
HAL Id: hal-02082847
https://hal.inria.fr/hal-02082847

Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Checkpointing Period with Replicated
Execution on Heterogeneous Platforms

Anne Benoit, Aurelien Cavelan, Valentin Le Fèvre, Yves Robert

To cite this version:
Anne Benoit, Aurelien Cavelan, Valentin Le Fèvre, Yves Robert. Optimal Checkpointing Period with
Replicated Execution on Heterogeneous Platforms. 2017 Workshop on Fault-Tolerance for HPC at
Extreme Scale FTXS, Jun 2017, Washington, United States. pp.9-16, �10.1145/3086157.3086165�.
�hal-02082847�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195819162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02082847
https://hal.archives-ouvertes.fr

Optimal Checkpointing Period
with Replicated Execution on Heterogeneous Platforms

Anne Benoit

LIP, ENS Lyon, France

anne.benoit@ens-lyon.fr

Aurélien Cavelan

LIP, ENS Lyon, France

aurelien.cavelan@ens-lyon.fr

Valentin Le Fèvre

LIP, ENS Lyon, France

valentin.le-fevre@ens-lyon.fr

Yves Robert

LIP, ENS Lyon, France & Univ. Tenn. Knoxville, USA

yves.robert@inria.fr

ABSTRACT
In this paper, we design and analyze strategies to replicate the

execution of an application on two di�erent platforms subject to

failures, using checkpointing on a shared stable storage. We derive

the optimal pa�ern sizeW for a periodic checkpointing strategy

where both platforms concurrently try and executeW units of work

before checkpointing. �e �rst platform that completes its pa�ern

takes a checkpoint, and the other platform interrupts its execution

to synchronize from that checkpoint. We compare this strategy to

a simpler on-failure checkpointing strategy, where a checkpoint

is taken by one platform only whenever the other platform en-

counters a failure. We use �rst or second-order approximations to

compute overheads and optimal pa�ern sizes, and show through

extensive simulations that these models are very accurate. �e

simulations show the usefulness of a secondary platform to reduce

execution time, even when the platforms have relatively di�erent

speeds: in average, over a wide range of scenarios, the overhead is

reduced by 30%. �e simulations also demonstrate that the periodic

checkpointing strategy is globally more e�cient, unless platform

speeds are quite close.

1 INTRODUCTION
One of the most important challenges faced by large-scale comput-

ing systems is the frequent occurence of failures (a.k.a. fails-top

errors) [3, 17]. Platform sizes have become so large that failures

are likely to strike during the execution of an application. Consider

the mean time between failures µ (usually denoted as MTBF) of

a platform with p processors: µ decreases linearly with p, since

µ =
µind

p , where µ
ind

is the MTBF of each individual component

(see Proposition 1.2 in [10]). For instance, with µ
ind
= 10 years and

p = 10
5
, we have µ ≈ 50 minutes, and it goes down to a failure

every 5 minutes for p = 10
6
.

�e classical technique to deal with failures is to use a checkpoint-

restart mechanism: the state of the application is periodically check-

pointed on stable storage, and when a failure occurs, we can recover

from the last valid checkpoint and resume the execution, rather

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or

a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA
© YYYY ACM. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

than starting again from scratch. Checkpointing policies have been

widely studied, see [10] for a survey of various protocols and the

derivation of the Young/Daly formula [19, 5] for the optimal check-

pointing period. Recent advances include multi-level approaches,

or the use of SSD or NVRAM as secondary storage [3].

Another technique that has been advocated to deal with failures

is process replication, where each process in a parallel MPI (Mes-

sage Passing Interface) application is duplicated to increase the

mean-time to interruption. More precisely, each processor of the

platform is paired with a replica so that the execution can continue

whenever one of them is struck by a failure. Given the high rate of

failures expected in current systems, process replication is usually

combined with a periodic checkpointing mechanism, as proposed

in [16, 20, 8, 9] for HPC platforms, and in [11, 18] for grid comput-

ing. �ese approaches use process replication: each processor of the

platform is paired with a replica so that the execution can continue

whenever one is struck by a failure.

Another approach introduced in [4] is group replication, a tech-

nique that can be used whenever process replication is not available.

Group replication is agnostic to the parallel programming model,

and thus views the application as an unmodi�ed black box. Group

replication consists in executing multiple application instances

concurrently. For example, two distinct p-process application in-

stances could be executed on a 2p-processor platform. Once an

instance saves a checkpoint, the other instance can use this check-

point immediately to “jump ahead” in its execution. A similar

technique named shadow replication has been introduced in [12].

In this work, the authors consider a slow and a fast replica in order

to both increase the reliability of the execution and reduce the

associated energy consumption. When the fast replica fails, they

increase the speed of the slow replica to complete the task under a

targeted response time, and thus do not rely on checkpointing.

In this work, we extend group replication to the case of two

di�erent computing platforms executing concurrently and coop-

erating to the success of a given application. To the best of our

knowledge, this scenario has not been explored yet. �e two plat-

forms share a set of remote disks, used as a stable storage for check-

pointing. Typically, these platforms would be clusters, which may

have di�erent number of processors, and hence di�erent MTBFs

and execution speeds. Our goal is to determine the best way to

have both platforms cooperate so that the execution time of the

application is minimized. We design and analyze two strategies:

1. A periodic checkpointing strategy, where both platforms

checkpoint periodically once they have executed a chunk of work

of sizeW . Both platforms synchronize through the shared storage

1

as soon as one of them has completed the execution of a chunk

(at the time of the checkpoint). We provide a thorough analysis to

express the overhead given the checkpointing periodW , and we

derive the size of the optimal pa�ern.

2. An on-failure checkpointing strategy, where each platform

progresses at its own speed, and checkpoints only when a failure

occurs on the other platform. Hence, when a failure occurs on one

of the platforms (say platform A), the other one (platform B) check-

points, and platform A gets a copy of this checkpoint to restart its

execution at this point. Intuitively, if both platforms have the same

speed, we will never roll back with this strategy, unless a failure

occurs during checkpoint. We compare both strategies through

extensive simulations, and show the gain (opr the absence thereof)

compared to using a single platform. We also assess the accuracy

of the model and of our �rst or second-order approximations.

�e rest of the paper is organized as follows. We introduce the

execution model in Section 2, and derive the optimal pa�ern for

the periodic checkpointing strategy in Section 3. �e analysis for

the checkpoint-on-failure strategy is given in Section 4. Section 5

is devoted to the experimental evaluation. Finally, we provide

concluding remarks and directions for future work in Section 6.

2 MODEL
We consider a black-box application and replicate its execution on

two di�erent computing platforms P1 and P2. �e platforms may

well be heterogeneous, with di�erent processor numbers, di�erent

MTBF values and di�erent execution speeds. Both platforms use

the same stable storage system. A typical instance is the case of

two clusters that share a set of storage disks. We assume that both

executions can synchronize through checkpointing. Checkpoint

time is C on either platform, and this includes the time to update

the state of the application on the other platform. We make no

further hypothesis: �e checkpointing protocol can be single-level

or multi-level, and the update of the application state on the other

platform can take place either through the network or via the �le

system. Recovery time is R, independently of which platform has

taken the last checkpoint.

We partition the execution of the application into periodic pat-
terns, i.e., computational units that repeat over time. Each pa�ern

includesW units of work (we also say a chunk of sizeW) and ends

with a checkpoint. With a single platform, the optimal pa�ern

length is well-known and obeys the Young/Daly formula [19, 5].

With two platforms executing concurrently, both platforms exe-

cute the pa�ern concurrently, and repeat until success. Once a

platform succeeds, the other one stops executing and synchronizes

on checkpoint. Computing the optimal pa�ern length turns out a

challenging problem in this case.

We assume that failures independently strike the platforms with

an Exponential distribution. Platform P1 has failure rate λ1, which

means its MTBF (Mean Time Between Failures) is µ1 =
1

λ1

. Sim-

ilarly, P2 has failure rate λ2, and MTBF µ2 =
1

λ2

. We let σ1 be

the execution speed of the application on platform P1, and σ2 be

the speed on P2. We assume that P1 is the fast platform, so that

σ1 ≥ σ2.

�e expected execution time of the pa�ern is E(P). Le�ing

T1 =
W
σ1

, we note that E(P) > T1 +C , the failure-free time on the

fast platform. An optimal pa�ern is de�ned as the one minimizing

the ratio
E(P)
T1

, or equivalently the ratioH(P) =
E(P)
T1

−1. �is la�er

ratio is the relative overhead paid for executing the pa�ern. �e

smaller this overhead, the faster the progress of the execution. For

the theoretical analysis, we assume that checkpoint and recovery

are failure-free, because this assumption does not modify the dom-

inant terms of the overhead (see the companion research report [2]

for details), but for the simulations, we do account for failures

striking anytime. Finally, to be able to write Taylor expansions,

we also let λ be the global failure rate and write λ1 = α1λ and

λ2 = α2λ, with α1 + α2 = 1.

3 OPTIMAL PATTERN
In this section, we show how to derive the optimal pa�ern length.

�e derivation is quite technical, and a summary of the results is

provided in Section 3.2.

3.1 Expected execution time
Consider a pa�ern P of sizeW , and let E(P) denote the expected

execution time of the pa�ern. Because we assume that checkpoints

are failure-free, we have E(P) = E(W) + C , where E(W) is the

expected time to execute a chunk of sizeW . We start with some

background on well-known results on E(W) with a single platform

P1, before moving on to our problem with two platforms. With a

single platform P1, letT1 =
W
σ1

andp1 = 1−e−λ1T1
be the probability

of a failure on P1 while a�empting to execute the chunk of sizeW .

We can write

E(W) = (1 − p1)T1 + p1 (E
lost + R + E(W)).

�e �rst term corresponds to a successful execution, while the

second term accounts for a failure striking during execution, with

expected time lost Elost
, recovery time R and calling E(W) recur-

sively to restart from scratch. We know from [10] that Elost = 1

λ1

−

T1

eλ1
T

1−1

, and a�er simpli�cation we get E(W) = (1

λ1

+R) (eλ1T1 −1)

(see [10]for details). We aim at minimizing the pa�ern overhead

H(P) =
E (P)
T1

− 1. To get a �rst-order approximation, we assume

that λ1W is small so that we can expand p1 = 1 − eλ1T1
into

p1 = λ1

W

σ1

+
1

2

(
λ1

W

σ1

)
2

+ o *
,

(
λ1

W

σ1

)
2

+
-
.

We then derive that H(P) = Cσ1

W +
λ1W
2σ1

+ o(
√
λ1). �e �rst two-

terms show thatWopt = Θ(λ−1/2

1
) and we retrieve the Young/Daly

formulaWopt = σ1

√
2C
λ1

. For the optimal pa�ern, we have Hopt =
√

2Cλ1 + o(
√
λ1).

Equipped with these results for a single platform, we can now

tackle the problem with two platforms. We will need a second-order

approximation of the form

H(P) =
Cσ1

W
+ β

(
λ
W

σ1

)
+ γ

(
λ
W

σ1

)
2

+ δλ + o
(
(λW)2

)
,

where λ = λ1 + λ2 is the total failure rate, and β , γ and δ are

constants that we derive below. With a single platform, we had

β = 1

2
. With two platforms, we obtain a complicated expression

for β , whose value will always be nonnegative. If β is strictly

positive and above a reasonable threshold, we will proceed as

above and be satis�ed with the �rst-order approximation that gives

Time

Time

C1 T1 C1

C1 T2 C1

(P1)

(P2)

Figure 1: I0 – no failure on P1 (there can be failures on P2);
P1 always �nishes �rst.

Wopt = σ1

√
C
βλ = Θ(λ−1/2). However, if β is zero or close to

zero, we need to resort to the second-order expansion to derive

an accurate approximation ofWopt. In particular, when P1 and P2

are same-speed platforms, we �nd that β = 0, γ > 0 andWopt =

Θ(λ−2/3).
As above, let E(W) be the expected time to execute a chunk of

size W with both platforms. Let T1 =
W
σ1

and p1 = 1 − e−λ1T1
as

before. We write E(W) =
∑∞
i=0

pi
1
(1 − p1)Ei , where Ei denotes

the expected time to executeW successfully, knowing that there

were i failures on P1 before P1 executes the chunk successfully. We

point out that we condition Ei on the number of failures on P1,

independently on what is happening on P2. In other words, we let

P1 execute until success, but we do account for the fact that P2 may

have completed before P1 when computing Ei . Similarly, le�ing

T2 =
W
σ2

and p2 = 1−e−λ2T2
be the probability of a failure on P2, we

write Ei =
∑∞
j=0

p
j
2
(1 − p2)Ei, j , where Ei, j denotes the expected

execution time of the pa�ern, knowing there were i failures on P1

and j failures on P2 before both platforms execute successfully.

Theorem 3.1. �e expected execution time of a pa�ern E(P) of
lengthW , whose execution is replicated on two platforms P1 and P2,
is E(P) = E(W) +C , where

E(W) = (1 − p1)T1 (I0)

+ p1 (1 − p1 − p2)E1,0 (I1)

+ p1p2E1,1 (I2)

+ p2

1
E2,0 (I3)

+O (λ3W 4) ,

Here I0, I1, I2 and I3 denote the four possible outcomes of the execution
(up to two failures), with their associated probability.

�e proof of �eorem 3.1 is technical; due to a lack of space, we

refer the reader to the companion research report [2] for addi-

tional details. �e complicated part is to compute approximation

of I0, I1, I2 and I3. We explain how to do so for I0 and I1, which are

the easy ones. I2 and I3 correspond to two failures (one on each

platform for I2, two on P1 for I3) and are detailed in [2].

Computing I0 (Figure 1). Let I0 denote the expected execution

time associated with having no failures on P1. With probability

(1 − p1), P1 �nishes faster than P2 in T1 time, and we can write

I0 = (1 − p1)T1. Using Taylor expansions to approximate p1 to

λ1T1 +
λ2

1
T 2

1

2
+ o(λ2T 2

1
), we can write:

I0 = *
,
1 − λ1T1 −

λ2

1
T 2

1

2

+ o(λ2T 2

1
)+
-
T1 = T1 − λ1T

2

1
−
λ2T 3

1

2

+ o(λ2T 3

1
) .

Computing I1 (Figure 2). Let I1 denote the expected execution

time when having exactly one failure on P1. Le�ing X ∼ exp (λ1)

Time

Time

C1 t1 R T1 C1

C1 T2 C1

(P1)

(P2)
(a)

Time

Time

C1 t1 R T1 C1

C1 T2 C1

(P1)

(P2)
(b)

Figure 2: I1 – there is one failure on P1; depending on the
failure arrival time t1, P1 �nishes either �rst (a) or last (b).

denote the failure inter-arrival time, we have:

I1 = p1 (1 − p1 − p2)

∫ ∞

0

P(X = t |X ≤ T1) min(t + R +T1,T2)dt

= p1 (1 − p1 − p2)
1

P(X ≤ T1)

∫ T1

0

P(X = t) min(t + R +T1,T2)dt .

By de�nition, P(X ≤ T1) = p1 and P(X = t) = λ1e
−λ1t

, therefore:

I1 = (1 − p1 − p2)

∫ T1

0

λ1e
−λ1t

min(t + R +T1,T2)dt .

Note that min(t + R + T1,T2) is in order of O (W). Using Taylor

series to approximate p1 to λ1T1+o(λW), p2 to λ2T2+o(λW), e−λ1t

to 1−λ1t +o(λt) and keeping second-order terms only, we can get:

I1 = λ1 (1 − λ1T1 − λ2T2)

∫ T1

0

(1 − λ1T1) min(t + R +T1,T2)dt

+ o(λ2W 3) .

�e minimum depends on which platform �nishes �rst. We know

that t + R +T1 ≤ T2 ⇐⇒ t ≤ T2 −T1 − R, so that we break the

integral into two parts to address both cases, as follows:

I1 = λ1 (1 − λ1T1 − λ2T2)*
,

∫ T2−T1−R

0

(1 − λ1t) (t + R +T1)dt

+

∫ T1

T2−T1−R
(1 − λ1t)T2

+
-
dt + o(λ2W 3) ,

where T2 −T1 − R must be both positive and less that T1. Finally,

let r1 = max(min(T2 −T1 − R,T1), 0), and we can write:

I1 = λ1 (1 − λ1T1 − λ2T2)*
,

∫ r1

0

(1 − λ1t) (t + R +T1)dt

+

∫ T1

r1

(1 − λ1t)T2dt+
-
+ o(λ2W 3) .

Finally, note that I1 depends on the value of r1 as follows:

r1 =

T2 −T1 − R, if 0 ≤ T2 −T1 − R ≤ T1

T1, if T2 −T1 − R > T1

0, otherwise.

Assuming R is small in front T1 and T2, we derive:

r1 =

{
T2 −T1 − R, if 1 ≤

σ1

σ2

≤ 2

T1, if 2 < σ1

σ2

.

3.2 Expected overhead
Theorem 3.2. �e expected overhead of a pa�ern H(P), whose

execution is replicated on two independent platforms P1 and P2 is

H(P) =
Cσ1

W
+ β

(
λ
W

σ1

)
+ γ

(
λ
W

σ1

)
2

+ δλ + o
(
(λW)2

)
, (1)

where λ1 = α1λ and λ2 = α2λ with α1 + α2 = 1. �e values of the
constants β , γ and δ are provided by the following case analysis:

Case 1: 1 ≤
σ1

σ2

≤ 2.

β =
α1

2

−σ 2

1
+ 4σ1σ2 − 3σ 2

2

σ 2

2

,

γ =
α2

1

2

σ 2

1
− 3σ1σ2 + 2σ 2

2

σ 2

2

+
α1α2

3

2σ 3

1
− 9σ 2

1
σ2 + 12σ1σ

2

2
− 4σ 3

2

σ 3

2

,

δ = R
σ1 − σ2

σ2

.

Case 2: 2 ≤
σ1

σ2

< 3.

β =
α1

2

,γ =
α2

1

6

σ 3

1
− 9σ 2

1
σ2 + 27σ1σ

2

2
− 26σ 3

2

σ 3

2

,δ = α1R .

Case 3: 3 ≤
σ1

σ2

.

β =
α1

2

,γ = α2

1
,δ = α1R .

�e optimal checkpointing periodWopt can be obtained by solving
the following third-degree equation numerically:

∂H(P)

∂W
= −

Cσ1

W 2
+ β

λ

σ1

+ 2γ
λW

σ 2

1

= 0 . (2)

See [2] for a proof. For cases 2 and 3 (where σ1 ≥ 2σ2), we have

β = α1

2
. If we use the �rst-order approximation, we neglect the last

two terms with γ and δ in H(P). �en we obtainWopt = σ1

√
C
βλ ,

a similar formula as with a single platform. We experimentally

check the accuracy of the �rst-order approximation in Section 5.

On the contrary for case 1 (where σ1 ≥ 2σ2), we have β = α1

2
(σ1

σ2

−

1) (3 − σ1

σ2

) ≥ 0 but β = 0 ⇐⇒ σ1 = σ2. We can still use the �rst-

order approximation when β is not too close to 0. For same-speed

platforms, we need to use the second-order approximation:

Theorem 3.3. For same-speed platforms (σ2 = σ1), the expected
overhead is

H(P) =
Cσ1

W
+
α1α2λ

2W 2

3σ 2

1

+ o(λ2W 2) . (3)

and the associated optimal checkpointing period is

Wopt = σ1

3

√
3C

2α1α2λ2
. (4)

It is striking to note thatWopt = Θ(λ−2/3) for same speed plat-

forms, instead of Wopt = Θ(λ−1/2). Finally, with two identical

platforms (α1 = α2 =
1

2
and λ = 2λ1), we obtainWopt = σ1

3

√
3C
2λ2

1

.

4 ON-FAILURE CHECKPOINTING
In this section, we present another strategy., where the work is no

longer divided into periodic pa�erns. We only checkpoint when

a failure strikes either platform. More precisely, when a failure

f strikes one platform, we use the other platform to checkpoint

the work, so that both platforms can resume their execution from

this checkpoint, in a synchronized fashion. �is scheme is exposed

to the risk of having a second failure f ′ striking the other plat-

form during its checkpoint, which would cause to roll-back and

re-execute from the previous checkpoint (which was taken right

a�er the failure preceding f , which may be a long time ago). Such

a risk can be neglected in most practical se�ings. As before, we

assume that failures do not strike during checkpoints.

Intuitively, this checkpoint-on-failure strategy is appealing, be-

cause we checkpoint a minimum number of times. And when a

failure strikes the slow platform P2, we do not roll-back. However,

when a failure strikes the fast platform P1, we have to roll-back to

the state of P2. Altogether, we expect this strategy to work be�er

when platform speeds are close. We will experimentally assess the

checkpoint-on-failure strategy in Section 5.

4.1 Expected execution time
Let E(A) denote the expected time needed to execute the applica-

tion successfully, and letTbase =
Wbase
σ1

denote the total execution

time of the application on the fast platform P1, without any re-

silience mechanism nor failures. Here Wbase denotes the total

amount of work of the application.

Theorem 4.1. �e expected execution time of the application is

E(A) = Tbase +
Tbase
µ

(
C + α1

(
µ
σ1 − σ2

σ1

))
. (5)

where µ = 1

λ is the MTBF.

Proof. We �rst consider the case of two identical platforms, i.e.

σ1 = σ2 and λ1 = λ2 =
λ
2

. In this case, as soon as a failure occurs

on either platform, the other one immediately checkpoints, and

both platforms synchronize on this checkpoint, before resuming

execution. In other words, the execution never rolls back, and no

work is ever lost.

Now, in order to compute the expected execution time, we

need to account for the time needed to execute the entire applica-

tion Tbase , as well as the time lost due to failures. When a failure

occurs, we only need to account for the time C to checkpoint and

synchronize. In addition, we can estimate the expected number of

failures as
Tbase
µ in average, and we write E(A) = Tbase +

Tbase
µ C .

�is is �ne for two identical platforms. However, when failure

rates and speeds di�er, there are two cases: (i) a failure strikes the

fast platform P1. �en platform P2 checkpoints, but because it is

slower than P1, P1 needs to rollback and we lose the extra amount

of work that P1 has computed since the last failure and synchro-

nization; (ii) a failure strikes the slow platform P2. �en platform P1

checkpoints, and because it is faster, P2 will roll-forward instead,

catching up with the execution of P1.

Assuming failures are Exponentially distributed, and given that

a failure (from either platform) strikes during the execution of the

segment, the probability that the failure belongs to a particular

platform is proportional to the failure rate of that platform [13], i.e.

Name Titan Cori K computer Trinity �eta

Speed (PFlops) 17.6 14.0 10.5 8.1 5.1

MTBF (s) 50,000 100,000

Table 1: Summary of parameters used for simulations for
each platform.

the probability that the failure belongs to P1 and P2 are
λ1

λ = α1

and
λ2

λ = α2, respectively.

In order to compute the expected execution time, we �rst need to

account forTbase , which is the time to execute the application once,

without failures. �en, when a failure strikes, either it strikes P2,

with probability α2, and we only lose the time to checkpoint C;

or it strikes P1, with probability α1, and we lose the di�erence

between the amount of work executed on P1 and P2 since the last

synchronization. In average, the last synchronization was when

the last failure occurred, that is µ time-steps ago. During that time,

P1 and P2 have executed µσ1 and µσ2 units of work, respectively,

and we have lost µ σ1−σ2

µ due to the failure. Altogether, we can

write:

E(A) = Tbase +
Tbase
µ

(
C + α1

(
µ
σ1 − σ2

σ1

))
.

�

4.2 Expected overhead
Theorem 4.2. �e expected overhead is

H(A) =
C

µ
+ α1

(
σ1 − σ2

σ1

)
. (6)

Proof. Let H(A) =
E(A)
Tbase

− 1. We write:

H(A) =
1

µ

(
C + α1

(
µ
σ1 − σ2

σ1

))
.

�en, simplifying, we obtain Equation (6). �

5 EXPERIMENTAL EVALUATION
In this section, we conduct a set of simulations, whose goal is three-

fold: (i) assess the accuracy of the proposed models; (ii) compare the

performance of the two replication strategies in di�erent scenarios;

and (iii) evaluate the performance improvement of the approach

over classical periodic checkpointing with a single platform.

5.1 Simulation setup
�is section describes the parameters used for the simulations. First,

we set R = C in all cases. �is is a common assumption [14, 15, 6],

even though in practice the recovery cost can be expected to be

smaller than the checkpoint cost [6, 7]. to a read (recovery) and

a write (checkpoint) operation, and they take approximately the

same amount of time. �en, we set the other parameters accord-

ing to real behaviors on today’s supercomputers. Because the

typical failure rate for the most powerful Top500 platforms [1] is

around 1 or 2 failures per day, we choose µ1 = 50, 000s ≈ 14h and

µ2 = 100, 000s ≈ 28h. �e speeds were set using the Rmax value

(maximum performance achieved when executing LINPACK) in

PFlops of Top500 platforms (list of November 2016). We always set

σ1 = 17.6 (units in Peta�ops, corresponding to the Titan platform),

and we build four di�erent cases aiming at having di�erent
σ1

σ2

ra-

tios: σ2 can be either 14.0 (Cori), 10.5 (K computer), 8.1 (Trinity) or

5.1 (�eta). We also have two possible con�gurations for the check-

pointing (and recovery) time: a small checkpoint of 60 seconds and

a large checkpoint of 1800 seconds. Overall, the parameters used

by default for each platform are summarized in Table 1.

For each experiment, we setup the simulator with the resilience

parameters λ1, λ2,C and R, and we compute the optimal pa�ern

lengthWopt, which is obtained by solving Equation 1 numerically.

�e total amount of work in the simulation is �xed to be 1000Wopt,

and each simulation is repeated 1000 times. All the �gures re-

port the optimal overhead Hopt as a function of some parame-

ter. �e solid lines are simulation results: green for the fastest

machine alone (with Young/Daly period), blue for the periodic

checkpoint strategy, red for the on-failure checkpoint strategy. �e

dashed lines are model predictions: blue for the periodic checkpoint

strategy, red for the on-failure checkpoint strategy. �e simulator

is publicly available at h�p://perso.ens-lyon.fr/aurelien.cavelan/

replication-�xs.zip.

5.2 Accuracy of the models
In this section, we study the accuracy of the models and we assess

the usefulness of the second-order approximation by comparing the

results obtained with both �rst and second-order formulas. We take

the fastest machine Titan and let its speed σ1 vary, while keeping

all other parameters �xed. Hence we always have µ1 = 50, 000s and

four possible second platforms (Cori, K-computer, Trinity, �eta)

whose parameters are given in Table 1.

Figure 3 presents the evolution of the overhead as a function

of σ1 varying from σ2 to 5σ2, and using a checkpointing time of

60s (le�), and 1800s (right). We observe that the model matches

very well the results of the simulations: the maximum relative

error is 5% with C = 1800s , and is within 0.2% with C = 60s . �e

la�er result is expected: we do not account for failures during

checkpoints t in the analysis, hence the approximation gets less

accurate as checkpoint time increases.

For each value of σ1 varying from σ2 to 5σ2, we set β ,γ and δ in

Equation 1, according to the ratio
σ1

σ2

, which shows the accuracy

of the formula in all three cases. Finally, we note that the overhead

increases with larger speeds σ1, but the expected throughput (time

per unit of work) keeps decreasing.

Regarding on-failure checkpointing, we observe that the pre-

cision of the formula quickly degrades with larger σ1, because

it does not take into account failures that can occur during the

re-execution work, which corresponds to the factor µ (σ1−σ2

σ1

) in

Equation 6. Note that this factor grows when σ1 increases (or when

σ2 decreases), and it is not surprising to �nd that the overhead is

always underestimated when the two speeds are quite di�erent.

Next in Figure 4, we compare the simulated and theoretical

overheads obtained with the �rst and second-order approximations.

Note that the plot colors have a di�erent meaning in this �gure.

�e di�erence is small when using small checkpoint time (le�),

but when the two speeds get close and the checkpoint cost is high

(right), the �rst-order approximation collapses and the theoretical

overhead increases dramatically (Hopt = 0.5). �is is because the

coe�cient in O (λW) tends to 0, and the �rst-order approximation

used to get Wopt is not valid anymore. However, we show that

http://perso.ens-lyon.fr/aurelien.cavelan/replication-ftxs.zip
http://perso.ens-lyon.fr/aurelien.cavelan/replication-ftxs.zip

20 30 40 50 60 70

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/Cori, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

15 20 25 30 35 40 45 50

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/K, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25 30 35 40

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/Trinity, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/Theta, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

20 30 40 50 60 70

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/Cori, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

15 20 25 30 35 40 45 50

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/K, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25 30 35 40

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/Trinity, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/Theta, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 3: Evolution of overhead when σ1 varies with C = R = 60s on the le� and C = R = 1800s on the right.

using the second-order approximation, (i.e. considering additional

terms in O (λ2W 2)) still yields good results (Hopt = 0.128).

5.3 Comparison of the two strategies
In this section, we compare the overhead with the two strategies

against that with a single platform. Coming back to Figure 3, we

make two observations. First, when the ratio between σ1 and σ2 is

large (greater than 2 with a small checkpoint C , somewhat higher

when C increases), using a periodic pa�ern with replication is the

same as using the fast platform only: the slow platform is not useful.

Second, when this ratio between between σ1 and σ2 increases, the

on-failure checkpointing strategy becomes worse than using the

fast platform alone, especially with small checkpoint costs (le�).

�is can be explained as follows: we wait for a failure on the slow

platform to checkpoint the work done by the fast platform. But

given the value of µ2, the slow platform is struck less frequently

than the fast one, hence we o�en lose a lot of work (remember we

lose µ (σ1 − σ2) units of work when a failure strikes on P1).

Figures 5 to 7 show the evolution of the overhead when pa-

rameters µ1, µ2 and C,R vary. Overall, we observe again that the

work lost when a failure occurs on P1 is important with the on-

failure checkpointing strategy, whose overhead strongly depends

upon on the second platform used. For instance, the overhead for

µ1 = 10, 000s and C = 60s goes from 0.236 (using Cori) to 1.81

(using �eta), whereas the overhead of the periodic checkpoint-

ing remains small (between 0.074 and 0.125). �is observation is

con�rmed by Figure 6, where the overhead increases when the

number of faults actually decreases on the slow platform!

We see the bene�ts of using replication when looking at Figure 5.

When µ1 becomes small (10, 000s , or 8.6 failures per day), the

overhead with a single platform (green) increases a lot, while the

overhead with the periodic strategy (blue) increases only a li�le,

even when the second platform is twice slower than the �rst one.

For instance we have an overhead of 1.36 for P1 alone when C =
1800s , whereas we get 0.894 when using P1 in conjunction with

Trinity, i.e. a reduction of 34%. However, when the second platform

gets too slow, the improvement brought by the use of P2 is only

meaningful when the checkpointing cost is large: on Figure 7, we

get 15% of improvement if C ≥ 10s with Cori, if C ≥ 760s with K,

if C ≥ 4460s with Trinity, and more than 5000s with �eta.

Figure 8 presents the case of same-speed platforms. In this

case, for all parameter choices (C , R, µ1, µ2), it is interesting to

see that on-failure checkpointing is the best strategy, while it was

less e�cient than periodic checkpointing in almost all the other

scenarios that we considered. �is can be explained by the fact

that there is no work lost at all with this strategy, except when

there is a failure during a checkpoint.

5.4 Summary
We summarize simulation results as follows:

• �e model is very accurate, as long as the resilience pa-

rameters remain reasonably small.

• On-failure checkpointing is generally less e�cient than

periodic checkpointing, except when the speeds of the two

platforms are equal (σ2 = σ1).

• If P2 is really too slow compared to P1 (σ2 <
σ1

2
) or if the

checkpointing cost is small, there is li�le reason to use a

second platform.

• In all other cases (
σ1

2
≤ σ2 < σ1), the periodic checkpoint-

ing strategy reduces the overhead by 30% in average, and

up to 90% in some particular cases.

6 CONCLUSION
�is work has addressed group replication for a black-box appli-

cation executing on two heterogeneous platforms. We designed

and thoroughly analyzed two strategies, periodic checkpointing

and on-failure checkpointing. For periodic checkpointing, we have

been able to analytically derive the best pa�ern length, using either

�rst-order or second-order approximations. �ese results nicely

extend the Young/Daly formula.

Simulations show that the model is quite accurate. As expected,

when the platform speeds have di�erent orders of magnitude, it

is be�er to use only the fast platform. However, periodic check-

pointing is useful for a wide range of speeds, and generally more

20 30 40 50 60 70

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/Cori, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

15 20 25 30 35 40 45 50

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/K, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25 30 35 40

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/Trinity, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/Theta, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

20 30 40 50 60 70

σ1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

σ1 variation (Titan/Cori, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

15 20 25 30 35 40 45 50

σ1

0.0

0.1

0.2

0.3

0.4

0.5

H(P)

σ1 variation (Titan/K, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25 30 35 40

σ1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

H(P)

σ1 variation (Titan/Trinity, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25

σ1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

σ1 variation (Titan/Theta, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

Figure 4: Comparison of overhead using �rst-order approximation and second-order approximation when σ1 varies, with
C = R = 60s on the le� and C = R = 1800s on the right.

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.00

0.05

0.10

0.15

0.20

0.25

H(P)

µ1 variation (Titan/Cori, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H(P)

µ1 variation (Titan/K, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

H(P)

µ1 variation (Titan/Trinity, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.5

1.0

1.5

2.0

H(P)

µ1 variation (Titan/Theta, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

µ1 variation (Titan/Cori, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

µ1 variation (Titan/K, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

H(P)

µ1 variation (Titan/Trinity, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H(P)

µ1 variation (Titan/Theta, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 5: Evolution of overhead when µ1 varies with C = R = 60s on the le� and C = R = 1800s on the right.

e�cient than on-failure checkpointing. �e la�er strategy is to be

preferred only when the platform speeds are close.

Future work will be devoted to extending replication with hetero-

geneous platforms to deal with more complex applications, such as

scienti�c work�ows arranged as linear chains or fork-join graphs.

Another interesting direction is to study the bi-criteria problem

with energy consumption as a second metric, in addition to total

execution time, in order to be�er assess the cost of replication.

REFERENCES
[1] Top500 Supercomputer Sites, November 2016. h�ps://www.top500.org/lists/2016/

11/.

[2] A. Benoit, A. Cavelan, V. L. Fèvre, and Y. Robert. Optimal checkpointing period

with replicated execution on heterogeneous platforms. Research report RR-9047,

INRIA, 2017.

[3] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward exascale

resilience: 2014 update. Supercomputing frontiers and innovations, 1(1), 2014.

[4] H. Casanova, M. Bougeret, Y. Robert, F. Vivien, and D. Zaidouni. Using group

replication for resilience on exascale systems. Int. Journal of High Performance
Computing Applications, 28(2):210–224, 2014.

[5] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart

dumps. Future Generation Comp. Syst., 22(3):303–312, 2006.

[6] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimization of

multi-level checkpoint model for large scale HPC applications. In IPDPS. IEEE,

2014.

[7] S. Di, Y. Robert, F. Vivien, and F. Cappello. Toward an optimal online checkpoint

solution under a two-level HPC checkpoint model. IEEE Trans. Parallel Distributed
Systems, 28(1), 2017.

[8] C. Engelmann, H. H. Ong, and S. L. Scorr. �e case for modular redundancy in

large-scale highh performance computing systems. In PDCN. IASTED, 2009.

[9] K. Ferreira, J. Stearley, J. H. I. Laros, R. Old�eld, K. Pedre�i, R. Brightwell,

R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the Viability of Process

Replication Reliability for Exascale Systems. In SC’11. ACM, 2011.

[10] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance
Computing, Computer Communications and Networks. Springer Verlag, 2015.

[11] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok. Volpexmpi: An mpi library for

execution of parallel applications on volatile nodes. In 16th European PVM/MPI
Users’ Group Meeting, pages 124–133. Springer-Verlag, 2009.

https://www.top500.org/lists/2016/11/
https://www.top500.org/lists/2016/11/

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.00

0.05

0.10

0.15

0.20

0.25

H(P)

µ2 variation (Titan/Cori, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H(P)

µ2 variation (Titan/K, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

µ2 variation (Titan/Trinity, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.5

1.0

1.5

2.0

2.5

H(P)

µ2 variation (Titan/Theta, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

µ2 variation (Titan/Cori, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.3

0.4

0.5

0.6

0.7

H(P)

µ2 variation (Titan/K, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.4

0.6

0.8

1.0

1.2

H(P)

µ2 variation (Titan/Trinity, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.5

1.0

1.5

2.0

2.5

H(P)

µ2 variation (Titan/Theta, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6: Evolution of overhead when µ2 varies with C = R = 60s on the le� and C = R = 1800s on the right.

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H(P)

C,R variation (Titan/Cori)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H(P)

C,R variation (Titan/K)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.2

0.4

0.6

0.8

1.0

H(P)

C,R variation (Titan/Trinity)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

C,R variation (Titan/Theta)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 7: Evolution of overhead when C and R vary.

[12] B. Mills, T. Znati, and R. Melhem. Shadow computing: An energy-aware fault

tolerant computing model. In Int. Conf. on Computing, Networking and Commu-
nications (ICNC), pages 73–77. IEEE, 2014.

[13] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

[14] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, modeling,

and evaluation of a scalable multi-level checkpointing system. In SC. ACM, 2010.

[15] F. �aglia. A cost model for selecting checkpoint positions in time warp parallel

simulation. IEEE Trans. Parallel Dist. Syst., 12(4):346–362, 2001.

[16] B. Schroeder and G. A. Gibson. Understanding Failures in Petascale Computers.

Journal of Physics: Conference Series, 78(1), 2007.

[17] M. Snir and et al. Addressing failures in exascale computing. Int. J. High Perform.
Comput. Appl., 28(2):129–173, 2014.

[18] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. Using Replication and Checkpointing

for Reliable Task Management in Computational Grids. In SC’10. ACM, 2010.

[19] J. W. Young. A �rst order approximation to the optimum checkpoint interval.

Comm. of the ACM, 17(9):530–531, 1974.

[20] Z. Zheng and Z. Lan. Reliability-aware scalability models for high performance

computing. In Cluster Computing. IEEE, 2009.

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H(P)

C,R variation (Titan/Titan)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

µ2 variation (Titan/Titan, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

µ2 variation (Titan/Titan, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

µ1 variation (Titan/Titan, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H(P)

µ1 variation (Titan/Titan, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 8: Evolution of overhead when parameters vary, us-
ing two same-speed platforms.

	Introduction
	Model
	Optimal pattern
	Expected execution time
	Expected overhead

	On-failure checkpointing
	Expected execution time
	Expected overhead

	Experimental evaluation
	Simulation setup
	Accuracy of the models
	Comparison of the two strategies
	Summary

	Conclusion

