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Abstract: In an IaaS cloud the physical infrastructure is controlled by service providers,
including its security monitoring aspect. Clients hosting their information system need to trust
and rely on what the providers claim. At the same time providers try to give assurance for some
aspects of the infrastructure (e.g. availability) through service level agreements (SLAs). We aim
at extending SLAs to include security monitoring terms. In our previous study [1] we proposed
a verification method for security monitoring SLAs describing the performance on an network
intrusion detection system (NIDS). In this paper we address the problem of security monitoring
SLA definition, specifically for the case of NIDSs in cloud. We present the following contributions.
First we propose a security monitoring service description with relevant key performance indicators
(KPIs). Second we propose an extension to an SLA language called CSLA [2], in order to have a
standard method to define security monitoring SLAs. Third the KPIs used to describe performance
of NIDS take a base rate parameter, representing the rate of attacks in the monitored network
traffic. However, the value of the base rate is unknown at the time of SLA definition. In order
to address this contradiction, we propose a model building method and the model is used in the
SLA definition. The model is used to estimate the expected performance depending on the base
rate. Fourth, since there is a large number of vulnerabilities among all software products possibly
used by tenants, defining an SLA requires lots of performance evaluation tests, which makes the
process impractical. To address this we propose a method based on rules clustering which builds
a knowledge base for NIDS performance for a large number of vulnerabilities. Finally, we present
experiments showing the feasibility of our methods on performance estimation and clustering of
NIDS rules. We also present analysis on the shortcomings of the proposed method.

Key-words: Clouds, security monitoring, SLA, SLA language, vulnerabilities, NIDS, NIDS
performance, rule interference
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Dé�nition de SLAs pour la supervision de la sécurité dans
les clouds de type IaaS : exemple d'un IDS réseau

Résumé : Dans un cloud de type IaaS, l’infrastructure physique est contrôlée par les four-
nisseurs de services, y compris sur l’aspect surpervision de la sécurité. Les clients hébergeant leur
système d’information doivent se fier à ce que les fournisseurs affirment. Dans le même temps,
les fournisseurs essaient de donner une assurance sur certains aspects de l’infrastructure (par
exemple la disponibilité) par le biais de contrats de niveau de service (Service-Level Agreement
ou SLA). Notre objectif est d’étendre les contrats de niveau de service afin d’y inclure des aspects
de supervision de la sécurité. Dans notre étude précédente [1], nous avons proposé une méthode
de vérification du respect d’objectifs de supervision de la sécurité dans les SLAs, ces objectifs
décrivant la performance d’un système de détection d’intrusion dans le réseau (NIDS). Dans le
présent document, nous abordons le problème de la définition des SLAs portant sur la supervision
de la sécurité, en particulier dans le cas des NIDS dans les clouds. Nous présentons les contri-
butions suivantes. Tout d’abord, nous proposons une description du service de supervision de la
sécurité avec des indicateurs clés de performance (Key Performance Indicators ou KPIs) perti-
nents. Deuxièmement, nous proposons une extension d’un langage de SLA appelé CSLA [2], afin
d’avoir une méthode standard pour définir les SLA de supervision de sécurité. Troisièmement,
les KPIs utilisés pour décrire la performance des NIDS prennent en paramètre le taux d’attaques
dans le trafic réseau surveillé. Toutefois, la valeur du taux d’attaques est inconnue au moment
de la définition d’un SLA. Afin de résoudre cette contradiction, nous proposons une méthode de
construction d’un modèle et le modèle est utilisé dans la définition du SLA. Le modèle permet
d’estimer la performance attendue en fonction du taux d’attaques. Quatrièmement, comme il
existe un grand nombre de vulnérabilités parmi tous les produits logiciels éventuellement utilisés
par les utilisateurs du cloud, la définition d’un SLA nécessite de nombreux tests d’évaluation
des performances, ce qui rend le processus difficilement applicable. Pour remédier à cela, nous
proposons une méthode fondée sur le regroupement de règles qui permet de construire une base
de connaissances sur la performance des NIDS pour un grand nombre de vulnérabilités. Enfin,
nous présentons des expériences démontrant la faisabilité de nos méthodes d’estimation des per-
formances et de regroupement des règles de NIDS. Nous présentons également une analyse des
limitations de la méthode proposée.

Mots-clés : clouds, supervision de la sécurité, SLA, language de SLA, vulnérabilités, NIDS,
performance de NIDS, interférences entre règles de NIDS



Defining Security Monitoring SLAs in IaaS Clouds 3

1 Introduction

Before the introduction of cloud computing, organizations used to host their own computing
resources (networks, servers, storage, applications, and services). Using clouds, organizations
(called tenants) benefit from cost reduction (in both building and management) but they also
face new problems in terms of security. When moving to a cloud tenants lose full control of
the information system infrastructure and must trust the service provider. The provider is in
charge of monitoring the physical infrastructure and providing the required service to tenants.
Clients hosting their information system need to trust and rely on what the providers claim.
At the same time providers try to give assurance for some aspects of the infrastructure (e.g.
availability) through service level agreements (SLAs). However, as of today, service providers do
not give assurance on the security monitoring of the hosted information systems. Our goal is to
extend current cloud SLAs to include security monitoring terms.

Security monitoring is the collection, analysis, and escalation of indications and warnings to
detect and respond to intrusions [3]. The goal of collecting and analyzing events and generating
indicators is to detect and prevent intrusions. In addition, when prevention eventually fails, the
goal is to respond to incidents as quickly as possible and understand how the intruder achieved its
attack and what damage it made. Different types of security monitoring devices and techniques
are used for different components.

In a previous study [1] we separated the SLA lifecycle in three phases namely SLA defini-
tion and negotiation, SLA enforcement and SLA verification. We proposed an SLA verification
method for NIDSs in the cloud. In this paper, we describe in detail how we can achieve the SLA
definition and negotiation phase.

SLA definition is a pre-negotiation phase where service providers draft SLA templates ac-
cording to the services they provide. SLA definition happens before any contact with a tenant,
providers assess their performance and prepare templates to offer for potential tenants. The ne-
gotiation process starts after a tenant discovers a provider and shows an interest in the provided
service. Activities in the SLA definition phase include describing and preparing quantifiable
objectives for the provided service. In this phase the service description should clearly address
the type of service(s) covered under that SLA and providers precisely measure their performance
and generate a Key Performance Indicator (KPI).

From the provider perspective, SLA definition is an advertisement for the provided service.
It should be clear, precise and it should attract targeted customers. Service providers publish
and advertise their services using the draft template SLAs. Tenants are also expected to perform
some activities before signing off an agreement with a service provider. In [4] the Cloud Standard
Customer Council (CSCC) describes ten steps that help to compare multiple cloud providers or
to negotiate terms with a selected provider.

SLAs can address the different cloud service models. In this paper we assume an IaaS system.
In our previous study we described the lack of security monitoring terms in SLAs. The majority
of existing SLAs addresses system availability but fails to give a guarantee on other aspects of
security. We approach this problem by including security monitoring terms into SLAs. Security
monitoring is a process and different tools are used to perform this process. In our work Network
Intrusion Detection Systems (NIDSs) are used as a monitoring device and security monitoring
SLAs are defined for NIDSs.

In our context, security monitoring SLA terms refer to SLA terms that are designed to give
guarantees on the performance of NIDSs. Our work follows a user-centric approach in the sense
that it gives more choices and flexibility for tenants. Tenants can specify which vulnerabilities
to be monitored, can verify whether a specified objective is reached and can take actions if there
is an occurrence of SLA violation.
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4 Amir Teshome & Louis Rilling & Christine Morin

In the next section, we describe the objectives and problems that are addressed in this paper.
Specifically, how can we formally describe security monitoring SLA terms? What are the relevant
metrics to describe the performance of an NIDS and how to include these metrics in security
monitoring SLAs? In the presence of tens of thousands of vulnerabilities how a provider can
prepare tenant-tailored SLA. To this end, we show how to determine the performance of an
NIDS on a subset from tens of thousands of vulnerabilities and the effect on the performance of
an NIDS regarding an increased number of vulnerabilities. Additionally, we present our approach
to address the issue of defining security monitoring SLA terms with appropriate NIDS metrics.
In this paper, we also provide experimental results to validate the proposed ideas.

2 Objectives and Problem Description

In this section, we present the objectives and we describe problems that we address. SLAs
are fundamental components of the cloud computing model. As a result, clearly defined SLAs
facilitates the regulation process throughout the service life-cycle. In this paper, we aim to
achieve the following objectives.

2.1 Objectives

In general, the objective of this paper is to provide a mechanism which enables to define security
monitoring SLA terms. More fine grained objectives of this paper include:

• The mechanism should follow a user-centric approach, i.e. users should be able to partic-
ipate in the process, have choices and flexibility on what type of vulnerabilities should be
addressed.

• For a tenant to describe her/his needs, the mechanism should require fairly little knowledge
about the details of the system which is outside their own environment, i.e it should not
require technical knowledge about the system controlled by the provider.

• From providers the perspective, the mechanism should enable them to prepare custom
tailored SLA for each tenant according to their requirements.

• The mechanism should allow describing the performance of monitoring devices with fine-
grained, relevant metrics. It should also allow describing the process of computing com-
posite metrics.

In order to achieve these objectives, we need to tackle some problems. We have identified the
following problems.

2.2 Problem Description

The cloud comes with a characteristic of pay per use which magnifies the significant variation
in consumer needs. Hence, SLAs have to be created for each tenant by a negotiation process.
The communication between the provider and tenants should be in a standard language. This
provides assistance for tenants to communicate and compare SLA offers from different service
providers without the need to adapt another communication standards or language.

SLA definition should incorporate components like Service Description, Service Level Objec-
tives (SLO), Parties, Penalties. For security monitoring terms the service description should be
able to express vulnerabilities as they represent the finest granular concept in our SLA descrip-
tion. In addition, a vulnerability should be related to other services like products (software)

Inria



Defining Security Monitoring SLAs in IaaS Clouds 5

where the vulnerability exists and infrastructure where the product is running. Currently, to the
best of our knowledge, there is no SLA language that can satisfy these requirements.

The KPI describing the objectives of a monitoring device should be relevant for the specific
device used, in our case for NIDSs. For our use case two characteristics of a metric are set as
prerequisites before being used as SLO for terms describing NIDSs performance. These are (i)
the metric should take base rates into consideration. Axelsson [5] showed the base rate fallacy
problem for NIDSs and indicated the importance of base rate. (ii) it should be a single valued
metric i.e not a combination of two or more metrics. Comparing coupled metric values from
different providers requires analysis and finding trade-offs. Hence, from tenants perspective, it
is easier to have a single unified metric. The non-deterministic nature of the base rate makes it
challenging to define security monitoring SLAs. An SLA should not be defined for specific values
of the base rate because, most of the time, every occurrence of an attack has a different rate, i.e.
different base rate.

Many languages have been developed to define SLAs for different types of services, e.g.
WSLA [6], WS-Agreement [7], SLAng [8], SLAC [9], CSLA [2]. Some of these languages were
developed for web services before the cloud (e.g. WSLA and WS-Agreement) or are DSLs
specifically designed for clouds (e.g. SLAC and CSLA). However, none of these languages can
describe security monitoring terms with the requirements discussed above.

From the providers perspective, there are two facts which make the SLA definition process
challenging and needs consolidation. The first one is the fact that tenants need custom tailored
security monitoring services. This is directly related to the nature of cloud services. By design
the cloud is flexible, and tenants can configure it as they want. As a result, no one security
monitoring configuration can fit all tenants needs.

The second challenge is that there are thousands of vulnerabilities and almost all tenants are
interested in a few of these vulnerabilities. One tenant can be interested in three vulnerabilities
and another tenant can be concerned with twenty vulnerabilities. This is intuitive considering
tenants are running different services on various types of configuration. Service providers should
know the performance of their monitoring device on every subset of vulnerabilities. But perform-
ing a direct measurement for every subset of vulnerabilities is not practical because it requires a
large number of computations.

Moreover, in practice the number of vulnerabilities may vary from time to time. For example,
a patch is available for a given vulnerability and monitoring that vulnerability will no longer be
necessary. Alternatively, the other way round, a new vulnerability concerning a tenant may be
discovered and the tenant requests monitoring against this vulnerability. In our work, we do not
address a dynamic change in the SLA, Section 7.4 describes how to deal with such changes.

To perform the monitoring task using NIDSs, rules should be crafted and added to the
configuration of an NIDS. The number of rules configured in an NIDS affects its performance, i.e
as the number of rules increases the performance decreases. To make an NIDS custom tailored
means to configure a tenant’s NIDS with rules only concerning that tenant. Hence, service
providers should know the performance of their monitoring device for every possible combination
of available vulnerabilities. Given the high number of vulnerabilities it is not practical to do the
evaluation task for every combination.

2.3 Contributions

In summary in this paper we present the following contributions:

• We propose a security monitoring service description with relevant KPIs, specifically an
SLO for NIDSs with a single unified metric which takes the base rate into account is used
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6 Amir Teshome & Louis Rilling & Christine Morin

to describe the performance of an NIDS. Section 3 describes the KPI used in our SLA and
other components of security monitoring SLAs.

• To address the lack of a standard language for security monitoring SLAs, specifically to
be able to describe vulnerabilities and their relation with other services, we propose an
extension to CSLA [2], a DSL used to describe cloud SLAs. Section 4 describes the extension
in detail.

• Defining a KPI which relies on the base rate is challenging. This is because measuring the
value of the base rate before the occurrence of an attack is difficult, if not impossible. We
propose an interpolation-based mechanism which takes performance points from known
base rates as an input, build a model and estimate the expected performance using that
model for new base rate values. Section 5 presents the method in detail.

• In order to prepare SLO templates, we propose a method which builds a knowledge base
for NIDS performance for a large number of vulnerabilities. The method aims to reduce
the number of required performance evaluations since evaluating the monitoring device
over all possible combination of vulnerabilities is not practical. The method is described
in Section 6.

The next section presents the components of security monitoring SLAs.

3 Components of Security Monitoring SLAs

Like any other type of cloud SLAs, security monitoring SLAs contain the components like Service
Description, Service Level Objectives (SLO), Parties, Penalties. Besides the anatomy similarity
with other clouds SLAs the content of security monitoring SLAs differs from others in few ways.
In this section we present components of security monitoring SLAs, classes of SLO that we
consider and the KPI used to describe the performance of NIDSs. Security monitoring SLA
components include:

• Service Description: The security monitoring service is used to monitor existing vulnera-
bilities in a product. Hence, the service definition correlates three components (i) product:
a software running in tenants infrastructure that contains vulnerability (ii) vulnerabilities:
as a product may contain more than one vulnerability it should be specified which vulner-
abilities are covered in the agreement. (iii) infrastructure: where the product is running.
NIDSs require information about the infrastructure where they perform the monitoring
task. Specifically, an NIDS needs IP addresses of machines to be monitored.

• Parties: are participants in the agreement. Primarily, it includes providers and tenants.
Supporting parties (e.g. auditor) can be included depending on the need.

• Penalties: apply on violating party in cases of SLO violation. In our SLA definition a
penalty can be defined in two forms. (i) Fixed type penalty which applies a fixed amount
of retribution per occurrence of violation (ii) Function type where the penalty is based on
a predefined function.

• Service Level Objectives (SLO): describe the guaranteed level of performance. For an
NIDS, it shows how much a given NIDS is effective in detecting the vulnerabilities listed
in the service description. The performance of an NIDS is described using CID. The next
subsections provide details on why the CID is used and class of SLOs that are considered
in our work.

Inria



Defining Security Monitoring SLAs in IaaS Clouds 7

Application Version Attacks
Apache Apache/2.4.7 (Ubuntu) Denial of service (DoS) and port scan
Mysql 14.14 Distrib 5.6.31 Brute force access
WordPress(WP) V. 4.4.5 None
Instalinker (WP plugin) V. 1.1.1 Cross site scripting (XSS)
Custom Contact Forms V. 5.1.0.2 SQL injection

Table 1: Example of service list and attack types figuring in an SLO

3.1 KPI for Security Monitoring SLO

As described in Section 2.2, for a metric to be used in our SLO two features are required, namely
a single unifying metric and the base rate. Intrusion Detection Capability (CID) satisfies both of
these features (see [1]). The CID measures the ratio of the mutual information shared between
the inputs and outputs of an NIDS and the entropy of the input. Mutual information measures
the uncertainty in the input (i.e whether a given input packet is part of an attack or not) after
knowing the NIDS output. Normalizing this value with the initial uncertainty of the input (i.e
entropy) produces CID.

The definition of SLA describes how to compute the expected CID value from basic metrics
(TPR and FPR) and a base rate. Since it is not possible to know the values of base rate in
advance, SLA definition does not contain exact values of base rate. Section 5 presents how
providers can offer SLO based on unknown base rate values.

3.2 Class of SLOs Considered

In the SLA definition phase providers prepare SLO templates. These templates describe the
expected effectiveness of NIDSs using the CID metric while they are configured to monitor
vulnerabilities. Providers prepare templates taking only known vulnerabilities into account.
Tenants may require to be monitored against new or emerging vulnerabilities, but from the
providers perspective, it is risky to promise the performance of monitoring devices for unknown
vulnerabilities. Section 7.4 describes the issues related to unknown vulnerabilities.

Tenants describe their needs by listing vulnerabilities of their interest. The final SLA contains
the list of vulnerabilities that are at the intersection between tenants requirements and security
monitoring services proposed by the provider. The agreement describes the list of services to be
monitored, the list of known vulnerabilities, and expected performance. Services are described
with an application(s) that are used to provide that service. In addition, vulnerabilities are
related to the applications version. Once the agreement is signed tenants’ infrastructures are
monitored against attacks which can exploit the listed vulnerabilities.

Example of services considered to be included in an SLA are described in Table 1. The table
shows a list of vulnerabilities and attacks to be monitored including a Denial of Service (DoS)
and a port scan against the Apache web server, a brute force access to the Mysql database server,
a cross-site scripting (XSS) attack against Instalinker WordPress plug-in and an SQL injection
against Custom Contact Forms (also a WordPress plug-in). An example SLA including this
service is presented in the next section.

The next section presents a formal language to describe cloud security monitoring SLAs.
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8 Amir Teshome & Louis Rilling & Christine Morin

Figure 1: CSLA meta model [2]

4 Extended Cloud Service Level Agreement (ECSLA)

As presented in Section 2.2, one of the problems for realizing security monitoring SLAs is the
lack of formal language to define an SLA. In practice there are few SLA languages, some of
these languages were designed before the cloud era, and they do not address the distinctive
characteristics of clouds. Languages designed specifically for clouds fail to include functionalities
to describe security features, with the exception of availability. Most of the languages e.g.
SLAC [9] and CSLA [2] target functionality of a service like the response time.

To define security monitoring SLAs we need a language capable of describing vulnerabilities to
be monitored and the relationship between vulnerabilities and other services, i.e. the relationship
between a vulnerability and a software, showing on which software the vulnerability is residing,
and relationship between a vulnerability and infrastructure, showing on which infrastructure the
vulnerable software is running. To achieve this we propose an extension to a cloud Domain
Specific Language (DSL), CSLA [2]. Before describing the proposed extension, we first present
the CSLA language and the reason why we selected CSLA. An example SLA is presented at the
end of this section.

4.1 CSLA

CSLA [2] is a DSL designed to address the needs of cloud SLA. Specifically, CSLA tries to take
into account the dynamic nature of clouds by introducing SLA properties to tolerate violation. It
also adopts a dynamic penalty model described in [10]. These properties allow service providers
to tolerate fluctuation in SLO.

Figure 1 shows the meta-model of CSLA. SLA in CSLA contains three sections. These are
parties, validity and template. Validity describes how long the agreement is valid and parties
describe who is bound by the agreement. In CSLA there are two types of parties Signatory
parties (service provider and service customer) and Supporting parties (e.g., trusted third party).
Templates are structural models for SLA. A template contains five sections namely Services

Inria



Defining Security Monitoring SLAs in IaaS Clouds 9

definition, Parameters, Guarantees, Billing and Terminations.

• Services definition: describe services following the standard cloud service models (SaaS,
PaaS or IaaS). It uses the Open Cloud Computing Interface (OCCI) standard [11] for IaaS
services definition.

• Parameters: used to define variables that are relevant to describe Metric, Monitoring and
Schedule elements in other sections of the agreement.

• Guarantees: are elements containing the expected objectives. It contains four elements
Scope, Requirements, Terms and Penalties.

– Scope: specify services from the agreement that are covered by this guarantee.

– Requirements: conditions that are expected to be fulfilled in order to achieve the
objectives.

– Terms: contain a set of guarantee terms connected by ’And’ or ’Or’ terms. Each term
contains objective(s) that are defined by expression and precondition. A priority is
also defined for each objective, and users have the option to set their preferences. An
expression is characterized by different properties including a metric, a comparator
and, a threshold. Monitoring and Schedules are also defined to specify how and
when to evaluate the metrics. Fuzziness and confidence values are defined under the
expression. As described in [2], these are parameters describing service degradation
to deal with unpredictable environments.

– Penalties: are applied in cases of SLA violation. Constant and function based penal-
ties can be applied.

• Billing: describes the billing method for the provided service.

• Terminations: describes the termination procedure. These procedures will be followed
depending on the validity section, specifically according to the date on effectiveUntil pa-
rameter of validity section.

The full syntax of CSLA is presented in [12].

4.2 ECSLA

The service description section of CSLA describes SaaS, PaaS or IaaS services. This is not
enough to describe security monitoring services. We propose a generic extension to the service
description section. Our extension helps to enable definitions for other types of services. In our
case, the generic service definition is used to define the SecurityMonitoring service.

Figure 2 shows the model diagram of ECSLA. The dotted rectangular box shows the part
from original CSLA. The MacroService definition represents a generic service class which can be
extended to any type of class. The concept of using a generic class as part of the SLA structure
is used in other languages like in SLA∗ [13]. The SecurityMonitoring service contains three
sections namely product, vulnerability, and infrastructure. The product and infrastructure are
defined in the original CSLA while the vulnerability is a new feature in ECSLA. A product is a
general class to described software and platforms. Some properties of a product include name,
version, distribution, price etc. Two types of cloud infrastructures are defined namely Compute
and Storage. A vulnerability is characterized by Id, Common Vulnerabilities and Exposures
(CVE) and description. The CVE is a list of vulnerability database entries, each containing
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10 Amir Teshome & Louis Rilling & Christine Morin

(A) (B) (C)

Figure 2: ECSLA model diagram (A) Macro service extension, (B) Security monitoring services
and (C) Metrics

an identification number, a description, and at least one public reference for publicly known
cybersecurity vulnerabilities. CVE entries are used in numerous cybersecurity products and
services from around the world [14]. We use the CVE ID to characterize vulnerabilities in
ECSLA. However, some vulnerabilities may have no matching CVE, i.e when the vulnerability
is not added to the database list. In that case, in ECSLA the vulnerability is characterized by
Id and description.

In addition, in the original CSLA, the parameter is used to define variables that are required
to describe metrics. The metric is described with attributes id, name, unit, and description. In
the original CSLA, if a complex metric (computed from basic metrics) is used to describe an SLO,
there is no way to define its formulation. Describing the process to compute a complex metrics
is important in order to clarify misunderstandings. Thus, we extended the metrics definition of
CSLA in order to include such a feature. Figure 2(C) shows the proposed extension in metrics
definition. The type and formulation attributes are added. The type can be either simple or
complex. The formulation formally describes how a complex type metric is computed. If a metric
is of a complex type, then formulation shows how to compute that metric using basic metrics.
The formulation can contain the actual formal definition or a reference to a formal definition.
Appendix 9 shows the formal XML model for ECSLA.

4.3 Example Security Monitoring SLA

In this section, we provide an example of a security monitoring SLA showing the concepts
described above. We consider the services described in Section 3.2 (see Table 1).

4.3.1 Service description

Listing 1 shows the service definition section for security monitoring SLAs. Four security mon-
itoring services are defined: these are services to monitor vulnerabilities in Mysql, Apache,
InstaLinker and Custom Contact Form. Each service contains one vulnerability except Apache,
which is monitored for two vulnerabilities. The services are running in three different servers.
The infrastructure section shows detail about the servers. A Web server, database server and
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Defining Security Monitoring SLAs in IaaS Clouds 11

content management server are used. According to the SLA, Apache is running on the web
server, Mysql is running on the database server and WordPress plug-ins are running on the
content management server.

1 <cloudService>

2 <macro>

3 <securityMonitoring id="Mysql-SM-ID" description="service definition for brute force login

monitoring">

4 <software id="Mysql-ID" name="Mysql" version="14.14"

5 distribution="5.6.31" license="GPL" mode="mode" />

6 <vulnerabilities>

7 <vulnerability id="Mysql-V-1" name="Brute force access" cve_Id=""

8 description="A token comparison based authentication is vulnerable to attacks of

guessing (an attacker can try as many times as possible to find the correct token)

" />

9 </vulnerabilities>

10 <infrastructure id="DBserver-ID" description="Database server ">

11 <compute id="DB-VM-1" name="DBserver" architecture="" hostname="" cores="" speed="" memory=""

/>

12 </infrastructure>

13 </securityMonitoring>

14

15 <securityMonitoring id="Apache-SM-ID" description="">

16 <software id="Apache-ID" name="Apache" version="4.4.11"

17 distribution="" license=" Apache License" mode="mode" />

18 <vulnerabilities>

19 <vulnerability id="Apache-V-1" name="Port scanning" cve_Id=""

20 description="scanning ports to detect available services on each port" />

21 <vulnerability id="Apache-V-2" name="Denial of service" cve_Id=""

22 description="congesting a network to alter the availability of a service" />

23 </vulnerabilities>

24 <infrastructure id="Websever-ID" description="Web server ">

25 <compute id="WEB-VM-1" name="Webserver" architecture="" hostname="" cores="" speed="" memory="

" />

26 </infrastructure>

27 </securityMonitoring>

28

29 <securityMonitoring id="IL-SM-ID" description="">

30 <software id="IL-ID" name="InstaLinker" version=" &lt;= 1.1.1"

31 distribution="" license="GPLv2" mode="mode" />

32 <vulnerabilities>

33 <vulnerability id="IL-V-1" name="Cross-Site Scripting (XSS)" cve_Id="8382 in WPVDB_ID"

description="Due to a lack of input sanitization in some file, it is possible to utilise a

reflected XSS vector to run a script in the target user's browser and potentially

compromise the WordPress installation." />

34 </vulnerabilities>

35 <infrastructure id="CM-ID" description="Content managnment server ">

36 <compute id="CM-VM-1" name="Cmserver" architecture="" hostname="" cores="" speed="" memory=""

/>

37 </infrastructure>

38 </securityMonitoring>

39

40 <securityMonitoring id="CCF-SM-ID" description="">

41 <software id="CCF-ID" name="Custom Contact Forms" version=" &lt;= 5.0.0.1"

42 distribution="" license="GPLv2" mode="mode" />

43 <vulnerabilities>

44 <vulnerability id="IL-V-1" name="SQL injection" cve_Id="7542 in WPVDB_ID" description="

unauthenticated users to download a SQL dump of the plugins database tables. It's also

possible to upload files containing SQL statements which will be executed." />

45 </vulnerabilities>

46 <infrastructure id="CM-ID" description="Content managnment server ">
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47 <compute id="CM-VM-1" name="Cmserver" architecture="" hostname="" cores="" speed="" memory=""

/>

48 </infrastructure>

49 </securityMonitoring>

50

51 </macro>

52 </cloudService>

53 </cloudServices>

Listing 1: Security monitoring service description in ECSLA

Lines (3 -13) define monitoring of a brute force login in Mysql version 14.14 database. Lines
(15 - 27) define a service for Apache to be monitored against port scanning and DoS. Lines (29 -
38) and (40 - 49) define security monitoring services for InstaLinker and Custom Contact Forms
respectively.

4.3.2 Parameters

Listing 2 shows a list of parameters that are used to define the metrics, monitoring, and schedule.
The SLO can be verified according to these definitions. Four simple metrics namely TP, FP,
TN, FN, and a complex metric CID are defined as parameters, lines (2 - 24). For the formulation
of CID see [15]. In practice, the service provider can build a resource file describing a metric
computation process, and the SLA definition can refer to this document for metric computation.
Such practice (referring to other official documents for support) is not uncommon. For example,
currently Amazon SLA [16] refers to a customer agreement document to exclude some cases
from the SLA. The Parameter section also specifies monitoring and schedule, lines (26 - 27). Our
previous study [1] discusses how to choose the timing for verification. However, it is important
to note that this is an agreement: every part can be negotiated and is set to values satisfying
the participants.

In our example, the verification can be done three times in 24 hrs, and the minimum value
should satisfy the expected SLO. The example also specifies a schedule with a start and end time
to perform verification.

1 <parameters>

2 <metric id="TP" name="True positive" unit="count" type="simple">

3 <description description="The number of correctly detected attacks"> </description>

4 </metric>

5

6 <metric id="FP" name="False positive" unit="count" type="simple">

7 <description description="The number of legitimate inputs mistakenly classified as attacks">

</description>

8 </metric>

9

10 <metric id="FN" name="False negative" unit="count" type="simple">

11 <description description="The number of attacks that are not detected"> </description>

12 </metric>

13

14 <metric id="TN" name="True negative" unit="count" type="simple">

15 <description description="The number of legitimate that are classified as legitimate"> </

description>

16 </metric>

17

18

19 <metric id="CID" name="Intrusion Detection Capability" unit="" type="complex">

20 <description description="The ratio of the mutual information between input and output to the

entropy of the input

21 (Single metrics to describe the effectiveness of an NIDS, computed from TPR,

FPR and B)">
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22 </description>

23 <formulation> As described in Section 2.4.4 </formulation>

24 </metric>

25

26 <monitoring id ="Mon-1" statistic="min" window="24 hrs" frequency="3"/>

27 <schedule id ="Sch-1" start="8:00pm" end="8:00am"/>

28 </parameters>

Listing 2: Example parameters in ECSLA

4.3.3 Guarantees

Listing 3 shows the guarantee part which contains three sections. The scope, lines (3 - 8), shows
services that are covered under this guarantee. In our example, the guarantee addresses all
the four services. The requirements section, lines (10 - 14), defines base rate boundaries. The
guarantee is for base rate values greater than 10−7 and less than 10−1. If the base rate is not in
this range, the SLO may not be achieved and such incidents are not SLO violations. The terms
section, lines (16 - 31), contains only one term, a term describing expected CID value. It describes
that the expected CID value should be computed using the formula presented in Section 5. The
next section describes why a formula is given, rather than an actual CID value. The section also
presents the process used for generating such a formula. To show an example usage for such a
formula, let us assume the NIDS is evaluated (or an attack occurs) with a base rate value of
7 × 10−2, putting this value into the formula gives an estimated value of TPR ≈ 0.71046 and
FPR ≈ 0, and from these values we can compute the expected CID value, CID ≈ 0.7162.

The fuzziness value of 0.05 (5%) and confidence ratio of 95% are also defined in the term
section. This is interpreted as: from 100 verification tests with a base rate value of 7 × 10−2,
in at least 95 of the tests, the configured NIDS must perform with CID >= 0.7162 and the
remaining tests must perform with CID <= 0.7162 but CID >= 0.6562. As a result of fuzziness
and confidence ratio, 5% of the verification tests are allowed to perform below the guaranteed
performance level without violating the SLO. These margins allow for the SLO to fluctuate to
some extent. This is an exciting feature, especially for security monitoring SLO because it gives
some level of freedom in achieving the expected SLO. In addition, the monitoring frequency and
schedule, which are a reference to the parameter section, are defined in the terms section.

1 <guarantees>

2 <guarantee id="G-1">

3 <scope id="Sc1">

4 <service id="Mysql-SM-ID" subid="Mysql-SM-ID-mode"/>

5 <service id="Apache-SM-ID" subid="Mysql-SM-ID-mode"/>

6 <service id="IL-SM-ID" subid="Mysql-SM-ID-mode"/>

7 <service id="CCF-SM-ID" subid="Mysql-SM-ID-mode"/>

8 </scope>

9

10 <requirements>

11 <Requirement id="R1">

12 <Specification id="Sp1" policy="Required"> Base Rate(B), B >= 10^(-7) and B <= 0.1 </

Specification>

13 </Requirement>

14 </requirements>

15

16 <terms>

17 <term id="T1" operator="">

18 <item id="CIDTerm"/>

19 </term>

20

21 <objective id="CIDTerm" priority="1" actor="provider">
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22 <precondition policy="Required">

23 <description> The threshold value should be computed with function as described in

Section 4.5

24 </description>

25 </precondition>

26

27 <expression metric="CID" comparator="gt" threshold="" unit="" monitoring="Mon-1" schedule="

Sch-1"

28 confidence="95" fuzziness_value="0,05" fuzziness_percentage="5"/>

29 </objective>

30

31 </terms>

32 </guarantee>

33 </guarantees>

Listing 3: Example guarantee in ECSLA

By now it should be clear that we are using the CID metric to describe the performance of an
NIDS in SLAs. However, the guarantee definition contains a function (a model) to calculate the
expected CID value rather than an actual number. The reason is that it is not possible to know
how often attacks will occur i.e it is impossible to know the base rate value before the occurrence
of attacks, hence we cannot calculate the CID value in advance while defining an SLA. Moreover,
using a single base rate value in the SLA definition makes the SLA very strict, i.e the SLO will
be achieved if attacks occur only with that specific rate. Using a model allows estimating the
expected performance for previously unknown base rate values. Additionally, if there are cases
where the model cannot predict well, the cases can be categorically excluded from the SLA. For
example, in Listing 3 B < 10−7 and B > 10−1 are excluded.

5 Including Unknown Base Rate Values in SLO

In this section, we present a method used to generate a model. The SLA definition uses the
model to guarantee the performance of a monitoring device. The model helps to make the SLA
inclusive, i.e. to give guarantees even for previously unknown base rate values.

Axelsson [5] presented the effect of base rate fallacy problem for NIDSs and showed the
importance of the base rate in evaluating the performance of NIDSs. The base rate measures the
prior probability of intrusion in the input data examined by the NIDS. Predicting or calculating
the exact value of the base rate in advance is difficult if not impossible. As a result, the SLA
definition will not include base rate values to describe the performance of security monitoring
devices. Instead, the SLA will contain function(s) which takes the base rate as an input to
calculate the expected TPR and FPR values. This helps to avoid an SLO which is defined for
a specific base rate and be respected if an attack happens only on that rate.

As described in [15], CID is a function of TPR,FPR, and B. Any factor that can change the
values of TPR and FPR indicates an effect on the performance of the NIDS. The factors affecting
the performance of an NIDS can be grouped into two categories. First, external factors which
includes mainly the rate of the inputs (throughput), the base rate and available resources for
the NIDS. Second, internal factors which includes mainly the number of rules and the number
of services that are configured to be monitored by that NIDS. Before describing the model
generation method, we present the assumptions and challenges for designing such a method.
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Term Proba. Representation Description
FPR (α) P (A|¬I) The probability that there is an alert, when there is no intrusion
TNR (1− α) P (¬A|¬I) The probability that there is no alert, when there is no intrusion
FNR (β) P (¬A|I) The probability that there is no alert, when there is intrusion
TPR (1− β) P (A|I) The probability that there is an alert, when there is intrusion

Table 2: NIDS metrics with probabilistic description

5.1 Assumptions and Challenges

If we are given a fixed number of services and vulnerabilities to be monitored, it is safe to assume
that the internal factors affecting the performance of the NIDS are constant values. Indeed, since
we have a fixed number of vulnerabilities to be monitored, we assume that the rules configured in
an NIDS are constant. In addition, we assume there are enough resources that are required by the
NIDS to perform the monitoring task. Hence, the change in the rate of the inputs (throughput)
will not affect the performance of the NIDS by creating resource scarcity. The remaining factor
affecting the performance of the NIDS is the attack rate or base rate.

The four basic metrics that can be counted from the NIDS output are (TP, TN,FP, FN).
Using these basic metrics, we can calculate TPR,FPR, TNR, and FNR. These values can be
described in probabilistic terms as shown in Table 2. Using these values and the base rate, CID

can be computed as described in [15].
In realistic production sites the value of the base rate is very small (i.e close to zero). That

means an attack packet happens very rarely compared to legitimate packets. Gu et al [15]
assumed base rates in the range of {1 × 10−2 − 1 × 10−6}. In 1999 Axelsson [5] supposed that
the maximum value was {2 × 10−5} (2 intrusions per day from 1, 000, 000 records, an intrusion
affecting 10 records in average).

While doing an experiment, achieving such a very low base rate is challenging and it requires
an enormous amount of resources. In our work, we evaluate an NIDS by injecting real attacks.
The actual attack injection algorithm which takes the base rate as an input is presented in our
previous study [1]. Here we present the challenges in a high-level description. While performing
the attack injection, packets and related information are logged and analyzed later with the
output of NIDS for metrics computation. To achieve low base rates, attacks are injected very
rarely and to have a statistically sound result the injection is performed not only once but
multiple times. Hence, the experiment takes a long time. In addition, logging packets for such
a long time requires large disk space. The challenge exacerbates when assuming the experiment
needs to be performed for a large number of vulnerabilities.

Additionally, we assume the SLA specifies the lowest guaranteed base rate value. i.e SLA
will not be violated for attack occurrences below the specified base rate. However, such lower
bound values should be as realistic as possible. Finally, we assume the provider can perform
the evaluation at the lowest guaranteed base rate value at least once. Section 7.4 describes the
drawbacks of our estimation as a result of these assumptions.

5.2 Metrics Estimation Method

Figure 3 shows the correlation between B and CID for different TPR and FPR values. The
plot assumes TPR and FPR as constant values. A close look at Figure 3 shows a trend between
the value of CID and different B values. Nevertheless, in practice configuring an NIDS to
generate constant TPR and FPR values is difficult. This is because in a realistic operational
environment the values of TPR and FPR are affected not only by its internal configuration but
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Figure 3: Base rate (B) vs CID

also by external non-deterministic factors, e.g. the base rate.
Following this observation, we performed experiments to identify if there is a correlation

between B and (TPR, FPR). If such correlation exists, we can have a model showing the
correlation from known values of B and (TPR, FPR), then we can use that model to estimate
TPR and FPR values for unknown base rates. The estimated values can be used to compute
CID for those unknown base rates.

To generate the model we propose an interpolation-based method. The method takes known
values of TPR and FPR which are computed on different B values. These values are used to
generate a fitting function that can approximate the points. The generated function(s) takes B
as an input and produces TPR and/or FPR values. The function is used in SLAs to estimate the
TPR and FPR values for previously unknown B value. In practice, such an estimation method
may not provide the exact value, but it gives an approximation to the exact value. Moreover,
the margins described in ECSLA (fuzziness and confidence ratio) helps to tolerate some degree
of variation in the SLO. Given a security monitoring configuration, to generate a representative
formula which can be used to estimate the TPR and FPR values, we follow the following steps:

• Compute the performance of the NIDS on a given configuration taking a known base rate
value as an input. The procedure to do the evaluation is presented in our previous study [1].
The performance evaluation should include the lowest guaranteed base rate and as many
other points as possible. Increasing the number of evaluation points results in an increase
in the accuracy of the model.

• Using results from the performance test, find a correlation (function f) between TPR
and/or FPR and B, i.e. f is a function of B and evaluating f at some B value produces
TPR and/or FPR.

This way we can generate an equation to be used in the SLA definition. The function f
can be used to estimate the expected TPR and FPR values for new B values. The function f
may not represent the exact relationship, but it is derived from the best information available.
Section 7.1 presents an experimental evaluation showing the feasibility of our metrics estimation
method.
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6 NIDS Performance with a Large Number of Vulnerabili-
ties

By now it should be clear that we aim at defining SLAs to guarantee the performance of signature-
based NIDSs. Service providers need to prepare SLA templates that will be offered to potential
tenants at the start of the negotiation process. To achieve this, service providers need to build
a knowledge base on the performance of their security monitoring ability. As described in Sec-
tion 2.2 one of the challenges to prepare SLO templates is the fact that there are thousands of
vulnerabilities and a tenant may choose any combination of those vulnerabilities. That means
a service provider needs to prepare SLA templates based on all combinations of vulnerabilities.
This is not practical as it requires the service providers to perform a huge amount of tests just
to prepare template SLOs.

Let us assume there are n vulnerabilities that a service provider can monitor and offer to
provide security monitoring service. A tenant is interested in k of these vulnerabilities, where
usually k � n. To prepare an SLO template based on every combination means to prepare an
SLO for a combination of n and k,

(
n
k

)
for all k in (1 ... n). For example, if we have a thousand

vulnerabilities, preparing an SLO for every combination of vulnerabilities require more than tens
of millions of operations. This is very tedious and not efficient.

In addition, the number of services that are monitored under a given security monitoring
configuration affects the effectiveness of the monitoring process. This consequence is intuitive,
as having more services to monitor means having additional tasks and more input, hence there
is an effect on the performance of the monitoring device. If we retake the above example, let us
assume there are two tenants, the first one selects k vulnerabilities and the second one selects
m vulnerabilities where m > k and k ∈ m (m includes all k vulnerabilities). The security
monitoring service will perform better for the first tenant. The second tenant will have more
tasks to be done; as a result, the performance will degrade.

In practice, NIDSs use rule(s) to monitor a vulnerability and more vulnerabilities means more
rules to be added in NIDS. Thus, the inputs will be evaluated against more rules. We refer to
the effect of a rule on other rules as interference, i.e when a rule interferes with the functioning
of another rule.

Quantifying the interference is useful to compute the performance of an NIDS which is config-
ured with more than one rule. Given an NIDS with such a configuration, i.e. an NIDS configured
with more than one rule, we propose a performance evaluation method which uses the interfer-
ence value between rules. Let us assume the NIDS is configured with n rules. For simplicity, we
assume one rule is used to monitor a single vulnerability. For a given rule, the collection of the
interferences between that rule and the remaining other (n − 1) rules form a vector. For all n
rules, the collection of their interference vector forms a matrix. However, in practice, building
such vectors and matrices requires a large number of computations. To reduce the required
number of computations, we propose a clustering method which groups rules based on a given
criterion. A formal description of interferences is presented in the next section.

In the next sections we address the problems described above, i.e we want to answer questions
like, can we model and evaluate the effect of having more vulnerabilities, and thus more inter-
ferences between rules? Can we provide a better way for service providers to build a knowledge
base while having a large number of vulnerabilities?

6.1 Modeling Rule Interference and its E�ect on NIDS Performance

In this section, we want to address the problem of interference between vulnerabilities. Un-
derstanding the effect of a vulnerability on other vulnerabilities is essential in order to prepare
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custom-tailored SLA templates efficiently. To show the importance of measuring interference, let
us assume we have n vulnerabilities and corresponding rules used in an NIDS. The performance
of an NIDS varies depending on the number of configured rules. Assuming all other factors
affecting the performance of an NIDS are constant, the performance and number of rules are
inversely proportional, i.e the performance decreases as the number of rules increases. Moreover,
it is not enough to know the existence of such interferences between vulnerabilities: we need to
measure and quantify the level of interference in order to use it in the process of SLA definition.
If a tenant selects k vulnerabilities out of n, the SLO offered for that tenant is the performance
of the NIDS regarding those k vulnerabilities.

While selecting k out of n vulnerabilities, if we don’t have a quantitative measure of the
interference between the k vulnerabilities (i.e between the rules to monitor those vulnerabilities)
then the provider is expected to run a test in order to measure the performance of its NIDS on
k vulnerabilities. This process happens for every possible set of k rules. Having quantitative
knowledge of the interference helps to do statical analysis rather than running a dynamic test.
Therefore, it reduces the number of performance tests to prepare SLO templates. We present a
formal definition of the interference and how to perform the static analysis in the next section.

6.2 Rule Interference in NIDS

As described above, the interference between rules refers to the effect of one rule on another rule
(alternatively, it can be seen as the effect of a vulnerability on another vulnerability, assuming
a single rule is used to monitor a single vulnerability). Before formally defining the interference
between rules, we describe the assumptions taken in the formulation of the interference.

6.2.1 Assumptions

NIDSs take rules as an input. The rules are mechanisms to tell the NIDS what to look in the
input packets. The detection engine of an NIDS applies the rules on each packet. If the packet
matches a rule, the specified action of that rule is taken, and log(s) and/or alert(s) will be
generated. However, if the packet matches with more than one rule, the NIDS behaves in one of
the following ways:

• It generates an alert for all the matchings ;

• It generates an alert for few of the matchings based on some heuristics (e.g. the first match,
the most severe).

If the NIDS follows the second option, in some cases it may stop further processing after finding
the heuristic (e.g. after finding the first match). Usually, the second option is the default
property, but even if it is not optimal, NIDSs can be configured to behave like the first option.
While formally defining rule interferences we assume an NIDS configured to generate an alert
for all matchings (the first case). i.e. if a packet matches with more than one rule, it generates
an alert for every match. Assuming this we define interference as follows.

6.2.2 Formal definition of interference

Let us assume we have two vulnerabilities to be monitored (Vi and Vj) with a set of rules for
each of them to be configured in an NIDS. For a given base rate (B), an NIDS configured to
monitor Vi will generate (TPi, FPi, TNi and FNi) the same for Vj , it generates (TPj , FPj , TNj

and FNj). These are the basic metrics and they are measured by counting the number of attacks
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Figure 4: NIDS outputs

(or legitimate traffic) that are correctly (or incorrectly) classified by the NIDS from a given input.
From these basic metrics we can calculate TPR and FPR as:

TPRi =
TPi

TPi + FNi
, FPRi =

FPi

FPi + TNi
, TPRj =

TPj

TPj + FNj
and FPRj =

FPj

FPj + TNj

(1)
Interference between Vi and Vj is an event that can happen when both are configured together

in one NIDS. Figure 4 (A and B) shows a box diagram, representation of an NIDS configured to
monitor Vi and Vj separately. Moreover, Figure 4(C) shows an NIDS configured to monitor both
Vi and Vj . As we have NIDS outputs for Vi and Vj separately, an NIDS configured to monitor
both vulnerabilities together generates (TP ′, FP ′, TN ′ and FN ′).

We define the interference as the change in values between TP ′ and TPi + TPj (respectively
FN ′ and FNi + FNj) and between FP ′ and FPi + FPj (respectively TN ′ and TNi + TNj).
Formally we can define an interference as follows:

Definition 6.1. There is an interference between two vulnerabilities Vi and Vj if an NIDS
configured with Vi gives a quadruple value (TPi, FPi, TNi and FNi), an NIDS configured with
Vj gives a quadruple value (TPj , FPj , TNj and FNj), an NIDS configure to monitor both Vi
and Vj gives a quadruple value (TP ′, FP ′, TN ′ and FN ′) and

TP ′ 6= TPi + TPj or FP ′ 6= FPi + FPj or TN ′ 6= TNi + TNj or FN ′ 6= FNi + FNj (2)

In other words, if an NIDS is configured to monitor both vulnerabilities (Vi & Vj) and the
output is not equal to the sum of separate outputs from Vi and Vj then we can say there is an
interference. Note that interference is just the change in values it can be an increase or decrease
of (TP ′, FP ′, TN ′ and FN ′) from the sum of (TPi, FPi, TNi, and FNi) and (TPj , FPj , TNj ,
and FNj). However, an increase in TP ′ or TN ′ is a positive interference. It indicates better
effectiveness of an NIDS and such type of changes increases the CID value. It is unlikely for this
event to happen.

Therefore, we are interested in negative interferences which indicate a degradation in the
effectiveness of an NIDS and decrease the CID value. In other words, an increase either in the
value of FP or FN means an increase of false classification or errors made by the NIDS. We can
represent the interference between Vi and Vj as (FP, FN)ij . The change in FP and FN can be
described as:

FPij = FP ′ − (FPi + FPj) and FNij = FN ′ − (FNi + FNj) (3)

Moreover, (TP ′, FP ′, TN ′, and FN ′) can be expressed as follows. Note that an increase in
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Vule. V1 V2 V3 ...... Vn
V1 0 (FP, FN)1,2 (FP, FN)1,3 ...... (FP, FN)1,n
V2 0 (FP, FN)2,3 ...... (FP, FN)2,n
V3 0 ...... (FP, FN)3,n
...... ...... ......
Vn ...... 0

Table 3: Interference Matrix (IM)

FP shows a decrease in TN and the same way and an increase in FN shows a decrease in TP .

TP ′ = TPi + TPj − FNij , FN ′ = FNi + FNj + FNij

FP ′ = FPi + FPj + FPij , TN ′ = TNi + TNj − FPij

(4)

6.2.3 Interference vector (IV) and interference matrix (IM)

If there are n vulnerabilities, the interference between Vi and the other n− 1 vulnerabilities can
be described with an interference vector (IV)

interference vector (IV), Vi = {(FP, FN)i1, (FP, FN)i2, ...(FP, FN)in}

Interference vectors of n vulnerabilities will form an interference matrix as shown in Table 3.
An entry in the table shows an interference between the vulnerabilities in the corresponding
column and row. The matrix is triangular and there is no interference for a vulnerability with
itself.

Given such quantitative values of an interference, the next question is how we can compute
the expected CID value for an NIDS configured to monitor both Vi and Vj? As we know CID is
a function of TPR, FPR and B. Using Equation 1 to compute the TPR and FPR values for
(TP ′, FP ′, TN ′, and FN ′) may not be possible if there is interference between the vulnerabilities
Vi and Vj . The equation needs to take into account the changes created as a result of putting
multiple vulnerabilities together. In the next section, we present how to compute aggregated
metrics, TPR and FPR values while aggregating multiple vulnerabilities in a given NIDS.

6.2.4 Computing aggregated metrics

Assume we have two vulnerabilities Vi and Vj , and an NIDS configured to monitor both Vi and
Vj . The TPR′ and FPR′ values for this NIDS is represented as TPRagg and FPRagg. They are
values computed from (TPi, FPi, TNi, and FNi), (TPj , FPj , TNj , and FNj) and (FP, FN)ij .

If there is no interference between the two vulnerabilities, that means there is no change
between the output of the NIDS and the sum of the separate outputs from Vi and Vj (i.e
(FP, FN)ij = (0, 0)ij). From Equation 4 we have

TP ′ = TPi + TPj , FN ′ = FNi + FNj , FP ′ = FPi + FPj and TN ′ = TNi + TNj (5)
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TPRagg and FPRagg can be computed as follows:

TPRagg =
TP ′

TP ′ + FN ′
=

TPi + TPj

TPi + TPj + FNi + FNj
and

FPRagg =
TP ′

TP ′ + FN ′
=

FPi + FPj

FPi + FPj + TNi + TNj

(6)

A TPR is computed as the ratio between correctly detected attacks and the total number of
attacks. Equation 6 can be interpreted as, since there is no interference between Vi and Vj the
number of correctly detected attacks are the sum of TP s from Vi and Vj . The total number
of attacks is the sum of attacks from Vi and Vj , i.e let us assume we use the packet flow fi to
evaluate the NIDS configured with Vi which contains a total number of (TPi + FNi) attacks.
Also, we use the flow fj to evaluate the NIDS configured with Vj which contains a total number
of (TPj +FNj) attacks. Then to evaluate the NIDS configured with both Vi and Vj we use both
fi and fj which results in a total number of (TPi + FNi + TPj + FNj) attacks.

To keep the evaluation consistent fi and fj are the same. However, the flow contains packets
that can trigger alerts for both of the vulnerabilities. Also, in some cases a packet may match
more than one rule; as a result, the NIDS generates alerts for every match, as described in
Section 6.2.1. Equation 6 can be generalized for n vulnerabilities as:

TPRagg =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi
and FPRagg =

∑n
i=1 FPi∑n

i=1 FPi +
∑n

i=1 TNi
(7)

If there is an interference between Vi and Vj then there is a difference between the output
of an NIDS configured to monitor both Vi and Vj and the sum of the separate outputs from Vi
and Vj (i.e (FP, FN)ij 6= (0, 0)ij). Taking Equation 4, we can calculate TPRagg and FPRagg

as follows:

TPRagg =
TP ′

TP ′ + FN ′
=

TPi + TPj − FNij

TPi + TPj + FNi + FNj
and

FPRagg =
FP ′

FP ′ + TN ′
=

FPi + FPj + FPij

FPi + FPj + TNi + TNj

(8)

If we have n vulnerabilities, we can generalize TPRagg and FPRagg as shown in Equation 9.
In the equation, in addition to the assumptions described above, we assume that interferences
are limited to pairwise interferences, i.e. the only interferences in the group are than the ones in
the pairs of rules.

TPRagg =

∑n
i=1 TPi −

∑n
i=1,j=1 FNij∑n

i=1 TPi +
∑n

i=1 FNi
and FPRagg =

∑n
i=1 FPi +

∑n
i=1,j=1 FPij∑n

i=1 FPi +
∑n

i=1 TNi
(9)

Given the performance of an NIDS on n vulnerabilities separately and the interference be-
tween them for some base rate value B, we can compute the expected CID value for that NIDS
by doing only static analysis. This is done by computing TPRagg and FPRagg as shown above
and use those values with B to calculate CID.

It is important to note that, we still have the issue with a large number of vulnerabilities.
The method described above may reduce the number of required tests to prepare SLO templates
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to some degree, but it still requires to perform at least a test for every couple of vulnerabilities,
i.e if we have n vulnerabilities the above method requires at least

(
n
2

)
(combination of n and 2)

performance tests. In practice when n is very large, the method may not be practical.

In the next section, we present our proposed solution to reduce the required number of
evaluations in order to prepare SLO templates. Our goal is to have a knowledge base on the
performance of an NIDS in order to prepare template SLAs and offer the templates to a potential
tenant.

6.3 Building a Knowledge Base by Clustering Vulnerabilities

In order to realize a security monitoring SLA, the conflict between having a large number of vul-
nerabilities and the need to have custom tailored SLOs needs to be solved. Otherwise, running
numerous performance tests just for building a knowledge base is not practical. Moreover, this
process is not a one time task: it may be required to do the test on different occasions. For
example, as new vulnerabilities are discovered the NIDS needs to be tested on those vulnerabil-
ities. Hence, having an efficient method, which can reduce the required number of performance
tests significantly affects the practicality of a security monitoring SLAs. In order to achieve this,
we propose a method based on clustering vulnerabilities.

The idea is to perform the evaluation test per group rather than for each vulnerability. The
clustering mechanism is applied to the NIDS rules based on heuristics, and the resulting groups
are used to build a knowledge base for the performance of NIDSs. Clustering, as the name
indicates, is an act of grouping elements to some kind of classes called clusters (see Figure 5).
After constructing such groups the evaluation can be done per group, i.e configuring an NIDS to
monitor all vulnerabilities in one group and measure the performance. If the interference between
the vulnerabilities in a group is a negative interference, then the result of this evaluation is a
lower bound for the performance of an NIDS configured with any subset of the group. However,
even if the chance of having a positive interference is very small, the provider should be careful
while setting the lower bound values. If the interference in a group is a positive interference, it
may not represent a lower bound for a subset of the vulnerabilities in that group.

Let us take for example that we have one hundred vulnerabilities, and by clustering, we
formed ten groups (G0, G1...G9) each Gi containing ten vulnerabilities (V0, V1...V9). Assume an
NIDS is configured to monitor all the vulnerabilities in Gi. Let us say evaluating the performance
of that NIDS for a given base rate value B results in CID value of x. If the interference between
the vulnerabilities in Gi is a negative interference, then we can say that x is a lower bound on the
performance of the NIDS for any subset of vulnerabilities from Gi. This is following Equation 9,
assuming negative interferences, the FPRagg for all Vis in Gi is higher than Vis for any subset
in Gi. Hence, the CID will be the lower bound while taking all vulnerabilities in Gi. However, if
the interference between the vulnerabilities in Gi is a positive interference, we can not set x as a
lower bound for that group. In other words, if the interference is positive, then there may be a
subset of vulnerabilities that could result in a worse performance than putting all the Vis in Gi

together. It is unlikely for such an event to happen, but it is essential to consider the case while
drafting an SLO.

Subsequently, Table 3 will have a smaller height and width. The columns and rows will
represent groups of vulnerabilities (Gi) instead of single vulnerabilities (Vi). Service providers can
choose appropriate heuristics to group vulnerabilities. Some examples of heuristics are described
below. These are example heuristics, a provider needs to consider the available resources and the
grouping criteria. Having a minimal number of groups results in meager SLO offer and having
a large number of groups requires huge amounts of computations. Providers need to select the
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Figure 5: Clustering NIDS rules

Groups G1 G2 ...... Gn

G1 ... ... ...... ...
G2 ... ... ...... ...
... ... ... ...... ...
Gn ... ... ...... ...

Groups G′1 G′2 ...... G′n
G′1 ... ... ...... ...
G′2 ... ... ...... ...
... ... ... ...... ...
G′n ... ... ...... ...

Table 4: Multiple interference matrix from groups using different heuristics

heuristics considering available resources. Some examples of heuristics include:

• Grouping vulnerabilities based on related application, for example, OS vulnerabilities (vul-
nerabilities to monitor different OSs), browser vulnerabilities, ...

• Grouping vulnerabilities based on related applications that are used together, for example,
grouping vulnerabilities in the LAMP stack (Linux, Apache, Mysql, and PHP) applications
in one group,

• Grouping based on the nodes and services they are providing or used for, e.g. grouping
vulnerabilities for login nodes together, storage nodes,

• Grouping based on the threat or severity of the vulnerabilities, for example, grouping less
severe vulnerabilities together.

Having such groups and a minimized interference matrix, it is possible to compute a mini-
mum expected performance for any given vulnerability. When a tenant needs to be monitored
and selects the vulnerabilities from these groups, there are two cases. First, if the selected vul-
nerabilities are in the same group, then the performance of the NIDS on that group is offered as
an SLO. Second, if the selected vulnerabilities are in different groups, then we can calculate the
expected CID value using the method described in the previous section.

It is possible to group vulnerabilities based on multiple heuristics. Each heuristic produces a
table as shown in Table 4. For a given set of vulnerabilities, the table which produces a better
performance can be used to offer the SLOs.

In the next section, we present evaluations performed to validate the ideas proposed in this
paper.

7 Evaluation

We performed experiments to validate the proposed solution for the metrics estimation and
rule clustering methods. The actual procedure for the experiment is presented in our previous

RR n° 9263



24 Amir Teshome & Louis Rilling & Christine Morin
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Figure 6: Experimental setup

study [1]. In this section, we present the setup and results from the experiment. The results
show the basic metrics (TP, FN,FP, TN) of a given NIDS while configured to monitor a list of
services. The results are shown for different base rate values. We also present how we managed
to group NIDS rules based on some heuristics.

We aim to validate the CID approximation for unknown base rates and the efficiency of using
the interference matrices, i.e to validate the efficiency of our clustering method to reduce the
number of measurements required when preparing SLO templates. To make our experiment as
realistic as possible, we perform a dynamic, real attack injection. By injecting real attacks we
can see how a given NIDS performs and behaves on a specific configuration. This measuring
technique is used to verify the correctness of an NIDS configuration in our previous study. Full
details of the procedures are presented in [1]. Here we present an overview of the experiment
setup and the result, counted as basic metrics, to show the process of SLO template creation.

7.1 Experimental Setup

Grid5000 [17] testbed infrastructure is used to run our experiments. We build a cloud infrastruc-
ture using OpenStack [18] and Open vSwitch(OvS) [19] as a virtual switch. Figure 6 shows a
high-level architecture of the experimental setup. The tenant infrastructure is configured to run
the services described in Table 1. For the experiment, three production virtual machines (VMs)
are running the Apache, Mysql server and WordPress content management system. A fourth
VM is also instantiated and used as a target for the injected attacks. The target VM exhibits
similar properties as the production VMs by running all the three services. The virtual switch is
configured to forward all attack packets only to the target VM. Hence, the attacks are prevented
from disrupting the production VMs.

Snort [20], the most widely deployed IDS, is used as NIDS. It is deployed on a separate
physical node, and it is connected to the virtual switch through a mirror port. All packets
passing through that switch are also mirrored to the Snort node for analysis. Snort is configured
to monitor the services listed in Table 1 i.e to look for an instance of attacks listed in the table
and to output an alert for each matching rule. An attacker machine is located outside of the
cloud and it is used to inject attacks i.e. to perform a dynamic attack injection campaign. We
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B TPR FPR TNR FNR CID

Small B
values

0.001 0.7005733333 0.000035352 0.9999566667 0.2994266667 0.6453533333
0.003 0.7022433333 1.23E-07 0.9999966667 0.2977566667 0.6493066667
0.005 0.7167533333 0.00000026 0.9999966667 0.26614 0.66004
0.007 0.7278733333 8.63E-07 0.9999966667 0.2721233333 0.66845
0.009 0.7567866667 0 1 0.2432133333 0.6968933333
0.01 0.7338044444 8.12E-07 0.999996667 0.23843 0.700916667

Slightly
higher
B values

0.06 0.80297 0.001438933 0.99856 0.197023333 0.704433333
0.07 0.80046 0 1 0.1995366667 0.71623
0.08 0.8076033333 6.53E-06 0.9999966667 0.19239 0.73025
0.09 0.8198066667 1.59E-05 0.9999833333 0.18019 0.76141
0.1 0.8661833333 0.0009814231 0.9990166667 0.13381 0.7737933333

Table 5: TPR, FPR, TNR, FNR values of an NIDS from our experiment and calculated CID

value for varying B

use real attacks to exploit vulnerabilities in the target VM. The attacks are interlaced with
legitimate traffic according to the base rate. In addition, we know the number of packets sent
by each legitimate and attack request.

To measure the performance of a configured NIDS, we record all the communications between
the attacker and target VM, i.e. we record all the injected packets. Snort gets all these packets as
an input and generates an alert(s) when it detects an attack. At the end of the attack campaign,
we get the output of the NIDS. Using recorded inputs and the output alerts, we count the number
of inputs that are correctly (wrongly) classified as attacks (legitimate requests) by the NIDS.
This way we can count the (TP, TN,FP , and FN) values. More details about the setup and its
justification are presented in [1].

7.2 Collecting Data Points and Generating an Estimation Model

Using the setup described in the previous section we run experiments to measure the performance
of the configured NIDS. Table 5 shows the TPR,FPR,TNR, and FNR values, these are calculated
from basic metrics (TP, TN,FP , and FN). The table also shows the calculated CID value for
a given B. The values shown are averages over three rounds for each computation.

The experiment is performed for two sets of base rate values, for the smaller B values in
(0.001 − 0.01) and a slightly higher B values in (0.06 − 0.1). For this experiment, we assume
an SLA which guarantees the performance of an NIDS with a lower bound base rate value of
10−3, i.e the SLA will not be violated if the NIDS underperformed for an occurrence of attack
with B < 10−3. It is important to note that in practice this value (10−3) is a relatively large
lower bound, i.e. attacks usually occur with a base rate value B < 10−3. As described in the
previous section, the actual value of the base rate is very small. However, in our environment,
B = 10−3 is the lowest achievable base rate value. Section 7.4 presents a detailed explanation
on the limitation of our experiment.

Figure 7 shows the plot of B vs TPR and B vs FPR for B in (0.06 − 0.1). We use Table 5
and the corresponding graphs to model the relationship between B and (TPR, FPR). From
the table and the plots, we observe that the FPR values are very small (close to zero). This is
because the rules in the NIDS are carefully crafted for the set of considered attacks. As a result,
false positives generated by these rules are very small. This property is consistent for different
base rate values. Other studies [21] showed that given the attacks to be monitored, it is possible
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to craft an NIDS rules with a minimal FP value. Taking these into consideration, we can use
a constant FPR = 0 value in the SLA. However, for our SLA we take the highest FPR value,
as CID is sensitive for changes in FPR. In the context of SLA, taking the highest FPR means
promising a lower CID value, which puts the provider in a better position for not violating the
SLA.
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Figure 7: Plot of B vs TPR and B vs FPR for B in (0.06− 0.1)

For the TPR, we can observe that its value is increasing with the B value. To model their
relationship, we use the TPR values for B in (0.06− 0.1), and a TPR at the lowest guaranteed
base rate, i.e B = 10−3. We fit these points using a quadratic polynomial function, because there
is only one local extremum value in the given range of B. The quadratic function f which best
approximates these points is shown in Equation 10

f(B) = 0.7008827 + 1.357906 ∗B + 1.447843 ∗B2 (10)

Using this function, we can estimate the values of the expected TPR for other base rate values.
As an example, Table 8 shows the estimated and actual TPR values for B in (0.003 − 0.009).
Figure 9 shows the plot of expected TPR in comparison with actual values. From this data,
we can observe that our metric estimation method produce results which are close to the actual
values.

Table 8 can be used as an input to drive the fuzziness and confidence ratio values. In addition
to such a table, a provider may take other assumptions like the available resources to drive the
appropriate fuzziness and confidence ratio values.

7.3 Clustering NIDS Rules

In Section 6.3 we presented a clustering technique that can be used to reduce the width and height
of an interference matrix, thus reducing the number of required evaluation tests to prepare the
template SLOs. In this section, we present an example using rules from Snort NIDS.

In the official snort rule repository, there are three categories of rule sets:

• Subscriber: The most updated set of rules which is available for paying customers and it
is regularly updated.
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B Estimated TPR Actual TPR
0.003 0.7049694 0.7022433333
0.005 0.7077084 0.7167533333
0.007 0.710459 0.7278733333
0.009 0.7132211 0.7567866667

Figure 8: Estimated and actual TPR values
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Figure 9: Plot of the estimated and actual TPR
values

• Registered: This rule set is 30 days behind the Subscriber rule set and it is distributed free
of charge.

• Community: A set of rules written by the community and verified by the company main-
taining Snort. It is also distributed free of charge and it does not contain the subscribers
rule set.

We used the registered rule set version 2.9.8.0 to demonstrate the clustering technique de-
scribed above. It contains a total of 10628 rules in 53 files. We used several properties to group
the rules including properties that are part of the rule syntax. The properties used include the
application type, the attack class type, the severity of the vulnerability, and applications working
together.

7.3.1 Grouping based on application type

Another method is grouping applications with a similar type of functionalities into the same
group. For example, grouping vulnerabilities in the browsers or operating systems together in
one group. By default, rules in the Snort repository are grouped per application, e.g. Firefox
rules, Internet Explorer rules, office file rules, etc. This default grouping can be used for our
clustering purpose and our grouping method reduces further the number of groups. Table 6
shows an example of grouping created using the application type.

7.3.2 Grouping based on attack type and severity

An attack type (class type) is part of the rule options used in Snort syntax. Rules in the Snort
NIDS are divided into two sections, the rule header and rule options, where the header contains
information like the rule’s action, protocol, source and destination IP/port. The option contains
the alert messages and information about which part of the packet should be used to generate
the alert message.

The keyword ‘classtype’ is used to indicate that a rule is detecting general kind of attack. We
can use this keyword to classify NIDS rules for building the interference matrix. A few default
classtypes are defined, but it is possible to define a custom classtype in the classification.config
file. Table 7 shows classification of rules based on the classtypes property.
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Application Group Applications (number of rules) Total

Browsers Firefox (15), Internet explorer (1286), Webkit (2),
Others (8), Plugins (31) 1339

Files Executable (17), Flash (1506), image (125), java (110),
multimedia (55), office (462), pdf (506), others (331), file-identifier (979) 4091

OS Windows (388), Solaris (3), mobile os (3), others (36), netbios (22), Linux (15) 467
Protocols imap (2), scada (10), telnet (3), dns (1), pop (1), snmp (1), voip (2), others(4) 24

Servers Apache (27), mail (9), mysql (1), oracle (2), samba (6), web-apps(273),
mssql(1), others (223) 542

Potentially
Unwanted
Application (PUA)

Adware(30), p2p(3), toolbars (4), others (21) 58

Malware Backdoor (110), CNC (3053), malware-tools (14), others (336) 3513

Others
app-detector (2), exploit-kit (492), indicator-compromise (30),
indicator-scan (2), policy-social (2), policy-others (15), sql (16),
deleted(3), indicator-obfuscation (32)

594

Table 6: Rule classification based on application types

Similar to this, Snort rules have a priority parameter which allows defining the severity with
integer values. A priority is also defined in classification.config file. For example, the default
configuration contains four priorities. A priority of 1 (high) is the most severe and 4 (very low)
is the least severe.

7.3.3 Grouping based on applications working together

It is very likely that an application is used in collaboration with other applications. To give a
simple example, an operating system is used to run almost all applications. Such a relationship
can be used to group vulnerabilities. Such grouping is natural, as applications are used together
to provide the expected service. Moreover, it can result in a higher performance value, as
aggregation from different groups will be minimized.

Examples of such method include grouping Linux, Apache, Mysql, PHP (LAMP) and Word-
Press in one group, Windows, Microsoft Office products and Internet Explorer in another group.

Using such grouping, we can reduce the number of required evaluations. If we take the
example rule set to build the interference matrix using each rule, it requires more than 54 million
tests (combination of 10628 by 2). Using the default grouping by application, it requires 1378
tests (combination of 53 by 2) and using application type requires 28 tests (combination of 8 by
2). It is important to note that there is a tradeoff between the number of required tests and the
performance of an NIDS (or its CID value). Less number of groups means less number of tests,
but it also produces smaller CID values than a large number of groups. This is because when
having a small number of groups, each group will contain more vulnerabilities than when having
a larger number of groups. The provider should take into account available resources for the
tests and select the clustering method accordingly. Multiple grouping methods can be used to
build multiple interference matrices (see Table 4) and offer SLOs from the one which produces
the best result.
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Class Type Description
attempted-user (4332) Attempted User Privilege Gain
protocol-command-decode (46) Generic Protocol Command Decode
denial-of-service (38) Detection of a Denial of Service Attack
default-login-attempt (2) Attempt to login by a default username and password
misc-activity (1049) Misc activity
suspicious-filename-detect (1) A suspicious filename was detected
attempted-dos (117) Attempted Denial of Service
attempted admin (728) Attempted administrator privilege gain
trojan-activity(3904) A network Trojan was detected
string-detect(1) A suspicious string was detected
bad-unknown (3) Potentially Bad Traffic
network-scan (1) Detection of a Network Scan
misc-attack (37) Misc Attack
attempted-recon (146) Attempted Information Leak
policy-violation (57) Potential Corporate Privacy Violation
successful-recon-limited (12) Information Leak
unsuccessful-user (1) Unsuccessful User Privilege Gain
web-application-attack (150) Web Application Attack
successful-user (4) Successful User Privilege Gain

Table 7: Rule classification based class type

7.4 Discussion

This paper presents a feasible mechanism to define SLAs guaranteeing the performance of NIDSs.
The previous section presented the experimental evaluation showing the validity of the proposed
method. In this section, we present some issues that are related to the proposed method.

In ECSLA, the formal language used to describe security monitoring SLAs, tenants specify
their security requirements using vulnerabilities for a given application. This level of abstraction
is not ideal: it is not easy to know the existing vulnerabilities in an application for regular users.
This creates a problem to make the security monitoring SLA life-cycle straightforward. Service
providers can cover this issue by offering a separate vulnerability assessment service. By using
results from such a service, a provider can offer security monitoring SLAs with a higher level of
abstraction.

The SLA definition described in this paper uses a fixed set of vulnerabilities, i.e the set
of vulnerabilities addressed in a given SLA is fixed. However, in a real situation the number
of vulnerabilities that concerns a tenant may increase or decrease. An increase happens when
new vulnerabilities concerning a tenant are discovered and a decrease happens when a patch is
available for a vulnerability. In our SLA life-cycle both cases are not automated. Notably, the
discovery of a new vulnerability could change tenants requirement. Such events are addressed
by renegotiating and restarting the process of SLA life-cycle. To facilitate this, it is possible to
include termination conditions in the SLA, describing the possibility of renegotiating when new
vulnerabilities are discovered.

Moreover, our SLA definition addresses only known vulnerabilities. Monitoring an unknown
vulnerability is usually performed by using anomaly-based NIDSs. With a few modifications, our
SLA definition could be extended to be used for such a monitoring device. However, as it is in
the current state, it cannot be applied to anomaly-based NIDSs because our service description
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requires describing the vulnerabilities; this is not practical for currently unknown vulnerabili-
ties. Moreover, guaranteeing the performance of an NIDS covering unknown vulnerabilities is
challenging and the risk of not meeting an objective is very high.

While computing the relationship between B and (TPR, FPR), we assumed the resources
available for the NIDS are fixed. However, as described in [22], in the cloud environment resources
for an NIDS may vary due to elasticity. Our assumption can be interpreted as the minimum
amount of resource that is needed to perform the monitoring task. The available resources for
an NIDS may increase but will not decrease below the level used for testing. Furthermore, an
increase in resources should result in better performance. Hence, an increase in the available
resources will not lead to an SLA violation.

The metric estimation method assumes that the provider can conduct a performance test
using the lowest guaranteed base rate. In practice, this task is not straightforward. As described
in Section 5.1, performing a test using a small base rate value takes a long time and requires
large disk space. For example, to measure the performance an NIDS which is configured to
monitor the services listed in Table 1 using B = 10−2 takes around 42 minutes. Performing the
same experiment by changing only the base rate to B = 10−3, the experiment takes around four
hours. Our previous study [1] presents the actual procedure to perform a test and optimizations
to reduce the required time by increasing the degree of parallelism.

To estimate the performance of an NIDS using real attack injection, it requires to have the
attack which exploits a given vulnerability. However, getting an attack to exploit a vulnerability
is challenging. It is because, usually there is no incentive to publish an attack, especially for
commercially owned products. Some issues related to the type of attacks used to perform the
test are addressed in [1].

We conclude the paper by presenting a summary in the next section.

8 Conclusion and Future Work

8.1 Conclusion

In this paper, we have discussed the problem of defining a security monitoring SLA. Specifically,
we studied SLAs describing the performance of security monitoring probes. To show the proposed
SLA definition method, the network security monitoring device we used is a signature-based
NIDS.

We started by stating the objective, which is to provide a mechanism that enables the def-
inition of security monitoring SLAs. We continued by listing the problems which need to be
addressed in order to meet the objectives and to realize the security monitoring SLAs. The lack
of a formal language to define SLAs, finding a relevant KPI i.e. a single unified metric which
takes the base rate into account, and reconciling the fact that there are lots of vulnerabilities
and the need for a custom-tailored SLAs are presented as problems.

In order to address the lack of a formal language in the SLA definition process, we proposed an
extension to CSLA [2]. CSLA is a domain specific language specially designed to describe cloud
SLAs. Our extension, called ECSLA, adds the ability to define a security monitoring service
which contains the users’ requirements description as a list of vulnerabilities. The extension also
enables to define a complex parameter which is computed from basic metrics.

To describe the performance of an NIDS we used the CID as a parameter. CID meets both
of our requirements: it is a single metrics and it takes the base rate into account. Taking the
base rate into consideration in SLA comes with two challenges, (i) at what base rate value should
a provider offer an SLA as the CID varies depending on the input base rate ? (ii) in practice
measuring the value of the base rate before the occurrence of an attack is very difficult.
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To address both of these issues, our SLO definition uses a model which takes the base rate as
an input. Defining a model addresses both problems: first, it removes the need to use a specific
base rate value in the SLA definition; second, the model can estimate the performance metrics
for previously unknown base rate values. The model takes a value of B as an input and outputs
the TPR and FPR values. The model is generated by testing the NIDS using known base rate
values. Using the results from such tests, and an interpolation-based method, we generate the
expected model. The final model can be used as the SLO description in the SLA.

The other issue addressed in this paper is the effect of monitoring multiple vulnerabilities
with a single monitoring device. Increasing the number of vulnerabilities in an NIDS results in
lower performance. A quantitative measure of the effect between vulnerabilities helps to estimate
the performance of the NIDS while aggregating those vulnerabilities together. We introduced
the interference vector and matrix to describe the effect of vulnerabilities between each other.
Using the interference values and the performance for individual vulnerabilities, we presented
how to calculate the aggregated metrics. These metrics describe the performance of an NIDS
while configured with all the vulnerabilities together.

Having a formal language and the performance estimation method for any group of vulnera-
bilities can be enough to prepare SLA templates. However, having thousands of vulnerabilities
makes it impractical to build the interference matrix. Hence it hinders a custom-tailored SLA
template preparation. To address this issue, we proposed a clustering mechanism which groups
the vulnerabilities based on some heuristics and performs the interference test per group. The
performance of an NIDS on the group indicates the worst performance; hence it gives a lower
bound for any subgroup of vulnerabilities from that group. By this approach, it is possible to
reduce the dimensions of the interference matrix and to make it practical.

Finally, we showed an experimental evaluation on how to prepare the model that can be used
in the security monitoring SLOs. In our experiment, we showed the feasibility of the metrics
estimation process using an interpolation-based method. We also showed an example of the
clustering method using the Snorts Registered rule set. The providers can perform clustering
depending on the available resources. A tradeoff should be maintained between the size of the
interference matrix and the number of vulnerabilities per group. Indeed, the performance of an
NIDS on a group reduces as the number of vulnerabilities increases.

8.2 Future Work

Some of the issues described in Section 7.4 can be addressed as a future work. The issues of
providing a higher level language to describe users need, extending the SLA definition mechanism
for monitoring devices other than NIDS and experimental evaluation for the concept of rules
interference can be addressed in the future work.

In our SLA definition tenants are expected to describe their needs in terms of software vulner-
abilities. This is not an optimal solution because usually, tenants have no detailed information
about the vulnerabilities of their software. In order to address this issue, an extension can be
done for our SLA definition mechanism. The extension connects our SLA definition mechanism
with the vulnerability scanning and fuzzing methods (e.g. OpenVAS [23]). Ideally, users specify
the software they need to deploy, the vulnerability scanner and the fuzzer check if there are vul-
nerabilities or security loopholes in the software and list the existing vulnerabilities with detailed
information. Then tenants can select their desired vulnerabilities, and the result can be passed
to the SLA definition method.

Practically there are challenges to achieve the connection between vulnerability scanners
and SLA definition methods. Specially, considering the diversity of existing applications stan-
dardizing the scanning method and communicating with SLA components are few examples.
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In addition, generalized automation of a vulnerability scanning method for custom developed
applications also requires more study.

In our work we considered a specific security monitoring probe, a signature-based NIDS and
Snort [20] is used in our experiments. The output of an NIDS is processed by themetrics evaluator
component which is not specific to Snort. Any type of NIDS can be used by implementing
the appropriate parser to the output of the NIDS. Anomaly-based IDSs could be addressed by
extending the SLA definition method. Specifically, the parameters used to describe performance
should be adapted for the type of IDS used.

Extending for anomaly-based IDS opens the opportunity to consider monitoring for unknown
vulnerabilities. Including unknown vulnerabilities requires extending the service definition sec-
tion of ECSLA. Currently, a list of known vulnerabilities is defined and the performance of the
NIDS is guaranteed on those vulnerabilities.

ECSLA can also be extended to describe the performance of security monitoring probes
other than NIDSs (e.g. firewalls). Depending on the device described in the SLA, adaptation
may be required for different sections in the SLA, like an adaptation for the description of users
requirements, for the guarantees, metrics, and verification method to that specific device. For
example, the security monitoring service definition for the firewalls may be expressed in different
forms than for the NIDSs and outputs of the firewalls are not the same as the output of NIDS.
As a result, a parser implementation can be required to process the output of firewalls.

In our work we introduced the theoretical concept of rules interference (interference vector
and matrix ). A practical evaluation of rule interference is not presented. Collecting a large
and enough number of attacks with their corresponding rules to perform experiments would
validate our theoretical work. The experiment can be done following the attack injection method
presented in [1] and the result can be used to build the interference vector and matrix. In addition,
while introducing interference the assumption was an NIDS giving output for every matching
rules (as described in Section 6.2.1). Other cases of interference (e.g. NIDS giving outputs
for few of the matchings based on some heuristics) are not considered. Having a method with
all possible cases would make the formula more consistent and this can be achieved with more
studies.
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9 Appendix

9.1 XML schema of ECSLA

1 <?xml version ="1.0" encoding ="utf-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3 numberstargetNamespace ="http://www.inria.fr/cslamodel "

4 numberselementFormDefault ="qualified ">

5

6 <xs:annotation>

7 <xs:appinfo>ECSLA, a DSL for security monitoring SLA description in cloud</xs:appinfo>

8 <xs:documentation xml:lang="en">

9 Schema for the ECSLA, an extention for CSLA Language.

10 Version: 1.0

11 Author: Amir Teshome Wonjiga

12 </xs:documentation>

13 </xs:annotation>

14

15 <xs:complexType numbersname=" CloudServiceType ">

16 <xs:choice >

17 <xs:element numbersname=" software " numberstype="csla: SoftwareType "

18 numbersminOccurs ="1" numbersmaxOccurs ="1"/>

19 <xs:element numbersname=" platform " numberstype="csla: PlatformType "

20 numbersminOccurs ="1" numbersmaxOccurs ="1"/>

21 <xs:element numbersname=" infrastructure " numberstype="csla: InfrastructureType "

22 numbersminOccurs ="1" numbersmaxOccurs ="1"/>

23 <xs:element numbersname="macro" numberstype="csla:any" numbersminOccurs ="0"

24 numbersmaxOccurs ="1"/>

25 </xs:choice >

26 </xs:complexType >

27

28 <xs:complexType numbersname=" SecurityMonitoringType ">

29 <xs:sequence >

30 <xs:element numbersname=" product " numberstype="csla: ProductType " numbersminOccurs ="1"

31 numbersmaxOccurs =" unbounded "/>

32 <xs:element numbersname=" vulnerabilities " numberstype="csla: VulnerabilitiesType "

33 numbersminOccurs ="0" numbersmaxOccurs =" unbounded "/>

34 <xs:element numbersname=" infrastructure " numberstype="csla: InfrastructureType "

35 numbersminOccurs ="1" numbersmaxOccurs =" unbounded "/>

36 </xs:sequence >

37 </xs:complexType >

38

39 <xs:complexType numbersname=" ProductType ">

40 <xs:sequence >

41 <xs:element numbersname="mode" numberstype="csla: ModeType " numbersminOccurs ="1"

42 numbersmaxOccurs =" unbounded "/>

43 </xs:sequence >

44 <xs:attribute numbersname="id" numberstype="xs:string "/>

45 <xs:attribute numbersname="name" numberstype="xs:string "/>

46 <xs:attribute numbersname="mode" numberstype="xs:integer "/>

47 <xs:attribute numbersname=" version " numberstype="xs:string "/>

48 <xs:attribute numbersname=" distribution " numberstype="xs:string "/>

49 <xs:attribute numbersname="price" numberstype="xs:string "/>

50 <xs:attribute numbersname=" license " numberstype="xs:string "/>

51 </xs:complexType >

52

53 <xs:complexType numbersname=" VulnerabilitiesType ">

54 <xs:sequence >

55 <xs:element numbersname=" vulnerability " numberstype="csla: VulnerabilityType "

56 numbersminOccurs ="1" numbersmaxOccurs =" unbounded "/>

57 </xs:sequence >
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58 </xs:complexType >

59

60 <xs:complexType numbersname=" VulnerabilityType ">

61 <xs:attribute numbersname="id" numberstype="xs:string "/>

62 <xs:attribute numbersname="cve" numberstype="xs:string "/>

63 <xs:attribute numbersname=" description " numberstype="xs:string "/>

64 </xs:complexType >

65

66

67 <xs:complexType name="MetricType">

68 <xs:sequence>

69 <xs:element name="description" type="xs:string" minOccurs="1" maxOccurs="1"/>

70 <xs:element name="formulation" type="xs:string" minOccurs="0" maxOccurs="1"/>

71 </xs:sequence>

72 <xs:attribute name="id" type="xs:string"/>

73 <xs:attribute name="name" type="xs:string"/>

74 <!-- Type can be simple of complex -->

75 <xs:attribute name="type" type="xs:string"/>

76 <xs:attribute name="unit" type="xs:string"/>

77 </xs:complexType>

78 </xs:schema >

Listing 4: ECSLA XML schema
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