of parallel tasks that start ex-
ecution simultaneously, there are two main opportunities for redistributing
processors. First, when a task completes, the applications that are still run-
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ning can claim its processors. Second, when a failure strikes a task, that task
is delayed. By adding more resources to it, we can reduce its final completion
time. However, we have to be careful, because each redistribution has a cost,
which depends on the volume of data that is exchanged, and on the number
of processors involved in redistribution. In addition, adding processors to a
task increases its probability to fail, so there is a trade-off to achieve in order
to minimize the expected completion time of the pack.

The major contributions of this work are the following:
1. the NP-completeness proof for the general partitioning problem with
k ≥ 3 tasks per pack in a fault-free context, and an approximation al-
gorithm;

2. the design of a detailed and comprehensive model for scheduling a given
pack of tasks on a failure-prone platform;

3. an optimal algorithm to assign processors to applications when the tasks
that form a pack are given and when no redistributions can be done;

4. the NP-completeness proof for the problem with redistributions;
5. the design and assessment of several polynomial-time heuristics to deal

with the general problem with failures and redistribution costs. These
heuristics show very good performance while executing in very short
time, hence validating the approach.

The chapter is organized as follows. We discuss related work in Section 1.2.
The problem is then formally defined in Section 1.3. Theoretical results are
presented in Section 1.4, exhibiting the problem complexity, discussing sub-
problems and optimal solutions, and providing an approximation algorithm.
Building upon these results, several polynomial-time heuristics are described
and thoroughly evaluated in Section 1.5. Finally we conclude and discuss
future work in Section 1.6.

1.2 RELATED WORK
In this chapter, we deal with pack scheduling for parallel tasks, aiming at
makespan minimization (recall that the makespan is the total execution time).
The corresponding problem with sequential tasks (tasks that execute on a
single processor) is easy to solve for the makespan minimization objective:
simply make a pack out of the largest p tasks, and proceed likewise while
there remain tasks. Note that the pack scheduling problem with sequential
tasks has been widely studied for other objective functions, see [9] for various
job cost functions, and [30] for a survey. Back to the problem with sequential
tasks and the makespan objective, Koole and Righter in [26] deal with the case
where the execution time of each task is unknown but defined by a probabilistic
distribution. They improve the result of Deb and Serfozo [14], who considered
the stochastic problem with identical jobs. Ikura et al. [24] solve the makespan
minimization problem where tasks have identical execution times, but different
release times and deadlines; they assume agreeable deadlines, meaning that if
a task has an earlier release time than another, it also has an earlier deadline.
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Koehler et al. [25] propose a linear time solution to this last problem, and
further give a O(n3) solution to the problem of minimizing the number of
packs while achieving optimal makespan.

We focus next on the problem of co-scheduling parallel tasks in Sec-
tion 1.2.1, and then we discuss related work on resilience in Section 1.2.2.

1.2.1 Parallel tasks
To the best of our knowledge, the problem with parallel tasks has not been
studied as such. However, it was introduced by Dutot et al. in [16] as a
moldable-by-phase model to approximate the moldable problem. The mold-
able task model is similar to the pack-scheduling model, but without the ad-
ditional constraint (pack constraint) that the execution of new tasks cannot
start before all tasks in the current pack are completed. Dutot et al. in [16] pro-
vide an optimal polynomial-time solution for the problem of pack scheduling
identical independent tasks, using a dynamic programming algorithm. This is
the only instance of pack-scheduling with parallel tasks that we found in the
literature.

In practice, pack scheduling is really useful as shown by recent results. Li
et al. [27] propose a framework to predict the energy and performance impacts
of power-aware MPI task aggregation. Frachtenberg et al. [19] show that sys-
tem utilization can be improved through their schemes to co-schedule jobs
based on their load-balancing requirements and inter-processor communica-
tion patterns. Shantharam et al. [31] study co-scheduling based on speed-up
profiles, similar to our work, but packs can have only one or two tasks; still,
they report faster workload completion and corresponding savings in system
energy.

Several publications [3, 10, 21] consider co-scheduling at a single multi-
core node, when contention for resources by co-scheduled tasks leads to com-
plex tradeoffs between energy and performance measures. Chandra et al. [10]
predict and utilize inter-thread cache contention at a multicore in order to
improve performance. Hankendi and Coskun [21] show that there can be mea-
surable gains in energy per unit of work through the application of their
multi-level co-scheduling technique at runtime, which is based on classifying
tasks according to specific performance measures. Bhaduria and McKee [3]
consider local search heuristics to co-schedule tasks in a resource-aware man-
ner at a multicore node to achieve significant gains in thread throughput per
watt.

These publications demonstrate that complex tradeoffs cannot be captured
through the use of the speed-up measure alone, without significant additional
measurements to capture performance variations from cross-application inter-
ference at a multicore node. Additionally, and following [31] where packs have
one or two tasks only, we expect significant benefits even when we aggregate
only across multicore nodes because speed-ups suffer due to the longer laten-
cies of data transfer across nodes. We can therefore project savings in energy
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as being commensurate with the savings in the time to complete a workload
through co-scheduling. Hence, we only test configurations where no more than
a single application can be scheduled on a multicore node.

One could ask, given a set of n tasks to schedule, why schedule them in
packs rather than globally? A global schedule would avoid the gaps incurred
by some processors between the end of a pack and the beginning of the next
pack, thereby potentially decreasing the makespan. However, there are several
reasons to prefer pack scheduling. First, a global schedule is very hard to con-
struct. Best-known heuristics greedily assign a new task to a set of processors
as soon as this set terminates execution, thereby constraining the number
of resources to be the same for the new task as for the last task. Our co-
schedule does not suffer from this rigidity in processor assignment decisions.
Secondly, the cost of scheduling itself is greatly reduced with pack scheduling.
The scheduler launches a set of tasks and transfers corresponding input data
only at the beginning of a pack. No overhead is paid until all tasks in the pack
return, and a new pack is executed.

1.2.2 Resilience
One of the most used technique to handle fail-stop errors in HPC is check-
point and rollback recovery [17]. The idea is to periodically save the system
state, or the application memory footprint onto a stable storage. Then, after
a downtime and a recovery time, the system can be restored into a former
valid state (rollback step). Another technique to dealing with fail-stop errors
is process replication, which consists in replicating a process and even replicate
communications. For instance, the project RedMPI [18] implements a process
replication mechanism and quadruplicates each communication.

In this chapter, we use a light-weight checkpointing protocol called the dou-
ble checkpointing algorithm [29, 15]. This is an in-memory checkpointing proto-
col, which avoids the high overhead of disk checkpoints. Processors are paired:
each processor has an associated processor called its buddy processor. When a
processor stores its checkpoint file in its own memory, it also sends this file to
its buddy, and the buddy does the same. Therefore, each processor stores two
checkpoints, its own and that of its buddy. When a failure occurs, the faulty
processor looses these two checkpoint files, and the buddy must re-send both
checkpoints to the faulty node. If a second failure hits the buddy during this
recovery period (which happens with very low probability), we have a fatal
failure and the system cannot be recovered.

To the best of our knowledge, this is the first work to consider co-schedules
and failures, and hence to use malleable applications [5, 20] to allow redistri-
butions of processors between applications. More related work on models for
parallel applications and resilience are discussed in [2].

We point out that co-scheduling with packs can be seen as the static coun-
terpart of batch scheduling techniques, where jobs are dynamically partitioned
into batches as they are submitted to the system (see [28] and the references
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therein). Batch scheduling is a complex online problem, where jobs have re-
lease times and deadlines, and where only partial information on the whole
workload is known when taking scheduling decisions. On the contrary, co-
scheduling applies to a set of applications that are all ready for execution.
When considering failures, we restrict to a single pack, because scheduling
already becomes difficult for a single pack with failures and redistributions.

1.3 PROBLEM DEFINITION
The application consists of n independent tasks T1, . . . , Tn. The target exe-
cution platform consists of p identical processors, and each task Ti can be
assigned an arbitrary number σ(i) of processors, where 1 ≤ σ(i) ≤ p. The ob-
jective is to minimize the total execution time by co-scheduling several tasks
onto the p resources. Note that the approach is agnostic of the granularity of
each processor, which can be either a single CPU or a multicore node.

1.3.1 Speedup profiles
Let ti,j be the execution time of task Ti with j processors, and work(i, j) =
j× ti,j be the corresponding work. We assume the following for 1 ≤ i ≤ n and
1 ≤ j < p:

Weakly decreasing execution time: ti,j+1 ≤ ti,j (1.1)

Weakly increasing work: work(i, j + 1) ≥ work(i, j) (1.2)

Equation (1.1) implies that execution time is a non-increasing function of the
number of processors. Equation (1.2) states that efficiency decreases with the
number of enrolled processors: in other words, parallelization has a cost! As
a side note, we observe that these requirements make good sense in practice:
many scientific tasks Ti are such that ti,j first decreases (due to load-balancing)
and then increases (due to communication overhead), reaching a minimum for
j = j0; we can always let ti,j = ti,j0 for j ≥ j0 by never actually using more
than j0 processors for Ti.
Remarks. Determining j0 for a given application is a challenge by itself. In
most cases, it is obtained by profiling and interpolation. Also, in case of an
imperfect knowledge of execution-time profiles, it is possible to use curve-
fitting techniques to construct near complete knowledge, and then use this
constructed knowledge. We treat the same application with two different prob-
lem sizes as two different applications (their execution time profiles could po-
tentially be different). Thus, sensitivity of runtime to different parameters that
could change runtime profiles are inherently taken care of.

1.3.2 Co-schedules
A co-schedule partitions the n tasks into groups (called packs), so that (i) all
tasks from a given pack start their execution at the same time; and (ii) two
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tasks from different packs have disjoint execution intervals. For instance, in
the example of Figure 1.1, the two first packs have three tasks, the third pack
has only one task, and the last pack has two tasks. The execution time, or
cost, of a pack is the maximal execution time of a task within that pack, and
the cost of a co-schedule is the sum of the costs of all packs.

P1 P2 P3 P4

time

processors

FIGURE 1.1 A co-schedule with four packs P1 to P4.

1.3.3 Fault model
We consider fail-stop errors, which are detected instantaneously. To model the
rate at which faults occur on one processor, we use an exponential probability
law of parameter λ. The mean (or MTBF) of this law is µ = 1

λ . The MTBF
of an application depends upon the number of processors it is using, hence
changes whenever a redistribution occurs. Specifically, if application Ti is (cur-
rently) executed on j processors, its MTBF is µi,j = µ

j (see [22, Proposition

1.2] for a proof).
To recover from fail-stop errors, we use a light-weight checkpointing pro-

tocol called the double checkpointing algorithm, or buddy algorithm [29, 15].
This is an in-memory checkpointing protocol, which avoids the high overhead
of disk checkpoints. Processors are paired: each processor has an associated
processor called its buddy processor. When a processor stores its checkpoint
file in its own memory, it also sends this file to its buddy, and the buddy
does the same. Therefore, each processor stores two checkpoints, its own and
that of its buddy. When a failure occurs, the faulty processor looses these two
checkpoint files, and the buddy must re-send both checkpoints to the faulty
node. If a second failure hits the buddy during this recovery period (which
happens with very low probability), we have a fatal failure and the system
cannot be recovered. Note that the number of processors assigned to each
application must be even.

We enforce periodic checkpointing for each application. Formally, if appli-
cation Ti is executed on j processors, there is a checkpoint every period of
length τi,j , with a cost Ci,j . We now explain how to compute the cost Ci,j of
a checkpoint when application Ti executes with j processors. Let mi be the
memory footprint (total data size) of application Ti. Each of the j processors
holds mi

j data, which it must send to its buddy processor. The time to com-
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municate a message of size s is β+ s
τ , where β is a start-up latency and τ the

link bandwidth. We derive that Ci,j = mi

jτ + β.

As for the checkpointing period τi,j , we use Young’s formula [32] and let

τi,j =
√

2µi,jCi,j + Ci,j . (1.3)

Because τi,j is a first order approximation, the formula is valid only if Ci,j �
µi,j . When a fault strikes, there is first a downtime of duration D, and then
a recovery period of duration Ri,j . We assume that Ri,j = Ci,j , while the
downtime value D is platform-dependent and not application-dependent.

1.3.4 Execution time without redistribution
To compute the expected execution time of a schedule, we first have to com-
pute the expected execution time of an application Ti executed on j proces-
sors subject to failures. We first consider the case without redistribution (but
taking failures into account). Recall that ti,j is the execution time of appli-
cation Ti on j processors in a fault-free scenario. Let tRi,j(α) be the expected
time required to compute a fraction α of the total work for application Ti on
j processors, with 0 ≤ α ≤ 1. We need to consider such a partial execution
of Ti on j processors to prepare for the case with redistributions.

Recall that the execution of application Ti is periodic, and that the pe-
riod τi,j depends only on the number of processors, but not on the remaining
execution time (see Equation (1.3)). After a work of duration τi,j−Ci,j , there
is a checkpoint of duration Ci,j . In a fault-free execution, the time required to
execute the fraction of work α is αti,j , hence a total number of checkpoints of

Nff
i,j(α) =

⌊
αti,j

τi,j − Ci,j

⌋
. (1.4)

Next, we have to estimate the expected execution time for each period of
work between checkpoints. We are able to calculate the expectation of one
period of work according to an MTBF value and a number of processors. The
expected time to execute successfully during T units of time with j processors
(there are T − C units of work and C units of checkpoint, where T is the

period) is equal to
(

1
λj +D

)
(eλjT − 1) [22]. Therefore, in order to compute

tRi,j(α), we compute the sum of the expected time for each period, plus the
expected time for the last (possibly incomplete) period. This last period is
denoted as τlast and defined as:

τlast = αti,j −Nff
i,j(α)(τi,j − Ci,j). (1.5)

Note that τlast is depending on α because τlast represents the incomplete
fraction of τi,j−Ci,j at the end of the application. The first Nff

i,j(α) periods are
equal (of length τi,j), hence have the same expected time. Finally, we obtain:

tRi,j(α)=e
λjRi,j

(
1

λj
+D

)(
Nff
i,j(α)(e

λjτi,j −1)+(eλjτlast−1)
)
. (1.6)

In a fault-free environment, it is natural to assume that the execution time
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is non-increasing with the number of processors. Here, this assumption would
translate into the condition:

tRi,j+1(α) ≤ tRi,j(α) for 1 ≤ i ≤ n, 1 ≤ j < p, 0 ≤ α ≤ 1. (1.7)

However, when we allocate more processors to an application, even though the
work is further parallelized, the probability of failures increases, and the corre-
sponding waste increases as well. Therefore, adding resources to an application
is useful up to a threshold. After this threshold, we have tRi,j+1 ≥ tRi,j . In order
to satisfy Equation (1.7), we restrict the number of processors assigned to each
application, and never assign more processors than the previous threshold. In
other words, if Ti is already assigned j processors, we consider assigning more
processors to it only if tRi,j+1 ≤ tRi,j . Formally, this defines a maximum number
of processors, jmax(i), for each application Ti:

jmax(i) = min
1≤j≤p

{j such that tRi,k ≥ tRi,j for all k > j}, (1.8)

and we assume that tRi,j+1 ≤ tRi,j for all j < jmax(i).
Another common assumption for malleable applications is that the work is

non-decreasing when the number of processors increases [5]: this amounts to
say that no super-linear speed-up is possible, as stated earlier for the fault-free
scenario. Hence, we assume here that for 1 ≤ i ≤ n, 1 ≤ j < p and 0 ≤ α ≤ 1,
(j + 1)× tRi,j+1(α) ≥ j × tRi,j(α).

For convenience, we denote by tUi the current expected finish time of appli-
cation Ti at any point of the execution. Initially, if application Ti is allocated
to j processors, we have tUi = tRi,j(1).

1.3.5 Redistributing processors
There are two major cases for which it may be useful to redistribute processors:
(1) in a fault-free scenario, when an application ends, it releases processors
that can be used to accelerate other applications, and (2) when an error strikes,
we may want to force the release of processors, so that we can assign more
processors to the application that has been slowed down by the error.

(1) Fault-free scenario.
We first consider a simplified scenario without checkpoint (nor failure),

in order to explain how redistribution works. Consider for instance that q
processors are released when application T2 ends. We can allocate q1 new
processors to application T1, and q3 new processors to application T3, where
q1 + q3 = q. This redistribution will take some time (redistribution cost RCi,
detailed below), after which T1 and T3 will resume execution, and we first need
to compute the new expected completion time for their remaining fraction of
work.

Consider that a redistribution is conducted at time te (the end time of
an application), and that application Ti, initially with j processors, now
has k = j + q > j processors. What will be the new finish time of Ti? The
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Wdone = te
ti,j Wtodo = α

j
k

t′

time0 te te + t′
ti,j

FIGURE 1.2 Work representation for application Ti at time te.

fraction of work already executed for Ti is te
ti,j

, because the application was

supposed to finish at time ti,j (see Figure 1.2). The remaining fraction of work
is α = 1− te

ti,j
, and the time required to complete this work with k processors

is t′, where t′

ti,k
= α, hence

t′ = αti,k =

(
1− te

ti,j

)
ti,k.

Furthermore, we need to add a redistribution cost: when moving from j to
k = j + q processors, the application Ti must redistribute its mi data across
the processors. The application keeps its initial j processors, which now hold
too much data, and enrolls q = k− j new processors, which have no data yet.
Each of the original j processors initially holds mi

j data and will keep only
mi

k after the redistribution; it sends mi

jk data to each of the newly enrolled

q processors, thereby keeping mi

j − (k − j)mi

jk = mi

k data. In turn, each new
processor receives mi

jk data from j processors and duly gets mi

k data in the
end.

What is the best schedule for such a redistribution, and what time does
it require? We first account for a constant start-up overhead S, paid for
initiating the redistribution call. Then we adopt a realistic one-port com-
munication model [4] where a processor can send and receive at most one
message at any time-step. Independent communications, involving distinct
sender/receiver pairs, can take place in parallel; however, two messages sent
by the same processor will be serialized. Recall that the time to communicate
a message of size s is β+ s

τ . To schedule the redistribution, we build a bipartite
graph G with j nodes on the left and q nodes on the right, and we count the
number of rounds required to schedule the redistribution. Thanks to Konig’s
theorem [6], we obtain a number of rounds equal to max(j, k − j) (see [2] for
details), and the redistribution cost is

RCj→ki = S + max(j, k − j)×
(
mi

jkτ
+ β

)
. (1.9)

Needless to say, we would perform a redistribution if the cost of redistribu-
tion is lower than the benefit of allocating new processors to the application,
i.e., if

ti,j − (te + t′) > RCj→ki .
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(2) Accounting for failures.
When struck by a fault, an application needs to recover from the failure

and to re-execute some work. While the application loads were well-balanced
initially in order to minimize total execution time, now the faulty application
is likely to exceed its expected execution time. If it becomes the longest ap-
plication of the schedule, we try to assign it more processors so as to reduce
its completion time, hence redistributing processors.

Because we use the double checkpointing algorithm as resilience model,
we consider processors by pairs. We aim at redistributing pairs of processors
either when an application is finished, at time te (as in the fault-free scenario
discussed above), or when a failure occurs, say at time tf . In each case, we need
to compute the remaining work, and the new expected completion time of the
applications that have been affected by the event. Given an application Ti,
we keep track of the time when the last redistribution or failure occurred for
this application, denoted as tlastRi

. At time t (corresponding to the end of an
application or to a failure), we know exactly how many checkpoints have been
taken by application Ti executed on j processors since tlastRi , and we let this
number be Ni,j :

Ni,j =

⌊
t− tlastRi

τi,j

⌋
. (1.10)

We begin with the case of an application completion: consider that an
application finishes its execution at time te, hence releasing some processors.
We consider assigning some of these processors to an application Ti currently
running on j processors. The fraction of work executed by Ti since the last

redistribution is
te−tlastRi

−Ni,jCi,j

ti,j
, because we have to remove the cost of the

checkpoints, during which the application did not execute useful work.
We apply the same reasoning for the second case, when a fault occurs. In

this case, we need to consider the application Ti where the failure stroke, and
other applications Ti′ from which we would remove some processors (in order
to give them to Ti).

1. Consider that application Ti is running on j processors and subject to a
failure at time tf . Therefore, Ti needs to recover from its last valid check-
point, and the fraction of work executed by Ti corresponds to the number
of entire periods completed since the last failure or redistribution tlastRi ,

each followed by a checkpoint. We can express it as
Ni,j×(τi,j−Ci,j)

ti,j
.

2. At time tf , consider application Ti′ , on which we perform a redistribu-
tion, moving from j′ to j′ − q processors, with q > 0. The fraction of
work executed by Ti′ can be computed as in the application ending case

scenario: it is
tf−tlastR

i′
−Ni′,j′Ci′,j′

ti′,j′
.

Finally, for any application subject to a redistribution or a failure, let αi
be the remaining fraction of work to be executed by Ti, that is 1 minus the
sum of the fraction of work executed before tlastRi

and the fraction of work
expressed above (computed between tlastRi

and t).
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Similarly to the fault-free scenario, RCj→ki denotes the redistribution cost
for application Ti when moving from j to k processors. Redistribution can
now add (k > j) or remove (k < j) processors to application Ti, and the cost
is expressed as:

RCj→ki = S + max(min(j, k), |k − j|)×
(
mi

kjτ
+ β

)
. (1.11)

time

tlastRi′′
= 0

processors

Ci,j Ci,j

Fault
t

D Ri,j RC
j→j+q
i

Ci,j+q

tlastRi

Ti

Ci′,j′ Ci′,j′ RCj
′→j′−q
i′

Ci′,j′−qTi′

tlastRi′

Ci′′,j′′ Ci′′,j′′Ti′′

FIGURE 1.3 Example of redistribution when a fault strikes applica-

tion Ti. The colored rectangles correspond to useful work done by Ti
and Ti′ before the failure. Ti′′ is not affected by the failure, since it

does not perform a redistribution.

We are now ready to compute the new values of tlastRi
for all applications

subject to a failure or a redistribution, and we illustrate the different scenarios
in Figure 1.3. Let t be the time of the event (end of application t = te, or
failure t = tf ), and consider that a redistribution is done either for a faulty
application Ti or for another application Ti′ . After a redistribution, we always
start by taking a checkpoint before computing with the new period. Therefore,
if a fault occurs, we do not have to redistribute again.

For the faulty application Ti, the new value of tlastRi
hence becomes

tlastRi = t + D + Ri,j + RCj→ki + Ci,k (we need to account for the down-
time and recovery). However, if Ti′ is performing a redistribution but it was
not struck by a failure, it can start the redistribution at time t: either it is
getting new processors that are available following the end of an application,
or is is using less processors and can perform its redistribution. In all cases,

we have tlastRi′ = t + RCj
′→k′
i′ + Ci′,k′ . Note that we can have processors

involved simultaneously in two redistributions, as they will only receive data
from the other processors of the faulty application Ti, and send data to the
other processors of the non-faulty application Ti′ . We assume that sends and
receives can be done in parallel without slowdown.

Finally, the expected finish time of an application Ti for which we have
updated tlastRi

becomes tUi = tlastRi
+ tRi,k(αi), where k is the new number

of processors on which Ti is executed, and αi the remaining fraction of work.
Similarly to the fault-free scenario, we give extra processors to an applica-
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tion only if the new expected finish time tUi is lower than the one with no
redistribution.

Note that we consider that we cannot enroll processors that have not
yet finished the current redistribution, i.e., if an event happens between t
and tlastRi′ in Figure 1.3, the processors involved in Ti and Ti′ cannot be
considered for a new redistribution.

1.3.6 Optimization problems
We consider two optimization problems.

The general one is studied in a fault-free context with no redistribution,
and builds packs with at most k tasks. The most general problem is when
k = p, but, in some frameworks, we may have an upper bound k < p on the
maximum number of tasks within each pack.

Definition 1.1 (k-in-p-CoSchedule) Given a fixed constant k ≤ p, find a
co-schedule with at most k tasks per pack that minimizes the execution time.

When considering failures and redistributions, we focus on a single pack
made of n applications:

Definition 1.2 (Resilient-CoSched-1pack) Given n malleable applica-
tions {T1, . . . , Tn}, their speedup profiles, and an execution platform with p
identical processors subject to failures with individual rate λ, minimize the
maximum of the expected completion times of the applications. Redistribu-
tions are allowed only when an application completes execution or is struck by
a failure (with a cost specified in Section 1.3.5).

1.4 THEORETICAL ANALYSIS
In this section, we first focus on the problem in a failure-free scenario, where
no checkpoints are taken. We discuss the complexity of the problem in Sec-
tion 1.4.1, by exhibiting polynomial and NP-complete instances. Next we dis-
cuss how to optimally schedule a set of k tasks in a single pack (Section 1.4.2),
both in the failure-free scenario and when accounting for failures but not do-
ing any redistributions. Then, focusing again on the failure-free scenario, we
explain how to compute the optimal solution of k-in-p-CoSchedule (in ex-
pected exponential cost) in Section 1.4.3, and we provide an approximation
algorithm in Section 1.4.4. Finally, we prove the NP-completeness of the prob-
lem Resilient-CoSched-1pack when considering failures and performing
redistributions in Section 1.4.5.

1.4.1 Complexity
Theorem 1.1 The 1-in-p-CoSchedule and 2-in-p-CoSchedule problems
can both be solved in polynomial time.
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Proof: This result is obvious for 1-in-p-CoSchedule: each task is assigned
exactly p processors (see Equation (1.1)) and the minimum execution time is∑n
i=1 ti,p.
The proof is more involved for 2-in-p-CoSchedule, and we start with

the 2-in-2-CoSchedule problem to get an intuition. Consider the weighted
undirected graphG = (V,E), where |V | = n, each vertex vi ∈ V corresponding
to a task Ti. The edge set E is the following: (i) for all i, there is a loop on vi
of weight ti,2; (ii) for all i < i′, there is an edge between vi and vi′ of weight
max(ti,1, ti′,1). Finding a perfect matching of minimal weight in G leads to
the optimal solution to 2-in-2-CoSchedule, which can thus be solved in
polynomial time.

For the 2-in-p-CoSchedule problem, the proof is similar, the only differ-
ence lies in the construction of the edge set E: (i) for all i, there is a loop on
vi of weight ti,p; (ii) for all i < i′, there is an edge between vi and vi′ of weight
minj=1..p (max(ti,p−j , ti′,j)). Again, a perfect matching of minimal weight in
G gives the optimal solution to 2-in-p-CoSchedule. We conclude that the
2-in-p-CoSchedule problem can be solved in polynomial time.

Theorem 1.2 When k ≥ 3, the k-in-p-CoSchedule problem is strongly
NP-complete.

The proof can be found in [1]. It is based on a reduction from 3-Partition.
Note that the 3-in-p-CoSchedule problem is NP-complete, and the 2-in-p-
CoSchedule problem can be solved in polynomial time, hence 3-in-3-Co-
Schedule is the simplest problem whose complexity remains open.

1.4.2 Scheduling a pack of tasks
In this section, we discuss how to optimally schedule a set of k tasks in a
single pack: the k tasks T1, . . . , Tk are given, and we search for an assignment
function σ : {1, . . . , k} → {1, . . . , p} such that

∑k
i=1 σ(i) ≤ p, where σ(i) is

the number of processors assigned to task Ti. Such a schedule is called a 1-
pack-schedule, and its cost is max1≤i≤k ti,σ(i). In Algorithm 1 below, we use
the notation Ti 4σ Tj if ti,σ(i) ≤ tj,σ(j):

Theorem 1.3 Given k tasks to be scheduled on p processors in a single pack,
Algorithm 1 finds a 1-pack-schedule of minimum cost in time O(p log(k)).

In this greedy algorithm, we first assign one processor to each task, and
while there are processors that are not processing any task, we select the
task with the longest execution time and assign an extra processor to this
task. Algorithm 1 performs p−k iterations to assign the extra processors. We
denote by σ(`) the current value of the function σ at the end of iteration `.
For convenience, we let ti,0 = +∞ for 1 ≤ i ≤ k. We start with the following
lemma:
Lemma: At the end of iteration ` of Algorithm 1, let Ti? be the first task
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Algorithm 1: Finding the optimal 1-pack-schedule σ of k tasks in the
same pack.

procedure Optimal-1-pack-schedule(T1, . . . , Tk)
begin

for i = 1 to k do
σ(i)← 1;

end
Let L be the list of tasks sorted in non-increasing values of 4σ;
pavailable := p− k;
while pavailable 6= 0 do

Ti? := head(L);
L := tail(L);
σ(i?)← σ(i?) + 1;
pavailable := pavailable − 1;
L := Insert Ti? in L according to its 4σ value;

end
return σ;

end

of the sorted list, i.e., the task with longest execution time. Then, for all i,
ti?,σ(`)(i?) ≤ ti,σ(`)(i)−1.
Proof: Let Ti? be the task with longest execution time at the end of iteration `.
For tasks such that σ(`)(i) = 1, the result is obvious since ti,0 = +∞. Let us
consider any task Ti such that σ(`)(i) > 1. Let `′ + 1 be the last iteration
when a new processor was assigned to task Ti: σ

(`′)(i) = σ(`)(i) − 1 and
`′ < `. By definition of iteration `′ + 1, task Ti was chosen because ti,σ(`′)(i)

was greater than any other task, in particular ti,σ(`′)(i) ≥ ti?,σ(`′)(i?). Also,

since we never remove processors from tasks, we have σ(`′)(i) ≤ σ(`)(i) and
σ(`′)(i?) ≤ σ(`)(i?). Finally, ti?,σ(`)(i?) ≤ ti?,σ(`′)(i?) ≤ ti,σ(`′)(i) = ti,σ(`)(i)−1.

Proof of Theorem 1.3. Let σ be the 1-pack-schedule returned by Algo-
rithm 1 of cost c(σ), and let Ti? be a task such that c(σ) = ti?,σ(i?). Let σ′ be
a 1-pack-schedule of cost c(σ′). We prove below that c(σ′) ≥ c(σ), hence σ is
a 1-pack-schedule of minimum cost:

1. If σ′(i?) ≤ σ(i?), then Ti? has fewer processors in σ′ than in σ, hence its
execution time is larger, and c(σ′) ≥ c(σ).

2. If σ′(i?) > σ(i?), then there exists i such that σ′(i) < σ(i) (since the
total number of processors is p in both σ and σ′). We can apply the
previous Lemma at the end of the last iteration, where Ti? is the task
of maximum execution time: ti?,σ(i?) ≤ ti,σ(i)−1 ≤ ti,σ′(i), and therefore
c(σ′) ≥ c(σ).

Finally, the time complexity is obtained as follows: first we sort k elements, in
time O(k log k). Then there are p−k iterations, and at each iteration, we insert
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an element in a sorted list of k − 1 elements, which takes O(log k) operations
(use a heap for the data structure of L).

Note that it is easy to compute an optimal 1-pack-schedule using a
dynamic-programming algorithm: the optimal cost is c(k, p), which we com-
pute using the recurrence formula

c(i, q) = min
1≤q′≤q

{max(c(i− 1, q − q′), ti,q′)}

for 2 ≤ i ≤ k and 1 ≤ q ≤ p, initialized by c(1, q) = t1,q, and c(i, 0) = +∞.
The complexity of this algorithm is O(kp2). However, we can significantly
reduce the complexity of this algorithm by using Algorithm 1.

With failures. It is not difficult to extend this algorithm to solve the problem
with failures, but still without redistributions:

Theorem 1.4 The Resilient-CoSched-1pack problem without redistribu-
tions can be solved in polynomial time O(n), where n is the number of appli-
cations.

We replace ti,j by tRi,j(1), and instead of adding processors one-by-one, we add
them two-by-two.

1.4.3 Optimal solution of k-in-p-CoSchedule

In this section, we sketch two methods to find the optimal solution to the
general k-in-p-CoSchedule problem. This can be useful to solve some small-
size instances, albeit at the price of a cost exponential in the number of tasks n.

The first method is to generate all possible partitions of the tasks into
packs. This amounts to computing all partitions of n elements into subsets
of cardinality at most k. For a given partition of tasks into packs, we use
Algorithm 1 to find the optimal processor assignment for each pack, and we
can compute the optimal cost for the partition. We still have to calculate the
minimum of these costs among all partitions.

The second method is to cast the problem in terms of an integer linear
program:

Theorem 1.5 The following integer linear program characterizes the k-in-p-
CoSchedule problem, where the unknown variables are the xi,j,b’s (Boolean
variables) and the yb’s (rational variables), for 1 ≤ i, b ≤ n and 1 ≤ j ≤ p:

Minimize
∑n
b=1 yb subject to

(i)
∑
j,b xi,j,b = 1, 1 ≤ i ≤ n

(ii)
∑
i,j xi,j,b ≤ k, 1 ≤ b ≤ n

(iii)
∑
i,j j × xi,j,b ≤ p, 1 ≤ b ≤ n

(iv) xi,j,b × ti,j ≤ yb, 1 ≤ i, b ≤ n, 1 ≤ j ≤ p

(1.12)

Proof: The xi,j,b’s are such that xi,j,b = 1 if and only if task Ti is in the pack b
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and it is executed on j processors; yb is the execution time of pack b. Since
there are no more than n packs (one task per pack), b ≤ n. The sum

∑n
b=1 yb

is therefore the total execution time (yb = 0 if there are no tasks in pack b).
Constraint (i) states that each task is assigned to exactly one pack b, and with
one number of processors j. Constraint (ii) ensures that there are not more
than k tasks in a pack. Constraint (iii) adds up the number of processors in
pack b, which should not exceed p. Finally, constraint (iv) computes the cost
of each pack.

1.4.4 Approximation algorithm
In this section, we introduce pack-Approx, a 3-approximation algorithm for
the p-in-p-CoSchedule problem: if COSTopt is the optimal solution, and
COSTalgo is the output of the algorithm, we guarantee that COSTalgo ≤
3COSTopt. The design principle of pack-Approx is the following: we start
from the assignment where each task is executed on one processor, and use
Algorithm 2 to build a first solution. Algorithm 2 is a greedy heuristic that
builds a co-schedule when each task is pre-assigned a number of processors
for execution. Then we iteratively refine the solution, adding a processor to
the task with longest execution time, and re-executing Algorithm 2. Here are
details on both algorithms:

Algorithm 2. The k-in-p-CoSchedule problem with processor pre-
assignments remains strongly NP-complete (use a similar reduction as in the
proof of Theorem 1.2). We propose a greedy procedure in Algorithm 2 that
is similar to the First Fit Decreasing Height algorithm for strip packing [11].
The output is a co-schedule with at most k tasks per pack, and the complexity
is O(n log(n)) (dominated by sorting).

Algorithm 3. We iterate the calls to Algorithm 2, adding a processor to
the task with longest execution time, until: (i) either the task of longest ex-
ecution time is already assigned p processors, or (ii) the sum of the work of
all tasks is greater than p times the longest execution time. The algorithm
returns the minimum cost found during execution. The complexity of this al-
gorithm is O(n2p) in the simplest version presented here: in the O(np) calls
to Algorithm 2, we do not need to re-sort the list but we maintain it sorted
instead, thus each call except the first one has linear cost. The complexity can
be reduced to O(n log(n) + np) using standard algorithmic techniques [12].

Theorem 1.6 pack-Approx is a 3-approximation algorithm for the p-in-p-
CoSchedule problem.

The involved proof can be found in [1].

Minimum resource requirement. We conclude this section on theoretical
analysis in a fault-free scenario by the following remark. We point out that all
results can be extended to deal with the variant of the problem where each
task Ti has a minimum compute node requirement mi. Such a requirement
is typically provided by the user. In that variant, Equation (1.2) is defined
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Algorithm 2: Creating packs of size at most k, when the number σ(i)
of processors per task Ti is fixed.

procedure Make-pack(n, p, k, σ)
begin

Let L be the list of tasks sorted in non-increasing values of
execution times ti,σ(i);

while L 6= ∅ do
Schedule the current task on the first pack with enough
available processors and fewer than k tasks. Create a new pack
if no existing pack fits;

Remove the current task from L;

end
return the set of packs

end

only for j greater than mi. For all previous algorithms, the difference lies in
the preliminary step where one assigns one processor to each task: one would
now assign mi processors to task i, for all i. The number of total steps in the
algorithms becomes smaller (because there are fewer processors available).
One should note that with this constraint, all results (Theorems 1.1 to 1.6)
are still valid, and proofs are quite similar.

1.4.5 With redistributions
We can easily build examples to show the difficulty of Resilient-CoSched-
1pack when redistributions are allowed, even when there are no failures:
(i) Algorithm 1 is no longer optimal because it may give processors to an
application with a poor speedup profile (i.e., it does not gain much from the
additional processors); and (ii) the greedy variant where remaining processors
are allocated to the application with the best speedup profile can also lead
to non-optimal schedules (see [2] for details). Intuitively, these little examples
show that Resilient-CoSched-1pack seems to be of combinatorial nature
when redistributions are taken into account, even with zero cost.

To establish the complexity of the problem with redistributions, we con-
sider the simple case with no failures. Therefore, redistributions occur only at
the end of an application, and any application changes at most n times its
number of processors, where n is the total number of applications. We further
consider that the redistribution cost is a constant equal to S, i.e., we let β = 0
and τ = +∞ in Equation (1.11). Even in this simplified scenario, the problem
is NP-complete:

Theorem 1.7 With constant redistribution costs and without failures,
Resilient-CoSched-1pack is NP-complete (in the strong sense).

The involved reduction comes from 3-Partition, and can be found in [2].
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Algorithm 3: pack-Approx

procedure pack-Approx(T1, . . . , Tn)
begin

COST = +∞;
for j = 1 to n do σ(j)← 1;
for i = 0 to n(p− 1)− 1 do

Let Atot(i) =
∑n
j=1 tj,σ(j)σ(j);

Let Tj? be one task that maximizes tj,σ(j);
Call Make-pack (n, p, p, σ);
Let COSTi be the cost of the co-schedule;
if COSTi < COST then COST← COSTi;

if
(
Atot(i)
p > tj?,σ(j?)

)
or (σ(j?) = p) then

return COST ; /* Exit loop */

else σ(j?)← σ(j?) + 1; /* Add a processor to Tj? */

end
return COST;

end

Remark. We conjecture that Resilient-CoSched-1pack remains NP-
complete with zero redistribution cost. This is because of the combinatorial
exploration suggested by the examples. But this remains an open problem!

1.5 HEURISTICS AND SIMULATIONS
In this section, we introduce and evaluate polynomial-time heuristics to solve
the general Resilient-CoSched-1pack problem with both failures and re-
distributions. Before performing any redistribution, we need to choose an ini-
tial allocation of the p processors to the n applications. We use the optimal
algorithm without redistribution, Algorithm 1. Note that heuristics for the
k-in-p-CoSchedule general problem can be found in [1], together with their
evaluation.

We first discuss the general structure of the heuristics in Section 1.5.1.
Then, we explain how to redistribute available processors in Section 1.5.2,
and the two strategies to redistribute when failures occur in Section 1.5.3. The
pseudo-codes for all algorithms are available in [2]. The simulation settings are
discussed in Section 1.5.4, and results are presented in Section 1.5.5.

1.5.1 General structure
All heuristics share the same skeleton: we iterate over each event (either a
failure or an application termination) until total remaining work is equal to
zero. If some applications are still working for a previous redistribution, (i.e.,
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the current time t is smaller than tlastRi
for these applications), then we

exclude them for the next redistribution, and add them back into the list of
applications after the current redistribution is completed. If an application
ends, we redistribute available processors as will be discussed in Section 1.5.2.
Then, if there is a failure, we calculate the new expected execution time of
the faulty application. Also, we remove from the list the applications that end
before tlastRf

, and we release their processors.
Afterwards, we have to choose between trying to redistribute or do nothing.

If the faulty application is not the longest application, the total execution
time has not changed since the last redistribution. Therefore, because it is the
best execution time that we could reach, there is no need to try to improve
it. However, if the faulty application is the longest application, we apply a
heuristic to redistribute processors (see Section 1.5.3).

1.5.2 Redistribution when an application ends
When an application ends, the idea is to redistribute the processors that it
releases in order to decrease the expected execution time. The easiest way
to proceed consists in adding processors greedily to the application with the
longest execution time, as was done in Algorithm 1 to compute an optimal
schedule. This time, we further account for the redistribution cost, and up-
date the values of αi, tlastRi

and tUi for each application i that encountered
a redistribution. Therefore, this heuristic, called EndLocal, returns a new
distribution of processors.

Rather than using only local decisions to redistribute available processors
at time t, it is possible to recompute an entirely new schedule, using the greedy
algorithm Algorithm 1 again, but further accounting for the cost of redistri-
butions. This heuristic is called EndGreedy. Now, we need to compute the
remaining fraction of work for each application, and we obtain an estimation
of the expected finish time when each application is mapped on two proces-
sors. Similarly to Algorithm 1, we then add two processors to the longest
application while we can improve it, accounting for redistribution costs.

Note that we effectively update the values of αi and tlastRi
for applica-

tion Ti only if a redistribution was conducted for this application. It may
happen that the algorithm assigns the same number of processors as was used
before. Therefore, we keep the updated value of the fraction of work in a tem-
porary variable αti and update it whenever needed at the end of the procedure.

1.5.3 Redistribution when there is a failure
Similarly to the case of an application ending, we propose two heuristics to
redistribute in case of failures. The first one, ShortestapplicationsFirst,
takes only local decisions. First, we allocate the k available processors (if
any) to the faulty application if that application is improvable. Then, if the
faulty application is still improvable, we try to take processors from shortest
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applications (denoted Ts) in the schedule, and give these processors to the
faulty application, until the faulty application is no longer improvable, or there
are no more processors to take from other applications. We take processors
from an application only if its new execution time is smaller than the execution
time of the faulty application.

The second heuristic, IteratedGreedy, uses a modified version of the
greedy algorithm that initializes the schedule (Algorithm 1) each time there is
a failure, while accounting for the cost of redistributions. This is done similarly
to the redistribution of EndGreedy explained in Section 1.5.2, except that
we need to handle the faulty application differently to update the values of
αf and tlastRf

.

1.5.4 Simulation settings
To assess the efficiency of the heuristics, we have performed extensive simu-
lations. Note that the code is publicly available at http://graal.ens-lyon.
fr/~abenoit/code/redistrib, so that interested readers can experiment
with their own parameters.

To evaluate the quality of the heuristics, we conduct several simulations,
using realistic parameters. The first step is to generate a fault distribution:
we use an existing fault simulator developed in [8, 7]. In our case, we use
this simulator with an exponential law of parameter λ. The second step is to
generate a fault-free execution time for each application (the ti,j value). We
use a synthetic model to generate the execution profiles in order to represent
a large set of scientific applications. The application model that we use is a
classical one, similar to the one used in [1]. For a problem of size m, we define
the sequential time: t(m, 1) = 2×m×log2(m). Then we can define the parallel
execution time on q processors:

t(m, q) = f × t(m, 1) + (1− f)
t(m, 1)

q
+
m

q
log2(m). (1.13)

The parameter f is the sequential fraction of time, we fix it to f = 0.08.
So 92% of time is considered as parallel. The factor m

q log2(m) represents
the overhead due to communications and synchronizations. Finally, we have
ti,j(mi) = t(mi, j) where ti,j(mi) is the execution time for application Ti with
a problem of size mi on j identical processors.

Finally, we assign to each application Ti a random value for the number
of data mi such that: minf ≤ mi ≤ msup. We set minf = 1, 500, 000 and
msup = 2, 500, 000 to have execution times long enough so that several failures
are likely to strike during execution. With such a value for msup, the longest
execution time in a fault-free execution is around 100 days. We also consider
two different data distribution cases, (i) very heterogeneous with minf =
1, 500, and (ii) homogeneous with minf = 2, 499, 000, and detailed results for
these distributions are available in [2].

The cost of checkpoints for an application Ti with j processors is Ci,j =
Ci/j, where Ci is proportional to the memory footprint of the application.
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We have Ci = mi × c, where c is the time needed to checkpoint one data unit
of mi. The default value is c = 1, unless stated otherwise. The synchronisation
cost value S is fixed to S = 0 for all following experiments. Finally, the MTBF
of a single processor is fixed to 100 years, unless stated otherwise.

Note that we assume that a failure can strike during checkpoints but not
during downtime, recovery and while the processor is performing some redis-
tribution.

1.5.5 Results
To evaluate the heuristics, we execute each heuristic 50 times and we compute
the average makespan, i.e., the longest execution time in the pack. We compare
the makespan obtained by the heuristics to the makespan (i) in a faulty context
without any redistribution (worst case), and (ii) in a fault-free context with
redistributions (best case). We normalize the results by the makespan obtained
in a faulty context without any redistribution, which is expected to be the
worst case. The execution in a fault-free setting provides us an optimistic value
of the execution of the application in the ideal case where no failures occur.
We consider all four possible combinations of EndLocal or EndGreedy
with ShortestapplicationsFirst or IteratedGreedy.

Performance in a fault-free context. Figure 1.4 shows the impact of re-
distribution in a fault-free context with 1000 applications, where we vary the
number of processors from 2000 to 10000. In this case, we compare EndLo-
cal with EndGreedy (see Section 1.5.2). The two heuristics have a very
similar behavior, leading to a gain of more than 20% with less than 4000
processors, and a slightly better gain for the EndGreedy global heuristic.
When the number of processors increases, the efficiency of both heuristics de-
creases to converge to the performance without redistribution. Indeed, there
are then enough processors so that each application does not make use of the
extra processors released by ending applications. In the heterogeneous context
(with minf = 1500), the gain due to redistribution is even larger (see [2]).
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Impact of n. Figure 1.5 shows the impact of the number of applications n
when the number of processors is fixed to 5000. The results show that having
more applications increases the efficiency of both heuristics. With n = 1000,
we obtain a gain of more than 40% due to redistributions. The reason is
that when n increases, the number of processors assigned to each application
decreases, then heuristics have more flexibility to redistribute.

Note that, as expected, IteratedGreedy is better than Shortestappli-
cationsFirst, because it recomputes a complete new schedule at each fault,
instead of just allocating available processors from shortest applications to
the faulty application. Using EndGreedy with IteratedGreedy does not
improve the performance, while EndGreedy is useful with Shortestappli-
cationsFirst, hence showing that complete redistributions are useful, even
when only performed at the end of an application. Similar results can be ob-
served in the homogeneous and heterogeneous cases, and similar conclusions
are drawn when varying p for a fixed value of n (see [2]).

Impact of MTBF. Figure 1.6 shows the impact of the MTBF on the per-
formance of redistributions. We vary the MTBF of a single processor between
5 years and 125 years. When the MTBF decreases, the number of failures
increases, consequently the performance of both heuristics decreases. The per-
formance of IteratedGreedy is closely linked to the MTBF value. Indeed,
it tends to favor a heterogeneous distribution of processors (i.e., applications
with many processors and applications with few processors). If an application
is executed on many processors, its MTBF becomes very small and this appli-
cation will be hit by more failures, hence it becomes even worse than without
redistribution!

Impact of checkpointing cost. Figure 1.7 shows the impact of the check-
pointing cost on a platform with 100 applications and 1000 processors. To
do so, we multiply the checkpointing cost by c in Figure 1.7 (recall that c is
the time needed to checkpoint one data unit). When c decreases, the perfor-
mance of the heuristics increases and the gap between the execution time in
a fault-free context and a fault context becomes small. Indeed, if checkpoints
are cheap, a lot of checkpoints can be taken, and the average time lost due to
failures decreases.
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Additionally, we show in [2] that the sequential fraction of time f of the ap-
plications also has an impact on performance: as expected, when applications
are more parallel, the redistribution is more efficient.

Summary. Altogether, we observe that IteratedGreedy achieves better
performance than ShortestapplicationsFirst, mainly because it rebuilds
a complete schedule at each fault, which is very efficient but also costly. Nev-
ertheless, when the MTBF is low (around 10 years or less), Shortestappli-
cationsFirst becomes better than IteratedGreedy. In a faulty context,
we gain flexibility from the failures and we can achieve a better load balance.
We observe that the ratio between the number of applications and the number
of processors plays an important role, because having too many processors for
few applications leads to a deterioration of performance. We also show that
the cost of checkpointing and the fraction of sequential time have a significant
impact on performance.

Finally, we point out that all four heuristics run within a few seconds, while
the total execution time of the application takes several days, hence even the
more costly combination IteratedGreedy-EndGreedy incurs a negligible
overhead.

1.6 CONCLUSION
In this chapter, we have provided theoretical results to assess the complex-
ity of the general partitioning problem in a fault-free scenario; the problem
is NP-complete when a pack can contain at least 3 tasks, and we have pro-
vided an approximation algorithm. When accounting for failures, we have
designed a detailed and comprehensive model for scheduling a single pack of
applications on a failure-prone platform, with processor redistributions. We
have introduced a greedy polynomial-time algorithm that returns the optimal
solution (for a single pack) when there are failures but no processor redistri-
bution is allowed, or in a fault-free scenario. We have shown that the problem
of finding a schedule that minimizes the execution time when accounting for
redistributions is NP-complete in the strong sense, even with constant redistri-
bution costs and no failures. Finally, we have provided several polynomial-time
heuristics to redistribute efficiently processors at each failure or when an ap-
plication ends its execution and releases processors. The heuristics are tested
through extensive simulations, and the results demonstrate their usefulness: a
significant improvement of the execution time can be achieved thanks to the
redistributions.

Further work will consider partitioning the applications into several con-
secutive packs (rather than one) and conduct additional simulations in this
context. We also plan to investigate the complexity of the online redistribution
algorithms in terms of competitiveness. It would also be interesting to deal
not only with fail-stop errors, but also with silent errors. This would require
adding verification mechanisms to detect such errors.
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