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A Complete Normal-Form Bisimilarity for State

Dariusz Biernacki1, Serguëı Lenglet2, and Piotr Polesiuk1

1 University of Wroc law, Wroc law, Poland
2 Université de Lorraine, Nancy, France

Abstract. We present a sound and complete bisimilarity for an untyped
λ-calculus with higher-order local references. Our relation compares val-
ues by applying them to a fresh variable, like normal-form bisimilarity,
and it uses environments to account for the evolving store. We achieve
completeness by a careful treatment of evaluation contexts comprising
open stuck terms. This work improves over Støvring and Lassen’s incom-
plete environment-based normal-form bisimilarity for the λρ-calculus,
and confirms, in relatively elementary terms, Jaber and Tabareau’s re-
sult, that the state construct is discriminative enough to be characterized
with a bisimilarity without any quantification over testing arguments.

1 Introduction

Two terms are contextually equivalent if replacing one by the other in a bigger
program does not change the behavior of the program. The quantification over
program contexts makes contextual equivalence hard to use in practice and it
is therefore common to look for more effective characterizations of this relation.
In a calculus with local state, such a characterization has been achieved either
through logical relations [15, 1, 5], which rely on types, denotational models [10,
13, 6], or coinductively defined bisimilarities [9, 18, 19, 17, 12].

Koutavas et al. [8] argue that to be sound w.r.t. contextual equivalence, a
bisimilarity for state should accumulate the tested terms in an environment to
be able to try them again as the store evolves. Such environmental bisimilarities
usually compare terms by applying them to arguments built from the environ-
ment [19, 17, 12], and therefore still rely on some universal quantification over
testing arguments. An exception is Støvring and Lassen’s bisimilarity [18], which
compares terms by applying them to a fresh variable, like one would do with a
normal-form (or open) bisimilarity [16, 11]. Their bisimilarity characterizes con-
textual equivalence in a calculus with control and state, but is not complete in a
calculus with state only: there exist equivalent terms that are not related by the
bisimilarity. Jaber and Tabareau [6] go further and propose a sound and complete
Kripke Open Bisimilarity for a calculus with local state, which also compares
terms by applying them to a fresh variable, but uses notions from Kripke logical
relations, namely transition systems of invariants, to reason about heaps.

In this paper, we propose a sound and complete normal-form bisimilarity
for a call-by-value λ-calculus with local references which relies on environments
to handle heaps. We therefore improve over Støvring and Lassen’s work, since



our relation is complete, by following a different, potentially simpler, path than
Jaber and Tabareau, since we use environments to represent possible worlds and
do not rely on any external structures such as transition systems of invariants.
Moreover, we do not need types and define our relation in an untyped calculus.

We obtain completeness by treating carefully normal forms that are not val-
ues, i.e., open stuck terms of the form E[x v]. First, we distinguish in the en-
vironment the terms which should be tested multiple times from the ones that
should be run only once, namely the evaluation contexts like E in the above
term. The latter are kept in a separate environment that takes the form of a
stack, according to the idea presented by Laird [10] and by Jagadeesan et al. [7].
Second, we relate the so-called deferred diverging terms [5, 6], i.e., open stuck
terms which hide a diverging behavior in the evaluation context E, with the
regular diverging terms.

It may be worth stressing that our congruence proof is based on the machin-
ery we have developed before [3] and is simpler than Støvring and Lassen’s one,
in particular in how it accounts for the extensionality of functions.

We believe that this work makes a contribution to the understanding of how
one should adjust the normal-form bisimulation proof principle when the calculus
under consideration becomes less discriminative, assuming that one wishes to
preserve completeness of the theory. In particular, it is quite straightforward
to define a complete normal-form bisimilarity for the λ-calculus with first-class
continuations and global store, with no need to refer to other notions than the
ones already present in the reduction semantics. Similarly, in the λµρ-calculus
(continuations and local references), one only needs to introduce environments to
ensure soundness of the theory, but essentially nothing more is required to obtain
completeness [18]. In this article we show which new ingredients are needed
when moving from these two highly expressive calculi to the corresponding,
less discriminative ones—with global or local references only—that do not offer
access to the current continuation.

The rest of this paper is as follows. In Section 2, we study a simple calculus
with global store to see how to reach completeness in that case. In particular,
we show in Section 2.2 how we deal with deferred diverging terms. We remind
in Section 2.3 the notion of diacritical progress [3] and the framework our bisim-
ilarity and its proof of soundness are based upon. We sketch the completeness
proof in Section 2.4. Section 2 paves the way for the main result of the paper, de-
scribed in Section 3, where we turn to the calculus with local store. We define the
bisimilarity in Section 3.2, prove its soundness and completeness in Section 3.3,
and use it in Section 3.4 on examples taken from the literature. We conclude in
Section 4, where we discuss related work and in particular compare our work to
Jaber and Tabareau’s. A companion report expands on the proofs [4].

2 Global Store

We first consider a calculus where terms share a global store and present how
we deal with deferred diverging terms to get a complete bisimilarity.



2.1 Syntax, Semantics, and Contextual Equivalence

We extend the call-by-value λ-calculus with the ability to read and write a global
memory. We let x, y, . . . range over term variables and l range over references. A
store, denoted by h, g, is a finite map from references to values; we write dom(h)
for the domain of h, i.e., the set of references on which h is defined. We write ∅ for
the empty store, h] g for the union of two stores, assuming dom(h)∩dom(g) = ∅.
The syntax of terms and contexts is defined as follows.

Terms: t, s ::= v | t t | l := t; t | !l

Values: v, w ::= x | λx.t
Evaluation contexts: E,F ::= � | E t | v E | l := E; t

The term l := t; s evaluates t (if possible) and stores the resulting value in l
before continuing as s, while !l reads the value kept in l. When writing ex-
amples and in the completeness proofs, we use natural numbers, booleans, the
conditional if . . . then . . . else . . ., local definitions let . . . in . . ., sequence ;, and
unit () assuming the usual call-by-value encodings for these constructs.

A λ-abstraction λx.t binds x in t; we write fv(t) (respectively fv(E)) for the
set of free variables of t (respectively E). We identify terms up to α-conversion
of their bound variables. A variable or reference is fresh if it does not occur in
any other entities under consideration, and a store is fresh if it maps references
to pairwise distinct fresh variables. A term or context is closed if it has no free
variables. We write fr(t) for the set of references that occur in t.

The call-by-value semantics of the calculus is defined on configurations 〈h | t〉
such that fr(t) ⊆ dom(h) and for all l ∈ dom(h), fr(h(l)) ⊆ dom(h). We let c
and d range over configurations. We write t{v/x} for the usual capture-avoiding
substitution of x by v in t, and we let ∫ range over simultaneous substitutions
.{v1/x1} . . . {vn/xn}. We write h[l := v] for the operation updating the value of
l to v. The reduction semantics → is defined by the following rules.

〈h | (λx.t) v〉 → 〈h | t{v/x}〉 〈h | !l〉 → 〈h | h(l)〉
〈h | l := v; t〉 → 〈h[l := v] | t〉 〈h | E[t]〉 → 〈g | E[s]〉 if 〈h | t〉 → 〈g | s〉

The well-formedness condition on configurations ensures that a read operation
!l cannot fail. We write →∗ for the reflexive and transitive closure of →.

A term t of a configuration 〈h | t〉 which cannot reduce further is called a
normal form. Normal forms are either values or open-stuck terms of the form
E[x v]; closed normal forms can only be λ-abstractions. A configuration ter-
minates, written c ⇓ if it reduces to a normal-form configuration; otherwise it

diverges, written c ⇑, like configurations running Ω
def
= (λx.x x) (λx.x x).

Contextual equivalence equates terms behaving the same in all contexts. A
substitution ∫ closes a term t if t∫ is closed; it closes a configuration 〈h | t〉 if it
closes t and the values in h.

Definition 1. t and s are contextually equivalent, written t ≡ s, if for all con-
texts E, fresh stores h, and closing substitutions ∫ , 〈h | E[t]〉∫ ⇓ iff 〈h | E[s]〉∫ ⇓.



Testing only evaluation contexts is not a restriction, as it implies the equivalence
w.r.t. all contexts ≡C : one can show that t ≡C s iff λx.t ≡C λx.s iff λx.t ≡ λx.s.

2.2 Normal-Form Bisimulation

Informal presentation. Two open terms are normal-form bisimilar if their normal
forms can be decomposed into bisimilar subterms. For example in the plain λ-
calculus, a stuck term E[xv] is bisimilar to t if t reduces to a stuck term F [xw] so
that respectively E, F and v, w are bisimilar when they are respectively plugged
with and applied to a fresh variable.

Such a requirement is too discriminating for many languages, as it distin-
guishes terms that should be equivalent. For instance in plain λ-calculus, given

a closed value v, t
def
= x v is not normal form bisimilar to s

def
= (λy.x v) (x v).

Indeed, � is not bisimilar to (λy.x v) � when plugged with a fresh z: the for-
mer produces a value z while the latter reduces to a stuck term x v. However, t
and s are contextually equivalent, as for all closed value w, t{w/x} and s{w/x}
behave like w v: if w v diverges, then they both diverges, and if w v evaluates
to some value w′, then they also evaluates to w′. Similarly, x v Ω and Ω are
not normal-form bisimilar (one is a stuck term while the other is diverging), but
they are contextually equivalent by the same reasoning.

The terms t and s are no longer contextually equivalent in a λ-calculus with
store, since a function can count how many times it is applied and change its
behavior accordingly. More precisely, t and s are distinguished by the context
l := 0; (λx.�) λz.l :=!l + 1; if !l = 1 then 0 else Ω. But this counting trick is not
enough to discriminate x v Ω and Ω, as they are still equivalent in a λ-calculus
with store. Although x v Ω is a normal form, it is in fact always diverging when
we replace x by an arbitrary closed value w, either because w v itself diverges,
or it evaluates to some w′ and then w′ Ω diverges. A stuck term which hides a
diverging behavior has been called deferred diverging in the literature [5, 6].

It turns out that being able to relate a diverging term to a deferred diverging
term is all we need to change from the plain λ-calculus normal-form bisimilarity
to get a complete equivalence when we add global store. We do so by distinguish-
ing two cases in the clause for open-stuck terms: a configuration 〈h | E[x v]〉 is
related to c either if c can reduce to a stuck configuration with related subterms,
or if E is a diverging context, and we do not require anything of c. The result-
ing simulation is not symmetric as it relates a deferred diverging configuration
with any configuration c (even converging one), but the corresponding notion
of bisimulation equates such configuration only to either a configuration of the
same kind or a diverging configuration such as 〈h | Ω〉.

Progress. We define simulation using the notion of diacritical progress we devel-
oped in a previous work [2, 3], which distinguishes between active and passive
clauses. Roughly, passive clauses are between simulation states which should be
considered equal, while active clauses are between states where actual progress
is taking place. This distinction does not change the notions of bisimulation or



bisimilarity, but it simplifies the soundness proof of the bisimilarity. It also al-
lows for the definition of powerful up-to techniques, relations that are easier to
use than bisimulations but still imply bisimilarity. For normal-form bisimilarity,
our framework enables up-to techniques which respects η-expansion [3].

Progress is defined between objects called candidate relations, denoted by
R, S, T . A candidate relation R contains pairs of configurations, and a set
of configurations written R↑, which we expect to be composed of diverging or
deferred diverging configurations (for such relations we take R−1↑ to be R↑). We
extend R to stores, terms, values, and contexts with the following definitions.

dom(h) = dom(g) ∀l, h(l) Rv g(l)

h Rh g

〈h | t〉 R 〈h | s〉 h fresh

t Rt s

v x Rt w x x fresh

v Rv w

E[x] Rt F [x] x fresh

E Rc F

〈h | E[x]〉 ∈ R↑ x, h fresh

E ∈R↑c

We use these extensions to define progress as follows.

Definition 2. A candidate relation R progresses to S, T written R� S, T , if
R ⊆ S, S ⊆ T , and

1. c R d implies
– if c→ c′, then d→∗ d′ and c′ T d′;
– if c = 〈h | v〉, then d→∗ 〈g | w〉, h Sh g, and v Sv w;
– if c = 〈h | E[x v]〉, then either
• d→∗ 〈g | F [x w]〉, h T h g, E T c F , and v T v w, or
• E ∈T ↑c.

2. c∈R↑ implies c 6= 〈h | v〉 for all h and v and
– if c→ c′, then c′ ∈T ↑;
– if c = 〈h | E[x v]〉, then E ∈T ↑c.

A normal-form simulation is a candidate relation R such that R� R,R, and
a bisimulation is a candidate relation R such that R and R−1 are simulations.
Normal-form bisimilarity ≈ is the union of all normal-form bisimulations.

We test values and contexts by applying or plugging them with a fresh variable x,
and running them in a fresh store; with a global memory, the value represented
by x may access any reference and assign it an arbitrary value, hence the need
for a fresh store. The stores of two bisimilar value configurations must have the
same domain, as it would be easy to distinguish them otherwise by testing the
content of the references that would be in one store but not in the other.

The main novelty compared to usual definitions of normal-form bisimilar-
ity [11, 3] is the set of (deferred) diverging configurations used in the stuck terms
clause. We detect that E in a configuration 〈h | E[xv]〉 is (deferred) diverging by
running 〈h′ | E[y]〉 where y and h′ are fresh; this configuration may then diverge
or evaluate to an other deferred diverging configuration 〈h | E′[x v]〉.

Like in the plain λ-calculus [3], R progresses towards S in the value clause
and T in the others; the former is passive while the others are active. Our



framework prevents some up-to techniques from being applied after a passive
transition. In particular, we want to forbid the application of bisimulation up to
context as it would be unsound: we could deduce that v x and wx are equivalent
for all v and w just by building a candidate relation containing v and w.

Example 1. To prove that 〈h | x v Ω〉 ≈ 〈h | Ω〉 holds for all v and h, we prove

that R def
={(〈h | x v Ω〉, 〈h | Ω〉), {〈g | y Ω〉 | y, g fresh}} is a bisimulation.

Indeed, 〈h | x v Ω〉 is stuck with 〈g | y Ω〉 ∈R↑ for fresh y and g, and we have
〈g | y Ω〉 → 〈g | y Ω〉. Conversely, the transition 〈h | Ω〉 → 〈h | Ω〉 is matched
by 〈h | x v Ω〉 →∗ 〈h | x v Ω〉 and the resulting terms are in R.

2.3 Soundness

In this framework, proving that ≈ is sound is a consequence that a form of
bisimulation up to context is valid, a result which itself may require to prove
that other up-to techniques are valid. We distinguish the techniques which can
be used in passive clauses (called strong up-to techniques), from the ones which
cannot. An up-to technique (resp. strong up-to technique) is a function f such
that R � R, f(R) (resp. R � f(R), f(R)) implies R ⊆ ≈. To show that a
given f is an up-to technique, we rely on a notion of respectfulness, which is
simpler to prove and gives sufficient conditions for f to be an up-to technique.

We briefly recall the notions we need from our previous work [2]. We extend ⊆
and ∪ to functions argument-wise (e.g., (f ∪ g)(R) = f(R) ∪ g(R)), and given
a set F of functions, we also write F for the function defined as

⋃
f∈F f . We

define fω as
⋃

n∈N f
n. We write id for the identity function on relations, and f̂

for f ∪ id. A function f is monotone if R ⊆ S implies f(R)⊆ f(S). We write
Pfin(R) for the set of finite subsets of R, and we say f is continuous if it can be
defined by its image on these finite subsets, i.e., if f(R)⊆

⋃
S∈Pfin(R) f(S). The

up-to techniques we use are defined by inference rules with a finite number of
premises, so they are trivially continuous.

Definition 3. A function f evolves to g, h, written f g, h, if for all R and
T , R� R, T implies f(R)� g(R), h(T ). A function f strongly evolves to g, h,
written f s g, h, if for all R, S, and T , R� S, T implies f(R)� g(S), h(T ).

Evolution can be seen as progress for functions on relations. Evolution is more
restrictive than strong evolution, as it requires R such that R� R, T .

Definition 4. A set F of continuous functions is respectful if there exists S
such that S ⊆ F and

– for all f ∈ S, we have f s Ŝ
ω, F̂ω;

– for all f ∈ F, we have f Ŝω ◦ F̂ ◦ Ŝω, F̂ω.

In words, a function is in a respectful set F if it evolves towards a combination of
functions in F after active clauses, and in S after passive ones. When checking
that f is regular (second case), we can use a regular function at most once after



c R d v Rv w

c{v/x} subst(R) d{w/x}
c∈R↑

c{v/x}∈ subst(R)↑
〈h | t〉 R 〈g | s〉 E Rc F

〈h | E[t]〉 plugc(R) 〈g | F [s]〉

〈h | t〉 ∈R↑
〈h | E[t]〉 ∈ plug↑(R)↑

c→∗ c′ d→∗ d′ c′ R d′

c red(R) d

c∈R↑
c div(R) d

E ∈R↑c

〈h | E[t]〉 ∈ plugdiv(R)↑

Fig. 1: Up-to techniques for the calculus with global store

a passive clause. The (possibly empty) subset S intuitively represents the strong
up-to techniques of F. If S1 and S2 are subsets of F which verify the conditions
of the definition, then S1 ∪S2 also does, so there exists the largest subset of F
which satisfies the conditions, written strong(F).

Lemma 1. Let F be a respectful set.

– If f ∈ F, then f is an up-to technique. If f ∈ strong(F), then f is a strong
up-to technique.

– For all f ∈ F, we have f(≈)⊆ ≈.

Showing that f is in a respectful set F is easier than proving it is an up-to
technique. Besides, proving that a bisimulation up to context is respectful implies
that ≈ is preserved by contexts thanks to the last property of Lemma 1.

The up-to techniques for the calculus with global store are given in Figure 1.
The techniques subst and plug allow to prove that ≈ is preserved by substitution
and by evaluation contexts. The remaining ones are auxiliary techniques which
are used in the respectfulness proof: red relies on the fact that the calculus is
deterministic to relate terms up to reduction steps. The technique div allows to
relate a diverging configuration to any other configuration, while plugdiv states
that if E is a diverging context, then 〈h | E[t]〉 is a diverging configuration
for all h and t. We distinguish the technique plugc from plug↑ to get a more
fine-grained classification, as plugc is the only one which is not strong.

Lemma 2. The set F
def
= {subst, plugm, red, div, plugdiv | m ∈ {c, ↑}} is respect-

ful, with strong(F) = F \ {plugc}.

We omit the proof, as it is similar but much simpler than for the calculus with
local store of Section 3. We deduce that ≈ is sound using Lemma 1.

Theorem 1. For all t, s, and fresh store h, if 〈h | t〉 ≈ 〈h | s〉, then t ≡ s.

2.4 Completeness

We prove the reverse implication by building a bisimulation which contains ≡.



Theorem 2. For all t, s, if t ≡ s, then for all fresh stores h, 〈h | t〉 ≈ 〈h | s〉.

Proof (Sketch). It suffices to show that the candidate R defined as

{(〈h | t〉, 〈g | s〉) | ∀E, hE , closing ∫ , 〈h]hE | E[t]〉∫ ⇓ ⇒ 〈g ]hE | E[s]〉∫ ⇓}
∪ {〈h | t〉 | ∀E, hE , closing ∫ , 〈h]hE | E[t]〉∫ ⇑}

is a simulation. We proceed by case analysis on the behavior of 〈h | t〉. The
details are in the report [4]; we sketch the proof in the case when 〈h | t〉 R 〈g | s〉,
t = E[x v], and E is not deferred diverging.

A first step is to show that 〈g | s〉 also evaluates to an open-stuck configura-
tion with x in function position. To do so, we consider a fresh l and we define ∫
such that ∫(y) sets l at 1 when it is first applied if y = x, and at 2 if y 6= x. Then
〈h] l := 0 | t〉∫ sets l at 1, which should also be the case of 〈g ] l := 0 | s〉∫ , and
it is possible only if 〈g | s〉 →∗ 〈g′ | F [x w]〉 for some g′, F , and w.

We then have to show that E Rc F , v Rv w, and h Rh g′. We sketch the
proof for the contexts, as the proofs for the values and the stores are similar.
Given hf a fresh store, y a fresh variable, E′ a context, hE′ a store, ∫ a closing
substitution, we want 〈hf ]hE′ | E′[E[y]]〉∫ ⇓ iff 〈hf ]hE′ | E′[F [y]]〉∫ ⇓.

Let l be a fresh reference. Assuming dom(h) = {l1 . . . ln}, given a term t, we
write

⋃
i li := h; t for l1 := h(l1); . . . ln := h(ln); t. We define

∫x
def
=

x 7→ λa.if !l = 0 then l := 1;
⋃
i

li := hf ]hE′ ; ∫(y) else ∫(x) a

z 7→ ∫ ′(z) if z 6= x

The substitution ∫x behaves like ∫ except that when ∫x(x) is applied for the first
time, it replaces its argument by ∫(y) and sets the store to hf ]hE′ . Therefore
〈h] l := 0 | E′[t]〉∫x →∗ 〈hf ]hE′ ] l := 1 | E′[E[y]]〉∫x, but this configuration
then behaves like 〈hf ]hE′ | E′[E[y]]〉∫ . Similarly, 〈g ] l := 0 | E′[s]〉∫x evalu-
ates to a configuration equivalent to 〈hf ]hE′ | E′[F [y]]〉∫ , and since 〈h] l :=
0 | E′[t]〉∫x ⇓ implies 〈g ] l := 0 | E′[s]〉∫x ⇓, we can conclude from there.

3 Local Store

We adapt the ideas of the previous section to a calculus where terms create their
own local store. To be able to deal with local resources, the relation we define
mixes principles from normal-form and environmental bisimilarities.

3.1 Syntax, Semantics, and Contextual Equivalence

In this section, the terms no longer share a global store, but instead must create
local references before storing values. We extend the syntax of Section 2 with a
construct to create a new reference.

Terms: t, s ::= . . . | new l := v in t



Reference creation new l := v in t binds l in t; we identify terms up to α-
conversion of their references. We write fr(t) and fr(E) for the set of free refer-
ences of t or E, and a term or context is reference-closed if its set of free references
is empty. Following [18] and in contrast with [5, 6], references are not values, but
we can still give access to a reference l by passing λx.!l and λx.l := x;λy.y.

As before, the semantics is defined on configurations 〈h | t〉 verifying fr(t) ⊆
dom(h) and for all l ∈ dom(h), fr(h(l)) ⊆ dom(h). We add to the rules of Section 2
the following one for reference creation.

〈h | new l := v in t〉 → 〈h] l := v | t〉

We remind that ] is defined for disjoint stores only, so the above rule assumes
that l /∈ dom(h), which is always possible using α-conversion.

We define contextual equivalence on reference-closed terms as we expect pro-
grams to allocate their own store.

Definition 5. Two reference-closed terms t and s are contextually equivalent,
written t ≡ s, if for all reference-closed evaluation contexts E and closing sub-
stitutions ∫ , 〈∅ | E[t]〉∫ ⇓ iff 〈∅ | E[s]〉∫ ⇓.

3.2 Bisimilarity

With local stores, an external observer no longer has direct access to the stored
values. In presence of such information hiding, a sound bisimilarity relies on an
environment to accumulate terms which should be tested in different stores [8].

Example 2. Let f1
def
= λx.if !l = true then l := false; true else false and f2

def
=

λx.true. If we compare new l := true in f1 and f2 only once in the empty store,
they would be seen as equivalent as they both return true, however f1 modify
its store, so running f1 and f2 a second time distinguishes them.

Environments generally contain only values [17], except in λµρ [18], where
plugged evaluation contexts are kept in the environment when comparing open-
stuck configurations. In contrast with λµρ, our environment collects values, and
we use a stack for registering contexts [10, 7]. Unlike values, contexts are therefore
tested only once, following a last-in first-out ordering. The next example shows
that considering contexts repeatedly would lead to an overly-discriminating
bisimilarity. For the stack discipline of testing contexts in action see Example 8
in Section 3.4.

Example 3. With the same f1 and f2 as in Example 2, the terms t
def
= new l :=

true in f1 (x λy.y) and s
def
= f2 (x λy.y) are contextually equivalent. Roughly, for

all closing substitution ∫ , t and s either both diverge (if ∫(x) λy.y diverges), or
evaluate to true, since ∫(x) cannot modify the value in l. Testing f1 � and f2 �
twice would discriminate them and wrongfully distinguish t and s.

Remark 1. The bisimilarity for λµρ runs evaluation contexts several times and is
still complete because of the µ operator, which, like call/cc, captures evaluation
contexts, and may then execute them several times.



We let E range over sets of pairs of values, and ε over sets of values. Similarly,
we write Σ for a stack of pairs of evaluation contexts and σ for a stack of
evaluation contexts. We write � for the empty stack, :: for the operator putting
an element on top of a stack, and ++ for the concatenation of two stacks. The
projection operator π1 transforms a set or stack of pairs into respectively a set
or stack of single elements by taking the first element of each pair. A candidate
relation R can be composed of:

– quadruples (E , Σ, c, d), written E , Σ ` c R d, meaning that c and d are
related under E and Σ;

– quadruples (E , Σ, h, g), written E , Σ ` h R g, meaning that the elements
of E and the top of Σ should be related when run with the stores h and g;

– triples (ε, σ, c), written ε, σ ` c∈R↑, meaning that either c is (deferred)
diverging, or σ is non-empty and contains a (deferred) diverging context;

– triples (ε, σ, h), written ε, σ ` h∈R↑, meaning that σ is non-empty and
contains a (deferred) diverging context.

Definition 6. A candidate relation R progresses to S, T written R� S, T , if
R ⊆ S, S ⊆ T , and

1. E , Σ ` c R d implies
– if c→ c′, then d→∗ d′ and E , Σ ` c′ T d′;
– if c = 〈h | v〉, then either
• d→∗ 〈g | w〉, and E ∪ {(v, w)}, Σ ` h S g, or
• Σ 6= � and π1(E) ∪ {v}, π1(Σ) ` h∈S↑;

– if c = 〈h | E[x v]〉, then either
• d→∗ 〈g | F [x w]〉, and E ∪ {(v, w)}, (E,F ) ::Σ ` h S g, or
• π1(E) ∪ {v}, E ::π1(Σ) ` h∈S↑.

2. E , Σ ` h R g implies
– if v E w, then E , Σ ` 〈h | v x〉 S 〈g | w x〉 for a fresh x;
– if Σ = (E,F ) ::Σ′, then E , Σ′ ` 〈h | E[x]〉 S 〈g | F [x]〉 for a fresh x.

3. ε, σ ` c∈R↑ implies
– if c→ c′, then ε, σ ` c′ ∈T ↑;
– if c = 〈h | v〉, then σ 6= � and ε ∪ {v}, σ ` h∈S↑;
– if c = 〈h | E[x v]〉, then ε ∪ {v}, E ::σ ` h∈S↑.

4. ε, σ ` h∈R↑ implies that σ 6= � and
– if v ∈ ε, then ε, σ ` 〈h | v x〉 ∈S↑ for a fresh x;
– if σ = E ::σ′, then ε, σ′ ` 〈h | E[x]〉 ∈S↑ for a fresh x.

A normal-form simulation is a candidate relation R such that R� R,R, and
a bisimulation is a candidate relation R such that R and R−1 are simulations.
Normal-form bisimilarity ≈ is the union of all normal-form bisimulations.

When E , Σ ` c R d, we reduce c until we get a value v or a stuck term E[xv].
At that point, either d also reduces to a normal form of the same kind, or we test
(the first projection of) the stack Σ for divergence, assuming it is not empty.
In the former case, we add the values to E and the evaluation contexts at the
top of Σ, getting a judgment of the form E ′, Σ′ ` h R g, which then tests the
environment and the stack by running either terms in E ′ or at the top of Σ′.



Example 4. We sketch the bisimulation proof for the terms t and s of Example 3.
Because 〈∅ | t〉 →∗ 〈l := true | f1 (x λy.y)〉 and 〈∅ | s〉 = 〈∅ | f2 (x λy.y)〉, we need
to define R such that {(λy.y, λy.y)}, (f1�, f2�) ::� ` l := true R ∅. Testing the
equal values in the environment is easy with up-to techniques. For the contexts
on the stack, we need {(λy.y, λy.y)},� ` 〈l := true | f1 z〉 R 〈∅ | f2 z〉 for a
fresh z. Since 〈l := true | f1 z〉 →∗ 〈l := false | true〉 and 〈∅ | f2 z〉 →∗ 〈∅ | true〉,
we need {(λy.y, λy.y), (true, true)},� ` l := false R ∅, which is simple to check.

Example 5. In contrast, we show that t′
def
= new l := true in f1 (x λy.l := y; y)

and s′
def
= f2 (x λy.y) are not bisimilar. We would need to build R such that

{(λy.l := y; y, λy.y)}, (f1 �, f2 �) ::� ` l := true R ∅. Testing the values in the
environment, we want {(λy.l := y; y, λy.y), (z, z)}, (f1 �, f2 �) ::� ` l := z R ∅
for a fresh z. Executing the contexts on the stack, we get a stuck term of the
form if z then l := false; true else false and a value true, which cannot be related,
because the former is not deferred diverging.

The terms t′ and s′ are therefore not bisimilar, and they are indeed not
contextually equivalent, since t′ gives access to its private reference by passing
λy.l := y; y to x. The function represented by x can then change the value of l
to false and break the equivalence.

The last two cases of the bisimulation definition aim at detecting a de-
ferred diverging context. The judgment ε, σ ` h∈R↑ roughly means that if
σ = En :: . . . E1 ::�, then the configuration 〈h′ | E1[. . . En[x]]〉 diverges for all
fresh x and all h′ obtained by running a term from E with the store h. As a
result, when ε, σ ` h∈R↑, we have two possibilities: either we run a term from
E in h to potentially change h, or we run the context at the top of σ (which
cannot be empty in that case) to check if it is diverging. In both cases, we get
a judgment of the form ε, σ′ ` c∈R↑. In that case, either c diverges and we are
done, or it terminates, meaning that we have to look for divergence in σ′.

Example 6. We prove that 〈∅ | x v Ω〉 and 〈∅ | Ω〉 are bisimilar. We define R
such that ∅,� ` 〈∅ | x v Ω〉 R 〈∅ | Ω〉, for which we need {v},�Ω ::� ` ∅∈R↑,
which itself holds if {v},� ` 〈∅ | y Ω〉 ∈R↑.

Finally, only the two clauses where a reduction step takes place are active; all
the others are passive, because they are simply switching from one judgment to
the other without any real progress taking place. For example, when comparing
value configurations, we go from a configuration judgment E , Σ ` c R d to a
store judgment E , Σ ` h R g or a diverging store judgment E , Σ ` h∈R↑. In
a (diverging) store judgment, we simply decide whether we reduce a term from
the store of from the stack, going back to a (diverging) configuration judgment.
Actual progress is made only when we start reducing the chosen configuration.

3.3 Soundness and Completeness

We briefly discuss the up-to techniques we need to prove soundness. We write
E{(v, w)/x} for the environment {(v′{v/x}, w′{w/x}) | v′ E w′}, and we also



E , Σ ` c R d v E w x /∈ fv(v) ∪ fv(w)

E{(v, w)/x}, Σ{(v, w)/x} ` c{v/x} substc(R) d{w/x}

E , Σ1 ++(E1, F1) ::(E2, F2) ::Σ2 ` 〈h | t〉 R 〈g | s〉
E , Σ1 ++(E2[E1], F2[F1]) ::Σ2 ` 〈h | t〉 ccomp(R) 〈g | s〉

E , (E,F ) ::Σ ` 〈h | t〉 R 〈g | s〉
E , Σ ` 〈h | E[t]〉 plug(R) 〈g | F [s]〉

c→∗ c′ d→∗ d′ E , Σ ` c′ R d′

E , Σ ` c red(R) d

ε, σ ` 〈h | t〉 ∈R↑ π1(E) = ε π1(Σ) = σ

E , Σ ` 〈h | t〉 div(R) 〈g | s〉
E , Σ ` c R d E ′ ⊆ E
E ′, Σ ` c weak(R) d

E , Σ1 ++Σ2 ` 〈h | t〉 R 〈g | s〉 fr(E) ⊆ dom(h′)

E , Σ1 ++(E,E) ::Σ2 ` 〈h]h′ | t〉 refl(R) 〈g ]h′ | s〉

Fig. 2: Selected up-to techniques for the calculus with local store

define Σ{(x,w)/x}, ε{v/x}, and σ{v/x} as expected. To save space, Figure 2
presents the up-to techniques for the configuration judgment only; see the re-
port [4] for the other judgments.

As in Section 2.3, the techniques subst and plug allow to reason up to sub-
stitution and plugging into an evaluation context, except that the substituted
values and plugged contexts must be taken from respectively the environment
and the top of the stack. The technique div relates a diverging configuration to
any configuration, like in the calculus with global store. The technique ccomp al-
lows to merge successive contexts in the stack into one. The weakening technique
weak, originally known as bisimulation up to environment [17], is an usual tech-
nique for environmental bisimulations. Making the environment smaller creates
a weaker judgment, as having less testing terms means a less discriminating can-
didate relation. Bisimulation up to reduction red is also standard and allows for a
big-step reasoning by ignoring reduction steps. Finally, the technique refl allows
to introduce identical contexts in the stack, but also values in the environment
or terms in configurations (see the report [4]).

We denote by substc the up to substitution technique restricted to the con-
figuration and diverging configuration judgments, and by substs the restriction
to the store and diverging store judgments.

Lemma 3. The set F
def
= {substm, plug, ccomp, div,weak, red, refl | m ∈ {c, s}} is

respectful, with strong(F) = {substs, ccomp, div,weak, red, refl}.

In contrast with Section 2.3 and our previous work [3], substc is not strong,
because values are taken from the environment. Indeed, with substc strong, from
{(v, w)},� ` ∅ R ∅, we could derive {(v, w)},� ` 〈∅ | x y〉 refl(R) 〈∅ | x y〉 and
then {(v, w)},� ` 〈∅ | vx〉 substc(refl(R)) 〈∅ | wx〉 for any v and w, which would
be unsound.



The respectfulness proofs are in the report [4]. Using refl, plug, substc, and
Lemma 1 we prove that ≈ is preserved by evaluation contexts and substitution,
from which we deduce it is sound w.r.t. contextual equivalence.

Theorem 3. For all t and s, if ∅,� ` 〈∅ | t〉 ≈ 〈∅ | s〉, then t ≡ s.

To establish completeness, we follow the proof of Theorem 2, i.e., we construct
a candidate relation R that contains ≡ and prove it is a simulation by case
analysis on the behavior of the related terms.

Theorem 4. For all t and s, if t ≡ s, then ∅,� ` 〈∅ | t〉 ≈ 〈∅ | s〉.

The main difference is that the contexts and closing substitutions are built from
the environment using compatible closures [17], to take into account the private
resources of the related terms. We discuss the proof in the report [4].

3.4 Examples

Example 7. We start by the so-called awkward example [15, 5, 6]. Let

v
def
= λf.l := 0; f (); l := 1; f (); !l w

def
= λf.f (); f (); 1.

We equate new l := 0 in v and w, building the candidate R incrementally, start-
ing from {(v, w)},� ` l := 0 R ∅.

Running v and w with a fresh variable f , we obtain 〈l := 0 | E1[f ()]〉 and

〈∅ | E2[f ()]〉 with E1
def
= �; l := 1; f (); !l and F1

def
= �; f (); 1. Ignoring the

identical unit arguments (using refl), we need {(v, w)}, (E1, F1) ::� ` l := 0 R ∅;
from that point, we can either test v and w again, resulting into an extra pair
(E1, F1) on the stack, or run 〈l := 0 | E1[g]〉 and 〈∅ | F1[g]〉 for a fresh g instead.

In the latter case, we get 〈l := 1 | E2[g ()]〉 and 〈∅ | F2[g ()]〉, with E2
def
= �; !l

and F2
def
= �; 1, so we want {(v, w)}, (E2, F2) ::� ` l := 1 R ∅ (ignoring again the

units). From there, testing v and w produces {(v, w)}, (E1, F1) ::(E2, F2) ::� `
l := 0 R ∅, while executing 〈l := 1 | E2[x]〉 and 〈∅ | F2[x]〉 for a fresh x gives us
〈l := 1 | 1〉 and 〈∅ | 1〉. This analysis suggests that R should be composed only
of judgments of the form {(v, w)}, Σ ` l := n R ∅ such that n ∈ {0, 1} and

– Σ is an arbitrary stack composed only of pairs (E1, F1) or (E2, F2);
– if Σ = (E2, F2) ::Σ′, then n = 1.

We can check that such a candidate is a bisimulation, and it ensures that when l
is read (when E2 is executed), it contains the value 1.

Example 8. As a variation on the awkward example, let

v
def
= λf.l :=!l + 1; f (); l :=!l − 1; !l > 0 w

def
= λf.f (); true.

We show that 〈∅ | new l := 1 in v〉 and 〈∅ | w〉 are bisimilar. Let E
def
= �; l :=

!l − 1; !l > 0 and F
def
= �; true. We write (E,F )n for the stack � if n = 0 and



(E,F ) ::(E,F )n−1 otherwise. Then the candidateR verifying {(v, w)}, (E,F )n `
l := n + 1 R ∅ for any n is a bisimulation. Indeed, running v and w increases
the value stored in l and adds a pair (E,F ) on the stack. If n > 0, we can run
a copy of E and F , thus decreasing the value in l by 1, and then returning true
in both cases.

Example 9. This deferred divergence example comes from Dreyer et al. [5]. Let

v1
def
= λx.if !l then Ω else k := true;λy.y w1

def
= λx.Ω

v2
def
= λf.f v1; if !k then Ω else l := true;λy.y w2

def
= λf.f w1;λy.y

We prove that new l := false in new k := false in v2 is equivalent to w2. Infor-
mally, if f in w2 applies its argument w1, the term diverges. Divergence also
happens in v2 but in a delayed fashion, as v1 first sets k to true, and the continu-

ation t
def
= if !k then Ω else l := true;λy.y then diverges. Similarly, if f stores w1

or v1 to later apply it, then divergence also occurs in both cases: in that case t
sets l to true, and when v1 is later applied, it diverges.

To build a candidate R, we execute 〈l := false; k := false | v2 f〉 and 〈∅ | w2 f〉
for a fresh f , which gives us 〈l := false; k := false | E[f v1]〉 and 〈∅ | F [f w1]〉 with

E
def
= �; t and F

def
= �;λy.y. We consider {(v2, w2), (v1, w1)}, (E,F ) :: ∅ ` l :=

false; k := false R ∅, for which we have several checks to do. The interesting one
is running 〈l := false; k := false | v1 x〉 and 〈∅ | w1 x〉, as we get 〈l := false; k :=
true | λy.y〉 and 〈∅ | Ω〉. In that case, we are showing that the stack contains
divergence, by establishing that {v2, v1, λy.y}, E :: ∅ ` l := false; k := true∈R↑,
and indeed, we have 〈l := false; k := true | E[x]〉 →∗ 〈l := false; k := true | Ω〉 for
a fresh x. In the end, the relation R verifying

{(v2, w2), (v1, w1)}, (E,F )n ` l := false; k := false R ∅
{(v2, w2), (v1, w1)}, (E,F )n ` 〈l := false; k := true | λy.y〉 R 〈∅ | Ω〉

{v2, v1, λy.y}, En ` l := false; k := true∈R↑
{v2, v1, λy.y}, En ` 〈l := false; k := true | Ω〉 ∈R↑

{(v2, w2), (v1, w1)}, (E,F )n ` l := true; k := false R ∅
{(v2, w2), (v1, w1)}, (E,F )n ` 〈l := true; k := false | Ω〉 R 〈∅ | Ω〉

for all n is a bisimulation up to refl and red.

4 Related Work and Conclusion

Related work. As pointed out in Section 1, the other bisimilarities defined for
state either feature universal quantification over testing arguments [9, 19, 17,
12], or are complete only for a more expressive language [18]. Kripke logical
relations [1, 5] also involve quantification over arguments when testing terms of
a functional type. Finally, denotational models [10, 13] can also be used to prove
program equivalence, by showing that the denotations of two terms are equal.



However, computing such denotations is difficult in general, and the automation
of this task is so far restricted to a language with first-order references [14].

The work most closely related to ours is Jaber and Tabareau’s Kripke Open
Bisimulation (KOB) [6]. A KOB tests functional terms with fresh variables and
not with related values like a regular logical relation would do. To relate two
given configurations, one has to provide a World Transition System (WTS) which
states the invariants the heaps of the configurations should satisfy and how to go
from one invariant to the other during the evaluation. Similarly, the bisimulations
for the examples of Section 3.4 state properties which could be seen as invariants
about the stores at different points of the evaluation.

The difficulty for KOB as well as with our bisimilarity is to come up with the
right invariants about the heaps, expressed either as a WTS or as a bisimulation.
We believe that choosing a technique over the other is just a matter of preference,
depending on whether one is more comfortable with game semantics or with
coinduction. It would be interesting to see if there is a formal correspondence
between KOB and our bisimilarity; we leave this question as a future work.

Conclusion. We define a sound and complete normal-form bisimilarity for higher-
order local state, with an environment to be able to run terms in different stores.
We distinguish in the environment values which should be tested several times
from the contexts which should be executed only once. The other difficulty is
to relate deferred and regular diverging terms, which is taken care of by the
specific judgments about divergence. The lack of quantification over arguments
make the bisimulation proofs quite simple.

A future work would be to make these proofs even simpler by defining appro-
priate up-to techniques. The techniques we use in Section 3.3 to prove soundness
turn out to be not that useful when establishing the equivalences of Section 3.4,
except for trivial ones such as up to reduction or reflexivity. The difficulty in
defining the candidate relations for the examples of Section 3.4 is in finding the
right property relating the stack Σ to the store, so maybe an up-to technique
could make this task easier.

As pointed out in Section 1, our results can be seen as an indication of
what kind of additional infrastructure in a complete normal-form bisimilarity is
required when the considered syntactic theory becomes less discriminative—in
our case, when control operators vanish from the picture, and mutable state is
the only extension of the λ-calculus. A question one could then ask is whether we
can find a less expressive calculus—maybe the plain λ-calculus itself—for which
a suitably enhanced normal-form bisimilarity is still complete.
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