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Nova Gorica, 2019





UNIVERSITY OF NOVA GORICA 

GRADUATE SCHOOL 
 

 

 

Gašper Kukec Mezek, Mass composition of ultra-high energy cosmic rays at the 

Pierre Auger Observatory, Dissertation, (2019) 

 

 

Copyright and moral rights for this work are retained by the author. 

A copy can be downloaded for personal non-commercial research or study, without prior 

permission or charge. 

This work cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author.  

The content must not be changed in any way or sold commercially in any format or medium 

without the formal permission of the author.  

When referring to this work, full bibliographic details including the author, title, awarding 

institution and date of the thesis must be given. 





Acknowledgements

I thank my mentor prof. dr. Andrej Filipčič for the help and guidance
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Povzetek

Kozmični žarki z energijami nad ∼1018 eV, ki jih poimenujemo tudi koz-
mični žarki ekstremnih energij (UHECR), dosegajo energije trenutno ne-
dosegljive trkalnikom delcev. Pri njihovem prehodu skozi Zemljino at-
mosfero tvorijo obširne atmosferske plazove sekundarnih delcev, ki jih
detektiramo z obširnimi polji vodnih detektorjev Čerenkove svetlobe in
detektorji fluorescenčne svetlobe. Zaradi posredne detekcije preko pla-
zov sekundarnih delcev in uklanjanja kozmičnih delcev v galaktičnih ma-
gnetnih poljih, pa sta delčna sestava in izvori UHECR še odprti vpraša-
nji. Določitev obeh bi nam omogočala boljši vpogled v njihov nastanek,
pospeševanje, propagacijo in zmožnost tvorjenja plazov v Zemljini at-
mosferi. Raziskave delčne oziroma masne sestave UHECR temeljijo na
razliki, ki jih ti povzročijo pri razvoju plazov sekundarnih delcev.
V tem delu združimo izmerjene podatke obeh detekcijskih sistemov ob-
servatorija Pierre Auger v skupno analizo po večih spremenljivkah za
določitev masne sestave UHECR. Tako imenovana multivariabilna ana-
liza (MVA) združi več masno odvisnih spremenljivk in pripomore k iz-
boljšani masni separaciji. Pri tem primerjamo porazdelitve simuliranih
dogodkov z izmerjenimi porazdelitvami in s tem ocenimo delež posame-
znih delcev. Pri vključitvi spremenljivk detektorjev Čerenkove svetlobe
prihaja do neskladja med podatki observatorija Pierre Auger in simula-
cijami. Masna sestava UHECR je pri ekstremnih energijah nezanesljiva
zaradi odvisnosti od modelov hadronskih interakcij. Naši rezultati ka-
žejo to modelsko odvisnost le pri težjih primarnih delcih, ki pa se močno
zmanjša po združitvi deležev kisika in železa, ter je približno štirikrat
manjša kot pri ostalih objavljenih rezultatih. Prav tako naši rezultati ka-
žejo na predvsem težjo sestavo UHECR z več kot 50% deležem kisika in
železa pri nizkih energijah, ter več kot 80% deležem kisika in železa pri
najvišjih energijah.

Ključne besede: astrofizika osnovnih delcev, kozmični žarki ekstremnih
energij, obširni atmosferski plaz sekundarnih delcev, masna sestava,
delčna sestava, observatorij Pierre Auger, strojno učenje, analiza na večih
spremenljivkah
PACS: 96.50.S-, 96.50.sb, 96.50.sd, 07.05.Kf
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Abstract

Cosmic rays with energies above ∼1018 eV, usually referred to as ultra-
high energy cosmic rays (UHECR), have been a mystery from the mo-
ment they have been discovered. Although we have now more informa-
tion on their extragalactic origin, their direct sources still remain hidden
due to deviations caused by galactic magnetic fields. Another mystery,
apart from their production sites, is their nature. Their mass composition,
still uncertain at these energies, would give us a better understanding on
their production, acceleration, propagation and capacity to produce ex-
tensive air showers in the Earth’s atmosphere. Mass composition studies
of UHECR try to determine their nature from the difference in develop-
ment of their extensive air showers.
In this work, observational parameters from the hybrid detection system
of the Pierre Auger Observatory are used in a multivariate analysis to ob-
tain the mass composition of UHECR. The multivariate analysis (MVA)
approach combines a number of mass composition sensitive variables
and tries to improve the separation between different UHECR particle
masses. Simulated distributions of different primary particles are fitted
to measured observable distributions in order to determine individual el-
emental fractions of the composition. When including observables from
the surface detector, we find a discrepancy in the estimated mass com-
position between a mixed simulation sample and the Pierre Auger data.
Our analysis results from the Pierre Auger data are to a great degree
independent on hadronic interaction models. Although they differ at
higher primary masses, the different models are more consistent, when
combining fractions of oxygen and iron. Compared to previously pub-
lished results, the systematic uncertainty from hadronic interaction mod-
els is roughly four times smaller. Our analysis reports a predominantly
heavy composition of UHECR, with more than a 50% fraction of oxygen
and iron at low energies. The composition is then becoming heavier with
increasing energy, with a fraction of oxygen and iron above 80% at the
highest energies.

Keywords: astroparticle physics, ultra-high energy cosmic rays, exten-
sive air showers, mass composition, Pierre Auger Observatory, machine
learning, multivariate analysis
PACS: 96.50.S-, 96.50.sb, 96.50.sd, 07.05.Kf

v



vi



Contents

Acknowledgements i

Povzetek iii

Abstract v

Contents vii

1 Introduction 1

2 Cosmic rays 3
2.1 Interaction processes . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Ionization and excitation . . . . . . . . . . . . . . . . . . 4
2.1.2 Bremsstrahlung radiation . . . . . . . . . . . . . . . . . . 6
2.1.3 Cherenkov radiation . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Pair production . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Extensive air showers . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Pierre Auger observatory 15
3.1 Surface detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Fluorescence detector . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Mass composition of UHECR 25
4.1 Extensive air shower observables . . . . . . . . . . . . . . . . . . 27

4.1.1 Depth of shower maximum (Xmax) . . . . . . . . . . . . . 28
4.1.2 Signal at 1000 m from the shower axis (S1000) . . . . . . . 29
4.1.3 Risetime at 1000 m from the shower axis (t1000) . . . . . 30

5 Published results on mass composition of UHECR 33
5.1 Composition implications from fluorescence telescopes . . . . . 35
5.2 Composition implications from surface detectors . . . . . . . . 38

6 Multivariate analysis 43
6.1 Machine learning in treatment of scientific data . . . . . . . . . 43

6.1.1 Multivariate analysis methods . . . . . . . . . . . . . . . 44
6.2 Reconstruction software and integration with MVA . . . . . . . 48
6.3 Simulation and data event selection . . . . . . . . . . . . . . . . 51
6.4 Treatment of selected events . . . . . . . . . . . . . . . . . . . . . 55

6.4.1 Combining stereo events . . . . . . . . . . . . . . . . . . 56
6.4.2 Cross-validation simulation set and mock data set creation 57
6.4.3 Depth of shower maximum bias corrections . . . . . . . 59
6.4.4 SD station risetime estimation . . . . . . . . . . . . . . . 61
6.4.5 Relative risetime treatment . . . . . . . . . . . . . . . . . 65
6.4.6 Relative station signal treatment . . . . . . . . . . . . . . 68

vii



6.4.7 Smearing of the depth of shower maximum distribution 72

7 Analysis of simulation samples 75
7.1 Selection of a multivariate analysis method . . . . . . . . . . . . 75
7.2 Analysis of cross-validation simulation samples . . . . . . . . . 79
7.3 Mixed composition estimation . . . . . . . . . . . . . . . . . . . 81

7.3.1 FD-only analysis . . . . . . . . . . . . . . . . . . . . . . . 81
7.3.2 Analysis with combined SD and FD observables . . . . 83

8 Analysis of Pierre Auger Observatory data 87
8.1 FD-only analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Analysis with combined SD and FD observables . . . . . . . . . 90
8.3 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . 96

8.3.1 Hadronic interaction model systematic uncertainty . . . 99
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Conclusions and future prospects 107

Appendix A Offline selection cuts 109

Appendix B Observable distributions 113

Appendix C Benchmark function fits 121

Appendix D Scaled constant intensity cut function fits 123

Appendix E Multivariate analysis method configurations 125

Appendix F MVA method selection 127

Appendix G Pure composition analysis 131

Appendix H Mixed composition analysis 135

Bibliography 139

viii



1 Introduction

The term “cosmic rays” is a collective name for elementary particles and
atomic nuclei with an extraterrestrial source. First uncovered in 1912 by Vic-
tor F. Hess in a series of balloon experiments, it was found that ionizing
radiation does not reduce with increasing height, as initially thought. It de-
creases up to around a kilometre, where the contribution of ground radiation
gradually dwindles, and then steeply increases with increasing height. This
behaviour is caused by highly energetic particles, that are able to pass the
upper layers of the atmosphere and represent about 13% of the annual nat-
ural ionizing radiation. We now know that the Earth’s atmosphere protects
us from a major part of incident cosmic radiation, filtering out low energy
particles and reduces the penetration potential of high energy particles in the
form of extensive air showers. Those energetic enough to produce a cascade
of secondary particles actually possess energies far above what we can cur-
rently achieve with man-made accelerators. Studies of elementary particles,
before we were able to construct accelerators with enough power, was mostly
performed with cosmic rays and imaged using silver plates or detectors such
as the cloud chamber, spark chamber or bubble chamber. With increasing
development in detection systems and a widespread use of silicon detectors
for particle tracking purposes, particle physics instead moved to colliders like
the Large Hadron Collider. Interactions of high energy cosmic rays can only
be viewed indirectly, so cosmic rays are currently primarily used for inves-
tigating highly energetic astrophysical objects, which are regarded as their
production sites.
Mass composition studies of energetic cosmic rays are connected to particle
physics, since we wish to uncover the types of particles, which produce ex-
tensive air showers in the Earth’s atmosphere. This would give us a better
insight into processes that produce such particles and perhaps also uncover
their production sites. Studies of ultra-high energy cosmic rays are a crucial
component in investigating the Universe and a complementary observation
technique to other experiments observing the Universe with electromagnetic
waves, neutrinos and gravitational waves.
The motivation for this thesis is to improve the mass composition estimation
with a full set of observables provided by all measurement techniques of the
Pierre Auger Observatory. Recent results from fluorescence telescope mea-
surements imply that cosmic rays at extreme energies are primarily lighter
particles, but their mass distribution seems to move towards a heavier compo-
sition with increasing energy at the highest end of the spectrum [1]. Results
from the ground array of water-Cherenkov stations predict a much heavier
composition and attributes the large shift to the inability of hadronic interac-
tion models to correctly predict the muonic content of extensive air showers
[2]. In this work, we implement a mass composition study, which includes
measurements from fluorescence telescope and water-Cherenkov ground ar-
ray measurement systems of the Pierre Auger Observatory in a multivariate
analysis. This is a new approach in the field of astroparticle physics, which
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has not been subject to many uses of multivariate analysis techniques.
This thesis is organized with the following chapter structure. Chapter 2 gives
an overview of cosmic rays, the extensive air showers they produce in the at-
mosphere, and describes the basic interaction processes for charged particles
and photons. In this part, the focus is mostly on cosmic rays with extremely
high energies, usually referred to as ultra-high energy cosmic rays. Chapter
3 describes the Pierre Auger Observatory and both of its detection systems –
the surface detector array of ground water-Cherenkov stations and the collec-
tion of fluorescence telescopes observing the sky above the array. Chapter 4
gives the motivation why we wish to perform mass composition studies and
the gains for the research field of astrophysics. A number of mass composi-
tion sensitive observational parameters describing extensive air showers are
introduced. A general overview of results from optical observations and an
extensive description of current results from the Pierre Auger Observatory is
presented in Chapter 5. The groundwork and core of this thesis is described
in Chapter 6, where we introduce a multivariate analysis approach to estimat-
ing the mass composition of ultra-high energy cosmic rays. This chapter gives
a brief introduction into machine learning techniques and multivariate anal-
ysis methods and then describes the analysis procedure. It also describes the
selection and subsequent treatment of simulation and Pierre Auger Observa-
tory data events. In the following chapter, Chapter 7, the analysis procedure is
used on simulation samples with a pure composition and a simulated mixed
composition in order to determine the performance of our multivariate anal-
ysis approach. The analysis of Pierre Auger Observatory data, described in
Chapter 8, is based on the procedure developed in the previous two chapters
and is used to infer the mass composition of the UHECR. The final chap-
ter, Chapter 9, describes new insights gained from a multivariate approach
to mass composition studies and touches the future prospects of the analy-
sis procedure. Appendices at the end of this work hold detailed information
relevant to the analysis.
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2 Cosmic rays

Cosmic rays (CRs) are charged particles arriving to Earth from extrater-
restrial sources. The term usually denotes massive particles, such as protons,
electrons and other heavier nuclei, while photons and neutrinos are consid-
ered separately. Cosmic rays cover a wide range of energies, from 108 eV to
above 1020 eV, surpassing the capabilities of man-made colliders with more
than two orders of magnitude larger center-of-mass collision energy. The
high energy part of the energy spectrum of cosmic rays, obtained by numer-
ous experiments, is shown in Fig. 2.1. The cosmic ray spectrum has three
distinct features, named knee, second knee and ankle. Although these features

Figure 2.1: Cosmic ray spectrum combining various experiments. The flux of cosmic
rays F on the vertical axis is multiplied by E2.6 in order for spectrum features knee,
second knee and ankle to be more visible [3].

are still of a matter of debate, both knees most likely reflect the exhaustion
of cosmic accelerators inside our galaxy, one for lighter, the other for heavier
primaries [4, 5]. The ankle shows a flattening of the spectrum, that could ei-
ther be extragalactic sources dominating over galactic sources [6], or due to
energy losses of extragalactic protons on cosmic microwave background [7].
Both explanations describe cosmic rays above energies of 1018 eV to be of ex-
tragalactic origin. Recently, a large scale anisotropy in arrival directions of
cosmic rays with energies above 8× 1018 eV has been found with the Pierre
Auger Observatory [8], which indicates their extragalactic origin. The reason
for the sudden drop at highest energies is still not known, with the Greisen–
Zatsepin–Kuzmin (GZK) effect [9, 10] being a possible explanation. According
to it, cosmic rays above the energy threshold of 5× 1019 eV will interact with
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the cosmic microwave background (CMB) radiation, losing energy and pro-
ducing photons and neutrinos in the process. The remaining protons would
therefore shift towards lower energies, closer to the ankle.
At lower energies, cosmic rays are abundant and can be studied using high
altitude balloon or satellite experiments. These experiments usually hold a
calorimetric detector, completely stopping the cosmic ray in its active region
and thus determining the energy of the incident particle. A tracker and mag-
nets provide its identification and direction information. Above the knee, at
energies exceeding 1015 eV, direct detection becomes impractical or even im-
possible. At such high energies, cosmic rays are rare, with fluxes below one
particle per square kilometre per year. Direct detectors would therefore need
a large detection volume to catch them and in turn provide accurate energy
and direction information. Luckily, the Earth’s atmosphere can be used as
a large calorimeter, enabling indirect experiments to observe interactions be-
tween primary cosmic rays or their products and the atmosphere. We com-
monly denote cosmic rays with energies above ∼1018 eV as ultra-high energy
cosmic rays (UHECR).

2.1 Interaction processes

Entering the Earth’s atmosphere, cosmic rays interact with atmospheric nuclei
and produce new particles. Their interaction processes depend primarily on
their charge and mass (larger than nucleons, comparable to nucleons, compa-
rable to electrons).
During this section, some common expressions from high energy physics are
used

η = βγ,

τ =
T

mec2 ,

E = T + mc2,

(2.1)

where β is the relativistic speed, γ is the relativistic Lorentz factor, T is the
particle kinetic energy, τ is the particle kinetic energy in units of electron rest
mass (mec2 = 0.511 MeV) and E is the total particle energy.
This section describes the most prominent processes of interaction for high
energy charged particles and photons. Charged particles interact with nuclei
through the electromagnetic force processes of ionization, excitation, brems-
strahlung and Cherenkov radiation. High energy photons, on the other hand,
primarily interact through pair production, since other processes are highly
suppressed above the ∼GeV energy level.

2.1.1 Ionization and excitation

Collisions between incoming charged particles and atomic electrons cause the
atom to become ionized or excited, depending on the amount of energy lost by
the incident particle in the collision. A representation of the ionization process
is shown in Fig. 2.2. For an incoming particle to ionize an atom, it is necessary
that it has enough energy to completely eject an electron from its current
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Figure 2.2: Representation of the ionization process: An incoming charged particle
collides with an atomic electron and gives it enough energy to overcome its binding
energy. The resulting electron is free and the atom is ionized. Energy level structure
shows a typical ionization transition.

state. Whenever this energy exceeds the binding energy of the electron, it
will be free and through this process reduce the incoming particle energy. In
case the energy of the incoming particle is not enough to ionize the atom,
it instead loses energy due to excitations. In excitations, a bound electron
transfers to a higher energy state. A representation of such a process and
three sample energy level transitions are shown in Fig. 2.3. The interacting
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Figure 2.3: Representation of the excitation process: An incoming charged particle
collides with an atomic electron and gives it enough energy to excite the atom into
an excited state. Energy level structure shows typical excitation transitions.

atomic electron is thus transferred to a higher energy state, leaving behind
an excited atom. Deexcitation of such an atom then naturally follows the
excitation, since excited states are unstable energy state. The actual transition
back to the ground state depends on the elemental properties of the atom.
One type of transitions known as the fluorescence is presented in Chapter 3.2
due to its usefulness for detecting particle cascades produced by cosmic rays.
Bethe–Bloch formulas determine the stopping power of an incoming particle
due to ionization as

−
(

dE
dx

)
col

= κcol
Z
A

z2

β2

[
1
2

ln
(

2meγ
2v2Wmax

I2

)
− β2 − δ

2
− C

Z

]
, (2.2)

−
(

dE
dx

)
col

= κcol
Z
A

1
β2

[
1
2

ln
(

τ2(τ + 2)m2
e c4

2I2

)
− F(τ)

2
− δ

2
− C

Z

]
. (2.3)

Here, equation (2.2) describes the stopping power of a particle with mass
greater than that of an electron (m � me) and equation (2.3) describes the
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stopping power of an electron or positron (m = me). The factor F(τ) depends
on the charge

F(τ) =

1− β2 +
τ2
8 −(2τ+1) ln 2

(τ+1)2 ; for e−

2 ln 2− β2

12

(
23 + 14

τ+2 +
10

(τ+2)2 +
4

(τ+2)3

)
; for e+.

(2.4)

The two Bethe–Bloch formulas include information on the target material
(atomic number Z, atomic weight A and mean excitation energy I) and in-
formation on the incoming particle (charge in units of elemental charge z and
relativistic speed β). Other quantities are density δ and shell C corrections,
a collection of constants κcol = 4πNAr2

e mec2 = 0.3071 MeV · cm2 · g−1 and
maximum energy transfer in a single head–on collision Wmax. The density
correction becomes important at high energies, since incoming particles are
shielded from the full electric field of the atomic electrons due to polarization
of the material. The shell correction, on the other hand, is important at ener-
gies comparable to the energy of atomic electrons. A detailed description of
all Bethe–Bloch formula terms can be found in [11]. Fig. 2.4 plots the stop-
ping power from ionization of protons, electrons and positrons in molecular
nitrogen as described by equations (2.2) and (2.3).
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Figure 2.4: Stopping power due to ionization of protons (red), electrons (blue) and
positrons (green) in molecular nitrogen (N2). Protons have a much higher energy loss
at lower energies compared to electrons.

2.1.2 Bremsstrahlung radiation

In addition to ionization, incident particles lose their energy via bremsstrah-
lung radiation processes, presented in Fig. 2.5. A charged particle emits
bremsstrahlung photons, when decelerated or deflected by nuclei or elec-
trons. Ionization potential of this process reduces with increasing particle
mass, since the cross-section of the process is inversely proportional to the
square of particle mass σ ∝ m−2, making it significant only for lighter parti-
cles. For heavy particles like protons and other nuclei it is highly suppressed
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Figure 2.5: Representation of the bremsstrahlung radiation process: An incoming
charged particle is deflected or decelerated in the Coulomb field of a nuclei and loses
energy by radiating photons [12].

and can for all effects and purposes be neglected. Energy loss due to brems-
strahlung radiation is described as

−
(

dE
dx

)
rad

= κbrems
1
A

E
[

Z2
(

ln
184.15

3
√

Z
− f (Z)

)
+ Z ln

1194
3
√

Z2

]
, (2.5)

where κbrems = 4αNAr2
e = 1.396× 10−7 cm2 · g−1 is a collection of constants

and f (Z) is a function described in [3]. Fig. 2.6 shows the stopping power of
electrons from ionization and bremsstrahlung radiation processes in molecu-
lar nitrogen. For comparison purposes, the stopping power of protons from
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Ionization + Bremsstrahlung (electrons)
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Figure 2.6: Stopping power due to ionization of protons (red) and ionization and
radiation of electrons (blue) in molecular nitrogen (N2). Separate processes for elec-
trons are shown with dashed lines. Bremsstrahlung radiation dominates at higher
energies. Critical energy for this case is at Ec = 91.06 MeV.

ionization in molecular nitrogen is added. The critical energy Ec is the energy
at which ionization and bremsstrahlung radiation energy loss rates are equal.
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The value of Ec for a range of materials can be found in [13]. As an electron
or positron is losing energy and crosses this threshold, it will stop radiating
photons and lose energy mainly through collisions with atomic electrons.

2.1.3 Cherenkov radiation

Cherenkov radiation is the radiation of charged particles due to faster than
light motion in a medium. An incoming charged particle with speed of v < c

n
(Fig. 2.7, left), where n is the refraction index of the medium, polarizes the
medium around it symmetrically. Due to this symmetrical arrangement, there

particle

dielectric

particledielectric

-
+

-
+

- + -+

-
+

-
+

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

photons
photons

Figure 2.7: Representation of the Cherenkov radiation process: An incoming charged
particle polarizes the surrounding medium and depending on its initial speed there
is either no radiation from dipoles (left, v < c

n ) or Cherenkov radiation in a cone
structure (right, v > c

n ).

will be no dipole radiation. However, if a particle has superluminal speed
v > c

n (Fig. 2.7, right), it moves faster than the local phase velocity of light
and produces a coned polarization structure that radiates Cherenkov photons,
similar to how a shock wave is produced in a sonic boom. The lowest speed
a particle needs, in order to produce Cherenkov radiation, is connected to the
index of refraction of the material

βcritical =
1

n(ω)
. (2.6)

For example, particles produce Cherenkov radiation in water, when their rel-
ativistic speed is larger than βwater ≈ 0.75. The energy loss connected with
this process can be described as

−dE
dx

=
q2

4π

∫
β>n(ω)−1

µ(ω)ω

(
1− 1

β2n(ω)2

)
dω, (2.7)
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where q is the charge of the incoming particle, β its relativistic speed, µ(ω)
is the material permeability, n(ω) is the material index of refraction and ω
is the frequency of the emitted Cherenkov light. Typical values of such en-
ergy loss are between 0.01 − 0.02 MeV · cm2 · g−1, and amounts to an order
of one percent, when compared to ionization. Cherenkov light is thus not a
highly important energy loss process, but can be used to detect charged par-
ticles from a particle cascade with water–Cherenkov detectors. More on the
usefulness of this process in particle detection is presented in Chapter 3.1.

2.1.4 Pair production

Photons below the ∼MeV energy range predominantly lose energy through
Compton scattering, Rayleigh scattering and photoelectric effect. Since we are
mostly dealing with photons at higher energies, we focus on the dominant
pair production process [3]. A photon can produce an electron–positron pair
when in the presence of a third body such as a nucleus, needed to conserve
momentum. This process is represented in Fig. 2.8. In order for a photon to

Figure 2.8: Representation of pair production: An incoming photon produces an
electron and a positron in the vicinity of a nucleus to conserve momentum [12].

produce a pair, its energy must be at least equal to the rest energies of both
produced particles,

E = hν ≥ 2mec2 = 1.022 MeV. (2.8)

Pair production is therefore impossible at energies lower than 1.022 MeV due
to the minimum energy requirement, but its cross-section [3]

dσ

dx
=

A
X0NA

[
1− 4E

3k

(
1− E

k

)]
, (2.9)

gradually increases at high energies. Here, A is the atomic mass of the absorb-
ing material, X0 is its radiation length, E is the energy of the pair-produced
electron or positron, and k is the incident photon energy.
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2.2 Extensive air showers

As a cosmic ray with significantly large energy enters the Earth’s atmosphere,
it interacts with atmospheric nuclei and produces a large cascade of secondary
particles, known as an extensive air shower (EAS). The incident cosmic ray is
in this description also called a primary particle, since it instigates the for-
mation of secondaries. The depth of first interaction depends on the initial
energy and type of the primary particle. A heavier nuclei has a larger number
of available nucleons for the collision and it will therefore interact earlier in
the atmosphere than a lighter nuclei. For a hadronic primary particle, the
interaction produces hadronic (mesons, baryons) and electromagnetic (elec-
trons, positrons, photons) components of the EAS. Neutral pions start the
electromagnetic (EM) part of the shower through their most prominent decay
channel

π0 −→ 2γ.

EM particles produced in such a cascade lose energy relatively fast, with a
radiation length in air of X0 ≈ 36.62 g/cm2 [13]. Fuel for the hadronic cascade
comes from further collisions of secondary hadrons or decays into lighter
hadrons. With non-stable hadrons decaying before the EAS reaches ground
level, the shower remnants at ground level are predominantly muons (µ±)
and neutrinos (ν, ν̄), coming through decay channels of charged pions

π− −→ µ− + ν̄µ,

π+ −→ µ+ + νµ.

The former have a smaller bremsstrahlung radiation cross-section than elec-
trons, while the latter rarely interact with other matter due to their neutrality
and negligible mass. A possible hadronic contribution in the case of EM cas-
cades comes from the decay of τ leptons into hadrons (K or π mesons).
The EM cascade, represented in Fig. 2.9 starts with a decay of neutral pi-
ons π0, with a lifetime of τ = 8.5 × 10−17 s. High energy photons created
in this way will produce electron-positron pairs through the process of pair
production. These will in turn produce photons through bremsstrahlung ra-
diation, which dominates over ionization at higher energies. Only when the
energy is low enough, will the two processes have a similar stopping power
and the production of new particles will be suppressed. This energy limit
is called the critical energy Ec and marks the maximum number of particles
in the EM cascade. Electromagnetic particles have a small cross-section for
producing hadrons and will therefore predominantly create other electromag-
netic particles. A good estimation of the shower development is possible with
the use of Heitler’s model [14]. According to the model, photons, electrons
and positrons undergo two-body splittings after a fixed radiation length to
produce new particles. The splitting processes can either be bremsstrahlung
radiation (e± −→ γ e±) or pair production (γ −→ e+e−). A graphic represen-
tation of Heitler’s model is shown in Fig. 2.10. There will be N = 2n particles
after n splittings and subsequent particles will steadily be losing energy after
each splitting. When secondary particles reach critical energy Ec, the cascade
will reach its maximum. Processes below this energy will mostly not produce
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Figure 2.9: Representation of an EM cascade. The processes that initiates the elec-
tromagnetic cascade is π0 decay, while energy losses and particle creation is done
through bremsstrahlung radiation and pair production.

Figure 2.10: A representation of Heitler’s model, where photons (γ), electrons and
positrons (e±) produce new particles only through bremsstrahlung radiation and pair
production processes. n marks the splitting points, separated by a fixed radiation
length [15].

any new particles. Because these are two-body splittings, it can be shown that
the number of particles at shower maximum is proportional to the primary
particle energy

Nmax =
Eprim

Ec
, (2.10)

where Eprim is the primary particle energy, Ec is the critical energy and Nmax
is the number of particles in the shower maximum. The distance between
two splitting points is connected to the radiation length λ, so there will be
nc = ln(Eprim/Ec)/ ln 2 splittings before the shower reaches its maximum.
The distance it would take such a shower from the top of the atmosphere to

11



its maximum is

Xmax = λ ln
(

Eprim

Ec

)
. (2.11)

Although Heitler’s model doesn’t take into account all details of an EM
shower, it still predicts the number of particles and depth of shower maxi-
mum fairly accurately [15].
On the other hand, a similar model is much less accurate when used on
hadronic showers, due to the many additional processes and fluctuations in-
volved. In comparison with the electromagnetic part, the hadronic cascade
is much harder to describe, which makes it more difficult to extrapolate to
higher energies, without cross-section measurements from accelerators. As
such, the interaction cross-sections of hadrons is unknown and, at best, ex-
trapolated from low energy data. A representation of a hadronic cascade is
shown in Fig. 2.11, where line thicknesses represent the amount of energy in-
herited from the parent particle. An initial cosmic ray (for example, Fig. 2.11

CR 𝒑

top of 
atmosphere

first interaction

ground (detector) 
level

𝝅𝟎

𝝅±

𝒆±, 𝜸

𝝁−

𝝂

Figure 2.11: Representation of a hadronic cascade. Green lines correspond to an EM
cascade as shown in Fig. 2.9. Thickness of lines represents the fraction of energy
taken from the parent particle.

considers a proton) interacts at some depth in the atmosphere and produces
an array of hadrons: protons represented with red lines, π0 with light blue
lines and π± with dark blue lines. Again, for simplicity, no other hadrons are
considered. The neutral pion π0 produces an electromagnetic cascade (pho-
tons and e± represented with green lines) as shown in Fig. 2.9. The most
prominent decay of the charged pion is into a muon and a neutrino, but, with
its mean lifetime of τ ≈ 2.6× 10−8 s, it can instead interact with atmospheric
nuclei and produce hadrons. From the decay of π±, both the muon and neu-
trino are likely to survive until ground level. Secondary protons from the
initial collision can themselves bremsstrahlung radiate to produce an electro-
magnetic cascade or further interact with atmospheric nuclei to produce more
hadrons.
The depth at which first interaction between the cosmic ray and air molecules
happens dictates the development of the shower. An EAS initiated high in the
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atmosphere is called an old shower, while those starting close to the ground
are called young showers. With all particles in an EAS travelling close to
the speed of light, a shower front forms with the majority of surviving sec-
ondary particles. This shower front is wider for older showers, which will
leave a larger shower footprint at ground level. A representation of shower
age is shown in Fig. 2.12. A good indicator to the shower age is the hadronic

Figure 2.12: Representation of shower age for EAS. An older shower interacts higher
in the atmosphere and will have a wider shower front (Fig. adapted from [16]).

and electromagnetic contents of an EAS, with older showers having a larger
hadronic content, while younger showers having a larger electromagnetic con-
tent. Nonetheless, one third of the energy carried by the primary cosmic ray
is transferred to the electromagnetic part of the shower [17]. According to the
superposition model [18], a primary cosmic ray of mass A and energy E can
be taken as a superposition of A nucleons, each with energy Enuc = E/A.
This model can be used to a good approximation, because typical cosmic ray
energies are much greater than binding energies of nucleons. For example,
the highest binding energy per nucleon of a stable element is that of iron, with
a value of 8.8 MeV. Heavier primaries with more nucleons have a smaller en-
ergy per nucleon, corresponding to a larger interaction cross-section and a
higher chance of interacting higher in the atmosphere [19]. Through a higher
number of scattering centers, they will also create a larger number of secon-
daries in the first interaction. As a hadron shower develops, charged pions
will gradually decay into muons and neutrinos – both of them rarely interact-
ing before reaching the ground. This can create an asymmetry of the shower
around the shower axis that will not be visible for EAS initiated by electro-
magnetic particles.
With all the uncertainties for particle interaction processes at such high ener-
gies, the sources of fluctuations between EAS are:
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– Cosmic ray mass composition: At low and intermediate energies, cos-
mic rays are mostly composed of lighter particles (protons, positrons
and electrons) [3], while at extreme energies, their composition is still
uncertain. Assuming these are stable particles, they can range anywhere
between protons and iron. For a more detailed overview on this subject
see Chapter 4.

– Extreme energy cross-sections: With energies surpassing man-made col-
liders, we only have an estimation of hadronic interaction cross-sections
at the highest energies. Different hadronic interaction models usually
extrapolate data from experiments in order to describe interactions at
extreme energies.

– Elasticity: Most of the energy in a hadron collision is taken by one nu-
cleon, known as the leading nucleon, while other secondaries get only
a fraction of this energy. The fraction of energy transferred to a leading
nucleon (elasticity), described by simulations, is plotted in Fig. 2.13.

Figure 2.13: Elasticity of a hadronic collision versus energy. Indicates the fraction of
energy of initial particle retained by a leading nucleon [20].

– Collisions of secondary particles: After being created, secondaries in
an EAS can collide with atmospheric nuclei to create even more parti-
cles. This causes an additional elasticity effect further down the cascade
chain.

– Decay or interaction of π±: Charged pions have a much longer decay
lifetime than neutral pions, so they will not decay immediately. Instead,
they can interact with atmospheric nuclei in hadronic collisions and ran-
domly produce an additional hadronic sub-shower.

Just as in an electromagnetic cascade, hadronic cascades also achieve their
maximum, when particles reach their critical energies at ∼GeV. In this case,
however, the maximum is estimated from observations or simulations, due to
the above mentioned fluctuations.

14



3 Pierre Auger observatory

At energies above 1015 eV cosmic rays need to be detected indirectly, with
the help of Earth’s atmosphere. When reaching for even higher energies,
detectors also need to be large enough to catch the small flux of cosmic rays
at that part of the spectrum. These extreme energies are measured at large
detector arrays, such as the Pierre Auger Observatory [21]. It is currently the
largest cosmic ray observatory, operational since 2004 and covering an area of
3 000 km2 in Pampa Amarilla, Argentina. Its hybrid detection system consists
of 1 600 water Cherenkov stations, collectively known as the surface detector
(SD), and 24 fluorescence telescopes positioned at four fluorescence detector
buildings (FD). Each of the FD sites has its own lidar system to measure the
observation capabilities determined by the Earth’s atmosphere. The layout of
the Pierre Auger observatory is shown in Fig. 3.1, where black and gray dots
show water Cherenkov stations and blue lines define the field of view of each
fluorescence telescope. In its original design, the Pierre Auger observatory

Figure 3.1: The Pierre Auger Observatory detection system: 1 600 water Cherenkov
stations (black dots), four FD buildings with 6 telescopes each (blue lines) and laser
facilities (CLF and XLF). Near the Coihueco FD building are also two low energy
upgrades: the 750 m array region (gray dots) and High Elevation Auger Telescopes
(HEAT, red lines), for detection down to energies of 1017 eV [22].
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was created to detect cosmic rays with energies above 1018 eV, but a collection
of low energy upgrades extended this range down to about 1017 eV. These
are the surface detector upgrade called the 750 m array and the fluorescence
detector upgrade called the High Elevation Auger Telescopes (HEAT).

3.1 Surface detector

The 1 600 water Cherenkov stations that constitute the surface detector (SD)
are positioned in a hexagonal array with a separation of 1.5 km. They cover
a combined area of about 3 000 km2. Each of the water Cherenkov stations is
a plastic container holding 12,000 litres of deionized water in a highly reflec-
tive Tyvec bag and three photomultiplier tubes (PMTs). Whenever a signifi-
cantly energetic charged particle, with velocity above the Cherenkov thresh-
old crosses the station, it produces faint Cherenkov light, which is measured
by the PMTs (Photonis XP1805/D1 [23]). The sampling frequency for each
PMT signal trace is 40 MHz. The main structure of water Cherenkov stations
is shown in Fig. 3.2. Operational time of the SD is nearly 100% and is only

Figure 3.2: Left: Water Cherenkov station structure [24], and right: one of the three
PMTs detecting Cherenkov light in the station.

down for stations that are under maintenance or during lightning strikes. The
separation between stations plays an important role in determining the low
energy limit of the observatory. A cosmic ray EAS must trigger at least a
collection of three stations for an event to be considered valid and not just
noise [25]. A low energy shower is mostly absorbed in the atmosphere and
is unable to trigger multiple stations at the ground. Halving array separa-
tions, as done with the 750 m array extension of the SD [26], makes this part
sensitive to lower energies. The 750 m array is positioned in front of the FD
low energy upgrade (HEAT telescopes) and covers an area of 23.5 km2 with
its 61 water Cherenkov stations. Seven of these stations are also coupled with
a buried muon detector AMIGA [27] to better estimate the muonic content of
a shower. These scintillator counters are buried 2.3 m below the station and
each cover an area of 30 m2.
In addition to the 750 m array, a new upgrade to the SD has been operational
since 2018, named AugerPrime [28, 29]. To get a better determination of the
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primary particle type, AugerPrime will better separate between muonic and
electromagnetic contents of an EAS. Each of the SD stations will be upgraded
with a 4 m2 surface scintillator detector (SSD) on top of the current station
housing as shown in Fig. 3.3. From these two complementary surface de-

Figure 3.3: A water Cherenkov station fitted with a scintillator detector as part of the
AugerPrime upgrade [22].

tection methods, the SSDs will be dominated by electron signals and SDs by
muonic and photonic signals. For cross-correlation checks, both signals can
be compared to determine the number of muons at ground level.
The reconstruction of cosmic ray events with the SD is based on measure-
ments of signal size and timing information from each triggered station. Thus,
we can estimate the arrival direction and energy of the primary cosmic ray.
The procedure of event reconstruction follows these steps [23]:

1. Event selection:
For a more precise reconstruction, additional T4 and 6T5 triggers are
applied to the events stored in the data. The T4 trigger ensures adjacent
stations to be consistent with the propagation of the shower front. This
removes any stations triggered by background from low energy show-
ers or random muons. The 6T5 trigger, also known as the fiducial cut,
removes any events, where the station with the highest trigger is not
surrounded by 6 working neighbour stations.

2. Shower geometry:
Using a concentric spherical model, the particle shower front produces
signals in stations around the shower axis. In this model the origin of
the shower is at its starting point ~xsh and time t0, while shower particles
move with the speed of light away from the origin. Fig. 3.4 shows a
two-dimensional representation of the concentric spherical model and
displays the evolution of the shower front.
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Figure 3.4: Concentric spherical model, showing the evolution of the shower front.
At time ti − t0, station i is triggered [23].

3. Lateral Distribution Function (LDF):
Measuring the signal at each station, it is possible to order them by dis-
tance from the shower axis. This distribution is then fitted by a modified
Nishimura-Kanata-Greisen function [30, 31] for the 1.5 km grid separa-
tion

S(r) = S1000

( r
1000 m

)β
·
(

r + 700 m
1700 m

)β+γ

, (3.1)

in order to determine the lateral distribution of the signal along the
ground. An example of an LDF is shown in Fig. 3.5. The unit of 1 VEM
is equivalent to the signal of a vertically incident muon in the middle of
the station.

4. Arrival direction:
Arrival direction is calculated by using the location of the virtual shower
origin ~xsh, where concentric spheres have their center (see Fig. 3.4), and
the impact point, where the shower axis hits the ground ~xgr

â =
~xsh −~xgr∣∣~xsh −~xgr

∣∣ . (3.2)

5. Energy calibration:
The lateral distribution of the signal gives an estimation of the energy
picked up by the SD. However, parameter S1000 depends on the zenith
angle, so it is fitted by a polynomial function fCIC(θ) in order to convert
the event to a reference angle of 38◦ [23] with

S38 =
S1000

fCIC(θ)
. (3.3)

The calculated reference parameter is still not a true calorimetric mea-
surement of the energy, so a cross-calibration with the fluorescence de-
tector measurement is needed. Fig. 3.5 shows the correlation between
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EFD and S38 and the best energy fit through the data according to func-
tion

EFD = A
(

S38

VEM

)B
, (3.4)

where A = (1.90± 0.05)× 1017 eV and B = 1.025± 0.007.
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Figure 3.5: Top left: Array distribution of triggered stations, with colors denoting the
ground time ordering (from yellow to red), top right: lateral distribution function of
the event, bottom: the correlation between EFD and S38 used in energy calibration of
the SD measurement [23].

3.2 Fluorescence detector

The fluorescence detector (FD) consists of 24 fluorescence telescopes, each ob-
serving a field-of-view of 30◦ in the azimuth and 30◦ above the surface array
[32]. They are positioned in groups of 6 at four sites as a complementary de-
tection method to the water Cherenkov stations in the SD array. When shower
particles with sufficiently low energy collide with nitrogen molecules, they
excite them into higher energy states, which is immediately followed by de-
excitation (as described in section 2.1.1). This relaxation of nitrogen molecules
emits fluorescent light in a distinct range of wavelengths between 300 nm and
430 nm. Excitation and the emitted fluorescent light give the amount of de-
posited energy along the shower axis, making detection of fluorescent light
a calorimetric measurement. A fluorescence telescope setup, shown in Fig.
3.6, consists of an aperture filter, a large segmented mirror and a camera
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Figure 3.6: Left: Fluorescence telescope setup with aperture filter on the left, mirror
on the right and camera in the middle [28], and right: one of the 440 PMTs from the
camera that is detecting fluorescent light in the field-of-view of the telescope.

with PMTs capable of detecting fluorescent light. The incoming light is first
transmitted in the particular wavelength range of the UV filter, serving as a
window and reducing the amount of background light. At the edge of the
window is a corrector ring to correct for aberration of highly off-center in-
cident light. The filtered light then reflects off of a mirror with an area of
13 m2, which is composed of either 36 rectangular or 60 hexagonal subsec-
tions. Finally, the light reaches a camera with 440 PMTs (Photonis XP3062
[23]) serving as photodetectors. Each PMT is a camera pixel measuring the
amount of light with peak efficiency in the UV range and field-of-view an-
gular size of 1.5◦. The sampling frequency for each FD telescope camera is
10 MHz [32]. An EAS visible in the field-of-view of the telescope will produce
a line of activated pixels on the camera and precisely determine the evolution
of the shower. Contrary to SD stations, FD telescopes are limited by ambi-
ent light and weather conditions, dropping their operational time to ∼13%.
Therefore, observations with telescopes can only be done, when background
light is sufficiently low (astronomical twilight, moon illumination below 70%,
moon not close to the field-of-view of a telescope, no light reflections off of
clouds) and weather conditions are not detrimental to the detector or its view-
ing capabilities (such as during high cloud coverage, precipitation and high
winds).
Due to the size of the whole array, each FD building has its own backscatter
lidar system to determine observation conditions. As shown in Fig. 3.7, each
system has three mirrors with a diameter of 80 cm and a focal length of 41 cm
coupled with photomultipliers. The laser used for this purpose has a wave-

Figure 3.7: Left: Photograph [22], and right: schematic [33] of the lidar system at the
Pierre Auger Observatory for one of the FD building locations.
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length of 351 nm in order to match the photons created during fluorescence
of a shower. Its frequency is set to 333 Hz, meant for distinguishing between
laser shots and cosmic ray events. Monitoring is most commonly performed
by continuously moving the lidar system between two extreme zenith angles
of 45◦ [33]. The first scanning path is done along the middle of the FD field-of-
view and the second is perpendicular to the first. With this, we can determine
the cloud coverage and horizontal atmospheric homogeneity in the area of the
FD. In addition to the lidar system, weather conditions are monitored with
full-sky background cameras to estimate light intensity, and laser facilities in
the middle of the array to estimate the height of the lowest cloud layer and
viewing conditions from all four FD locations.
The low energy extension of the FD, called HEAT, is positioned at one of
the FD building sites (Coihueco) and overlooks the 750 m array of the SD. It
consists of three fluorescent telescopes and has a similar construction to FD,
but with a different shuttering system and a possibility to adjust their tilting
angle. Their main operational position is observing altitudes between 30◦ and
60◦ above the surface array, thus observing the early development of exten-
sive air showers. In this way, it can detect low energy showers, that were
attenuated before they could reach the field-of-view of the FD. For calibration
purposes, they can also be shifted to the same viewing altitude as the FD.
Fig. 3.8 shows the HEAT housings tilted to their tilted position and one of the
shutters open.

FD measurements are calorimetric measurements, meaning that detected

Figure 3.8: HEAT telescopes in their tilted position, with one of the vertical shutters
open. The inside structure is similar to FD, which is shown in Fig. 3.6 [22].

fluorescent light is proportional to the energy deposited by charged shower
particles. As such, it is also a good measure of primary particle energy. When
combined with water Cherenkov detectors at ground, the timing produces
an accurate determination of arrival direction. The procedure of event recon-
struction follows these steps [23]:

1. Pulse reconstruction:
Baseline from camera pixel ADC traces is subtracted from the signal
to remove background noise from measurements. Events, with a valid
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track of five or more pixels (shown in Fig. 3.9) and a signal-to-noise ratio
of at least 5, are used for further reconstruction. Converting the resulting
ADC counts to the number of detected photons are used to produce the
longitudinal profile, while timing information of each triggered pixel
helps in the geometric reconstruction of the shower axis.

Figure 3.9: Fundamental patterns of at least five active pixels (including their rota-
tions and reflections) considered as event tracks and triggered during measurements
(Fig. adapted from [32]).

2. Shower detector plane (SDP):
The shower detector plane is the plane spanning between the shower
axis and the triggered fluorescence telescope. Using the track produced
on the camera, both azimuth φSDP and tilt ϑSDP angles of the SDP are
calculated, while the uncertainty is measured from laser shots at the
center of the array. A graphical representation of the SDP is shown in
Fig. 3.10.

Figure 3.10: Representation of the shower detector plane. It is determined by the
track produced on the FD telescope camera [32].
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3. Hybrid timing:
The projection of the shower onto the camera evolves along the SDP,
where each pixel is triggered at time

ti = t0 +
Rp

c
tan

(
χ0 − χi

2

)
, (3.5)

and t0, Rp and χ0 are parameters defining the shower axis. Including the
timing of at least one SD station enables a much better determination of
arrival directions. The track measured by an FD telescope camera and
ADC traces from three different camera pixels are shown in Fig. 3.11 in
order to show the development of the shower.
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Figure 3.11: Top: A track produced on an FD telescope camera, and bottom: timing
information from traces of three pixels (color corresponds to pixels on the top figure).

4. Light collection:
The total light flux measured at a telescope is a sum of signals from each
camera pixel and each time bin.

5. Longitudinal profile reconstruction:
Timing information from the previous steps is converted into deposited
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energy of shower particles as a function of slant depth dE
dX (Xslant). Dur-

ing the reconstruction, any loss of light due to attenuation in the atmo-
sphere is accounted for, and light sources other than fluorescence are
identified (Cherenkov light and multiple scattered light). The resulting
longitudinal profile, shown in Fig. 3.12, is fitted with a Gaisser-Hillas
function [34]

fGH(X) =

(
dE
dX

)
max
·
(

X− X0

Xmax − X0

) Xmax−X0
λ

e
Xmax−X

λ , (3.6)

where shape parameters are λ, X0, Xmax and
(

dE
dX

)
max

. The recon-
structed energy of the primary particle is then simply proportional to
the integral of this curve, where missing energy from neutrinos and
high energy muons is accounted for [35].
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Figure 3.12: Top: Timing information of the total signal, with included other sources
of light, and bottom: the deposited energy as a function of slant depth, also known
as a longitudinal profile of a shower.
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4 Mass composition of UHECR

Mass composition studies focus on uncovering the type of primary cos-
mic rays (their mass and charge) from their observations. Direct detection
methods at lower energies enables us to precisely determine their mass com-
position. These energies will not be covered in the scope of this work, so
an overview on mass composition at lower energies is available in [3], with
a range of balloon and satellite experiments, such as ISS-CREAM [36] and
CAPRICE98 [37]. At lower energies, cosmic rays bend in galactic magnetic
fields and do not point back to their original sources. Since deflection of
charged particles in an inhomogeneous magnetic field inversely depends on
energy

∆α =
Zec
E

L∫
0

B(x) sin ϕ(x)dx, (4.1)

it is high-energy cosmic rays, that can be used for determine their origin. At
the same time, UHECR are much more energetic than anything achievable at
colliders, so determining the location of their sources could give an insight on
their acceleration processes.
Additional information on sources of cosmic rays can be obtained from the CR
energy spectrum (Fig. 2.1). Features described earlier as knee, second knee and
ankle hold information on cosmic ray source population and propagation of
cosmic rays through the galactic and extragalactic Universe. The abrupt drop
of the cosmic ray flux above the ankle could be described as an interaction of
protons with cosmic microwave background photons

p + γCMB −→ p + π0,

p + γCMB −→ n + π+,
(4.2)

known as the GZK effect [9, 10]. The threshold for pion production through
the two processes is estimated to be at around 5× 1019 eV [9]. A developing
field in astroparticle physics is the multimessenger approach, where com-
plementary experiments observe different messengers (cosmic rays, photons,
neutrinos, gravitational waves) from astrophysical processes originating at
the same source. Fig. 4.1 depicts propagation of different particles used in
multimessenger studies through galactic magnetic fields. Because the GZK
effect predicts the production of cosmogenic photons and neutrinos through
processes following Eq. (4.2)

p + π0 −→ p + 2γ,

n + π+ −→ n + µ+ + νµ −→ n + e+ + νe + ν̄µ + νµ,
(4.3)

their detection would prove that cosmic rays have a light mass composition at
ultra–high energies. Current results on photon and neutrino searches at the
Pierre Auger Observatory have found no candidates, but these measurements
have set stringent upper limits to its detection capabilities [38, 39].
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Figure 4.1: Depiction of particle propagation through galactic magnetic fields and
Earth’s atmosphere. Protons (blue) are deflected in galactic magnetic fields, while
photons and neutrinos point directly towards the source [40].

As mentioned in the previous chapters, the largest uncertainty when deter-
mining the primary mass composition lies in uncertainties of hadronic inter-
actions. Since no man–made colliders are able to achieve the highest energies
of UHECR, the physics of collisions can only be extrapolated from low energy
measurements. The Large Hadron Collider (LHC) is at present able to reach
energies of Ecm =

√
sLHC = 13 TeV in a single collision. We can approximately

convert this to the laboratory frame with one stationary particle [3], as is the
case for cosmic rays

Elab =
E2

cm
2m

, (4.4)

where it is assumed that both collision particles have the same mass m and
that particle energies are much greater than their masses (Ecm � 2m). There-
fore, the cosmic ray energy equivalent to the center-of-mass collision energies
of the LHC is Elab ≈ 1017 eV. This lies just below the lowest energy limit
achievable by the low energy extension of the Pierre Auger Observatory.
Currently, extensive air shower simulation codes incorporate EPOS [41],
QGSJET [42] or Sibyll [43, 44] as high energy hadronic interaction models.
In addition to hard collisions, the majority of collisions in an EAS are ac-
tually soft, where there is a small exchange of particle momentum. Each
hadronic interaction model describes soft interactions in their own way and
then compares its results to available collider data. A comparison between ex-
trapolations from collider results of different hadronic models can be found
in [45, 46] and a comparative analysis between models at cosmic-ray energies
can be found in [47]. EAS simulation software tries to take the extrapolated
cross-sections and apply them to UHECR. As such, all collisions made be-
tween high energy hadronic particles follow the same treatment, so any dis-
crepancies produced at the top of the atmosphere will be propagated until
the shower reaches the detectors.
In summary, a good estimation of UHECR mass composition would improve
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the study on the following topics:

– Discrimination between hadronic interaction models at UHECR ener-
gies:
Would offer better knowledge of interactions between UHECR and at-
mospheric nuclei, with energies far above those measured at colliders.

– Backtracking of UHECR with energies above 1019 eV to their sources:
The higher the energy of a cosmic ray, the smaller its deflection in galac-
tic magnetic fields. Deflections are also proportional to charge, so heav-
ier hadrons, with larger charge, are out of the question for source lo-
cation studies. Better estimation of mass composition would improve
backtracking and offer a complementary positioning technique to mul-
timessenger analysis.

– Acceleration processes of UHECR:
Locating sources that are able to produce cosmic rays at such high ener-
gies, would give a better insight on their acceleration.

– Cosmic magnetic field strength:
Since UHECR are charged hadrons, they would offer a better under-
standing of magnetic fields encountered on their way to Earth.

From EAS, mass composition can be estimated with the help of observational
parameters (observables) that depend on primary particle mass. These are
described in greater detail in the following section.

4.1 Extensive air shower observables

Different primary particle types will produce a wide range of EAS shapes.
Photons will overwhelmingly produce electromagnetic secondaries, neutri-
nos will develop deep in the atmosphere and light hadrons will reach their
maximum deeper than heavy hadrons. The discrimination between neutral
primaries (photons, neutrinos) and hadron showers is in principle much sim-
pler, compared to discrimination between different hadron masses, because
of the nature of interactions, collisions and decays of primary and secondary
particles. Neutral particles at ultra–high energies have not been detected yet,
but are under precise study at the moment. Existence of such high energy
photons and neutrinos, known as cosmogenic photons and neutrinos, would
confirm the existence of the GZK effect.
Extensive air shower observables are experimentally determined properties
of a cosmic ray shower, each of them characterising a certain aspect of the
EAS. With both SD and FD measurements, these can predict the shape of the
shower, its development and the signal left by particles reaching the ground.
For an observable to be mass composition sensitive, it needs to possess a
good discrimination power between different hadrons, ranging from protons
to iron. Proton is the lightest hadron and iron is the heaviest stable element
at the end of many decay chains. The most widely used observable for mass
composition studies is the depth of shower maximum Xmax, measured by flu-
orescence telescopes, due to its good separation capabilities. Similarly, the
depth of shower maximum for muons Xµ

max again separates hadron showers
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well, but is at the moment estimated only indirectly through comparisons
with simulated showers. However, FD measurements have a fairly low oper-
ational time, so a range of other SD related observables have also been iden-
tified. These mostly try to discriminate based on the muon content at ground
level or the distribution of shower particles around the shower axis. Some
of the observables that fall under this category are the number of muons at
ground level Rµ, the SD signal at 1000 m from the shower axis S1000 and the
leading edge risetime of the integrated SD signal t1/2. A reference value of
risetime at 1000 m from the shower axis t1000 is usually used for mass com-
position studies. Rµ uncovers the muon content of a shower and thus tells,
if the primary was a lighter hadron (smaller number of produced muons)
or a heavier hadron (larger number of produced muons). The Pierre Auger
Observatory, is not able to measure the muon content with only its surface de-
tectors, but it will be able to do so with scintillator counters on top of ground
stations as part of the AugerPrime upgrade. Some other uses of risetime have
also been tested and their results are described in section 5.
Mass sensitive observables Xmax, S1000 and t1000 have been used in the analy-
sis of this work and are explained in greater detail in the following sections,
while more information on others can be found in [17]. For quick reference,
the mentioned observables are listed in Tab. 4.1, showing the difference be-
tween lighter and heavier primaries.

Table 4.1: Comparison of observables for EAS induced by lighter versus heavier
primaries.

Observable Units measurement lighter primary heavier primary

S1000 VEM SD smaller larger
t1000 ns SD longer shorter

Rµ
number

of muons SD (SSD) smaller larger

Xmax g/cm2 FD larger smaller
Xµ

max g/cm2 SD (SSD) larger smaller

4.1.1 Depth of shower maximum (Xmax)

In order to determine the development of an EAS in the atmosphere, we use
units of g/cm2, where 0 g/cm2 marks the top of the atmosphere. Addition-
ally, longitudinal development is typically expressed with slant depth, mea-
suring the travelled distance along the shower axis. This removes the depen-
dence of longitudinal development on atmospheric density and on shower
axis orientation. The number of shower particles along the axis of an EAS
varies depending on collisions and emission processes. Once secondaries
lose enough energy, production of new particles is highly suppressed, and
the shower will eventually get absorbed. The maximum of this longitudi-
nal distribution is defined as the depth of shower maximum Xmax. As men-
tioned in previous chapters, heavier primary particles have a larger collisional
cross-section and will develop higher in the atmosphere — at smaller depths.
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Correspondingly their Xmax will be smaller than for lighter primaries. The
comparison of longitudinal distributions from a proton and iron primary is
shown in Fig. 4.2. Simulated events for proton and iron shown on the figure
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Figure 4.2: Comparison of longitudinal distributions between showers induced by
proton (blue lines) and iron primaries (red lines). Lines correspond to simulations
with identical input parameters, that were taken from a detected shower event (black
line). Thicker lines for simulations are averages of thinner lines. Green points mark
the depth of shower maximum Xmax for each event.

have been set to have the same energy, geometry and impact location as an
event detected by the Pierre Auger Observatory (shown in black). The event
with ID 143206281100, detected in 2014, had an FD reconstructed energy of
2.36× 1019 eV and a zenith angle of 30.39◦. The advantages of using Xmax for
mass composition studies are a good separation strength between different
primary masses, small spread of Xmax values and small measurement un-
certainties. Conversely, the drawback is a much smaller operational time of
FDs, which corresponds to a significantly smaller data set. Since the majority
of particles interacting with nitrogen molecules are electromagnetic, this is a
nearly calorimetric measurement. As such, Xmax is not greatly affected by any
muon discrepancies between simulations and observations.

4.1.2 Signal at 1000 m from the shower axis (S1000)

The signal in each active station is measured in units of VEM (Vertical Equiv-
alent Muon), which is defined as the signal produced by one vertical muon
passing through the center of the detector. Reconstructing signals in each
tank gives a distribution of tank signal versus distance from the shower axis.
This distribution is called the Lateral Distribution Function (LDF). For mass
composition purposes, we select a reference value of this function at 1000 m
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from the shower axis, denoted as S1000. It is a representation of the size of
the shower front detected by SD stations. An old shower, developing early
in the atmosphere, will produce a wider shower front and have a large num-
ber of muons at ground level. Heavier primaries will generally produce a
larger number of muons, so the value of S1000 will be larger, when compared
to lighter primaries. A comparison of LDF functions from a proton and iron
primary is shown in Fig. 4.3. As before, the black line represents an event
detected by the Pierre Auger Observatory (ID 143206281100, FD energy of
2.36× 1019 eV, FD zenith angle of 30.39◦), from which input parameters for
the simulations have been taken. The observable is sensitive to primary parti-
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Figure 4.3: Comparison of LDFs between showers induced by proton (blue lines)
and iron primaries (red lines). Lines correspond to simulations with identical input
parameters, that were taken from a detected shower event (black line). Thicker lines
for simulations are averages of thinner lines. Green points mark the SD signal at
1000 m from the shower axis S1000 for each event.

cle mass and contributes to a better separation between primary masses. The
advantage of using S1000 for mass composition studies is a nearly 100% op-
erational time of SDs, creating a large data set. On the other hand, surface
station signals include a combination of hadronic and electromagnetic parts
of the shower, which are difficult to disentangle. It also has a far weaker
separation strength than the FD observable Xmax.

4.1.3 Risetime at 1000 m from the shower axis (t1000)

During the development of an EAS, secondaries can be created at any time
from the top of the atmosphere to the shower maximum, after which particle
generation is suppressed. If following a straight line from its creation point
to the SD station on the ground, a particle that is created later will arrive with
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a time delay as compared to a particle created closer to the initial interaction.
As such, there is a time spread of particle arrival times, depending on the
location, where they are produced. This time spread is represented in Fig.
4.4. Because old showers reach their maximum earlier than young showers,
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Figure 4.4: Example of the time spread seen in SD stations, if secondary particles are
created at different times along the development of an EAS. The dashed line and its
corresponding signal shows a particle created close to the initial interaction, while the
solid line and its corresponding signal shows a particle created closer to the shower
maximum [2].

they have a smaller time spread in the signal of SD stations. This means that
showers from heavier primaries produce a smaller spread of arrival times and
possess a higher muonic content at surface detectors compared to lighter pri-
maries. Muons deposit a larger amount of energy in the detectors, because
they are mostly produced early in the atmosphere, and thus show up on the
SD signal as sharp peaks. Electromagnetic secondary particles, on the other
hand, typically travel a shorter distance and represent the body of the SD
signal. The risetime t1/2 of each triggered SD station is then measured as
the time it takes the integrated signal to rise from 10% to 50% of the maxi-
mal value. A reference value at 1000 m from the shower axis is taken from a
quadratic fit through all SD station risetime values triggered by a shower. A
more detailed explanation of the estimation of t1000 is in section 6.4.4. Sim-
ilar to S1000, t1000 is sensitive to both muons and electromagnetic particles
detected by SD stations. However, because heavier primaries have a larger
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muon content, the signal will have sharper peaks and thus a shorter value of
t1000. Fits through SD station risetimes, used for determining t1000, are shown
in Fig. 4.5. As was the case for Xmax and S1000, the black line shows the Pierre
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Figure 4.5: Comparison of risetime fitting functions between showers induced by
proton (blue lines) and iron primaries (red lines). Lines correspond to simulations
with identical input parameters, that were taken from a detected shower event (black
line). Thicker lines for simulations are averages of thinner lines. Green points mark
the risetime at 1000 m from the shower axis t1000 for each event.

Auger Observatory data event for comparison (ID 143206281100, FD energy
of 2.36× 1019 eV, FD zenith angle of 30.39◦). Being an SD based observable,
it has similar advantages and disadvantages as S1000, but has a much wider
spread. A more in-depth explanation of calculating t1/2, t1000 and relative
risetime ∆R is presented in sections 6.4.4 and 6.4.5, while the Delta method
approach, used in [2], is presented in section 5.2.
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5 Published results on mass composition of UHECR

In order for results of different analysis techniques to be directly compa-
rable, we express the mass composition as the average logarithmic mass of
cosmic rays

〈ln A〉 =
N

∑
i=1

fi ln Ai, (5.1)

where subscript i denotes each element included in the approximation of the
composition, N is the number of included elements, fi is the elemental frac-
tion and Ai is the atomic weight of an element. So far, mass composition
analyses have been performed on single observables in order to evaluate their
capability for separating different primary particle types. With its greater dis-
crimination power and insensitivity to muons, Xmax has been the most widely
used observable. A comparison of Xmax analysis results from different exper-
iments is shown in Fig. 5.1. All other observables used for estimating the

Figure 5.1: Comparison of results from different optical experiments measuring the
depth of shower maximum Xmax. Note that the estimation of the mass composition
depends heavily on the used hadronic interaction model. Models are QGSJET01 (top
left), QGSJET-II (top right), Sibyll-2.1 (bottom left) and EPOS1.99 (bottom right) [17].

composition have been SD observables, due to their far greater statistics. As a
direct continuation from Xmax, the muon production depth Xµ

max (MPD) has
been tested in [48]. However, this requires a good separation of the electro-
magnetic and muonic signals at ground stations, which for the Pierre Auger
Observatory will be possible to a greater extent with added scintillator coun-
ters (SSDs). Raw risetime shows an asymmetry, depending on the azimuthal
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direction of the shower event and can as such be used for estimating the mass
composition. The azimuthal asymmetry of risetime was used as the analysis
approach in [49]. Both of these results are shown in Fig. 5.2 for comparison.
Requirements on both to return viable results demanded the use of a narrow

Figure 5.2: Comparison of estimated mass composition from Xmax analysis (black
points) [50], muon production depth analysis (blue points) [48] and azimuthal asym-
metry of risetime analysis (red points) [49].

energy range, with few energy bins (5 for MPD analysis and 6 for azimuthal
asymmetry). Both showed a heavier estimation for mass composition, with
EPOS-LHC hadronic interaction model having even heavier composition than
QGSJET-II and sometimes showing an average composition heavier than iron.
The latest complementary methods for determining mass composition at the
Pierre Auger Observatory are from Xmax moments [1, 50], elemental fractions
from Xmax distribution fitting [1, 51] and using the Delta analysis approach for
risetime [2]. These approaches are described in greater detail in the following
sections.
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5.1 Composition implications from fluorescence telescopes

The Xmax analysis from FDs takes hybrid data measured between years 2004
and 2015, with a combined energy range of FD and HEAT telescopes that
extends above 1017.2 eV. Whenever an event is seen by both FD (Coihueco
building) and HEAT, it is combined into the so called HeCO dataset, with
improved Xmax estimation and a wider field-of-view. Fiducial and quality
cuts are applied to all data events, which favor events with a good estimation
of the maximum Xmax and remove any events with unstable measurement
conditions. A summary of all selection cuts can be found in Appendix A.
After selection cuts are applied, a total of just over 40 k events (25688 for
FD and 16778 for HeCO) are split into 27 energy bins (nine for HeCO and
18 for FD). From each distribution it is possible to extract the first two mo-
ments of Xmax as described in [50]. The first moment is the average depth
of shower maximum 〈Xmax〉 of the distribution, while the second is its de-
viation σ (Xmax), denoting shower-to-shower fluctuations of the observable.
Both moments as a function of energy are displayed in Fig. 5.3, where lines
for each of the three hadronic interaction models (EPOS-LHC, QGSJET-II.04,
Sibyll-2.3) and two particle types (proton, iron) are added for comparison.
A break in the estimated primary mass happens at 1018.33±0.02 eV, becoming
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Figure 5.3: Mean (left) and standard deviation (right) of the Xmax distribution as a
function of energy. Simulations for proton and iron primaries are added for three
different hadronic interaction models [1, 50].

lighter with increasing energy below it and heavier above it. The elongation
rates (rate of change of 〈Xmax〉) are (79± 1) g/cm2/decade below the break
and (26± 2) g/cm2/decade above it, while a constant composition has the
elongation rate ∼60 g/cm2/decade. Similarly, the fluctuations σ (Xmax) de-
crease towards heavier compositions with increasing energy after 1018.3 eV.
Each of the two moments can be converted into the average logarithmic mass
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〈ln A〉 and its variance σ2 (ln A) as described in [52]

〈ln A〉 =
〈Xmax〉 − 〈Xmax〉p

fE
,

σ2 (ln A) =
σ2 (Xmax)−

〈
σ2

sh

〉
f 2
E

.
(5.2)

Here 〈Xmax〉p and
〈
σ2

sh

〉
are the mean and variance of proton showers, and fE

is an energy dependent factor [52]

fE = ξ − D
ln 10

+ δ log
(

E
E0

)
, (5.3)

where ξ, D and δ are parameters specific to each hadronic interaction model
and E0 is the energy of proton induced showers (as explained in [52]). There
is still a clear break in the estimated composition at 1018.33±0.02 eV as shown
in Fig. 5.4. Variances however, are becoming predominantly smaller with in-
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Figure 5.4: Mean (top) and variance (bottom) of ln A for three different hadronic
interaction models: EPOS-LHC (left), QGSJET-II.04 (middle), Sibyll-2.3 (right) [1, 50].

creasing energy above 1018.3 eV. For highest primary energies, these also take
unphysical negative values, which indicates that models predict a broader
spread of masses than what we expect from data.
Additional analysis approaches use distributions of Xmax instead of the elon-
gation rate in order to directly obtain elemental fractions, without the need
for conversions to ln A. The approach used in [51] takes energy binned dis-
tributions of Xmax from four different primary particle types (proton, helium,
nitrogen, iron) and three different hadronic interaction models (EPOS-LHC,
QGSJET-II.04, Sibyll-2.1). Each of these distributions is scaled with a fitting
parameter denoting the elemental fraction and fitted to the Xmax distribution
of Pierre Auger data using a binned-maximum likelihood method. With a
constraint that all elemental fraction must sum to one, the fit returns elemen-
tal fractions of each element making it possible to infer the mass composition

36



of data. Elemental fractions of each element with respect to energy are shown
in Fig. 5.5. Another approach, takes a three parameter parameterization of

Figure 5.5: Elemental fractions with respect to energy, that were fitted to Pierre Auger
data with a binned-maximum likelihood method. The bottom panel shows the fit
quality estimator p-value, which indicates a good fit at values between 0.1 and 1 [51].

the Xmax distribution [53]. The parameterization function is fitted to Xmax
distributions for proton, helium, nitrogen and iron primaries, and used to fit
a mixed composition onto Pierre Auger data. Compared to the earlier ap-
proach, a newer version of the Sibyll-2.3 hadronic interaction model is used.
Similar to the previous approach, this fit gives elemental fractions that are
shown in Fig. 5.6. Both approaches indicate the mass composition becoming
heavier with increasing energy after ∼1018.3 eV. Intermediate masses, covered
by helium and nitrogen, show a strong dependence on the selected hadronic
interaction model, while all models in both approaches agree on a zero frac-
tion for iron between 1018.3 eV and 1019.4 eV.
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between 0.1 and 1 [1, 51].

5.2 Composition implications from surface detectors

The Delta method is a way to obtain a single risetime reference value from
triggered SD stations for each shower event. The observable is defined as

∆s =
1
N

N

∑
i=1

∆i, (5.4)

where N is the number of stations triggered by the EAS, and ∆i is the Delta
value for each station

∆i =
t1/2 − tbench

1/2

σ1/2
. (5.5)

Here, t1/2 is the measured station risetime value, tbench
1/2 is the benchmark fit

of risetimes and σ1/2 is the average uncertainty on risetime measurements.
The benchmark fit, shown in Fig. 5.7, is calculated for a reference energy bin
and serves as a way to remove the dependence of ∆s on the distance from
the shower axis. For a detailed explanation of benchmark fits, see [2]. When
determining the benchmark function, the data is also binned in zenith angle,
which removes the dependence of ∆s on it. Data for this analysis combines
SD data from both the 1500 m array (between 2004 and 2014) and the 750 m
array (between 2008 and 2014), with the energy range above 1017.5 eV. Se-
lection cuts take care of rejecting any bad station periods, any events with
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Figure 5.7: Benchmark fit for a reference energy bin and the representation of the ∆i
value for each triggered station [2].

a small number of triggered stations and too large zenith angles (due to at-
mospheric depth effects) [2]. The total number of 80 k events (54022 for the
1500 m and 27553 for the 750 m array) survive the cuts and are split into 15
zenith angle bins and 24 energy bins (nine and 14 for the 1500 m, and six and
ten for the 750 m array, respectively). The benchmark bin for the 1500 m array
is at [1019.1 eV, 1019.2 eV], while for the 750 m array it is at [1017.7 eV, 1017.8 eV].
These bins will by definition have the 〈∆s〉 value equal to zero. Comparing
data values with simulations, as shown in Fig. 5.8, shows that at lower ener-
gies the mass composition tends to be getting lighter with increasing energy,
while at higher energies the composition is becoming heavier with increasing
energy. The break in the evolution happens around 1018.3 eV. The ∆s values
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39



are converted into average logarithmic mass with

〈ln A〉 = ln 56
〈∆s〉p − 〈∆s〉data

〈∆s〉p − 〈∆s〉Fe
, (5.6)

where 〈∆s〉p is the mean value for proton and 〈∆s〉Fe is the mean value for
iron shower simulations. This can be used, assuming the validity of the su-
perposition model. A comparison of average mass composition from Xmax
measurements and ∆s measurements is shown in Fig. 5.9 (top). The evolution
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Figure 5.9: 〈ln A〉 from ∆s measurements (top) and from calibrated Xmax measure-
ments (bottom) as a function of energy for two different hadronic interaction models:
EPOS-LHC (left) and QGSJET-II.04 (right) [2]. 〈ln A〉 determined from FD measure-
ments (gray) are added for comparison [54].

trend and the break appear to be similar for both, but analysis using only
SD data predicts a heavier composition over the complete energy range. This
difference is caused by the inability of models to correctly predict the muonic
content of a shower and artificially producing a heavier composition estima-
tion. Another comparison aimed specifically at studying the muonic content
at ground level has been produced in [55].
A calibration of SD data using correlations between ∆s and Xmax can be cal-
culated, in order to extract the value of Xmax from a statistically larger SD
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dataset only. 〈ln A〉 values calculated from calibrated Xmax values are shown
in Fig. 5.9 (bottom), comparing mass composition estimated by SD and FD
analysis. Both methods show a comparable estimation of mass composition
with a break around 1018.3 eV, but the SD data has almost twice the statistics
(of events passing selection cuts) and it is possible to fragment the highest
energy bins. These additional energy bins show a possible reduction of the
trend towards heavier composition, but still lack the statistics to confirm it.
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6 Multivariate analysis

The analysis approach used in this thesis adopts machine learning tech-
niques in order to estimate the mass composition of UHECR. Typically, mass
composition analyses have been handled by looking at a single observable at
a time and trying to determine the primary particle composition. However,
with the use of a multivariate analysis (MVA) approach, we can include all
observables into a common analysis and gain information from both detec-
tion systems of the Pierre Auger Observatory. The main purpose of an MVA
approach is to extract mass composition information from many observables,
even though they might be weak classifiers on their own. As a whole, this en-
ables a much better discrimination between different primary particle masses.
New mass composition sensitive observables are being investigated which can
then easily be included into the analysis. For example, the AugerPrime up-
grade aims to make a better SD station separation between electromagnetic
and muonic contents.
Section 6.1 offers a brief description of machine learning and a handful of
MVA methods. The description of the reconstruction software and integra-
tion of MVA into the analysis is described in section 6.2. It also covers the
distribution fitting procedure used for the analysis part of this work. A selec-
tion of both simulation and data events is presented in section 6.3 in order to
satisfy requirements for a quality analysis of UHECR events. Section 6.4 de-
scribes additional event treatment, by combining stereo events, applying bias
corrections, removing zenith angle dependencies from absolute observables
and applying detector smearing to simulations.

6.1 Machine learning in treatment of scientific data

Multivariate analysis is an analysis technique, where it is possible to extract
information from a collection of input variables. After combining input vari-
ables, they are taken through a process defined by the selected MVA method,
and output a single MVA variable. This approach makes it possible to sepa-
rate a seemingly inseparable data set, or a data set with weak separation. In
other words, to classify events in a data set as either signal or background.
The advantage of an MVA analysis is a much superior classification of events,
although separate input variables might show weak separation capabilities.
In astrophysics, the MVA approach has not seen great use up to now, but it is
quickly finding its application in areas where separation between signals and
background is not a simple matter. This is especially true, when given large
amounts of data and many variables.
With the immense performance coming from computer clusters, machine
learning is the main driver of MVA analyses. Historically, machine learn-
ing has first been defined in 1959 by Arthur Samuel as a “Field of study that
gives computers the ability to learn without being explicitly programmed“
[56]. A newer redefinition of machine learning has been supplied in 1998
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by Tom Mitchell: “A computer program is said to learn from experience E
with respect to some task T and some performance measure P, if its perfor-
mance on T, as measured by P, improves with experience E“ [57]. Machine
learning algorithms are split into two major groups: Supervised and unsuper-
vised learning algorithms. Supervised learning algorithms use a classification
structure or a specified output value for each event. Using known outputs we
can train the algorithm to correctly classify any new events we supply. This
type of learning is used whenever we wish to compare data to known sim-
ulation distributions. Unsupervised learning algorithms, on the other hand,
are given a data set without any classification or output values. As such, it
is useful for applications where a large data set might possess an underlying
structure. The algorithm then finds similar events and groups them together.
In everyday life, machine learning is present in virtually all online services,
which offer a tailored experience for their users. In physics applications, ma-
chine learning techniques are used as MVA methods that are able to faster
and/or with more detail separate signal from background in a data set. In
machine learning approaches, input variables that are fed into the training of
an MVA method are usually known as input features.

6.1.1 Multivariate analysis methods

MVA methods in this work have been taken in a “black-box“ approach, which
indicates that a minimal amount of tweaking was done to improve their per-
formance. Following is a quick description of each selected MVA method,
while more comprehensive explanations can be found in [57, 58].
Boosted Decision Trees are robust MVA methods that need a small amount
of tweaking in order to obtain good separation of signal and background.
They take structured classifiers and perform a yes/no decision over them,
until training gains no new information from additional data. Each classifier
performing a decision is a node in the structure, which eventually splits the
complete event phase space into many subregions. These are later classified
as either signal or background. A simple representation of a tree structure is
shown in Fig. 6.1. As obvious from its name, the structure resembles a tree,
with its end points known as leaves. A split in each node is performed by se-
lecting the path with the smallest entropy, where a 50/50 split of a learner has
the largest entropy. Boosting is a method of taking many weak learners (trees)
and enhancing the classification performance by applying an accuracy weight
to their outputs and reapplying the MVA method. Misclassified events are
given a larger weight and will cause additional iterations to focus on learning
from them to a greater extent. The boosting procedure is commonly known
as building a random forest of decision trees. Each of their outputs is passed
through the final classification, performed via a majority vote from all trees
in the forest. The ensemble output from many trees is combined using one
of the available boosting techniques (AdaBoost, gradient boost, bagging,...),
which minimizes misclassification and improves the performance of the MVA
method. The advantage of BDTs are their straightforward interpretation, fast
training, insensitivity to scale, ability to process weak input features and their
good “out of the box“ performance. Some problems that can be encoun-
tered is their tendency for overfitting, which can easily be overcome by cross-
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Figure 6.1: A collection of boosted decision trees that constitute a random forest
for improved classification. Each node (green) performs a decision that minimizes
entropy. End leaves then split the final phase space into regions of signal (blue) and
background (red).

validating with a separate data set.
Artificial neural networks (ANN) are a collection of neurons, organized in a
way so that a set of input signals is modified by a response function in each
neuron. By interconnecting the neurons, they map linearly or non-linearly
correlated input features into an output MVA variable. A typical way of or-
ganizing neurons in an artificial neural network is by constructing a layered
structure with one or more neurons in each layer. Outputs from one layer
are then distributed over all neurons in the next. This structure, shown in
Fig. 6.2, is known as a multi-layer perceptron (MLP), which consists of an
input layer, a number of hidden layers and an output layer. When training

Figure 6.2: Example structure of a multi-layer perceptron (MLP), with input features
xm, an output variable yi and a three layer structure. f is the neuron activation
function, which is applied to neuron inputs weighted with wk by the previous neuron.
The number of hidden layers and the number of neurons in each hidden layer defines
the complexity of an MLP [59].
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an MLP, a forward propagation from the input towards the output layer is
taken, with each connection between two neurons receiving a weight from
the previous neuron. This weight is then applied to the input entering into
the next neuron. When forward propagation is done, the selected weights de-
fine the mapping of input features into output variables. In order to improve
the classification performance of a neural network, it needs to be able to ad-
just weights depending on the correctness of the output. One such algorithm
is called back propagation. Events used for training the MLP have known de-
sired outputs (signal or background), so they can be compared to the actual
output of the MVA. This comparison is handled by an error function, which
is minimized during the training of the method. Therefore, the propaga-
tion goes in the opposite direction and recursively adjusts the weights in the
network, so that they reduce the error function. Another algorithm that im-
proves performance is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
[60, 61, 62, 63], which performs a smaller number of iterations during train-
ing and performs faster. The advantages of neural networks appear when we
have a large amount of data or a large number of input features. They can
handle large data sets with linear or non-linear correlations and are powerful
classifiers. However, their training speed is slower than most MVA methods
and they are the quintessential “black-box“ classifiers, because of their hidden
layer structure.
Fisher and other linear discriminant analysis methods determine an axis in
the hyperspace of input features and perform a projection of class outputs
(signal and background) onto the axis. This linear axis is selected in a way, so
that the distance between both class distributions is maximized, while the dis-
persion of each class is minimized. A representation of a linear discriminant
analysis is shown in Fig. 6.3 on a two-dimensional example. The advantages

Figure 6.3: Two-dimensional example of a linear discrimination method. Two class
data sets (signal and background) are projected onto a hypersurface (in this case a
line), so that class separation is maximized and dispersions of each class are min-
imized. Left figure shows an unfavorable hypersurface selection, with overlap of
classes and a large dispersion. Right figure shows the optimal separation for this
example [58].

of linear discriminant MVA methods are the simplicity of the classifier, the
good separation power and fast training speed. They are optimal for Gaus-
sian distributed variables with linear correlations and they underperform for
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non-linear correlations.
Support vector machines (SVM) are an analysis method similar to linear dis-
crimination, but instead of classifying using a projection, they determine a
hypersurface or a decision boundary for maximizing the distance between
points of both classes, while at the same time minimizing misclassification.
This margin is defined by the perpendicular distance of the closest event to
the selected hypersurface. A representation of a support vector machine is
shown in Fig. 6.4 on a simple two-dimensional example. The advantage of

Figure 6.4: Two-dimensional example of a support vector machine method. Two
class data sets (signal and background) are separated by a hypersurface or a decision
boundary, so that the perpendicular distance to the closest point of both classes is
maximal [64].

SVMs over linear discriminants is the ability to perform separations for input
features with non-linear correlations, because they do not depend on projec-
tions. For complex examples, they are slower and slightly worse on linearly
correlated inputs. Tab. 6.1 lists the major performance differences between
MVA methods described above. Fisher linear discriminants were used for
analysis of both simulations and data in this work, as described in greater
detail in section 7.1.

Table 6.1: Major differences between performances of different MVA methods. Linear
and non-linear correlations are considered for input features.

MVA method
No or linear
correlations

Non-linear
correlations

Training
speed

Boosted decision trees Fair Good Fast
Multi-layer perceptrons (ANN) Good Good Slow

Fisher linear discriminants Good Bad Fast
Support vector machines Fair Good Slow

47



6.2 Reconstruction software and integration with MVA

Measured data from the Pierre Auger Observatory and simulations are typ-
ically reconstructed with the use of the Pierre Auger Observatory software
Offline [65]. The overall framework of Offline has the ability to implement
custom algorithms and input configurations for simulations and data recon-
structions. Its file structure is handled by the ROOT software [66] to reduce
the size of binary files and increase the reading/writing speed. ROOT’s ob-
ject oriented programming structure based on C++ makes it a logical choice
for the analysis software. After reconstructions, the general file format is the
so called Advanced Data Summary Tree (ADST), intended for quick analysis
of reconstructed events. Unlike the Offline file structure (more information
in [65]), ADST depends only on ROOT, which can then easily be used as the
software for subsequent event analysis. Additionally, ADST also comes with
a fully functional code for applying selection cuts to events. This has been
used for selection of simulations and data, as described in section 6.3.
The analysis of data greatly depends on the approach and final purpose of
the software, which was the reason why the framework in Offline is highly
customizable. This also means that after applying event selection cuts and
corrections, there is no commonly used software for mass composition analy-
sis, leaving its construction and implementation to the individual researcher.
As part of this work, an analysis software has been constructed by combin-
ing the ADST file reader for event files, the TMVA package [67] to handle
the multivariate aspect of the analysis, and ROOT to tie them both together.
Newer versions of TMVA are fully implemented in ROOT, but for this work
ROOT 5.34 and TMVA 4.2.0 have been used. The graphical user interface was
setup using the open-source GUI library wxWidgets [68], version 3.0.3. The
software is divided into four main parts:

– Open files for rewriting and MVA analysis input selection

– Further filtering, splitting and preparation of rewritten ADST files

– Prepare input settings and run the MVA analysis

– Set plotting options and run the plotting part of the software

Since typical sizes of ADST files after selection cuts are ∼40 KB/event for
data and ∼700 KB/event for simulations (assuming station particle simula-
tions have been removed beforehand), the analysis software would have been
slow when reading from them. If using ADST files directly, any binning
or additional selection cuts would have to be applied before passing them
to the analysis software to reduce analysis time and memory resources. It
was therefore opted to first rewrite ADST files and save them using mini-
mal information for mass composition analysis purposes. This includes mass
composition sensitive observables and reconstruction information needed for
selections, corrections and binning (energy, zenith angle, azimuth angle,. . . ).
This effectively reduces file sizes below 1 KB/event for both simulations and
data. The actual size depends on the information we wish to export to these
rewritten ADST files, which can easily be modified by the user. During the
process of rewriting ADST files, stereo events are combined to hold an event-
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wide value for all FD related information (described in section 6.4.1) and SD
station risetimes are recalculated (described in section 6.4.4), so we can use
them at later stages of the analysis. Even if one of the exported values is not
present in the ADST, other values are still rewritten. For example, in case
events have no SD reconstruction. The resulting files can then be merged to-
gether or combined into a file structure that will be recognized by the MVA
analysis part of the software. An example of a ROOT file structure, recog-
nized by the MVA analysis part of the software, is shown in Fig. 6.5. Each

Figure 6.5: Example of the ROOT file structure that is used for the MVA analysis.
ROOT trees (TreeS1, TreeS2,. . . ) hold the same observable structure for both simula-
tions and data. Each observable has its mean value, negative and positive statistical
uncertainties.

input file is split into ROOT trees with different samples (for example TreeS1
is for proton simulations, TreeS2 is for helium simulations,. . . ), and each tree
holds observable values for all events in the sample. For each event, the mean
value and both statistical uncertainties are saved separately.
From this point on, a data set will denote a general set of events, while sim-
ulation or Pierre Auger data events will be specifically marked. A sample
will denote a set of events coming from a common source (i.e. from proton
primaries, from iron primaries, from mock data, from Pierre Auger data,. . . ).
Any propagation of uncertainties that needs to be accounted for during cal-
culations or analysis is treated with

(δQ(x, y, . . . ))2 =

(
∂Q
∂x

δx
)2

+

(
∂Q
∂y

δy
)2

+ . . . , (6.1)

where Q is a quantity, which depends on other quantities x, y, . . . , and δQ is
its uncertainty.
After the treatment described above, rewritten ADST files can be further
prepared for MVA analysis. Because MVA methods need a set for cross-
validating their performance, a certain percentage of simulations must re-
main unused during their training. For this reason, rewritten ADST files can
be split or filtered according to an energy range, zenith angle range and max-
imum relative risetime uncertainty limit. Whenever splitting a file, the events
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passing to each file are determined randomly, with a possibility to adjust the
random generator seed. This is useful for when we want exactly the same
split of a file. The main focus of this part of the software is to split files in
order to acquire clean simulation samples for cross-validation or to merge a
precise number of events from different simulation samples for a mock data
set. The splitting of simulation events and creation of a mock data set to imi-
tate Pierre Auger data is described in section 6.4.2.
The MVA analysis section of the software holds all input parameters for the
analysis. Any observables and particle species for signal and background can
be selected from the MVA input file. All MVA methods from TMVA classifi-
cation examples can be selected for the analysis, with the possibility to apply
tweaks in order to get the best performance out of them. Similarly to the
rewritten ADST preparation part of the software, energy and zenith angles
can be split into bins and the maximum cap of relative risetime uncertain-
ties can be set. This additional selection is performed on-the-fly just before
training of the MVA method starts. The so-called ’data’ tree in the analysis
software is used to select a single sample, that will be used for determining
relative observables (described in sections 6.4.5 and 6.4.6). Just before pass-
ing the input file to the MVA analysis, distributions of selected observables
are checked, with any invalid events or events outside selection cuts being re-
moved from further analysis. Additionally, any corrections, biases and smear-
ing are applied to either simulations or data at this stage (described in sections
6.4.3 and 6.4.7).
TMVA then handles the multivariate analysis by training and testing the se-
lected MVA method on signal and background simulation sets. Once training
finishes, the method is applied to all simulation and data events in order to
calculate the MVA variable. This is saved into the final output file with the
same structure as the input file, and including the MVA variable distribution
calculated by applying the trained MVA method to each event in all samples.
The last part of the software is dedicated to visualizing analysis results. At
this stage, plots can include simple observable distribution histograms and
scatter plots, a comparison of observable distribution histograms, or mass
composition estimation. The latter uses calculated MVA variable distributions
in order to estimate the mass composition. MVA and individual observable
distribution fitting is carried out by combining a mixture of primary elements
into a simulation distribution

Hsim =
N

∑
i=1

fi Hi, (6.2)

where N is the number of elements in the mixture, fi are fractions of individ-
ual elements and Hi are distributions of individual elements. The resulting
distribution Hsim is then fitted to the data distribution Hdata. Initially, this
was done by a χ2–test and implementing a constraint on one of the elemental
fractions

N

∑
i=1

fi = 1. (6.3)

However, this approach did not bring satisfying fits, because distributions are
finite and χ2 fits are primarily used on continuous distributions. This is es-
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pecially apparent at the highest energy range, where the number of Pierre
Auger data events is low. Instead, a maximum likelihood fitting approach
was used through the TFractionFitter fitting package included in the ROOT
framework. Specifically designed for fitting finite distributions with Poisso-
nian statistics [69], it naturally satisfies the normalization condition from Eq.
(6.3) and only limits elemental fractions to a [0, 1] range. A similar approach,
but implementing a different fitting software, was used in [51] for fitting Xmax
distributions. Our fitting procedure does not only enable MVA variable dis-
tribution fitting, but distribution fitting on any a single observable. This skips
the MVA analysis and tries to perform a distribution fit, with the same ap-
proach as described above. As a result, the fitting technique can be compared
to previously published distribution fitting procedures. Fig. 6.6 shows the
fitting procedure on MVA variable and Xmax distributions for a single energy
bin (between 1018.9 eV and 1019.0 eV) of Pierre Auger data. Simulation dis-
tributions Hsim used the EPOS-LHC hadronic interaction model and a four
elemental composition (proton, helium, oxygen and iron). The fitting proce-
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Figure 6.6: Example of distribution fits for Xmax (left) and MVA variable from Fisher
analysis (right). A four elemental composition Hsim (red histogram) is fit onto a data
distribution Hdata (black points) using a maximum likelihood fitting approach. Bot-
tom panels show standardized residuals (Ri =

ni−mi√
ni

) between data and simulations.

dure returns elemental fractions for all included elements in the composition,
which is exactly the outcome we expect for mass composition analysis. For
comparisons to published data, these can be converted into the average loga-
rithmic mass, using Eq. (5.1).

6.3 Simulation and data event selection

Simulations were taken from a shower library [70], with a large collection of
simulated and reconstructed EAS. They are produced with the CORSIKA sim-
ulation code [71], using three different hadronic interaction models QGSJET-
II.04 [42], EPOS-LHC [41] and Sibyll-2.3 [43, 44]. These include comparisons
to experimental results up to 2011, 2012 and 2016, respectively. Simulations
are performed with each hadronic model and include pure composition sam-
ples of proton, helium, oxygen and iron primaries in order to account for a
wide range of particle masses. They are limited to energies between 1018.0 eV
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and 1020.0 eV in order to cover the wide energy range of the Pierre Auger Ob-
servatory. For the analysis in this work, we are not including the low energy
extensions of the observatory. Azimuth angles span over a complete 360◦

view and have a flat distribution. The zenith angle, ranging between 0◦ and
65◦, is usually taken as cos2 θ or sec θ to include geometrical effects, when
observing a distribution of events over a sphere. The flux of UHECR has a
power law dependence on energy and is set to J ∝ E−1.
The simulation library is then reconstructed using the Pierre Auger Observa-
tory software Offline. It simulates the response of the hybrid detection sys-
tem, digitizes the simulated signal and reconstructs the events in an identical
way as for real data. Each event is randomly distributed over the SD array
and resampled between six and 20 times in order to increase the number of
events in the final simulation event file. Resampling at lower energies is much
higher, because a large number of events at low energies are rejected during
selection. Events are then passed through selection cuts in order to clean out
any bad reconstructions or falsely triggered events. These select only hybrid
events, reject events with bad signal-to-noise ratio, impose good longitudinal
reconstructions with a visible shower maximum and enforce a good resolu-
tion of measured shower maxima (σ(Xmax) < 40 g/cm2). A complete list of
used selection cuts and their explanations can be found in Appendix A. The
production version of simulations is the newly reconstructed v3r3p4 produc-
tion, finished in 2018. A low energy cut of 1018.5 eV has been selected, because
it is impossible to extract SD observables, that are dependent on PMT signal
traces, at lower energies for the 1500 m array. Additionally, the 1500 m array
achieves full efficiency above the energy of 3× 1018 eV [23]. After applying
selection cuts to simulations, the number of surviving events is displayed in
Tab. 6.2. For comparison, the number of surviving events from the older

Table 6.2: Number of surviving simulation events after applying selection cuts de-
scribed in Appendix A. Energies are limited to a range between 1018.5 eV and 1020.0 eV,
which is the energy range for analysis presented in this work. Note that all events
listed have a valid FD reconstruction, while some might be missing the SD recon-
struction. For nomenclature of simulation productions, see the accompanying text.

Hadronic
interaction model

proton helium oxygen iron total

v2
r9

p5 EPOS-LHC 26 227 26 214 25 924 25 715 104 080
QGSJET-II.04 25 985 26 888 26 443 25 787 105 103

Sibyll-2.3 24 623 25 480 22 917 24 100 97 120

v3
r3

p4 EPOS-LHC 56 114 53 219 50 993 51 427 211 753
QGSJET-II.04 53 247 53 302 52 644 49 646 208 839

Sibyll-2.3 52 442 52 722 53 947 51 348 210 459

v2r9p5 production is also included in Tab. 6.2. This older simulation set was
used during mass composition studies in [50, 51, 54]. As can be seen, the
v3r3p4 production is far superior and enables us to easily prepare simula-
tion sets for analysis (described in section 6.4.2). From this point on, only the
v3r3p4 production of simulations is used for mass composition studies. The
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comparison of FD energy and zenith angle distributions from surviving simu-
lation events inside the energy range between 1018.5 eV and 1020.0 eV is shown
in Fig. 6.7. Data used for comparisons to simulations comes from the Pierre

	FD reconstructed energy (EeV)

10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f 
ev

en
ts

 (
n

o
rm

al
iz

ed
)

5−10

4−10

3−10

2−10

1−10

1 EPOS-LHC [N = 211753, mean = 27.42]
QGSJET-II.04 [N = 208839, mean = 28.03]
Sibyll-2.3 [N = 210459, mean = 27.77]

UFLOW = 0 OFLOW = 0

)θ	FD zenith angle (sec

1 1.2 1.4 1.6 1.8 2 2.2 2.4

N
u

m
b

er
 o

f 
ev

en
ts

 (
n

o
rm

al
iz

ed
)

0

0.01

0.02

0.03

0.04

0.05

0.06

EPOS-LHC [N = 211753, mean = 1.48]
QGSJET-II.04 [N = 208839, mean = 1.48]
Sibyll-2.3 [N = 210459, mean = 1.48]

UFLOW = 0 OFLOW = 0

Figure 6.7: FD energy (left) and zenith angle distributions (right) for simulation
events surviving the selection cuts and inside the energy range between 1018.5 eV and
1020.0 eV. The three hadronic interaction models are EPOS-LHC (blue), QGSJET-II.04
(red) and Sibyll-2.3 (black).

Auger Observatory. Just like simulations, data needs to be reconstructed from
SD, FD and atmospheric monitoring measurements and ran through event se-
lection cuts. The Pierre Auger Observatory started taking data on the 1st of
December 2004 and has been running ever since. The ICRC 2017 data produc-
tion (v12r3) used in [1] and in this work is limited until the 31st of December
2015. This limitation is caused by the considerable amount of time needed to
completely reconstruct a data production and include atmospheric monitor-
ing information. Selection cuts used for the v12r3 production are the same as
for simulations, but with a few additional data-related preselection cuts de-
pending on hardware status and atmospheric monitoring. All selection cuts
applied to data are explained in Appendix A, while the following text offers a
quick description. Note that in addition to the selection cuts, we have limited
data events to the same energy range as simulations. After applying selection
cuts to the v12r3 data production, the number of surviving events is displayed
in Tab. 6.3. The comparison of FD energy and zenith angle distributions from
surviving data events inside the energy range between 1018.5 eV and 1020.0 eV
is shown in Fig. 6.8. In order to quickly explain the main purpose of event
selection cuts, here is a short recap of a more extended version in Appendix A
and [50]. They cover the very basic selections needed for quality physics anal-
ysis, additional cuts to further improve the quality of data and strict cuts that
favor the best FD longitudinal profile reconstruction. Selection cuts applied
to both simulations and data have the following structure:

1. Preselection cuts: Selection cuts consisting of minimal quality require-
ments for a valid physics analysis, which need to be applied to any
simulation or data set. These include:

– LASER rejection cuts: Any LASER events fired from the central
laser facility must be removed from the analysis.

– Hardware status cuts: FD telescope systems must be operational at
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Table 6.3: Number of surviving Pierre Auger Observatory data events after applying
selection cuts described in Appendix A and using the same energy range (between
1018.5 eV and 1020.0 eV) as simulations in Tab. 6.2.

Selection cuts Events ε (%)

All events 2 523 161 —
Preselection cuts (hardware) 1 308 863 51.9

Preselection cuts (atmosphere) 849 842 33.7
Preselection cuts (hybrid geometry) 120 991 4.80

Quality cuts 68 852 2.73
Fiducial cuts 26 000 1.03

Energy range (on-the-fly cut) 4 207 0.17
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Figure 6.8: FD energy (left) and zenith angle distributions (right) for Pierre Auger
data events surviving the selection cuts and inside the energy range between 1018.5 eV
and 1020.0 eV.

the time of the event.

– Aerosol cuts: Event must be within one hour of a valid aerosol
measurement and vertical aerosol optical depth must be below a
maximum value of 0.1.

– Hybrid geometry cuts: At least one SD station in the array must be
triggered by the EAS. The nearest triggered SD station is at most
1.5 km away from the shower axis.

– Profile reconstruction cuts: Event must have a full longitudinal pro-
file reconstruction, with enough triggered FD camera pixels and
valid reconstructions of energy and Xmax.

– Cloud cuts: There must be no reflections or shadowing of light
from the shower by clouds and the base cloud layer height must be
above the geometrical field-of-view.

– Low energy cut: The design of the standard FD and the 1500 m
array has a low energy limit at 1017.8 eV.

2. Quality cuts: Selection cuts ensuring that the resolution of Xmax mea-
surements is good enough. These include:

– Xmax observation cut: Xmax must be inside the observed profile
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range, because reconstruction from only leading/falling distribu-
tion tails gives a large uncertainty to the Gaisser-Hillas fit from Eq.
(3.6).

– Quality cuts: The resolution of Xmax measurements must be below
40 g/cm2 and the contribution from direct Cherenkov light must be
small enough. The amount of Cherenkov light is limited by setting
a lower limit of 20◦ to the allowed viewing angle between the EAS
arrival direction and telescope viewing direction.

– Profile quality cuts: Gaps in the profile must be smaller than 20%
of the total profile. Gaisser-Hillas fits must have a low enough χ2

value and the minimum profile length must be > 200 g/cm2.

3. Fiducial cuts: Selection cuts that are more geared towards ensuring high
quality FD measurements. These apply a lower and upper field-of-view
boundary, where the majority of the Xmax distribution resides. They
also perform a cut on the minimum observation angle in addition to
the resolution requirements handled by quality cuts. Being the most
stringent selection cuts, fiducial cuts select only events with the best
FD reconstruction. An example of an Xmax distribution for different
geometries is shown in Fig. 6.9. Fiducial cuts select events that are of
the same type as geometry (C).

Figure 6.9: Display of the field-of-view of an FD telescope and the resulting Xmax
distributions of identical showers viewed from three different geometries. Geometry
(A) has the smallest acceptance (no leading tail) and is closest to the FD, geometry
(B) has the shortest slant depth and no deep tail information, and geometry (C) is the
ideal condition, with the complete distribution inside the FD field-of-view [50].

6.4 Treatment of selected events

After retrieving sets of high quality simulations and data events, these need
to further be treated to ensure an improved performance of the MVA analy-
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sis. All included observables need to be available on an event-by-event basis,
so individual FD measurements have to be combined as described in sec-
tion 6.4.1. Section 6.4.2 describes the creation of cross-validation sets and
simulated mock data, that help improve the performance of the MVA analy-
sis. Previously investigated bias corrections on Xmax between simulations and
data [50] are described in section 6.4.3. A detailed explanation for calculating
SD station risetimes is presented in section 6.4.4, while removing zenith angle
dependence from risetime is explained in section 6.4.5. Similarly, the zenith
angle dependence of the absolute observable S1000 is removed as explained in
section 6.4.6. Finally, a detector smearing and various bias contributions on
the Xmax observable are applied to simulations as described in section 6.4.7.

6.4.1 Combining stereo events

A multivariate analysis on mass composition sensitive observables demands
the use of an event-wide observable value. This is simple for some observ-
ables that are defined on an event-by-event basis, like the signal at 1000 m
from the shower axis. However, each SD station and each FD building are
their own detector systems, working together to complementary determine
shower observables. When multiple FD buildings are triggered during an
EAS event, the event is seen by multiple detectors at the same time, denoting
it as a stereo event. Stereo events, like the observed event shown in Fig. 6.10,
reconstruct each event individually. This also means that observables, like

/Ndf = 2.8 / 32χ

E [EeV]
70 75 80 85 90 95 100 105

SD

LM

LA

CO

Figure 6.10: Example of a stereo event (left) and the reconstructed FD energy values
(right) for each of the three active FDs (Los Morados, Loma Amarilla and Coihueco).
The combined FD energy of this event using Eq. (6.4) is Ecomb = (8.483± 0.364)×
1019 eV. The range of energies shown on the right figure in yellow, is the combined
shower energy, if we also include the reconstructed SD energy.

the depth of shower maximum Xmax, have multiple slightly deviating val-
ues. Including all of them is problematic, because MVA analysis techniques
need a matching number of input parameters per event. Some FD buildings
triggered by the event could also have better reconstruction quality than oth-
ers. Therefore, by simply calculating an average of FD reconstructions from
all buildings, we would be losing the improved reconstruction from a set of
complementary measurements. Therefore, a combination into an event-wide
FD reconstruction is achieved by the inverse-variance weighted average. With
it, two or more unrelated measurements of the same physical quantity Q are
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combined in a way to minimize the variance of the weighted average. By us-
ing N FD reconstructions of an observable Qi and its uncertainty δQi, we can
determine the combined observable Qcomb and its uncertainty δQcomb with

Qcomb =

N

∑
i=1

Qi

(δQi)
2

N

∑
i=1

1

(δQi)
2

, δQ2
comb =

1
N

∑
i=1

1

(δQi)
2

. (6.4)

Due to complementarity of all measurements, the combined reconstruction
is superior and the resulting uncertainty δQcomb will always be smaller or
equal. This weighted sum is performed on all observables coming from FD
measurements.

6.4.2 Cross-validation simulation set and mock data set creation

The simulations need to be split into a number of data sets, in order to esti-
mate the analysis method, choose the appropriate MVA method, and compare
mass composition estimated from the Pierre Auger Observatory data to a con-
trolled mock data set. The first and largest part consists of simulation events
that are used to train the MVA method and to perform distribution fitting
after the MVA analysis. The second part is used for cross-validating the MVA
analysis and estimating the stability of the analysis method. It consists of
simulation events, that were not used during MVA method training. Because
these are still split into separate samples of primary particles, they show the
true separation power of the MVA analysis. The third part is a mixed compo-
sition of simulation events that aims to imitate the mass composition reported
in [1, 51] and plotted in Fig. 5.6. For the purpose of simplicity, this set will be
called the AugerMix mock data for the remainder of this work.
For the analysis approach described in this work, we are using four different
simulation sets for proton, helium, oxygen and iron induced EAS. Simulation
samples listed in Tab. 6.2 are split into 11 energy bins, between 1018.5 eV and
1020.0 eV. Binning is done in log(E/eV) = 0.1, except for the last bin, which
covers an energy range between 1019.5 eV and 1020.0 eV. This larger binning
is chosen due to the small number of Pierre Auger data events at the highest
energies. The estimated mass composition found in [1, 51] and the number of
events for Pierre Auger data in each energy bin is shown in Tab. 6.4. When
taking a combination of SD and FD observables, there is a reduction of the
number of Pierre Auger data events, because zenith angles need to be limited
to avoid any unwanted effects caused by highly inclined events. The chosen
limiting angle has been set to 60◦. The first split we perform is to extract
events for the AugerMix mock data sample. Because analysis is performed
on both FD and a combination of SD and FD observables, we construct two
different AugerMix mock data samples. This ensures that we have the same
mass composition throughout the energy range for both cases. The number
of events in each energy bin used for constructing the AugerMix mock data
sample is shown in Tab. 6.5. Note that the combined SD and FD Auger-
Mix mock data set is not a subset of its FD AugerMix counterpart, but is
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Table 6.4: Number of Pierre Auger data events in each of the 11 energy bins and the
estimated mass composition found in [1, 51] for three hadronic interaction models.
The two columns for number of events denote how many Pierre Auger data events
survive, if taking only FD observables (left) or mixed SD and FD observables (right).

Elemental fractions [1, 51] Number of events
Energy bin
(log(E/eV))

proton helium oxygen iron
FD

only
SD+FD

EP
O

S-
LH

C

18.5− 18.6 0.4295 0.3799 0.1906 0.0000 1108 824
18.6− 18.7 0.3878 0.3963 0.2160 0.0000 840 627
18.7− 18.8 0.1528 0.6268 0.2204 0.0000 583 463
18.8− 18.9 0.0590 0.8141 0.1268 0.0000 471 370
18.9− 19.0 0.0907 0.6458 0.2634 0.0000 359 259
19.0− 19.1 0.1003 0.5924 0.3073 0.0000 281 214
19.1− 19.2 0.0042 0.5862 0.4096 0.0000 193 139
19.2− 19.3 0.1674 0.2763 0.5563 0.0000 134 106
19.3− 19.4 0.0009 0.4776 0.5214 0.0000 110 80
19.4− 19.5 0.1034 0.3783 0.4612 0.0571 66 45
19.5− 20.0 0.0000 0.0000 1.0000 0.0000 62 45

Q
G

SJ
ET

-I
I.0

4

18.5− 18.6 0.8309 0.1691 0.0000 0.0000 1108 824
18.6− 18.7 0.7654 0.2346 0.0000 0.0000 840 627
18.7− 18.8 0.5055 0.4945 0.0000 0.0000 583 463
18.8− 18.9 0.5312 0.4688 0.0000 0.0000 471 370
18.9− 19.0 0.3595 0.6405 0.0000 0.0000 359 259
19.0− 19.1 0.3525 0.6475 0.0000 0.0000 281 214
19.1− 19.2 0.0697 0.9303 0.0000 0.0000 193 139
19.2− 19.3 0.1686 0.8314 0.0000 0.0000 134 106
19.3− 19.4 0.0000 1.0000 0.0000 0.0000 110 80
19.4− 19.5 0.0275 0.9725 0.0000 0.0000 66 45
19.5− 20.0 0.0000 0.9440 0.0559 0.0000 62 45

Si
by

ll-
2.

3

18.5− 18.6 0.1914 0.4927 0.3160 0.0000 1108 824
18.6− 18.7 0.1786 0.4497 0.3720 0.0000 840 627
18.7− 18.8 0.0094 0.5636 0.4270 0.0000 583 463
18.8− 18.9 0.0000 0.5943 0.4060 0.0000 471 370
18.9− 19.0 0.0337 0.4014 0.5650 0.0000 359 259
19.0− 19.1 0.0206 0.3736 0.6060 0.0000 281 214
19.1− 19.2 0.0000 0.2043 0.7960 0.0000 193 139
19.2− 19.3 0.1246 0.0000 0.8750 0.0000 134 106
19.3− 19.4 0.0106 0.0898 0.9000 0.0000 110 80
19.4− 19.5 0.0000 0.2754 0.5950 0.1290 66 45
19.5− 20.0 0.0000 0.0000 0.8938 0.1060 62 45

instead a new random selection of events from initial simulation sets. Af-
terwards, the remaining simulation events are split into an MVA training set
and a cross-validation set. This split is performed so that 75% of events in
each bin construct the MVA training set, while the other 25% are used for
cross-validation.
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Table 6.5: Number of simulation events used for constructing the AugerMix mock
data set for estimating composition from only FD observables (left column) or mixed
SD and FD observables (right column). The mass composition fractions and the total
number of events are taken from Tab. 6.4.

Number of events in AugerMix
Energy bin
(log(E/eV))

proton helium oxygen iron

EP
O

S-
LH

C

18.5− 18.6 476 354 421 313 211 157 0 0
18.6− 18.7 326 243 333 249 181 135 0 0
18.7− 18.8 89 71 365 290 129 102 0 0
18.8− 18.9 28 22 383 301 60 47 0 0
18.9− 19.0 33 24 232 167 94 68 0 0
19.0− 19.1 28 21 167 127 86 66 0 0
19.1− 19.2 1 1 113 81 79 57 0 0
19.2− 19.3 22 18 37 29 75 59 0 0
19.3− 19.4 0 0 53 38 57 42 0 0
19.4− 19.5 7 5 25 17 30 21 4 2
19.5− 20.0 0 0 0 0 62 45 0 0

Q
G

SJ
ET

-I
I.0

4

18.5− 18.6 921 685 187 139 0 0 0 0
18.6− 18.7 643 480 197 147 0 0 0 0
18.7− 18.8 295 234 288 229 0 0 0 0
18.8− 18.9 250 197 221 173 0 0 0 0
18.9− 19.0 129 93 230 166 0 0 0 0
19.0− 19.1 99 75 182 139 0 0 0 0
19.1− 19.2 13 10 180 129 0 0 0 0
19.2− 19.3 23 18 111 88 0 0 0 0
19.3− 19.4 0 0 110 80 0 0 0 0
19.4− 19.5 2 1 64 44 0 0 0 0
19.5− 20.0 0 0 58 42 4 3 0 0

Si
by

ll-
2.

3

18.5− 18.6 212 158 546 406 350 260 0 0
18.6− 18.7 150 112 378 282 312 233 0 0
18.7− 18.8 5 4 329 261 249 198 0 0
18.8− 18.9 0 0 280 220 191 150 0 0
18.9− 19.0 12 9 144 104 203 146 0 0
19.0− 19.1 6 4 105 80 170 130 0 0
19.1− 19.2 0 0 39 28 154 111 0 0
19.2− 19.3 17 13 0 0 117 93 0 0
19.3− 19.4 1 1 10 7 99 72 0 0
19.4− 19.5 0 0 18 12 39 27 9 9
19.5− 20.0 0 0 0 0 55 40 7 5

6.4.3 Depth of shower maximum bias corrections

When comparing simulations and Pierre Auger data, there exists a bias on
Xmax, which depends on the reconstructed FD energy. For the analysis in [50],
more than 3 million Monte-Carlo showers were simulated inside the energy
range between 1017.7 eV and 1020.0 eV. These simulations had a spectral index
of 1.9, and an equal contribution of proton and iron primaries. The show-
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ers were then translated in depth in order to create a flat Xmax distribution
between depths of 300 g/cm2 and 1500 g/cm2. Specifically for comparisons
between simulations and data, the simulations were re-weighted in order to
follow the true Xmax distribution and the combined FD-SD energy spectrum,
thus resulting in this realMC simulation set [50]. The work done in [50] ap-
plied selection cuts to both realMC simulations and Pierre Auger data and
then checked for biases in the distributions of Xmax. The bias corrected depth
of shower maximum X′max is

X′max = Xmax − µ− bLWcorr, (6.5)

where µ is the reconstruction bias and bLWcorr is the lateral width correction.
The reconstruction bias µ of Xmax is estimated by comparing means of the two
distributions, which turns out to be energy dependent. It is estimated with

µ = −3.4 + 0.93 (log E− 18) , (6.6)

where E is the FD reconstructed energy. The energy dependence of µ can be
seen in Fig. 6.11. The lateral width correction bLWcorr is a phenomenological

Figure 6.11: Reconstruction bias µ of Xmax versus FD energy. The size of the applied
bias decreases with increasing energy (supplementary material of [50]).

parameterization of the light outside the studied light track of the camera.
This correction is applied during event reconstruction, but produces a bias on
Xmax for simulations compared to data. The bias produced by lateral width
corrections is calculated as

bLWcorr =
6.5 g/cm2

exp
(

log E−18.23
0.41

)
+ 1

, (6.7)

where E is the FD reconstructed energy. Note that the combined correction
has been tested with the v9r5 production of data used in [50], so both biases
might have changed with new data productions, new selection cuts and newer
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simulation productions. However, at the time of writing this thesis, a large
library of realMC simulations has not yet been recreated, so I opted for using
the above mentioned corrections instead. For a complete list of distributions
for Xmax, please see Appendix B.

6.4.4 SD station risetime estimation

As described briefly in Chapter 4.1, all triggered SD stations in an event pos-
sess a value for risetime t1/2, provided there exists at least one signal trace
from any of the three PMTs. There are many different ways to then com-
bine all measured risetimes into an event-wide risetime observable. The three
methods that have been tested for use in mass composition analysis are the
risetime at 1000 m from the shower axis t1000, the delta method ∆s [2] and
the azimuthal asymmetry of risetime sec θmax [49]. Once an event is recon-
structed, the default way of calculating t1000 by the Offline software is to de-
termine risetimes from each SD station and perform a quadratic function fit

f (r) = 40 ns + a r + b r2, (6.8)

where a and b are free parameters and r is the SD station distance to the
shower axis. However, since Offline enforces the lower limit of the total SD
station signal to be 10 VEM, combined with the restriction that there must be
at least three triggered stations, it removes many low energy events during
the calculation. The 10 VEM limit is set to remove stations with a low signal-
to-noise ratio, but the analysis in [2] reduced this limit to 5 VEM. For the
purpose of this thesis, I have reduced the lower limit to the same value and
recalculated SD station risetimes t1/2 using the approach from the Offline
software. The risetime calculation follows these steps:

1. Choose restrictions for valid SD stations, such as the limiting distances
from the shower axis, the minimal total signal and treatment of saturated
signals.

2. Calculate risetimes from all PMT signal traces. Average all PMTs with
valid traces into an average SD station risetime taver.

3. Perform azimuthal asymmetry correction in order to remove any depen-
dence of risetime on the azimuth angle.

4. Calculate SD station risetimes t1/2 and their uncertainties δt1/2.

5. When calculating t1000, perform a fit through remaining SD station rise-
time values (a minimum of three) in order to get the value at 1000 m
from the shower axis.

Restrictions for SD stations are selected to be the same as in [2]. Stations
should not have a low-gain channel saturation, otherwise it is impossible to
determine risetimes from PMT traces. The low limit for total SD station signal
is set to 5 VEM. The lower range of distance from the shower axis is set to
300 m, due to problems when pulses are faster than detector sampling. The
higher range of distance is set to 1400 m for SD energies below 1019.6 eV and
to 2000 m otherwise.
PMT traces are then integrated inside the signal start/stop markers and
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checked for timing information at 10% and 50% of the total integrated value.
Time sampling for PMT traces is limited to 25 ns, so a linear function has
been used to find the risetime value between the two measured points. See
Fig. 6.12 for a graphical explanation of the procedure. Once we have the two

Figure 6.12: Example of SD station risetime extraction. All PMT signal traces
(black histogram) are transformed into their respective cumulative versions (blue
histogram), and PMT start and stop times are defined at 10% and 50% of the to-
tal integrated signal. Top right plot shows a detailed view at how these times are
determined for the first PMT. Red dashed lines denote ti,rstart and ti,rstop times.

limiting values, the average PMT risetime is

taver =
1

NPMT

NPMT

∑
i=1

(
ti,rstop − ti,rstart

)
, (6.9)

where NPMT is the number of valid PMT traces from the triggered SD station.
Whenever an EAS arrives at a non-zero zenith angle, there is a difference in
SD station signals caused by the azimuthal asymmetry. In general, triggered
SD stations can either be early or late stations, depending if they are hit before
the shower axis reaches the surface or after, respectively. For zenith angles
θ < 30◦, particles arriving at late stations will traverse a longer path due to
geometrical effects [72]. For inclined showers with zenith angles θ > 30◦, the
change occurs due to the difference in the amount of traversed atmosphere
[73]. Average SD station risetimes must therefore be corrected using a param-
eterization from [74]. The azimuthal asymmetry corrected risetime, and thus
the final SD station risetime, is

t1/2 = taver − g(r, θ) cos φ, (6.10)
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where φ is the SD azimuth angle and g(r, θ) is

g(r, θ) = A(θ) + B(θ) r2. (6.11)

Here, r is the distance of an SD station to the shower axis, and A and B are
fitting parameters that only depend on the SD zenith angle θ. Fits described
in [74] set parameters to

A(θ) = 96.73− 282.40 sec θ + 241.80 sec2 θ − 62.61 sec3 θ,

B(θ) =
[
−0.9721 + 2.068 sec θ − 1.362 sec2 θ + 0.2861 sec3 θ

]
× 10−3.

(6.12)

This parameterization sets a reference value for the azimuth angle to φref =
90◦. Fig. 6.13 shows the plots for uncorrected and corrected risetime versus
distance from the shower axis (top) and versus azimuth angle (bottom). In

Figure 6.13: Uncorrected and corrected risetime values versus distance from the
shower axis (top) and azimuth angle (bottom). This updated risetime correction uses
Eq. (6.10) and Pierre Auger data from years between 2004 and 2013. The azimuth
reference value for the correction is at φref = 90◦ [74].

contrast to the analysis in [2], where risetime uncertainty is determined from
twin detectors (SD station sets, separated by 11 m) and detector pairs (SD
stations at similar distances from the shower axis), the analysis in this work
uses hybrid data, making it impractical to assess uncertainties in such a way.
Instead, we use the same weight function found in the Offline software

δt1/2 =
80 +

(
5.071× 10−7 + 6.48× 10−4 sec θ − 3.051× 10−4 sec2 θ

)
r2

S
−

− 16.46 sec θ + 36.16,
(6.13)
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where S is the total SD station signal. Because this function produces neg-
ative δt1/2 values at angles above ∼62.36◦, we removed events with larger
zenith angles from further analysis by implementing a zenith angle cut at
60◦. Highly inclined events include additional atmospheric and geometric ef-
fects, so they are usually treated separately in analyses.
Each of the SD station risetimes t1/2 is saved for further treatment (described
in section 6.4.5) and a value at 1000 m from the shower axis t1000 is calcu-
lated for the purpose of comparisons. If there are at least three active station
risetimes in an event, then t1000 is estimated from Eq. (6.8) as

t1000 = f (1000 m). (6.14)

Uncertainties for t1000 are determined using the parameter covariance matrix
from the fit

δt1000 =
√

cov(1, 1) + cov(0, 0) + 2 cov(0, 1). (6.15)

This recalculation of t1000 improves its estimation at low energies, greatly in-
creases the number of Pierre Auger data events with a valid SD reconstruction
and keeps the general distribution unchanged. Fig. 6.14 shows a comparison
between t1000 obtained directly from Offline and the recalculated version de-
scribed by Eq. (6.14) and Eq. (6.15) for all three hadronic interaction models
and Pierre Auger Observatory data. Note that this is one way to obtain an
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Figure 6.14: Comparisons between t1000 from Offline and the recalculated version
from Eq. (6.14) and Eq. (6.15) inside the energy range between 1018.5 eV and 1020.0 eV
and zenith angle range between θ = 0◦ and θ = 60◦. Individual plots are for the three
hadronic interaction models, EPOS-LHC (top left), QGSJET-II.04 (top right), Sibyll-2.3
(bottom left), and for the v12r3 production of Pierre Auger data (bottom right).

absolute value of risetime from all SD station risetimes. The next section gives
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another way to obtain information from SD station risetimes, but as a relative
observable instead.

6.4.5 Relative risetime treatment

The issues in using t1000 for mass composition studies are that its distribution
has a low-end tail structure (as visible from Fig. 6.14) and it still depends on
the zenith angle. Instead, a relative risetime value, with a similar treatment to
the Delta method [2], is used to address these issues. The treatment of con-
verting SD station risetimes t1/2 to an event-wide relative risetime ∆R follows
similar steps as the calculation of ∆s in [2], but excluding their calculation of
uncertainties. During the conversion, the following steps are made:

1. Station risetimes with high-gain saturation are treated differently, be-
cause they introduce a bias that is visible while fitting.

2. Scatter plots of station risetime t1/2 versus distance r are plotted for a
range of zenith angle bins at a reference energy bin (between 1018.9 eV
and 1019.1 eV). This zenith angle binning removes the dependence of
risetime on zenith angle.

3. Both sets of station risetimes (high-gain saturated and non-saturated)
are separately fitted with benchmark functions. This removes the de-
pendence of risetime on distance from the shower axis.

4. SD station relative risetimes ∆i are calculated by determining the separa-
tion between the station risetime and the appropriate benchmark func-
tion inside the appropriate zenith angle bin.

5. Event-wide ∆R and its uncertainty δ∆R are calculated from the average
of station relative risetimes.

Note that the first three steps are only performed for events that will be con-
sidered as ’data’ in the analysis, such as the Pierre Auger Observatory data,
or mixed simulation sample. Events that are not considered as ’data’ use the
same benchmark functions and will thus have a relative shift, needed for mass
composition analysis.
Firstly, SD station risetimes are split into those calculated from a high-gain
saturated trace and the ones that were not saturated. High-gain PMTs have
a larger multiplication factor and they output a highly amplified signal, use-
ful for measuring low level signals. However, when they reach the upper
limit of the analog-to-digital (ADC) converter, the peak of the signal is cut
off, commonly known as saturation. The high-gain channel ensures the best
detail of a signal, while the low-gain channel makes it possible to measure
signals exceeding the capabilities of the analog-to-digital (ADC) converter.
This treatment enables us to take high-gain saturated and non-saturated PMT
traces separately, because high-gain saturation mostly appears for triggered
stations close to the shower axis. An example of a signal trace from high-gain
and low-gain channels for a non-saturated simulation event is shown in Fig.
6.15.

All risetime values are then further divided into zenith angle bins between
sec θ = 1 (θ = 0◦) and sec θ = 2 (θ = 60◦), with a bin width of sec θ = 0.1.
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Figure 6.15: Example of a PMT trace from high-gain and low-gain channels for a non-
saturated event. The signal in the high-gain channel has a more detailed structure
for minor signal fluctuations [75].

For this purpose, we have used energy and zenith angle event information
from the FD measurement, due to its superior estimation of the two values.
The selection of a reference energy bin (between 1018.9 eV and 1019.1 eV) sets
a zero value for the final ∆R. Events with energies below the reference bin
will have negative values, while events above the reference bin will have pos-
itive values of ∆R. The reference energy bin is selected in a way as to have
enough points for fitting and get a good ratio of both high-gain saturated and
non-saturated risetimes over a reasonably large distance interval. Note that
both binning selections are larger than in [2] due to a much smaller Pierre
Auger Observatory hybrid data set. Once all events are distributed into bins,
a benchmark function is fitted for each of the zenith angle bins. The role of
benchmark functions is to remove dependence of risetime on distance from
the shower axis r and they are determined as

tbench,HG-sat
1/2 = 40 ns +

√
A2 + B2 r2 − A, (6.16)

for a fit to high-gain saturated SD station risetimes and

tbench
1/2 = 40 ns + M (

√
A2 + B2 r2 − A), (6.17)

for a fit to non-saturated SD station risetimes. During the fitting procedure,
high-gain saturated risetimes are fitted first, because they typically have a
smaller spread. The two fitting parameters A and B are then fixed for the
fit to non-saturated risetimes, where the only free parameter M describes the
bias. Fits for a collection of zenith angle bins that were applied to the v12r3
data production are shown in Fig. 6.16. The complete list of fits over all
zenith angle bins and parameter values for Pierre Auger data can be seen in
Appendix C. With benchmark functions set in all zenith angle bins, we can
now calculate the station relative risetime ∆i, by determining the separation
of t1/2 to the appropriate benchmark function

∆i = t1/2 − tbench
1/2 . (6.18)

The selection of a benchmark function depends on high-gain saturation of the
SD station and the zenith angle of the event. Its uncertainty is calculated with
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Figure 6.16: Fits of high-gain saturated benchmark function (blue) from Eq. (6.16) to
high-gain saturated v12r3 data production (gray points). Similarly, fits of benchmark
function (red) from Eq. (6.17) to non-saturated data (black points). The four selected
sec θ zenith angle bins are [1.1, 1.2] (top left), [1.3, 1.4] (top right), [1.5, 1.6] (bottom
left) and [1.8, 1.9] (bottom right). For a complete list of fits and fitting parameter
values, see Appendix C.

uncertainty propagation from station risetime t1/2, distance from the shower
axis r, and fitting parameters A, B and M

(
δ∆HG-sat

i

)2
= δt2

1/2 +

[
Br√

A2 + B2r2
δr
]2

+

+

[(
A√

A2 + B2r2
− 1
)

δA
]2

+

[
r2

2
√

A2 + B2r2
δB
]2

,

(6.19)

(δ∆i)
2 = δt2

1/2 +

[
MBr√

A2 + B2r2
δr
]2

+

[(
A√

A2 + B2r2
− 1
)

M δA
]2

+

+

[
Mr2

2
√

A2 + B2r2
δB
]2

+
[(√

A2 + B2r2 − A
)

δM
]2

.

(6.20)

Finally, ∆R is simply the average of all stations relative risetimes involved in
a single event

∆R =
1
N

N

∑
i=1

∆i, δ∆R =
1
N

√√√√ N

∑
i=1

δ∆2
i , (6.21)

where N is the number of triggered stations in a shower event. This way,
we remove dependence of risetime on zenith angle and distance, gain an
event-wide observable, and are left with a more Gaussian-like distribution.
The distribution of ∆R for the v12r3 production of data, in an energy range
between 1018.5 eV and 1020.0 eV, and a zenith angle range between 0◦ and 60◦,
is shown in Fig. 6.17. For a complete list of distributions for ∆R, please see
Appendix B.
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Figure 6.17: Distribution of ∆R for the v12r3 production of Pierre Auger data. Ener-
gies have been limited to 1018.5 eV and 1020.0 eV, while zenith angles have been limited
to 0◦ and 60◦.

6.4.6 Relative station signal treatment

Similar to the relative treatment of risetimes, it is also beneficial to perform a
relative treatment on S1000. Although, it does not have a multipeaked distri-
bution, it has a dependence both on primary energy and zenith angle. The en-
ergy reconstruction of an event from surface detectors (as described in section
3.1) already incorporates the calibration to the measured FD energy. There-
fore, a good approach is to calculate S38, the SD signal at 1000 m from the
shower axis an event would have, if it arrived at a reference zenith angle of
38◦. However, we still need to perform a fit through all S1000 values in order to
remove its dependence on energy and zenith angle. The zenith angle depen-
dence of S1000 is shown in Fig. 6.18. The resulting S38 values are then fitted
with a power law function in order to remove dependence on event energy.
We can thus define a relative value ∆S38, which measures the divergence of
event S38 values from the produced fit. The calculation follows these steps:

1. Scatter plots of station signal S1000 versus zenith angle (sec θ) are plotted
for a range of energy bins.

2. These are then fitted with a scaled constant intensity cut function fscale(θ)
in order to remove dependence of S1000 on the zenith angle, and convert
it to S38.

3. When conversions to S38 are finished for all energy bins, they are com-
bined and fitted with a power law function.

4. The relative signal ∆S38 is calculated by determining the separation be-
tween S38 of each event and the fitted power law function. Additionally,
its uncertainty δ∆S38 is calculated through propagation of uncertainties.

Note that the power law function fit in step 3 is only performed for events
that will be considered as data in the analysis, such as the Pierre Auger Ob-

68



Figure 6.18: The attenuation curve for zenith angle dependence of S1000 as fitted by
the constant intensity cut fCIC. The zenith angle independent value S38 is marked by
a thin dashed line at a reference angle of 38◦ [23].

servatory data, or mixed simulation sample.
SD station signals at 1000 m (S1000) are divided into energy bins between
1018.5 eV and 1020.0 eV. The binning step is selected to be log(E/eV) = 0.1,
except for the final bin in Pierre Auger data events, which spans between
1019.5 eV and 1020.0 eV. This has been selected in order to remedy the small
amount of events at high energies, while still keeping as much information
on simulations. Each of these subsets are then fitted with a scaled constant
intensity cut function

fscale(θ) = S fCIC(θ) = S
(

1 + ax + bx2 + cx3
)

, (6.22)

where x is
x = cos2 θ − cos2(38◦), (6.23)

and S, a, b and c are free fitting parameters. Parameter S will not come into
play for further conversion of S1000, but it represents the average S38 for the
selected energy bin. Fits for a collection of energy bins that were applied to
the v12r3 data production are shown in Fig. 6.19. The complete list of fits
over all energy bins and parameter values for Pierre Auger data can be seen
in Appendix D. The signal at 1000 m from the shower axis and at a reference
zenith angle value of 38◦ is then defined as

S38 =
S1000

fCIC(θ)
. (6.24)

As an alternative to removing zenith angle dependence by fitting S1000 values,
the previously published attenuation curve fCIC(θ), with a = 0.980± 0.004,
b = −1.68± 0.01 and c = −1.30± 0.45, can be used instead [76].
Once fits for all energy bins have been performed, all S38 values from the
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Figure 6.19: Fits of fscale (red line) to the v12r3 data production for
four selected energy bins (black points). These bins are

[
1018.5 eV, 1018.6 eV

]
(top left),

[
1018.8 eV, 1018.9 eV

]
(top right),

[
1019.0 eV, 1019.1 eV

]
(bottom left) and[

1019.3 eV, 1019.4 eV
]

(bottom right). For a complete list of fits and fitting parameter
values, see Appendix D.

source selected as “data” in the analysis are fitted with a power law function
taken from Eq. (3.4)

f38(EFD) =

(
EFD

A

)1/B

, (6.25)

where A and B are free fitting parameters. Applying this fit to the v12r3
production of Pierre Auger data results in parameter values A = (2.09 ±
0.02) × 1017 eV and B = 1.000 ± 0.003. As before, this fit can be replaced
with previously published values of A = (1.90 ± 0.05) × 1017 eV and B =
1.025± 0.007 from [76]. Both fits are shown in Fig. 6.20 for comparison. At
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Figure 6.20: Comparison of fitting a power law function from Eq. (6.25) to the v12r3
production of Pierre Auger data (left) or using a previously published power law
function from [76] (right). Note that the published function also uses different atten-
uation curve fCIC parameters, so the conversion from S1000 to S38, using Eq. (6.24), is
different in both cases.
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this point, the power law fitting function is used as a reference for calculating
∆S38 values for all sets of simulations and Pierre Auger data

∆S38 = S38 − f38(EFD). (6.26)

Its uncertainty is calculated with uncertainty propagation from station signal
S1000, value x from Eq. (6.23) and all fitting parameters (a, b, c, A and B)

δx = 2 cos θ sin θ δθ, (6.27)

(δS38)
2 =

[
1

fCIC(θ)
δS1000

]2

+

[
−S1000 x

(
a + 2bx + 3cx2)
fCIC(θ)2 δx

]2

+

+

[
− S1000 x

fCIC(θ)2 δa
]2

+

[
− S1000 x2

fCIC(θ)2 δb
]2

+

[
− S1000 x3

fCIC(θ)2 δc
]2

,

(6.28)

(δ∆S38)
2 = δS2

38 +

[
− f38(EFD)

B EFD
δEFD

]2

+

[
f38(EFD)

A B
δA
]2

+

+

[
f38(EFD)

B2 ln
(

EFD

A

)
δB
]2

.

(6.29)

The distribution of ∆S38 for the v12r3 production of data, in an energy range
between 1018.5 eV and 1020.0 eV, and a zenith angle range between 0◦ and 60◦,
is shown in Fig. 6.21. For comparison purposes, Fig. 6.21 includes the use of
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Figure 6.21: Distribution of ∆S38 for the v12r3 production of Pierre Auger data. Ener-
gies have been limited to 1018.5 eV and 1020.0 eV, while zenith angles have been limited
to 0◦ and 60◦. Blue distribution has been determined through fitting procedures de-
scribed in this section, while the red distribution adopted previously published fitting
parameter values from [76].

previously published attenuation curves and power law function [76], using
the same approach for calculating ∆S38 as described above. For a complete
list of distributions for ∆S38, please see Appendix B.
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6.4.7 Smearing of the depth of shower maximum distribution

The depth of shower maximum Xmax has been studied in great detail for its
usefulness in determining the mass composition. As such, the deformation
and smearing of its true distribution needs to be accounted for. The observed
distribution fobs (Xrec

max) differs from the true distribution f (Xmax) as

fobs (Xrec
max) =

∞∫
0

f (Xmax) ε (Xmax) R (Xrec
max − Xmax) dXmax, (6.30)

with included deformations being detector efficiency ε and detector resolu-
tion smearing R. For Pierre Auger data events, these additional corrections
are performed during event reconstruction with parameterization described
in [50]. However, simulations do not possess true detector information and
atmospheric conditions, so an additional smearing needs to be applied before
comparing them to data. Using the smearing approach in the supplemen-
tary material of [50], the corrections for simulation treatment are split into a
number of contributions:

1. Multiple scattering correction: The variation of typical aerosol sizes
around their mean value adds a contribution

σ (Xmax)ms ≤ 1 g/cm2. (6.31)

2. VAOD statistics: The vertical aerosol optical depth (VAOD) used during
the reconstruction comes from measurements from the central laser fa-
cility (XLF and CLF) averaged over one hour. The average variance as a
function of energy due to propagation of uncertainties to Xmax is

〈
σ (Xmax)

2
VAOD-stat

〉
= 12 (g/cm2)2

(
e

17.9−log(E/eV)
0.28 + 1

)−1

. (6.32)

3. VAOD systematics: The VAOD has correlated systematics from LASER
energy, FD calibration and clear reference night selection

σ (Xmax)VAOD-sys = ±
1
2

2.7 g/cm2
(

e
17.4−log(E/eV)

0.6 + 1
)−1

. (6.33)

4. Molecular atmosphere correction: Correction caused by the difference,
when reconstructing events using weather condition measurements (Global
Data Assimilation System) [77], compared do balloon soundings

σ (Xmax)molAtm = (2 + 0.75 log(E/EeV)) g/cm2. (6.34)

5. Horizontal VAOD uniformity correction: During estimation of VAOD,
it is assumed that aerosol layers have a horizontal uniformity along the
distance between the FD building and the central laser facility. The
extension also assumes that other directions, which are not measured,
also show this uniformity. This correction exchanges measured VAOD
profiles between different FD buildings to determine its impact on Xmax.
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The largest uncertainties come from the Loma Amarilla FD building,
which is used for the calculation of this correction

σ (Xmax)VAOD-LA = ±14 g/cm2
(

e
17.8−log(E/eV)

0.65 + 1
)−1

, (6.35)

σ (Xmax)VAOD-unif =
3
4

√√√√σ (Xmax)
2
VAOD-LA − 2

〈
σ (Xmax)

2
VAOD-stat

〉
2

. (6.36)

6. Detector alignment correction: For a precise measurement of the shower
maximum, the telescopes need to be precisely aligned. For example, a
misalignment of the elevation angle δ by 0.2◦ will cause an Xmax bias
of 2.7 g/cm2 for a vertical shower at a 10 km distance. The alignment
uncertainty is estimated by comparing results with current and previous
values of alignment constants

σ (Xmax)align =
1
2
(5 + 1.1 log(E/EeV)) g/cm2. (6.37)

The above contributions are then summed in quadrature together into a smear-
ing variance

σ (Xmax)
2
smear = σ (Xmax)

2
ms +

〈
σ (Xmax)

2
VAOD-stat

〉2
+ σ (Xmax)

2
VAOD-sys +

+ σ (Xmax)
2
molAtm + σ (Xmax)

2
VAOD-unif + σ (Xmax)

2
align .

(6.38)

The smeared value of X′max is then given a correction using a random Gaus-
sian value G and the reconstruction bias

X′max = Xmax + Random
[

G
(

0,
√

σ (Xmax)smear

)]
+

+ (3.4− 0.93(log(E/eV)− 18)) .
(6.39)

The Gaussian distribution is centered at zero and has a variance determined
by the smearing variance. The reconstruction bias is the same as µ from Eq.
(6.6) and must be applied to FD standard measurements for simulations and
Pierre Auger data, whenever EAS are reconstructed with the Offline software.
The comparison of unsmeared and smeared distributions of simulations for
an energy range between 1018.5 eV and 1020.0 eV, and three hadronic interac-
tion models is shown in Fig. 6.22. For more information on smearing, see
supplementary material of [50].
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Figure 6.22: Smeared (blue) and unsmeared (red) distributions of Xmax for simula-
tions inside an energy range between 1018.5 eV and 1020.0 eV. The three plots show
hadronic interaction models EPOS-LHC (top), QGSJET-II.04 (middle) and Sibyll-2.3
(bottom).

74



7 Analysis of simulation samples

Before using the MVA method on Pierre Auger Observatory data events,
it is important to choose the most appropriate method and estimate its per-
formance on well known compositions. For this purpose, a pure composition
is taken from previously unused simulation events, as described in section
6.4.2. This determines the separation strength of selected MVA methods and
the stability of our analysis procedure. At the same time, it gives the sys-
tematic uncertainty estimation, that we can expect from the MVA method
selection. In addition to pure composition samples, we also estimate the per-
formance of the MVA analysis on a simulated mock data sample prepared in
section 6.4.2. This mixed composition of simulated events imitates previously
published mass composition estimation from [1, 51].
In section 7.1, we compare different machine learning algorithms and select
the most powerful MVA method for separating simulation events. Once se-
lected, the analysis is applied to cross-validation sets in section 7.2 and the
simulated mock data set in section 7.3.

7.1 Selection of a multivariate analysis method

For the purpose of this work, classification has been tested on a number of
“black-box“ MVA methods that are supplied with the TMVA package, now
part of the ROOT data analysis framework [66]. We performed the selection
for the most appropriate MVA method using the EPOS-LHC hadronic inter-
action model. To correctly estimate the best MVA method for classification
purposes, the input simulation set must be split into two parts as described
in section 6.4.2. The first part is used for training the MVA method, while
the second part is used for cross-validation with unused data. We chose ob-
servables which will later be used for mass composition studies, and ran a
TMVA classification in order to train and test different MVA methods. These
observables are Xmax, sec θ, the absolute observables t1000 and S1000, and their
relative counterparts ∆R and ∆S38. The conversion from absolute to relative
observables has been performed with the use of Pierre Auger Observatory
data, when fitting zenith angle dependencies of absolute observables. This
ensures that there are no additional biases coming from observable conver-
sions. The zenith angle sec θ has also been included into the analysis with
absolute observables, because they both depend on it.
The first selection of MVA methods was performed purely based on classifier
background rejection versus signal efficiency, also known as the receiver oper-
ating characteristic (ROC) curve. In order to perform MVA method training,
proton simulations have been selected as signal and iron simulations as back-
ground. The ideal case for a ROC curve is maximum background rejection for
any signal efficiency, but for a real world case, some signal events are bound
to be misclassified as background. Therefore, to ensure a good classification,
we wish to have the largest area under the ROC curve. ROC curves for MVA
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methods with similar performances are compared in Fig. 7.1. From them,

Figure 7.1: ROC curves of MVA methods after the initial selection. For a good clas-
sifier, we wish to have the largest area under the ROC curve. The top row includes
Xmax and relative observables ∆R and ∆S38. The bottom left plot includes Xmax and
absolute observables t1000 and S1000, while bottom right also adds sec θ as an input
feature.

it is clear that classifiers which can not handle non-linear correlations of in-
put features are better at separation of relative observables. This is already
a good indication that absolute observables might include non-linear correla-
tions. Additionally, performance is best for relative observables or absolute
observables with included zenith angle sec θ. The performance on absolute
observables without including the zenith angle (Xmax, t1000 and S1000) gives
reduced background rejections, so this configuration of input features, will no
longer be used.
The remaining MVA methods are three linear discriminant methods (Boosted-
Fisher, Fisher and FisherG), two artificial neural network methods (MLPBFGS
and MLPBNN) and one each for Boosted Decision Trees (BDTG) and Sup-
port Vector Machines (SVM). BoostedFisher is the Fisher linear discriminant
with additional AdaBoosting, while FisherG incorporates a Gaussian trans-
formation of input features. MLPBFGS and MLPBNN are both multi-layer
perceptrons, with MLPBNN using additional Bayesian regulators to avoid
over-training. They both incorporate the tanh function as the neuron activa-
tion function, the BFGS algorithm to improve performance, and normalize
training inputs to a range of [−1, 1]. BDTG is a boosted decision tree classifier
with gradient boosting. SVM is the support vector machine classifier which
normalizes training inputs to the range of [−1, 1]. For a complete overview of
configurations taken for each of these MVA methods, see Appendix E. Since
the TMVA package in ROOT does not support multiple signal-like variable
distributions, a straightforward classification cut on the MVA variable is not
enough to separate between a collection of primary masses in the compo-
sition. Due to this restriction, the resulting MVA variable distributions had
to be fitted in order to obtain the mass composition estimation. The fitting
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method, as described in section 6.2, uses a four element composition of pro-
ton, helium, oxygen and iron simulations to fit MVA variable distributions.
The distribution shape sets an additional selection criterion and MVA meth-
ods with distributions unsuitable for fitting are discarded. Fig. 7.2 shows
proton and iron distributions of the MVA variable for the above mentioned
methods.

MVA variable
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Figure 7.2: MVA variable distributions for cross-validation sets of proton (blue) and
iron (red). From left to right and top to bottom, the MVA methods are BoostedFisher,
SVM, Fisher, FisherG, MLPBFGS, MLPBNN and BDTG.
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They use the relative configuration of observables (Xmax, ∆R and ∆S38), show
a single energy bin (between 1018.9 eV and 1019.0 eV), and in a zenith angle
range between 0◦ and 60◦. Note that these distributions show simulations
not used during MVA method training. BoostedFisher (top left) and SVM
(top right) did not show desirable distributions for fitting purposes and were
rejected before further selection. The second row in Fig. 7.2 shows similar
distributions for the remaining Fisher linear discriminants, with lots of in-
formation in the middle of the distribution. The third row and bottom row
in Fig. 7.2 show similar distributions for both neural networks and BDTG,
with large peaks at both edges. An MVA variable distribution with a more
Gaussian-like curve is preferred, because sharp peaks could lead to larger fit-
ting uncertainties and a larger misclassification of events.
The last selection is done, by performing a distribution fit for 11 energy bins
over the complete energy range between 1018.5 eV and 1020.0 eV. Same as be-
fore, cross-validation sets are fitted with a four element composition consist-
ing of proton, helium, oxygen and iron simulations. The configuration of
observables taken for this part of the analysis was Xmax combined with rela-
tive observables ∆R and ∆S38. Ideally, we wish each of the fits to return a pure
composition, with only a single element at a fraction of one. We have created
elemental fraction versus primary energy plots from all distribution fits and
apply them to proton, helium, oxygen and iron cross-validation sets. As an
example, elemental fractions for the Fisher MVA method are shown in Fig.
7.3, while the rest can be found in Appendix F. Lightest elements for all MVA
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Figure 7.3: Elemental fraction versus energy, when MVA method is applied to pro-
ton (top left), helium (top right), oxygen (bottom left) and iron (bottom right cross-
validation sets. Elemental fractions indicate the four elemental composition of pro-
tons (blue), helium (indigo), oxygen (magenta) and iron (red). The selected MVA
method is Fisher.

methods show the highest amount of misclassified events, while all of them
show a good composition estimation for heavier elements. After perform-
ing these fits, BDTG and MLPBFGS had problems while classifying selected
simulation samples, due to the sharp peaked structure of their MVA variable
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distributions. Some fits could not correctly determine fitting uncertainties,
so there are some missing values for a few out of 11 energy bins total. Both
Fisher methods performed equally well and correctly performed distribution
fits for all energy bins. MLPBNN also managed to finish all distribution fits,
but showed a suboptimal performance for low masses (proton and helium)
and suffers from the same sharp peaked structure as BDTG and MLPBFGS.
Showing the best separation power for all simulation events and fast training
response, we decided to select Fisher linear discriminants as MVA methods
for further analysis. Because the ROC curve during the first selection stage
was higher for Fisher than for FisherG, we will use Fisher as the overall rep-
resentation of both.

7.2 Analysis of cross-validation simulation samples

Now that the Fisher linear discriminant method has been selected for the
following MVA analysis, it will be applied to all cross-validation simulation
sets. These include pure composition samples of proton, helium, oxygen and
iron not used by the MVA training procedure. During the analysis, we select
proton and iron simulations sets for training the MVA method. A four ele-
mental composition is fitted to MVA variable distributions of cross-validation
events. This is performed three times, once for each hadronic interaction
model (EPOS-LHC, QGSJET-II.04 and Sibyll-2.3). Observables tested during
this part are split into three configurations. The first configuration includes
Xmax and the two relative observables (∆R and ∆S38), while the second con-
figuration includes Xmax, sec θ and the two absolute observables (t1000 and
S1000). We denote the first as the relative observable configuration and the
second as the absolute observable configuration, respectively. To avoid any
systematic uncertainties while converting absolute observables to relative ob-
servables, Pierre Auger Observatory data is used for fitting zenith angle de-
pendencies of absolute observables. Fig. 7.4 shows elemental fraction ver-
sus energy for relative and absolute observable configurations. This uses the
EPOS-LHC hadronic interaction model, while similar plots for QGSJET-II.04
and Sibyll-2.3 can be found in Appendix G. As an additional cross-check, we
also performed the distribution fitting approach on Xmax distributions. This
third configuration will from now on be denoted as the FD-only configura-
tion. When using only one observable, we can estimate its separation power
by skipping the MVA analysis step and just perform a distribution fit. This
way we use Xmax for comparison to previously published results. Because the
fitting approach is done in a similar way as in [51], we can compare consis-
tency of distribution fitting. For brevity, the elemental fraction plots produced
in the FD-only analysis are given in Appendix G.
All hadronic interaction models and observable configurations show good
performance on simulation sets, with misclassification primarily observed for
lighter masses (proton, helium). Misclassification for each individual energy
bin can be seen as deviations from expected elemental fraction values in Fig.
7.4 and figures in Appendix G. Mean values for all 11 energy bins, hadronic
interaction models and observable configurations are determined by fitting a
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Figure 7.4: Elemental fraction versus energy, when MVA method is applied to cross-
validation sets with pure compositions and the EPOS-LHC hadronic interaction
model. From top to bottom, the cross-validation sets are for proton, helium, oxy-
gen and iron. Observable configurations used during MVA analysis are the relative
configuration (left), and the absolute configuration (right). Elemental fractions in-
dicate the four elemental composition for protons (blue), helium (indigo), oxygen
(magenta) and iron (red).

horizontal line
f (log E) = A, (7.1)

through the complete energy range. A is a free fitting parameter, with fitting
results reported in Tab. 7.1. For an ideal case, these should report fractions of
one, but for our case, they give us an estimation of the systematic uncertainty
that we can expect from the selected MVA method. Note that during the
distribution fitting procedure, we limit elemental fractions to a maximum
value of 1.
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Table 7.1: Values of parameter A from Eq. (7.1), when applied to elemental fractions
from cross-validation samples. As detailed in section 8.3, these fits give a measure of
systematic uncertainty we can expect from our choice of the MVA method.

Hadronic interaction model
Cross-validation sample EPOS-LHC QGSJET-II.04 Sibyll-2.3

R
el

at
iv

e Proton 0.9509± 0.0254 0.9649± 0.0237 0.9803± 0.0146
Helium 0.9611± 0.0202 0.9752± 0.0227 0.9735± 0.0222
Oxygen 0.9808± 0.0117 0.9705± 0.0148 0.9755± 0.0137

Iron 0.9905± 0.0104 0.9857± 0.0131 0.9821± 0.0130

A
bs

ol
ut

e Proton 0.9701± 0.0261 0.9863± 0.0142 0.9739± 0.0181
Helium 0.9653± 0.0229 0.9799± 0.0158 0.9763± 0.0232
Oxygen 0.9829± 0.0160 0.9809± 0.0129 0.9822± 0.0126

Iron 0.9844± 0.0122 0.9868± 0.0119 0.9897± 0.0146

FD
-o

nl
y Proton 0.9767± 0.0161 0.9778± 0.0174 0.9704± 0.0220

Helium 0.9682± 0.0191 0.9590± 0.0204 0.9532± 0.0259
Oxygen 0.9706± 0.0159 0.9701± 0.0169 0.9900± 0.0160

Iron 0.9947± 0.0147 0.9873± 0.0162 1.0000± 0.0223

7.3 Mixed composition estimation

After applying the MVA analysis onto pure composition samples, we now
instead use a simulation sample with a mixed composition. The composi-
tion for this AugerMix sample has been selected in order to imitate the mass
composition found in [1, 51]. A detailed description of the selection process
for the AugerMix mock data set can be found in section 6.4.2. This part of
the analysis focuses on determining the MVA separation power for complex
data sets, with a four elemental composition. In addition to elemental frac-
tion plots used so far, 〈ln A〉 plots are also included, which show the mass
composition estimate as an average logarithmic mass

〈ln A〉 =
N

∑
i=1

fi ln Ai, (7.2)

where fi are elemental fractions and Ai elemental masses for an N-elemental
composition. These plots combine all elemental fractions fi into a single value
for a mean mass estimator, but reduce the amount of information we gain
from individual elemental fractions. Note that all plots in this section do not
include systematic uncertainties, because they are estimated separately in 8.3.
In section 7.3.1 we skip the MVA analysis step and just perform distribution
fits of Xmax in an FD-only analysis. Then, in section 7.3.2, we combine SD
and FD mass composition sensitive observables to estimate the strength of
the MVA approach, when adding information from SD measurements.

7.3.1 FD-only analysis

An FD-only analysis based on Xmax is prepared in order to directly compare
the distribution fitting technique to a similar approach used in [1, 51]. In both
approaches, the distributions of Xmax are fitted with a maximum likelihood
method on a four elemental composition of proton, helium, oxygen and iron.
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For published results, nitrogen was used instead of oxygen, but they are sim-
ilar in mass and represent intermediate UHECR masses. During comparisons
to published data, oxygen fractions from our analysis are compared to nitro-
gen fractions. For an FD-only analysis, it is impossible to perform an MVA
analysis, so we instead only use the distribution fitting procedure developed
in previous chapters. Distributions of Xmax have been selected, because pub-
lished results are also based on them. The AugerMix simulation set for the
FD-only analysis has 4 207 events, which equals the number of events in the
Pierre Auger Observatory data set, as described in 6.4.2. Fig. 7.5 shows the
elemental fraction plot for the EPOS-LHC hadronic interaction model, while
Fig. 7.6 shows the composition using a four elemental composition. Similar
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Figure 7.5: Elemental fraction versus energy, when an FD-only analysis is performed
on the AugerMix set using the EPOS-LHC hadronic interaction model. From left to
right and top to bottom, the elemental fractions are for proton (blue), helium (indigo),
oxygen (magenta) and iron (red). For comparison, elemental fractions shown in gray
are from [1, 51].
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Figure 7.6: 〈ln A〉 versus energy, when an FD-only analysis is performed on the
AugerMix set (black) using the EPOS-LHC hadronic interaction model. For compar-
ison, the composition from Xmax analysis (red) [1, 51] is added.
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plots for QGSJET-II.04 and Sibyll-2.3 models can be found in Appendix H.
Energies are split into 11 bins between 1018.5 eV and 1020.0 eV and the zenith
angle is unlimited. In order to estimate the agreement between our results
and the previously published elemental fractions, we used the mean squared
estimator (MSE)

MSE =
1
K

K

∑
i=1

(
f obs
i − f pub

i

)2
, (7.3)

where K is the number of energy bins, f obs
i is the observed fraction resulting

from our analysis and f pub
i is the published fraction. A lower value of MSE

accounts for a better agreement between the two sets and the maximum value
for our case is MSEmax = 1. The comparison between our AugerMix mock
data set and elemental fractions from [1, 51] shows that the mock data set
returns fractions within statistical uncertainties of the published results, and
MSE values listed in Tab. 7.2. A significant deviation from published results
only appears for the two highest energy bins, which have the smallest number
of events per bin. The combined average mass 〈ln A〉 shows an even greater
agreement between our analysis and results in [1, 51], because it evens out
displacements shown in elemental fraction plots. As such, the AugerMix set
we created is consistent with the published mass composition it is based on.

7.3.2 Analysis with combined SD and FD observables

For this analysis, we combine the 1500 m array and FD telescope measured
observables into two different observable configurations in order to see the
performance of our analysis on a controlled mixture of elements. As men-
tioned before, the configurations are:

– Relative configuration, including FD observable Xmax and SD observ-
ables ∆R and ∆S38.

– Absolute configuration, including FD observables Xmax and sec θ, and
SD observables t1000 and S1000.

The zenith angle in the form of sec θ has been added to the absolute config-
uration, because both t1000 and S1000 depend on it. This dependence has, on
the other hand, already been removed from their relative counterparts ∆R and
∆S38. This comparison will show differences between both configurations and
compare them to previously published results.
Because we selected observables from both detection systems, we include
comparisons to the Xmax analysis from [1, 51] and the Delta method analysis
from [2]. The Delta method is an SD-only analysis and uses larger statistics of
the SD set to estimate the mass composition. Instead of performing a distribu-
tion fitting procedure, it takes mean values of ∆s observable distributions for
comparison to simulations. This effectively produces smaller statistical un-
certainties, but it is unable to determine elemental fraction values. The same
can also be observed in the Xmax analysis from [1, 50]. The Xmax analysis we
compare to [1, 51] fits a four elemental composition to Xmax distributions in
each energy bin, similar to our analysis.
〈ln A〉 values for this comparison are calculated in the same way as for the
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FD-only case, using Eq. (7.2). We again use a four elemental composition of
proton, helium, oxygen and iron, while for published results, nitrogen was
used instead of oxygen. The AugerMix simulation set has 3 172 events, which
equals the number of events in the Pierre Auger Observatory data set, when
zenith angle is limited to a range between 0◦ and 60◦. Fig. 7.7 shows ele-
mental fraction plots and Fig. 7.8 shows the 〈ln A〉 plots for the EPOS-LHC
hadronic interaction model and both observable configurations. Similar plots
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Figure 7.7: Elemental fraction versus energy, when MVA method is applied to the
AugerMix set using the EPOS-LHC hadronic interaction model. From top to bottom,
the elemental fractions are for proton (blue), helium (indigo), oxygen (magenta) and
iron (red). Observable configurations used during MVA analysis are the relative
configuration (left), and the absolute configuration (right). For comparison, elemental
fractions shown in gray are from [1, 51].

for QGSJET-II.04 and Sibyll-2.3 models can be found in Appendix H. All in-
cluded events are split into 11 energy bins between 1018.5 eV and 1020.0 eV.
As expected, the trend on all fractions follows published results for a wide
majority of points inside statistical uncertainties of both analysis procedures.
MSE values calculated from Eq. (7.3) for both configurations are listed in Tab.
7.2. The tested observable configurations worked equally well, showing the
versatility of using machine learning for mass composition studies. Although
the absolute observable configuration has observables that are dependent on
each other (S1000 and t1000 on sec θ) it did not weaken the separation strength
of our analysis approach. What is important is that constructing a mock data
set out of a random mix of simulation events and using mixed observables
does not disrupt the mass composition estimation of the final set. Although
the agreement with published results is smaller than for the FD-only case,
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Figure 7.8: 〈ln A〉 versus energy, when MVA method is applied to the AugerMix set
(black) using the EPOS-LHC hadronic interaction model. Observable configurations
used during MVA analysis are the relative configuration (left), and the absolute con-
figuration (right). For comparison, compositions from Xmax analysis (red) [1, 51] and
the Delta method (blue) [2] are added.

note that this has a smaller number of events.

Table 7.2: Mean squared estimator (MSE) values calculated from Eq. (7.3) for all ob-
servable configurations (FD-only, relative and absolute). MSE determines the agree-
ment between the AugerMix data set and published results from [1, 51]. A lower
MSE value indicates a better agreement.

Hadronic interaction model
Cross-validation sample EPOS-LHC QGSJET-II.04 Sibyll-2.3

R
el

at
iv

e Proton 0.00948 0.02625 0.00160
Helium 0.03369 0.02692 0.00289
Oxygen 0.01421 0.00031 0.00311

Iron 0.00049 < 10−5 0.00255

A
bs

ol
ut

e Proton 0.01259 0.00618 0.00430
Helium 0.01391 0.00836 0.01264
Oxygen 0.00545 0.00067 0.00717

Iron 0.00084 < 10−5 0.00231

FD
-o

nl
y Proton 0.00914 0.02926 0.00196

Helium 0.03151 0.06296 0.00670
Oxygen 0.01329 0.00664 0.01180

Iron 0.00134 0.00050 0.00676
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8 Analysis of Pierre Auger Observatory data

Knowing that the simulation and mock data sets both show a reasonable
composition estimation, we can now perform the same analysis on measured
data. We used the v12r3 production of Pierre Auger Observatory data, which
includes hybrid shower events between the 1st of December 2004 and 31st of
December 2015. As described in section 6.3, a selection has been performed
in order to extract data of the highest quality for mass composition studies.
This selection reduced the 2.5 million data set into 26 000 events. A further
restriction for our analysis was the limitation on energy, because reconstruc-
tions were missing SD station signal traces below the energy of ∼1018.48 eV.
With a range of energies between 1018.5 eV and 1020.0 eV being investigated,
the number of events for FD-only analysis reduced to 4 207. An additional
cut on zenith angles removed highly inclined events for a combined SD and
FD analysis. This limits zenith angles to a range between sec θ = 1 (θ = 0◦)
and sec θ = 2 (θ = 60◦). We are finally left with 3 172 hybrid Pierre Auger data
events, which possess both SD and FD observables. Bias corrections on the
depth of shower maximum Xmax are applied to all data events, as described
in section 6.4.3 and investigated in [50].
The following part of this work uses the MVA analysis approach implemented
in previous chapters in order to estimate the mass composition of UHECR as
detected by the Pierre Auger Observatory. Section 8.1 describes the FD-only
analysis procedure, where we perform distribution fits of Xmax. This is meant
for comparison purposes with results from [1, 51], because both approaches
use a similar technique for distribution fitting. In section 8.2, we use our
analysis approach and fit distributions of the MVA variable, gained from the
analysis. Systematic uncertainty contributions are investigated in section 8.3
and a quick summary of results is given in section 8.4.

8.1 FD-only analysis

In our analysis procedure, we wish to implement a multivariate analysis ap-
proach, with many observables contributing to the estimation of UHECR
mass composition. However, this is a completely new direction of mass com-
position studies, so we first perform an FD-only analysis on the Xmax observ-
able. Due to a similar distribution fitting procedure in [1, 51], both results
can be compared directly. With such a comparison, we can verify our distri-
bution fitting approach and selection of data events. Because the complete
analysis procedure uses an energy range between 1018.5 eV and 1020.0 eV, we
also limited this part to the same range. The range of energies has been split
into 11 bins, first ten with width log(E/EeV) = 0.1 and the last one covering
energies between 1019.5 eV and 1020.0 eV. For an extended comparison, the FD-
only analysis could have been lowered to 1018.0 eV with measurements from
the 750 m array and HEAT, because it does not need a valid SD reconstruc-
tion. However, the focus of this work is on the MVA analysis approach, so the
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energy range was kept equal for both analysis cases.
For the Xmax analysis, we take all 4 207 events and perform a four elemen-
tal composition fit to their Xmax distributions. Simulation sets that we use
for these are simulations of proton, helium, oxygen and iron. Combining
their results gives elemental fraction plots shown in Figures 8.1 and 8.3.
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Figure 8.1: Elemental fraction versus energy, when an FD-only analysis is performed
on the Pierre Auger data set using the EPOS-LHC (left) and QGSJET-II.04 (right)
hadronic interaction models. From top to bottom, the elemental fractions are for
proton (blue), helium (indigo), oxygen (magenta) and iron (red). For comparison,
elemental fractions shown in gray are from [1, 51].

FD energy [log(E/eV)]

18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

<l
n

A
> 

o
f 

d
at

a 
ev

en
ts

0

1

2

3

4

5 Data (v12r3)
 analysis, fractions [PoS(ICRC 2017)]maxX

p

He

N
O

Fe

FD energy [log(E/eV)]

18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

<l
n

A
> 

o
f 

d
at

a 
ev

en
ts

0

1

2

3

4

5 Data (v12r3)
 analysis, fractions [PoS(ICRC 2017)]maxX

p

He

N
O

Fe

Figure 8.2: 〈ln A〉 versus energy, when an FD-only analysis is performed on the Pierre
Auger data set (black) using the EPOS-LHC (left) and QGSJET-II.04 (right) hadronic
interaction models. For comparison, the composition from Xmax analysis (red) [1, 51]
is added.
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By combining individual elemental fractions into an average mass through
Eq. (7.2), we gain 〈ln A〉 plots. These hold less information than elemen-
tal fraction plots, but are easier for direct comparisons to already published
data. 〈ln A〉 plots for all hadronic interaction models are shown in Figures
8.2 and 8.4. The analysis performed on Xmax shows the same trend towards
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Figure 8.3: Elemental fraction versus energy, when an FD-only analysis is performed
on the Pierre Auger data set using the Sibyll-2.3 hadronic interaction model. From left
to right and top to bottom, the elemental fractions are for proton (blue), helium (in-
digo), oxygen (magenta) and iron (red). For comparison, elemental fractions shown
in gray are from [1, 51].
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Figure 8.4: 〈ln A〉 versus energy, when an FD-only analysis is performed on the
Pierre Auger data set (black) using the Sibyll-2.3 hadronic interaction models. For
comparison, the composition from Xmax analysis (red) [1, 51] is added.

heavier composition with increasing energies, as can be seen from results in
[1, 51]. EPOS-LHC and QGSJET-II.04 hadronic interaction models predict a
lower proton content at energies between 1018.5 eV and 1019.1 eV, with mean
absolute shifts of −0.087 for EPOS-LHC and −0.128 for QGSJET-II.04. In the
same energy range, the helium content is higher for mean absolute shifts of
+0.072 for EPOS-LHC and +0.128 for QGSJET-II.04. This directly corresponds
to a slightly heavier estimation of mass composition at those energies com-
pared to previous results. However, results still remain well within statistic
uncertainties of both approaches. Sibyll-2.3 inversely shows a lower helium
content with a mean absolute shift of −0.111, that is redistributed into protons
(+0.049) and oxygen (+0.063) at energies between 1018.6 eV and 1019.2 eV. At
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these energies, we again observe a slight bias towards a heavier composition,
but within statistic uncertainties of both approaches.

8.2 Analysis with combined SD and FD observables

In section 8.1 we showed that the fitting approach adopted for our analy-
sis returns desirable elemental fractions for the FD-only analysis case. This
confirms that event selection, Xmax treatment and the maximum likelihood
distribution fitting procedure performed as expected. The combined SD and
FD analysis case uses SD and FD observables for an MVA analysis approach
in order to obtain more information on the primary mass. The Pierre Auger
data set used for this part needs to have a valid reconstruction of observables
included in the analysis. This amounts to 3 172 events with an energy range
between 1018.5 eV and 1020.0 eV and a zenith angle range between 0◦ and 60◦.
Energies are split into 11 bins with the same energy bin structure as in the
FD-only case.
For estimating the mass composition of UHECR, we run the MVA analysis
separately for the relative and absolute observable configurations. The two
configurations are defined in section 7.3.2. The resulting distribution of the
MVA variable is then fitted with a combination of proton, helium, oxygen
and iron simulations, using a maximum likelihood fitting approach. This is
performed on EPOS-LHC, QGSJET-II.04 and Sibyll-2.3 hadronic interaction
models. Results from the final MVA analysis on Pierre Auger Observatory
data are shown in Figures 8.5 – 8.10, and Tables 8.1 and 8.2. They are ar-
ranged as:

– Elemental fraction fi versus energy plots: Figures 8.5, 8.7 and 8.9 show
individual elemental fractions for a four elemental composition of pro-
ton (blue), helium (indigo), oxygen (magenta) and iron (red). The left
column of plots shows the relative observable configuration, while the
right column of plots shows the absolute observable configuration. For
comparison, each plot includes Xmax distribution fitting results pub-
lished in [1, 51]. All plots only show statistical uncertainties.

– Average logarithmic mass 〈ln A〉 versus energy plots: The four elements
included in the composition are combined into an average mass compo-
sition estimator 〈ln A〉 through Eq. (7.2). Figures 8.6, 8.8 and 8.10 show
the primary energy evolution of the 〈ln A〉 estimator. The left plot again
shows the relative observable configuration, while the right plot shows
the absolute observable configuration. In addition to the comparison
with [1, 51], these plots also include results from the SD-only analysis
[2] for EPOS-LHC and QGSJET-II.04 models. All plots only show statis-
tical uncertainties.

– Elemental fraction listings: To accompany elemental fraction figures
mentioned above, we merged MVA analysis results and listed elemental
fractions for all three hadronic interaction models. Relative observable
configuration results are listed in Tab. 8.1, while those from absolute
observables are listed in Tab. 8.2.
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Figure 8.5: Elemental fraction versus energy, when MVA method is applied to the
Pierre Auger data set using the EPOS-LHC hadronic interaction model. From top to
bottom, the elemental fractions are for proton (blue), helium (indigo), oxygen (ma-
genta) and iron (red). Observable configurations used during MVA analysis are the
relative configuration (left), and the absolute configuration (right). For comparison,
elemental fractions shown in gray are from [1, 51].
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Figure 8.6: 〈ln A〉 versus energy from results shown in Fig. 8.5 (black). For compar-
ison, compositions from Xmax analysis (red) [1, 51] and the Delta method (blue) [2]
are added.
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Figure 8.7: Elemental fraction versus energy, when MVA method is applied to the
Pierre Auger data set using the QGSJET-II.04 hadronic interaction model. From top
to bottom, the elemental fractions are for proton (blue), helium (indigo), oxygen (ma-
genta) and iron (red). Observable configurations used during MVA analysis are the
relative configuration (left), and the absolute configuration (right). For comparison,
elemental fractions shown in gray are from [1, 51].
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Figure 8.8: 〈ln A〉 versus energy from results shown in Fig. 8.7 (black). For compar-
ison, compositions from Xmax analysis (red) [1, 51] and the Delta method (blue) [2]
are added.
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Figure 8.9: Elemental fraction versus energy, when MVA method is applied to the
Pierre Auger data set using the Sibyll-2.3 hadronic interaction model. From top to
bottom, the elemental fractions are for proton (blue), helium (indigo), oxygen (ma-
genta) and iron (red). Observable configurations used during MVA analysis are the
relative configuration (left), and the absolute configuration (right). For comparison,
elemental fractions shown in gray are from [1, 51].
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Figure 8.10: 〈ln A〉 versus energy from results shown in Fig. 8.9 (black). For compar-
ison, the composition from Xmax analysis (red) [1, 51] is added.
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Table 8.1: Mass composition estimation results as obtained from our MVA analysis
approach for the relative observable configuration (Xmax, ∆R and ∆S38) and all three
hadronic interaction models.

Energy bin
(log(E/eV))

proton helium oxygen iron

EP
O

S-
LH

C

18.5− 18.6 0.4766+0.0763
−0.0946 0.0460+0.1461

−0.0460 0.3485+0.0840
−0.0968

0.1290+0.0401
−0.0401

18.6− 18.7 0.3396+0.1050
−0.0965 0.2477+0.1530

−0.1541 0.1807+0.1041
−0.1026

0.2321+0.0503
−0.0468

18.7− 18.8 0.2990+0.0528
−0.0889 0.0000+0.1345

−0.0000 0.5634+0.0821
−0.1019

0.1377+0.0516
−0.0455

18.8− 18.9 0.1302+0.0838
−0.0702 0.2593+0.1244

−0.1262 0.4423+0.1101
−0.1062

0.1682+0.0575
−0.0518

18.9− 19.0 0.1645+0.1170
−0.1067 0.2823+0.2199

−0.1734 0.3151+0.1316
−0.1773

0.2382+0.0856
−0.0627

19.0− 19.1 0.1410+0.0990
−0.0834 0.0888+0.1510

−0.0888 0.5097+0.1388
−0.1299

0.2605+0.0786
−0.0701

19.1− 19.2 0.0000+0.0509
−0.0000 0.3870+0.1233

−0.1302 0.2562+0.1713
−0.1428

0.3569+0.1093
−0.0924

19.2− 19.3 0.0889+0.1283
−0.0736 0.1263+0.1476

−0.1263 0.4219+0.1636
−0.1506

0.3629+0.1201
−0.1040

19.3− 19.4 0.0161+0.1291
−0.0000 0.1991+0.1548

−0.1873 0.5830+0.2044
−0.1851

0.2014+0.1236
−0.0983

19.4− 19.5 0.2442+0.1703
−0.2442 0.0210+0.3287

−0.0000 0.5631+0.2505
−0.2984

0.1718+0.1604
−0.1177

19.5− 20.0 0.0000+0.0502
−0.0000 0.0000+0.0817

−0.0000 0.3734+0.3416
−0.1998

0.6266+0.2560
−0.3136

Q
G

SJ
ET

-I
I.0

4

18.5− 18.6 0.3355+0.0847
−0.0746 0.1588+0.1406

−0.1483 0.2403+0.1271
−0.1233

0.2653+0.0593
−0.0561

18.6− 18.7 0.3459+0.1015
−0.0912 0.1281+0.1497

−0.1281 0.2109+0.1155
−0.1130

0.3151+0.0578
−0.0539

18.7− 18.8 0.2340+0.0459
−0.0733 0.0000+0.1273

−0.0000 0.3058+0.0826
−0.1189

0.4602+0.0778
−0.0696

18.8− 18.9 0.1757+0.0562
−0.0799 0.0166+0.1726

−0.0000 0.4376+0.1013
−0.1892

0.3702+0.1093
−0.0707

18.9− 19.0 0.1223+0.1175
−0.0882 0.1929+0.2237

−0.1929 0.2210+0.2179
−0.1988

0.4639+0.0968
−0.0968

19.0− 19.1 0.1315+0.0528
−0.0641 0.0000+0.1344

−0.0000 0.2936+0.0944
−0.1358

0.5749+0.1026
−0.0911

19.1− 19.2 0.0139+0.0770
−0.0000 0.2013+0.1272

−0.1548 0.0818+0.1801
−0.0818

0.7029+0.1447
−0.1315

19.2− 19.3 0.0170+0.0707
−0.0170 0.1584+0.0897

−0.1442 0.0000+0.1762
−0.0000

0.8248+0.1443
−0.1428

19.3− 19.4 0.0000+0.0882
−0.0000 0.1206+0.1086

−0.0948 0.1777+0.1898
−0.1777

0.7021+0.1902
−0.1680

19.4− 19.5 0.1615+0.1299
−0.1455 0.0000+0.2520

−0.0000 0.2486+0.2081
−0.2420

0.5900+0.2425
−0.1913

19.5− 20.0 0.0000+0.0512
−0.0000 0.0000+0.1598

−0.0000 0.5872+0.2997
−0.4345

0.4128+0.3999
−0.2467

Si
by

ll-
2.

3

18.5− 18.6 0.2359+0.0781
−0.0693 0.2054+0.1132

−0.1167 0.3778+0.0949
−0.0923

0.1808+0.0494
−0.0468

18.6− 18.7 0.2089+0.0803
−0.0765 0.2768+0.1357

−0.1253 0.1913+0.1024
−0.1083

0.3228+0.0581
−0.0534

18.7− 18.8 0.1091+0.0612
−0.0506 0.2024+0.1053

−0.1130 0.3050+0.1215
−0.1070

0.3835+0.0708
−0.0718

18.8− 18.9 0.1329+0.0563
−0.0525 0.0337+0.0972

−0.0337 0.5407+0.1021
−0.1044

0.2926+0.0650
−0.0599

18.9− 19.0 0.0893+0.0774
−0.0548 0.1888+0.1202

−0.1265 0.3533+0.1224
−0.1175

0.3686+0.0787
−0.0715

19.0− 19.1 0.0856+0.0655
−0.0531 0.0517+0.1131

−0.0517 0.3600+0.1850
−0.1215

0.5026+0.0969
−0.1362

19.1− 19.2 0.0000+0.0813
−0.0000 0.1604+0.1002

−0.1188 0.3365+0.1863
−0.1383

0.5031+0.1182
−0.1120

19.2− 19.3 0.0140+0.0760
−0.0140 0.1406+0.1202

−0.1243 0.1920+0.1611
−0.1506

0.6533+0.1519
−0.1341

19.3− 19.4 0.0000+0.0897
−0.0000 0.1100+0.1196

−0.1032 0.4164+0.1869
−0.1851

0.4737+0.1615
−0.1706

19.4− 19.5 0.1633+0.1324
−0.1139 0.0000+0.2121

−0.0000 0.3978+0.2142
−0.2186

0.4393+0.1976
−0.1615

19.5− 20.0 0.0000+0.0000
−0.0000 0.0000+0.0884

−0.0000 0.0436+0.1693
−0.0436

0.9570+0.0000
−0.2318
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Table 8.2: Mass composition estimation results as obtained from our MVA analysis
approach for the absolute observable configuration (Xmax, t1000, S1000 and sec θ) and
all three hadronic interaction models.

Energy bin
(log(E/eV))

proton helium oxygen iron

EP
O

S-
LH

C

18.5− 18.6 0.4722+0.0495
−0.1061 0.0000+0.1593

−0.0000 0.3749+0.0625
−0.0977 0.1529+0.0432

−0.0371

18.6− 18.7 0.4177+0.1199
−0.1085 0.1718+0.1594

−0.1650 0.1914+0.1075
−0.1067

0.2191+0.0546
−0.0498

18.7− 18.8 0.2655+0.0985
−0.1216 0.0758+0.1892

−0.0758 0.5282+0.1197
−0.1301

0.1305+0.0618
−0.0557

18.8− 18.9 0.1763+0.0918
−0.0755 0.1594+0.1344

−0.1409 0.5043+0.1224
−0.1179

0.1600+0.0604
−0.0549

18.9− 19.0 0.1048+0.1083
−0.0812 0.3643+0.1750

−0.1871 0.2615+0.1508
−0.1456

0.2694+0.0751
−0.0671

19.0− 19.1 0.2027+0.0961
−0.0997 0.0589+0.1767

−0.0000 0.5598+0.1390
−0.1475

0.1788+0.0771
−0.0669

19.1− 19.2 0.0000+0.0771
−0.0000 0.4113+0.1332

−0.1441 0.2583+0.1705
−0.1651

0.3304+0.1146
−0.1009

19.2− 19.3 0.1656+0.1119
−0.1230 0.0403+0.2249

−0.0000 0.5724+0.1788
−0.1950

0.2219+0.1150
−0.0953

19.3− 19.4 0.0000+0.0526
−0.0000 0.1784+0.1422

−0.1131 0.5576+0.2155
−0.2033

0.2640+0.1406
−0.1154

19.4− 19.5 0.1914+0.1640
−0.1914 0.0233+0.4246

−0.0000 0.5358+0.2483
−0.3086

0.2495+0.1843
−0.1369

19.5− 20.0 0.0000+0.1026
−0.0000 0.0118+0.1458

−0.0000 0.8974+0.0000
−0.2857 0.0906+0.2010

−0.0906

Q
G

SJ
ET

-I
I.0

4

18.5− 18.6 0.3293+0.1063
−0.0961 0.1443+0.1825

−0.1443 0.2082+0.1493
−0.1482

0.3182+0.0669
−0.0637

18.6− 18.7 0.3252+0.0982
−0.1072 0.2416+0.1499

−0.1499 0.0510+0.1163
−0.0510

0.3823+0.0681
−0.0605

18.7− 18.8 0.2128+0.0797
−0.0831 0.0726+0.1552

−0.0726 0.3034+0.1656
−0.1367

0.4114+0.0779
−0.1021

18.8− 18.9 0.1972+0.0501
−0.0800 0.0000+0.1523

−0.0000 0.5200+0.0962
−0.1415

0.2827+0.0778
−0.0679

18.9− 19.0 0.1182+0.0987
−0.0887 0.2134+0.2004

−0.1947 0.2490+0.1920
−0.1807

0.4194+0.0956
−0.0875

19.0− 19.1 0.1717+0.0594
−0.0592 0.0000+0.1035

−0.0000 0.4801+0.1167
−0.1514

0.3482+0.1102
−0.0871

19.1− 19.2 0.0000+0.0533
−0.0000 0.3624+0.1181

−0.1289 0.0568+0.1894
−0.0568

0.5808+0.1307
−0.1287

19.2− 19.3 0.0996+0.1078
−0.0855 0.0759+0.1813

−0.0759 0.2618+0.1866
−0.1892

0.5629+0.1519
−0.1342

19.3− 19.4 0.0000+0.0565
−0.0000 0.1066+0.1396

−0.1066 0.2565+0.2266
−0.2176

0.6370+0.1874
−0.1675

19.4− 19.5 0.1569+0.1215
−0.1016 0.0000+0.1681

−0.0000 0.3477+0.2212
−0.1922

0.4956+0.2235
−0.1848

19.5− 20.0 0.0000+0.1242
−0.0000 0.2408+0.3125

−0.2408 0.7613+0.2387
−0.3106

0.0000+0.0623
−0.0000

Si
by

ll-
2.

3

18.5− 18.6 0.2481+0.0911
−0.0831 0.1640+0.1348

−0.1375 0.3638+0.1028
−0.0995

0.2241+0.0517
−0.0491

18.6− 18.7 0.2420+0.0887
−0.0883 0.2833+0.1592

−0.1391 0.1289+0.1171
−0.1279

0.3458+0.0657
−0.0608

18.7− 18.8 0.1316+0.0672
−0.0583 0.1391+0.1060

−0.1084 0.4458+0.1079
−0.1043

0.2835+0.0645
−0.0596

18.8− 18.9 0.1616+0.0550
−0.0668 0.0164+0.1268

−0.0000 0.6009+0.1021
−0.1268

0.2211+0.0678
−0.0601

18.9− 19.0 0.0349+0.0781
−0.0349 0.2780+0.1331

−0.1368 0.3096+0.1327
−0.1260

0.3776+0.0851
−0.0775

19.0− 19.1 0.1183+0.0843
−0.0684 0.0734+0.1329

−0.0734 0.4227+0.1426
−0.1394

0.3858+0.0968
−0.0880

19.1− 19.2 0.0000+0.0455
−0.0000 0.2685+0.1237

−0.1146 0.2738+0.1657
−0.1606

0.4577+0.1195
−0.1069

19.2− 19.3 0.0887+0.1053
−0.0887 0.0645+0.2238

−0.0000 0.3985+0.1779
−0.1935

0.4483+0.1386
−0.1214

19.3− 19.4 0.0000+0.0503
−0.0000 0.0124+0.1141

−0.0000 0.5399+0.1808
−0.2295

0.4477+0.1932
−0.1379

19.4− 19.5 0.1007+0.1234
−0.1007 0.0000+0.2352

−0.0000 0.5499+0.2400
−0.2570

0.3498+0.2086
−0.1540

19.5− 20.0 0.0000+0.0600
−0.0000 0.0000+0.0973

−0.0000 0.7513+0.0000
−0.0000

0.2487+0.2362
−0.1855
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8.3 Systematic uncertainties

In order to investigate systematic uncertainties, we split them into a range of
different contributions. We perform systematic uncertainty analysis on each
element included into the four elemental composition, each hadronic interac-
tion model and each observable configuration. The following contributions
have been considered:

1. Systematic uncertainty on the measurement of Xmax coming from cali-
bration, reconstruction and atmospheric contributions. This uncertainty
is ≤ 10 g/cm2 for the complete energy range of our analysis as visible
in Fig. 8.11 and discussed in [50]. It applies for all observable configu-

Figure 8.11: Systematic uncertainty contribution to the measurement of Xmax [50].

rations and we set it to the limiting value of 10 g/cm2, although some
parts in the energy range have a reduced systematic uncertainty.

2. Systematic uncertainty coming from application of the MVA method to
simulation samples. This contribution has been mentioned in section
7.2, with fits through the systematic shift listed in Tab. 7.1.

3. Systematic uncertainty on the calculation of the SD station risetime from
PMT traces. To determine the signal timing at 10% and 50% of the inte-
grated signal, we decided to use a linear function between measurement
points in the signal trace. Measurement points are separated by 25 ns,
so the maximum possible systematic shifts on both is 12.5 ns in either
direction. Combining both the start and stop times for calculating t1/2,
we get a 25 ns systematic uncertainty on the value. This contribution
applies to measurements of t1000 and ∆R.
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4. Systematic uncertainty on the selection of fitting functions for S38 and
∆S38. As seen in section 6.4.6, it is possible to select previously deter-
mined attenuation curve fCIC and power-law function parameters [76],
instead of performing fits by ourselves. Fig. 6.21 gives the shift we ex-
pect from this contribution. Although this is only a negative shift to
the distribution, we still apply a systematic uncertainty of 0.24 VEM to
both sides of ∆S38. This contribution is only applicable to the relative
observable configuration.

To estimate the systematic uncertainty the above contributions cause on indi-
vidual elemental fractions, we perform an MVA analysis identical to the re-
sults shown in this chapter, but shifting each observable for the Pierre Auger
Observatory data separately. This is performed immediately before the MVA
analysis step and after determining fits for treatment of relative observables.
As such, uncertainties are still able to propagate to relative observables and
are not discarded, when converting absolute observables to relative observ-
ables. To estimate the uncertainty, we subtract fractions with applied system-
atic uncertainties f syst

i from fractions without systematic uncertainties fi. This
results in separate values for negative and positive uncertainties. In order to
obtain systematic contributions over the complete energy range, we perform
a horizontal line fit using Eq. (7.1) on both the negative and positive contribu-
tion. To combine the two into a single value, we take fitting parameters A as

extreme values and determine their mean as |Aneg|+|Apos|
2 . As an example, the

above mentioned fits for systematic contributions of Xmax, ∆R and ∆S38 to the
proton fraction, and using the relative observable configuration and EPOS-
LHC model, are shown in Fig. 8.12. All of the above sources of uncertainties
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Figure 8.12: Systematic uncertainty estimation from a relative observable configura-
tion including Xmax (top left), ∆R (top right) and ∆S38 (bottom). Negative systematics
(blue) and positive systematics (red) are fitted with Eq. (7.1), then the mean of their
absolute values is taken as the final contribution to the systematic uncertainty.

are summed in quadrature to produce the final systematic uncertainty on ele-
mental fractions as listed in Tab. 8.3 for the relative configuration, Tab. 8.4 for
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the absolute configuration and Tab. 8.5 for the FD-only case. The systematic
uncertainty coming from simulation samples does not have a negative and
positive contribution, as shown in section 7.2. Instead, the fitting uncertainty
is taken as the two contributions. The reported systematic uncertainties are
absolute uncertainties to elemental fraction values.

Table 8.3: Systematic uncertainty contributions and the total systematic uncertainty
(quadratic sum) for the relative observable configuration, all three hadronic interac-
tion models (EPOS-LHC, QGSJET-II.04 and Sibyll-2.3) and a four elemental composi-
tion (proton, helium, oxygen and iron).

Systematic
uncertainty
contribution

proton helium oxygen iron

EP
O

S

Xmax 0.036± 0.024 0.072± 0.005 0.042± 0.003 0.077± 0.022
Simulation sample 0.049± 0.025 0.039± 0.020 0.019± 0.012 0.009± 0.010

∆R 0.011± 0.002 0.012± 0.000 0.019± 0.002 0.009± 0.001
∆S38 0.016± 0.014 0.002± 0.002 0.017± 0.001 0.015± 0.007
Total 0.064± 0.038 0.083± 0.021 0.053± 0.012 0.079± 0.025

Q
G

SJ
ET

Xmax 0.021± 0.003 0.021± 0.021 0.068± 0.012 0.104± 0.004
Simulation sample 0.035± 0.024 0.025± 0.023 0.030± 0.015 0.014± 0.013

∆R 0.011± 0.003 0.013± 0.004 0.011± 0.006 0.008± 0.003
∆S38 0.002± 0.000 0.013± 0.009 0.011± 0.011 0.024± 0.004
Total 0.058± 0.031 0.064± 0.031 0.049± 0.029 0.095± 0.023

Si
by

ll

Xmax 0.019± 0.004 0.023± 0.019 0.093± 0.022 0.113± 0.023
Simulation sample 0.020± 0.015 0.027± 0.022 0.025± 0.014 0.018± 0.013

∆R 0.002± 0.001 0.002± 0.001 0.009± 0.001 0.006± 0.000
∆S38 0.007± 0.004 0.008± 0.006 0.010± 0.005 0.029± 0.010
Total 0.029± 0.016 0.036± 0.030 0.097± 0.027 0.118± 0.028

Table 8.4: Systematic uncertainty contributions and the total systematic uncertainty
(quadratic sum) for the absolute observable configuration, all three hadronic interac-
tion models (EPOS-LHC, QGSJET-II.04 and Sibyll-2.3) and a four elemental composi-
tion (proton, helium, oxygen and iron).

Systematic
uncertainty
contribution

proton helium oxygen iron

EP
O

S

Xmax 0.047± 0.020 0.054± 0.008 0.037± 0.022 0.088± 0.018
Simulation sample 0.030± 0.026 0.035± 0.023 0.017± 0.016 0.016± 0.012

t1000 0.003± 0.001 0.019± 0.017 0.008± 0.006 0.023± 0.005
Total 0.055± 0.033 0.067± 0.030 0.042± 0.028 0.092± 0.022

Q
G

SJ
ET

Xmax 0.030± 0.012 0.037± 0.017 0.076± 0.027 0.093± 0.009
Simulation sample 0.014± 0.014 0.020± 0.016 0.019± 0.013 0.013± 0.012

t1000 0.015± 0.006 0.012± 0.009 0.031± 0.006 0.041± 0.001
Total 0.036± 0.020 0.044± 0.025 0.084± 0.030 0.103± 0.015

Si
by

ll

Xmax 0.026± 0.005 0.025± 0.019 0.098± 0.024 0.127± 0.014
Simulation sample 0.026± 0.018 0.024± 0.023 0.018± 0.013 0.010± 0.015

t1000 0.004± 0.002 0.003± 0.001 0.019± 0.000 0.022± 0.001
Total 0.037± 0.019 0.034± 0.030 0.101± 0.027 0.129± 0.021
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Table 8.5: Systematic uncertainty contributions and the total systematic uncertainty
(quadratic sum) for the FD-only analysis case, all three hadronic interaction models
(EPOS-LHC, QGSJET-II.04 and Sibyll-2.3) and a four elemental composition (proton,
helium, oxygen and iron).

Systematic
uncertainty
contribution

proton helium oxygen iron

EP
O

S Xmax 0.013± 0.007 0.241± 0.077 0.226± 0.024 0.046± 0.024
Simulation sample 0.023± 0.016 0.032± 0.019 0.029± 0.016 0.005± 0.015

Total 0.027± 0.018 0.243± 0.079 0.228± 0.029 0.046± 0.028

Q
G

SJ
ET Xmax 0.289± 0.032 0.330± 0.096 0.000± 0.000 0.000± 0.000

Simulation sample 0.022± 0.017 0.041± 0.020 0.030± 0.017 0.013± 0.016
Total 0.290± 0.036 0.332± 0.098 0.030± 0.017 0.013± 0.016

Si
by

ll Xmax 0.023± 0.007 0.214± 0.036 0.178± 0.162 0.045± 0.045
Simulation sample 0.030± 0.022 0.047± 0.026 0.010± 0.016 0.000± 0.022

Total 0.037± 0.023 0.219± 0.044 0.178± 0.163 0.045± 0.050

The FD-only case, where we take Xmax as the only observable, shows a good
comparison to published results, but it has large systematic uncertainties,
which can also be seen in Figures 5.5 and 5.6. This does not happen for
the MVA analysis case, which is less sensitive to systematic uncertainty from
Xmax. The MVA analysis that we introduce is therefore much more stable and
less prone to systematic uncertainties from individual sources. Note also, that
the highest uncertainty contributions for the FD-only case come from particle
masses, where the mass composition of Pierre Auger data is located in each
model. For EPOS-LHC and Sibyll-2.3 these are helium and oxygen, while for
QGSJET-II.04 these are proton and helium.

8.3.1 Hadronic interaction model systematic uncertainty

The hadronic interaction models use different approaches to describe the
quantum chronodynamics (QCD) interactions resulting in slightly different
predictions for observable distributions [47]. The possibility of extracting sys-
tematic uncertainties from the three included models is now investigated. Us-
ing results shown in Figures 8.5, 8.7 and 8.9, and listed in Tables 8.1 and 8.2,
we can plot elemental fractions of all models on common graphs. Elemental
fractions versus energy for all three models and the relative observable config-
uration are shown in Fig. 8.13. The systematic uncertainty from the choice of
model can now be calculated by determining the variance of all three models

σ2
model =

1
3

3

∑
j=1

(
fi,j − 〈 fi〉

)2 , (8.1)

where fi,j is the elemental fraction for model j, and 〈 fi〉 is the mean elemental
fraction

〈 fi〉 =
1
3

3

∑
j=1

fi,j. (8.2)
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Figure 8.13: Elemental fraction versus energy for the Pierre Auger data set and a
composition of protons (top left), helium (top right), oxygen (bottom left) and iron
(bottom right). For clarity, fractions for the EPOS-LHC model (blue, circle) are shifted
by log(E/eV) = −0.02, fractions for the QGSJET-II.04 model (violet, square) are at
the correct position and fractions for the Sibyll-2.3 model (red, triangle) are shifted
by log(E/eV) = +0.02.

If the value of σmodel is small, models predict a similar mass composition,
while if its value is large, they differ considerably. Calculating σmodel for all
energy bins and all elements uncovers systematic uncertainties 0 < σmodel <
0.099 for protons and 0 < σmodel < 0.111 for helium. This behaviour is also
apparent from Fig. 8.13 (top left and top right), since all models show similar
elemental fractions for protons and helium. Oxygen and iron, on the other
hand, cover a wider spread of elemental fractions for different models, as ev-
ident from Fig. 8.13 (bottom left and bottom right). This is also confirmed
by their systematic uncertainties, which are 0.01 < σmodel < 0.22 for oxygen
and 0.04 < σmodel < 0.22 for iron. Therefore, the largest discrepancy between
models happens for the two heaviest elements. Assuming that mass compo-
sition is equal for all models, then the combined oxygen and iron fractions
should show systematic uncertainties similar to proton and helium. The sum
of elemental fractions for oxygen and iron for all three models and the rela-
tive observable configuration are shown in Fig. 8.14. The combined fractions
for oxygen and iron have a larger consistency between hadronic interaction
models and amount to systematic uncertainties 0 < σmodel < 0.100. These val-
ues are comparable to systematic uncertainties uncovered from protons and
helium. The complete listing of σmodel values for the relative observable con-
figuration and the complete energy range between 1018.5 eV and 1020.0 eV can
be found in Tab. 8.6 in the next section.

100



FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Oxygen + Iron

Figure 8.14: The sum of oxygen and iron fractions versus energy for the Pierre Auger
data set. For clarity, fractions for the EPOS-LHC model (blue, circle) are shifted by
log(E/eV) = −0.02, fractions for the QGSJET-II.04 model (violet, square) are at the
correct position and fractions for the Sibyll-2.3 model (red, triangle) are shifted by
log(E/eV) = +0.02.

8.4 Results

Results obtained with the MVA analysis and described in this work can be
summed into these four points:

1. Comparison to previously published results:
The results of the MVA analysis show a similar trend with energy as
reported in published FD-only [1, 51] and SD-only analysis cases [2].
The estimated mass composition is becoming heavier with increasing
energy over the complete energy range between 1018.5 eV and 1020.0 eV.
From elemental fraction plots for EPOS-LHC (Fig. 8.5) and Sibyll-2.3
(Fig. 8.9), we see that proton fractions agree well with published Xmax
results, having MSE values of 0.0058 and 0.0070, respectively. However,
they show lower fractions for helium and higher fractions for iron. As a
result, the estimated mass composition for EPOS-LHC (Fig. 8.6) for both
observable configurations lies between the FD-only and SD-only analy-
sis cases. Missing the Delta method analysis on Sibyll-2.3, the estimated
mass composition from our analysis (Fig. 8.10) is heavier than the FD-
only analysis case. This result shows that including observables from
the surface detector and using Pierre Auger Observatory data, shifts
the estimated mass composition towards heavier masses. Results from
the QGSJET-II.04 hadronic interaction model, however, show a drastic
difference to the other two models, when compared to previously pub-
lished results. Elemental fractions (Fig. 8.7) indicate a large inclusion
of oxygen and iron, although Xmax results show almost no nitrogen and
iron in the composition. This estimates a heavier mass composition (Fig.
8.8) than both the FD-only and SD-only published results.

2. Comparison of relative and absolute observable configurations:
To check the differences in results obtained from the two investigated
observable configurations, the relative differences of individual elemen-
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tal fractions are calculated as

ri =
f rel
i − f abs

i√
f rel
i

, (8.3)

where i denotes each element in the composition, f rel
i is the elemental

fraction reported by the relative and f abs
i the elemental fraction reported

by the absolute observable configuration. A visual representation of
ri for the EPOS-LHC hadronic interaction model and a four elemen-
tal composition is shown in Fig. 8.15. The only drastic discrepancy
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Figure 8.15: Relative difference ri, calculated from Eq. (8.3), between relative and ab-
solute observable configurations for the Pierre Auger data set and EPOS-LHC model.
Values for protons (blue) are shifted by log(E/eV) = −0.03, values for helium (in-
digo) by log(E/eV) = −0.01, values for oxygen (magenta) by log(E/eV) = +0.01
and values for iron (red) by log(E/eV) = +0.03.

between observable configurations appears for the highest energy bin,
which sports the lowest number of Pierre Auger data events. However,
the number of events is not the main reason for the difference. Fig. 8.16
shows distributions for S1000 and ∆S38 observables in the highest en-
ergy bin. The distribution of S1000 for Pierre Auger data in this energy
bin takes values similar to both the proton and iron distributions, while
∆S38 shows a distribution heavier in mass than both proton and iron.
Considering that this effect does not appear on other energy bins, it is
most likely caused by the energy dependence of the S1000 distribution
range (see observable distributions in Appendix B). For example, at low
energies, its distribution covers SD station signals between 5 VEM and
40 VEM, while at high energies this range is changed to between 60 VEM
and 280 VEM. ∆S38, on the other hand, is by definition close to the zero
relative SD signal value and with a smaller spread. Therefore, relative
observables are preferred, because we performed additional zenith an-
gle treatment on them in order to improve the performance of the MVA
analysis.
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Figure 8.16: Comparison of observable distributions for proton (blue) and iron (red)
cross-validation sets, and Pierre Auger data (black). Absolute observable S1000 is
shown on the left and relative observable ∆S38 is shown on the right. Both are from
the EPOS-LHC hadronic interaction model and highest energy bin covering energies
between 1019.5 eV and 1020.0 eV.

3. Comparison of hadronic interaction models:
The differences in elemental fractions between hadronic interaction mod-
els, can clearly be seen in Fig. 8.13. Estimating their systematic uncer-
tainty in section 8.3.1, we see that protons and helium show similar
values for all three models. The models, however, show much larger
differences for oxygen and iron fractions. Taking the sum of oxygen and
iron fractions displayed in Fig. 8.14, gives a much better agreement be-
tween hadronic interaction models. The sum of the two highest elements
in the composition shows a better consistency of all three models. Sys-
tematic uncertainties coming from model selection thus have an overall
range of σmodel . 0.111, with exact values for each energy bin listed in
Tab. 8.6. Note that the reported σmodel values are given for the relative
observable configuration.

Table 8.6: Systematic uncertainty σmodel caused by selection of the hadronic interac-
tion model over the complete energy range investigated in this work.

Energy bin
(log(E/eV)) proton helium oxygen iron oxygen +

iron

18.5− 18.6 0.0987 0.0669 0.0591 0.0562 0.0337
18.6− 18.7 0.0631 0.0644 0.0125 0.0411 0.0508
18.7− 18.8 0.0788 0.0954 0.1216 0.1376 0.0340
18.8− 18.9 0.0208 0.1106 0.0475 0.0832 0.0996
18.9− 19.0 0.0308 0.0431 0.0556 0.0925 0.0724
19.0− 19.1 0.0242 0.0364 0.0904 0.1345 0.0450
19.1− 19.2 0.0066 0.0986 0.1063 0.1418 0.0965
19.2− 19.3 0.0346 0.0131 0.1725 0.1906 0.0251
19.3− 19.4 0.0076 0.0397 0.1664 0.2046 0.0475
19.4− 19.5 0.0386 0.0099 0.1284 0.1729 0.0486
19.5− 20.0 < 10−7 < 10−7 0.2236 0.2238 0.0000

4. Final elemental fraction results:
Combining the results from the MVA analysis listed in Tab. 8.1, system-
atic uncertainty contributions listed in Tab. 8.3, model related systematic
uncertainties listed in Tab. 8.6 and the mean model elemental fractions
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〈 fi(log E)〉, the elemental fractions are presented as

fi = 〈 fi〉 ± σstat ± σsys ± σmodel, (8.4)

where i denotes each element in the composition, 〈 fi〉 is the mean frac-
tion of all three models calculated with Eq. (8.2), σstat is the statisti-
cal uncertainty, σsys is the systematic uncertainty listed in Tab. 8.3 and
σmodel is the model dependant systematic uncertainty calculated with
Eq. (8.1) and listed in Tab. 8.6. Due to large systematic uncertainties
coming from oxygen and iron separately, we decided to sum them into
a combined elemental fraction. Additionally, other uncertainty contribu-
tions from different models are already included in σmodel, so we select
statistical and systematic uncertainties from the EPOS-LHC model. The
reasoning behind this is due to EPOS-LHC having comparable values of
systematic uncertainties for all included elements, while QGSJET-II.04
and Sibyll-2.3 have uncertainties on iron that are roughly twice larger
than for proton. For the summed fraction of oxygen and iron, we take
the average of both statistical and systematic uncertainties for the two
elements. The final elemental fraction results with all uncertainty con-
tributions are listed in Tab. 8.7 and shown in Fig. 8.17. If oxygen and

Table 8.7: Mass composition estimation results as obtained from our MVA analysis
approach with included statistical and systematic uncertainties in the form 〈 fi〉 ±
σstat± σsys. The model uncertainty σmodel listed in Tab. 8.6 and systematic uncertainty
contributions from Tab. 8.3 are both included into σsys.

Energy bin
(log(E/eV)) proton helium oxygen + iron

18.5− 18.6 0.3493+0.0763
−0.0946 ± 0.1627 0.1367+0.1461

−0.0460 ± 0.1499 0.5139+0.0620
−0.0684 ± 0.0997

18.6− 18.7 0.2981+0.1050
−0.0965 ± 0.1271 0.2175+0.1530

−0.1541 ± 0.1474 0.4843+0.0772
−0.0747 ± 0.1168

18.7− 18.8 0.2140+0.0528
−0.0889 ± 0.1428 0.0675+0.1345

−0.0000 ± 0.1784 0.7185+0.0668
−0.0737 ± 0.1000

18.8− 18.9 0.1463+0.0838
−0.0702 ± 0.0848 0.1032+0.1244

−0.1262 ± 0.1936 0.7505+0.0838
−0.0790 ± 0.1656

18.9− 19.0 0.1254+0.1170
−0.1067 ± 0.0948 0.2213+0.2199

−0.1734 ± 0.1261 0.6533+0.1086
−0.1200 ± 0.1384

19.0− 19.1 0.1194+0.0990
−0.0834 ± 0.0882 0.0468+0.1510

−0.0888 ± 0.1194 0.8338+0.1087
−0.1000 ± 0.1110

19.1− 19.2 0.0046+0.0509
−0.0000 ± 0.0706 0.2496+0.1233

−0.1302 ± 0.1816 0.7458+0.1403
−0.1176 ± 0.1625

19.2− 19.3 0.0400+0.1283
−0.0736 ± 0.0986 0.1418+0.1476

−0.1263 ± 0.0961 0.8183+0.1419
−0.1273 ± 0.0911

19.3− 19.4 0.0054+0.1291
−0.0000 ± 0.0716 0.1433+0.1548

−0.1873 ± 0.1227 0.8514+0.1640
−0.1417 ± 0.1135

19.4− 19.5 0.1897+0.1703
−0.2442 ± 0.1026 0.0070+0.3287

−0.0000 ± 0.0929 0.8036+0.2055
−0.2080 ± 0.1146

19.5− 20.0 0.0000+0.0502
−0.0000 ± 0.0640 0.0000+0.0817

−0.0000 ± 0.0830 1.0000+0.0000
−0.2567 ± 0.0660

iron elemental fractions are combined into a common fraction, there is a
large reduction in hadronic interaction model systematics, which gives a
good estimation of the mass composition. The results of this work show
that, regardless of the selected model, the proton fraction starts at ∼0.35
at the energy of 1018.5 eV and gradually decreases with increasing en-
ergy. The decrease is −0.047 per log(E/eV) = 0.1. The helium fraction
has an almost flat energy profile, with a mean value of ∼0.14 up to the
highest energies. Both proton and helium fractions show an almost zero
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Figure 8.17: Elemental fraction versus energy for the Pierre Auger data set and a
composition of protons (top left), helium (top right) and oxygen + iron (bottom).
Dark red shading represents total systematic uncertainties listed in Tab. 8.3 for the
EPOS-LHC model. Light red shading represents complete systematics, with included
uncertainties σmodel listed in Tab. 8.6.

fraction for the highest energy bin. The combined fractions of oxygen
and iron start at ∼0.5 at the energy of 1018.5 eV and first steeply increase
with 0.093 per log(E/eV) = 0.1 up to 1018.8 eV. After that, the increase
reduces to 0.021 per log(E/eV) = 0.1 for the remaining energy range.
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9 Conclusions and future prospects

Astroparticle physics studies have only recently started using machine
learning techniques for analysis of large data sets. Machine learning has been
proven to give better results in many applications, where multiple variables
need to be included in the analysis for event classification. It has also become
common practice in the field of particle physics. The analysis we performed
in this work was the first inclusion of a multivariate approach to estimating
the mass composition of UHECR. With it, we combined several mass compo-
sition sensitive observables coming from fluorescence telescope and surface
array measurements of the Pierre Auger Observatory. Using the Fisher lin-
ear discriminant method, we performed a multivariate analysis (MVA) and
a four elemental distribution fitting in order to estimate the composition of
data and compare it to previously published results. The advantage of such
an approach is that individual elemental fractions are a direct result of the
analysis, contrary to other approaches, where only an average mass estimator
〈ln A〉 can be extracted [1, 2, 50]. The consistency of our analysis approach is
tested on a simulation sample of pure elemental compositions and a mixed
composition mock data set, constructed from results in [1, 51]. Both the pure
composition set, investigated in section 7.2, and the mock data set, investi-
gated in section 7.3, show expected mass compositions after the MVA analy-
sis.
We performed similar FD-only and MVA analyses on Pierre Auger Obser-
vatory data in sections 8.1 and 8.2. For the FD-only analysis we used ob-
servable Xmax, while the MVA analysis used a mixture of SD and FD ob-
servables, which were split into two observable configurations. The absolute
configuration included FD observables Xmax and zenith angle sec θ, and SD
observables t1000 and S1000. The relative configuration included the FD ob-
servable Xmax and SD observables ∆R and ∆S38, introduced in sections 6.4.5
and 6.4.6, respectively. The reason for introducing relative observables over
absolute observables is the removal of zenith angle dependencies of included
SD observables. The trend of the composition getting heavier with increas-
ing energy appears in both analysis cases, while the FD-only analysis shows
the same overall estimation as seen in previous results [1, 51]. On the other
hand, the MVA analysis, where we include SD observables, shows a heavier
composition, than what is expected from [1, 51]. Elemental fractions for the
four elemental composition (protons, helium, oxygen and iron), for EPOS-
LHC, QGSJET-II.04 and Sibyll-2.3 hadronic interaction models and for both
observable configurations are listed in Tables 8.1 and 8.2. The Pierre Auger
Observatory data set shows a heavier composition, than expected from mass
composition results of Xmax [1, 51]. The systematic increase to elemental frac-
tions towards heavier elements could be caused by model predictions of the
EAS muon content at ground level. Systematic uncertainties from observ-
able and MVA method contributions were investigated in section 8.3. It was
found that the MVA analysis approach is much less sensitive to individual
observable systematic uncertainties compared to the FD-only analysis. All
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investigated contributions are listed in Tables 8.3, 8.4 and 8.5. Additionally,
with different models showing similar results for protons and helium, we
investigated a separate systematic uncertainty contribution in section 8.3.1,
attributed to hadronic interaction models. Because a significant systematic
uncertainty only appears at heavier masses, it was found that combining oxy-
gen and iron elemental fractions drastically improves the consistency between
different models. For comparison, the same approach for determining sys-
tematics from hadronic interaction models described in section 8.3.1 can be
used on published results from [1, 51]. Taking an average σmodel over the
complete energy range for individual elements, our analysis shows a rougly
four times smaller systematic uncertainty contribution from hadronic interac-
tion models (30.2% for protons, 23.9% for helium and 19.1% for the combined
oxygen and iron). Differences between hadronic interaction models were in-
cluded in the total systematic uncertainty and the final mass composition
results in terms of elemental fractions are shown in Fig. 8.17 and listed in
Tab. 8.7. These results show that the mass composition of UHECR is predom-
inantly heavy, with roughly 50% being heavier than oxygen at 1018.5 eV. With
increasing energy, the fraction of protons reduces in favor of elements heavier
than oxygen. Above 1019.5 eV, the mass composition estimation reports only
oxygen and iron.

The analysis has been performed on a subset of Pierre Auger Observatory
data, by selecting only high quality hybrid events. This excluded a two year
period between the beginning of 2016 and the end of 2018, because atmo-
spheric monitoring has yet to be included into the full data set. This will be
implemented in future reconstructions of data. Another extension to the data
can be added by reducing the lower energy limit. This would include mea-
surements from the 750 m array and the HEAT fluorescence telescopes, which
cover energies below 1018.5 eV. New mass composition sensitive observables
are being investigated and with the inclusion of the AugerPrime upgrade, the
Pierre Auger Observatory will be able to better estimate the EAS muon con-
tent. Since many of the existing SD mass composition sensitive observables
depend on its measurement, it will improve their separation power and the
performance of MVA analysis techniques.
Mass composition studies and the search for UHECR sources are tightly cor-
related, because only highly energetic elements with small electric charge can
be used for uncovering their production sites. As such, protons are preferred
for cosmic ray astronomy and should eventually be extracted from measured
Pierre Auger Observatory data events. The statistical MVA analysis produced
in this thesis is the first step in the direction for event-by-event identification.
Instead of performing distribution fitting, the MVA variable can directly be
used for classification of different particle masses. At the time of writting,
an event-by-event particle identification was not possible, but with inclusion
of mass composition sensitive observables from observatory upgrades, it is
a good candidate for future studies. The current method can then be used
as a statistical cross-check, and a starting point for further development of
identification of UHECR with MVA.
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Appendix A: Offline selection cuts

Here is a detailed description of selection cuts used for selecting Monte-
Carlo shower simulations and Pierre Auger Observatory data with Offline
[65]. Both use the same set of selection cuts, except for an extra cut
hasMieDatabase applied only to data. The selection cuts used for this work
were the same as in [1]:

#== Reject laser events ==#
!isCLF
!isXLF

#== Keep Coihueco/HEAT or HeCO, and standard FDs ==#
keepHECOorCoihuecoHEAT 18.1 {nMinusOne: 21 -10.5 10.5}
eyeCut 1111

#== Hardware status ==#
badFDPeriodRejection
minMeanPixelRMSMergedEyes {params: 17 6 110000

nMinusOne: 100 0 100}
minMeanPixelRMSSimpleEyes {params: 17 11111

nMinusOne: 100 0 100}
!badPixels 1
good10MHzCorrection

#== Atmosphere cuts ==#
hasMieDatabase
maxVAOD 0.1
cloudCutXmaxPRD14 {params: 1

nMinusOne: 21 -10.5 10.5}
#== Full hybrid geometry ==#

hybridTankTrigger 2
maxCoreTankDist 1500
maxZenithFD 90
minLgEnergyFD 1e-20
skipSaturated
minPBrass 0.9
maxPBrassProtonIronDiff 0.05
minLgEnergyFD 17.8

#== Quality cuts ==#
xMaxObsInExpectedFOV {params: 40 20}
maxDepthHole 20.
profileChi2Sigma {params: 3 -1.1

nMinusOne: 400 -20 20}
depthTrackLength 200

#== Fiducial cuts ==#
FidFOVICRC13 40 20

In general, the above selection cuts are split into three parts:
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1. Preselection cuts: Minimal physics analysis selection cuts.

– !isCLF and !isXLF: Removes LASER shots that have been falsely
saved into the shower events file.

– keepHECOorCoihuecoHEAT: Keep only one telescope configuration –
Coihueco+HEAT or the combined HeCO.

– eyeCut: Select which FD buildings to keep in the selection.

– badFDPeriodRejection: Removes any time periods, when FD tele-
scopes were not operational.

– minBackgroundRMS, minMeanPixelRMSMergedEyes and
minMeanPixelRMSSimpleEyes: Ensure that the background light con-
tamination as seen by FD telescopes is low enough.

– !badPixels: Removes events, when active FD telescopes have inac-
tive pixels.

– good10MHzCorrection: Removes events, where 10 MHz timing cor-
rections have failed to be performed.

– hasMieDatabase: Remove events that do not have LIDAR measure-
ments.

– maxVAOD: Removes events with a large vertical aerosol optical depth
(poor viewing conditions).

– cloudCutXmaxPRD14: Removes reflections off of clouds and events
with low cloud coverage along the detection direction.

– hybridTankTrigger: Removes events that have no hybrid geometry.

– maxCoreTankDist: The closest triggered SD station to the shower
axis must be at most 1500 m away.

– maxZenithFD: Removes very highly inclined events, with zenith an-
gles larger than 90◦.

– minLgEnergyFD: The low energy cut that rejects events below the
designed energy limit of the standard FD and the 1500 m array.
Removes events with energies below 1017.8 eV.

– skipSaturated: Removes events with high-gain saturated FD pix-
els.

– minPBrass and maxPBrassProtonIronDiff: Probability of an event
triggering at least one SD station (brass hybrid event). Removes
those that have no triggered SD stations.

2. Quality cuts: Selection cuts ensuring a good resolution of Xmax mea-
surements.

– xMaxObsInExpectedFOV: Xmax is inside the observed profile range.
The resolution of Xmax must also be below 40 g/cm2.

– xMaxDepthHole: Rejects events, where the longitudinal profile has
gaps that are larger than 20% of the total profile.

– profileChi2Sigma: Removes events with a too high χ2 value of the
Gaisser-Hillas fit (longitudinal profile fit).
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– depthTrackLength: Removes events with longitudinal profile
lengths shorter than 200 g/cm2.

3. Fiducial cuts: Selection cuts keeping only geometries, where the com-
plete longitudinal profile can be seen. Any geometries with missing
leading or falling edge information are rejected.
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Appendix B: Observable distributions

Below are observable distributions that we have used in this work. We
have plotted distributions in all 11 energy bins, as listed in Tab. B.1, for the
v12r3 production of Pierre Auger Observatory data. The zenith angle range is
not limited for the FD-only case, but we did apply limits of 0◦ and 60◦ for the
combined SD and FD analysis approach (SD+FD). The number of surviving
events inside these energy and zenith angle restrictions are listed in Tab. B.1.
Distribution plots include observables Xmax (Fig. B.1), ∆R (Fig. B.2), ∆S38
(Fig. B.3), t1000 (Fig. B.4), S1000 (Fig. B.5) and sec θ (Fig. B.6). Note that x-
axis ranges for observables ∆S38 and S1000 had to be adjusted in order to not
remove events on plots.

Table B.1: Number of Pierre Auger Observatory data events per energy bin, for the
two analysis cases.

Number of events
Energy bin (log(E/eV)) FD-only SD+FD

18.5− 18.6 1108 824
18.6− 18.7 840 627
18.7− 18.8 583 463
18.8− 18.9 471 370
18.9− 19.0 359 259
19.0− 19.1 281 214
19.1− 19.2 193 139
19.2− 19.3 134 106
19.3− 19.4 110 80
19.4− 19.5 66 45
19.5− 20.0 62 45
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Figure B.1: Xmax distributions for Pierre Auger data used for FD-only (blue) and
SD+FD (black) analysis types. From left to right and top to bottom, energy bins
follow the structure from Tab. B.1.
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Figure B.2: ∆R distributions for Pierre Auger data (SD+FD). From left to right and
top to bottom, energy bins follow the structure from Tab. B.1.
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Figure B.3: ∆S38 distributions for Pierre Auger data (SD+FD). From left to right and
top to bottom, energy bins follow the structure from Tab. B.1. For all distributions to
be displayed correctly, the x-axis range had to be increased with increased energy.
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Figure B.4: t1000 distributions for Pierre Auger data (SD+FD). From left to right and
top to bottom, energy bins follow the structure from Tab. B.1.
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Figure B.5: S1000 distributions for Pierre Auger data (SD+FD). From left to right and
top to bottom, energy bins follow the structure from Tab. B.1. For all distributions to
be displayed correctly, the x-axis range had to be increased with increased energy.
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Figure B.6: sec θ distributions for Pierre Auger data (SD+FD). From left to right and
top to bottom, energy bins follow the structure from Tab. B.1.
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Appendix C: Benchmark function fits

Below are benchmark function fits as applied to the v12r3 production of
Pierre Auger data. The detailed description of benchmark functions and their
use in determining a relative risetime observable can be found in section 6.4.5.
The fits shown in this appendix are split into high-gain saturated benchmark
functions

tbench,HG-sat
1/2 = 40 ns +

√
A2 + B2 r2 − A, (C.1)

and non-saturated benchmark functions

tbench
1/2 = 40 ns + M (

√
A2 + B2 r2 − A). (C.2)

These are applied to SD station risetimes t1/2, obtained from high-gain satu-
rated or non-saturated PMT traces, respectively. Benchmark function fits are
produced for ten zenith angle bins between 0◦ and 60◦, and for a reference
energy bin between 1018.9 eV and 1019.1 eV. Fitting parameters for the ten per-
formed fits are listed in Tab. C.1. Fits for each zenith angle bin, when applied
to Pierre Auger data, are shown in Fig. C.1.

Table C.1: Fitting parameters for a range of zenith angle bins (sec θ). Double columns
in the table show the high-gain saturated case (left column) and the non-saturated
case (right column). These fits were performed on the v12r3 data production and a
reference energy bin between 1018.9 eV and 1019.1 eV.

sec θ Nr. of points A B× 102 M χ2/NDF

[1.0, 1.1] 15 30 275.52± 252.255 24.80± 18.01 1.038± 0.020 3.29 0.59
[1.1, 1.2] 108 224 164.92± 48.84 15.20± 3.09 1.070± 0.008 3.53 1.03
[1.2, 1.3] 119 200 191.36± 79.49 15.23± 4.60 1.023± 0.008 4.03 2.16
[1.3, 1.4] 99 229 15.78± 9.20 3.69± 0.50 1.234± 0.010 4.30 1.23
[1.4, 1.5] 65 148 5.45± 7.97 2.35± 0.37 1.174± 0.015 3.73 1.64
[1.5, 1.6] 103 179 2.17× 10−7± 2.27 1.38± 0.05 1.266± 0.017 3.58 1.36
[1.6, 1.7] 69 89 2.36± 4.80 0.89± 0.14 1.253± 0.026 3.58 1.95
[1.7, 1.8] 32 52 6.82± 7.04 0.55± 0.14 1.453± 0.044 2.87 1.59
[1.8, 1.9] 34 47 0.32± 24.65 0.28± 0.09 1.329± 0.047 2.31 1.61
[1.9, 2.0] 20 40 18.69± 15.85 0.47± 0.22 1.244± 0.042 4.32 3.82

121



SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

100

200

300

400

500

600

700

800

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

200

400

600

800

1000

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

100

200

300

400

500

600

700

800

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

100

200

300

400

500

600

700

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

100

200

300

400

500

600

700

800

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

100

200

300

400

500

600

700

800

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

50

100

150

200

250

300

350

400

450

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

50

100

150

200

250

300

350

400

450

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

50

100

150

200

250

SD station distance from axis (m)
200 400 600 800 1000 1200 1400

 (
n

s)
1/

2
t

0

50

100

150

200

250

300

Figure C.1: Fits of high-gain saturated benchmark function (blue) to high-gain satu-
rated v12r3 data production (gray points). Similarly, fits of benchmark function (red)
to non-saturated data (black points). From left to right and top to bottom, the zenith
angle bins follow binning shown in Tab. C.1.

122



Appendix D: Scaled constant intensity cut
function fits

Below are scaled constant intensity cut function fits as applied to the v12r3
production of Pierre Auger data. The detailed description of this method and
its use in determining a relative station signal observable can be found in
section 6.4.6. The fits shown in this appendix are scaled constant intensity cut
functions

fscale(θ) = S fCIC(θ) = S
(

1 + ax + bx2 + cx3
)

, (D.1)

where x is
x = cos2 θ − cos2(38◦), (D.2)

and S, a, b and c are free fitting parameters. These fits are produced for
11 energy bins between 1018.5 eV and 1020.0 eV, with the last bin covering an
extended range between 1019.5 eV and 1020.0 eV. Fitting parameters for the 11
performed fits are listed in Tab. D.1. Fits for each energy bin, when applied
to Pierre Auger data, is shown in Fig. D.1.

Table D.1: Fitting parameters for a range of energy bins (log(E/eV)). These fits were
performed on the v12r3 data production.

log(E/eV)
Nr. of
points S a× 102 b× 101 c× 101 χ2/NDF

[18.5, 18.6] 824 16.75± 0.08 70.90± 0.24 −9.20± 0.10 22.93± 0.42 3.16
[18.6, 18.7] 627 21.28± 0.11 105.56± 0.19 −21.76± 0.09 −44.39± 0.35 4.58
[18.7, 18.8] 463 27.07± 0.14 101.33± 0.15 −21.89± 0.07 −38.90± 0.26 5.72
[18.8, 18.9] 370 33.51± 0.20 72.85± 0.12 −28.29± 0.08 −23.47± 0.27 5.27
[18.9, 19.0] 259 40.28± 0.24 88.72± 0.10 −13.40± 0.06 15.42± 0.20 10.90
[19.0, 19.1] 214 52.34± 0.29 83.22± 0.09 −33.48± 0.05 −18.37± 0.20 13.91
[19.1, 19.2] 139 64.74± 0.47 131.11± 0.07 −29.18± 0.05 −82.73± 0.18 8.62
[19.2, 19.3] 106 81.88± 0.58 107.21± 0.06 −42.14± 0.04 −96.40± 0.13 8.03
[19.3, 19.4] 80 99.81± 0.81 99.32± 0.05 −11.51± 0.05 4.22± 0.14 11.43
[19.4, 19.5] 45 117.84± 1.28 99.75± 0.06 5.21± 0.04 71.99± 0.14 14.74
[19.5, 20.0] 45 178.45± 1.99 153.45± 0.04 36.89± 0.03 131.42± 0.07 33.56
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Figure D.1: Fits of fscale (red line) to the v12r3 data production (black points). From
left to right and top to bottom, the energy bins follow binning shown in Tab. D.1.
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Appendix E: Multivariate analysis method
configurations

Below are configurations applied to MVA methods, that were used during
MVA analysis of this work. These configurations were taken from examples
supplied with TMVA version 4.2.0 [67]. For a complete overview of all MVA
method configurations, see [78].

#== Fisher ==#
H:!V:Fisher:VarTransform=None:CreateMVAPdfs:
PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10

#== FisherG ==#
H:!V:VarTransform=Gauss

#== BoostedFisher ==#
H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:
Boost_AdaBoostBeta=0.2:!Boost_DetailedMonitoring

#== MLPBFGS ==#
H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:
HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator

#== MLPBNN ==#
H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:
HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator

#== SVM ==#
Gamma=0.25:Tol=0.001:VarTransform=Norm

#== BDTG ==#
!H:!V:NTrees=1000:MinNodeSize=2.5%:BoostType=Grad:
Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.5:
nCuts=20:MaxDepth=2
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Appendix F: MVA method selection

For selecting the most appropriate MVA method for our purpose, we made
a “black-box“ test for a number of machine learning techniques, while using
simulations with a pure composition. As an addition to section 7.1, we present
elemental fraction plots for the four remaining MVA methods in Fig. F.1 for
FisherG, Fig. F.2 for MLPBFGS, Fig. F.3 for MLPBNN and Fig. F.4 for BDTG.
Energy is split into 11 bins inside the range between 1018.5 eV and 1020.0 eV.
If there are any missing bins, the fitting procedure was not able to estimate
fitting parameter uncertainties correctly. Zenith angles are limited between 0◦

and 60◦ to avoid any highly inclined events.
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Figure F.1: Elemental fraction versus energy, when MVA method is applied to pro-
ton (top left), helium (top right), oxygen (bottom left) and iron (bottom right cross-
validation sets. Elemental fractions indicate the four elemental composition of pro-
tons (blue), helium (indigo), oxygen (magenta) and iron (red). The selected MVA
method is FisherG.
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Figure F.2: Elemental fraction versus energy, when MVA method is applied to pro-
ton (top left), helium (top right), oxygen (bottom left) and iron (bottom right cross-
validation sets. Elemental fractions indicate the four elemental composition of pro-
tons (blue), helium (indigo), oxygen (magenta) and iron (red). The selected MVA
method is MLPBFGS.
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Figure F.3: Elemental fraction versus energy, when MVA method is applied to pro-
ton (top left), helium (top right), oxygen (bottom left) and iron (bottom right cross-
validation sets. Elemental fractions indicate the four elemental composition of pro-
tons (blue), helium (indigo), oxygen (magenta) and iron (red). The selected MVA
method is MLPBNN.
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Figure F.4: Elemental fraction versus energy, when MVA method is applied to pro-
ton (top left), helium (top right), oxygen (bottom left) and iron (bottom right cross-
validation sets. Elemental fractions indicate the four elemental composition of pro-
tons (blue), helium (indigo), oxygen (magenta) and iron (red). The selected MVA
method is BDTG.
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Appendix G: Pure composition analysis

This appendix is the continuation of section 7.2, where our analysis proce-
dure is applied to three observable configurations: FD-only, relative and ab-
solute. The FD-only configuration only uses the Xmax observable. The relative
configuration consists of Xmax, ∆R and ∆S38, while the absolute configuration
consists of Xmax, t1000 and S1000 and sec θ.
In order to estimate the separation power using only a single observable, we
performed the distribution fitting approach on the depth of shower maximum
Xmax. The choice of this observable is due to its wide use in mass composition
studies and good separation strength. Since the MVA analysis can not take
one input feature, we only used the same fitting approach as we would nor-
mally do for MVA variable distributions. This way, we can estimate the mass
composition from single observables and compare them to previously pub-
lished results. Note that [51] uses a similar maximum likelihood distribution
fitting procedure as we are using in this work. Figures G.1–G.3 show elemen-
tal fraction versus energy for cross-validation sets with a pure composition.
Energy is split into 11 bins inside the range between 1018.5 eV and 1020.0 eV.
If there are any missing bins, the fitting procedure was not able to estimate
fitting parameter uncertainties correctly. Zenith angles are unlimited, because
Xmax is independent of zenith angle, which increases the number of events.
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Figure G.1: Elemental fraction versus energy, when distribution fit is performed on
cross-validation sets with pure compositions using the EPOS-LHC hadronic interac-
tion model. From left to right and top to bottom, the cross-validation sets are for
proton, helium, oxygen and iron. The observable used for this distribution fit was
Xmax. Elemental fractions indicate the four elemental composition for protons (blue),
helium (indigo), oxygen (magenta) and iron (red).
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Figure G.2: Elemental fraction versus energy, when distribution fit is performed on
cross-validation sets with pure compositions using the QGSJET-II.04 hadronic inter-
action model. From left to right and top to bottom, the cross-validation sets are for
proton, helium, oxygen and iron. The observable used for this distribution fit was
Xmax. Elemental fractions indicate the four elemental composition for protons (blue),
helium (indigo), oxygen (magenta) and iron (red).
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Figure G.3: Elemental fraction versus energy, when distribution fit is performed on
cross-validation sets with pure compositions using the Sibyll-2.3 hadronic interaction
model. From left to right and top to bottom, the cross-validation sets are for proton,
helium, oxygen and iron. The observable used for this distribution fit was Xmax. El-
emental fractions indicate the four elemental composition for protons (blue), helium
(indigo), oxygen (magenta) and iron (red).

In order to estimate the separation power of a combination of SD and
FD observables, we performed the distribution fitting approach on the MVA
variable. Elemental fractions versus energy for the EPOS-LHC hadronic in-
teraction model can be found in section 7.2. Here, we show similar plots for
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QGSJET-II.04 and Sibyll-2.3 models in Fig. G.4 and Fig. G.5, respectively.
Energy is split into 11 bins inside the range between 1018.5 eV and 1020.0 eV.
If there are any missing bins, the fitting procedure was not able to estimate
fitting parameter uncertainties correctly. Zenith angles are limited between 0◦

and 60◦ to avoid any highly inclined events.
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Figure G.4: Elemental fraction versus energy, when MVA method is applied to cross-
validation sets with pure compositions and the QGSJET-II.04 hadronic interaction
model. From top to bottom, the cross-validation sets are for proton, helium, oxygen
and iron. Observable configurations used during MVA analysis are the relative con-
figuration (left column), and the absolute configuration (right column). Elemental
fractions indicate the four elemental composition for protons (blue), helium (indigo),
oxygen (magenta) and iron (red).

133



FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FD energy [log(E/eV)]
18.6 18.8 19 19.2 19.4 19.6 19.8 20

E
le

m
en

ta
l f

ra
ct

io
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure G.5: Elemental fraction versus energy, when MVA method is applied to cross-
validation sets with pure compositions and the Sibyll-2.3 hadronic interaction model.
From top to bottom, the cross-validation sets are for proton, helium, oxygen and iron.
Observable configurations used during MVA analysis are the relative configuration
(left column), and the absolute configuration (right column). Elemental fractions
indicate the four elemental composition for protons (blue), helium (indigo), oxygen
(magenta) and iron (red).
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Appendix H: Mixed composition analysis

This appendix is the continuation of section 7.3, where our analysis proce-
dure is applied to three observable configurations: FD-only, relative and ab-
solute. The FD-only configuration only uses the Xmax observable. The relative
configuration consists of Xmax, ∆R and ∆S38, while the absolute configuration
consists of Xmax, t1000 and S1000 and sec θ.
In order to estimate the distribution fitting approach of a mixed composition,
we first use only the depth of shower maximum Xmax. We can then directly
compare it to previously published results [1, 51], which were the basis for
constructing the AugerMix mock data set. Similar to the pure composition
analysis, we skip the MVA analysis and just perform distribution fitting. Ele-
mental fraction and composition plots for the EPOS-LHC hadronic interaction
model can be found in 7.3.1. Fig. H.1 shows elemental fractions versus en-
ergy for QGSJET-II.04 and Sibyll-2.3 models. The corresponding compositions
are shown in Fig. H.2. Energy is split into 11 bins inside the range between
1018.5 eV and 1020.0 eV. If there are any missing bins, the fitting procedure was
not able to estimate fitting parameter uncertainties correctly. Zenith angles
are unlimited.
Similar can also be performed by combining SD and FD observables, per-
forming the MVA analysis and fitting the MVA variable distribution with a
four elemental composition. Elemental fraction and composition plots for the
EPOS-LHC hadronic interaction model are shown in section 7.3.2. Here, we
show similar plots for QGSJET-II.04 and Sibyll-2.3 models in Fig. H.3 and Fig.
H.5, respectively. Corresponding composition plots for the same two models
are shown in Fig. H.4 for QGSJET-II.04 and Fig. H.6 for Sibyll-2.3. We show
all plots for both the relative and absolute observable configurations. Energy
is split into 11 bins inside the range between 1018.5 eV and 1020.0 eV. If there
are any missing bins, the fitting procedure was not able to estimate fitting
parameter uncertainties correctly. Zenith angles are limited between 0◦ and
60◦ to avoid any highly inclined events.
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Figure H.1: Elemental fraction versus energy, when an FD-only analysis is performed
on the AugerMix set using QGSJET-II.04 (left) and Sibyll-2.3 (right) hadronic inter-
action models. From top to bottom, the elemental fractions are for proton (blue),
helium (indigo), oxygen (magenta) and iron (red). For comparison, elemental frac-
tions shown in gray are from [1, 51].
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Figure H.2: 〈ln A〉 versus energy, when an FD-only analysis is performed on the
AugerMix set (black) using QGSJET-II.04 (left) and Sibyll-2.3 (right) hadronic inter-
action models. For comparison, the composition from Xmax analysis (red) [1, 51] is
added.
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Figure H.3: Elemental fraction versus energy, when MVA method is applied to the
AugerMix set using the QGSJET-II.04 hadronic interaction model. From top to bot-
tom, the elemental fractions are for proton, helium, oxygen and iron. Observable
configurations used during MVA analysis are the relative configuration (left), and
the absolute configuration (right). Elemental fractions indicate the four elemental
composition for protons (blue), helium (indigo), oxygen (magenta) and iron (red).
For comparison, elemental fractions shown in gray are from [1, 51].
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Figure H.4: 〈ln A〉 versus energy, when MVA method is applied to the AugerMix
set (black) using the QGSJET-II.04 hadronic interaction model. Observable configura-
tions used during MVA analysis are the relative configuration (left), and the absolute
configuration (right). For comparison, compositions from Xmax analysis (red) [1, 51]
and the Delta method (blue) [2] are added.
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Figure H.5: Elemental fraction versus energy, when MVA method is applied to the
AugerMix set using the Sibyll-2.3 hadronic interaction model. From top to bottom,
the elemental fractions are for proton, helium, oxygen and iron. Observable con-
figurations used during MVA analysis are the relative configuration (left), and the
absolute configuration (right). Elemental fractions indicate the four elemental com-
position for protons (blue), helium (indigo), oxygen (magenta) and iron (red). For
comparison, elemental fractions shown in gray are from [1, 51].
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Figure H.6: 〈ln A〉 versus energy, when MVA method is applied to the AugerMix set
(black) using the Sibyll-2.3 hadronic interaction model. Observable configurations
used during MVA analysis are the relative configuration (left), and the absolute con-
figuration (right). For comparison, the composition from Xmax analysis (red) [1, 51]
is added.
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