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Abstract 
 

 

Defective interfering particles (DIPs) are mutated versions of viruses that are characterized by 

carrying internal deletions in their genome. These deletions are introduced randomly during virus 

replication and the truncated genomes interfere with the propagation of their standard virus (STV) 

leading to reduced infectious virus titers. Therefore, DIPs were recently proposed to be used for antiviral 

therapy which increased the demand for a reliable production process and a better understanding of 

the interference mechanism. The infection dynamics were analysed by a deterministic modelling 

approach, however, the impact of stochastic effects introduced by cell-to-cell variability, different 

coinfection scenarios and an independent genome segment replication remain largely elusive. Hence, 

we developed a stochastic model of influenza A virus and DIP replication which considers the influence 

of these random effects on STV and DIP release. We found that the viral nucleoprotein (NP), which is 

essential for encapsidation of the naked viral RNA (vRNA), is strongly affected by fluctuations and three 

distinct sub-populations emerged in our model. Furthermore, simulations performed with one DIP and 

one STV infecting the cell resulted in mostly non-productive simulations, mainly caused by failures 

during the endocytosis of particles and by the random degradation of vRNAs. Moreover, the optimal 

DIP production was achieved when STV enters nucleus first and the DIP entry is delayed between 1.5 

and 3 hours. Lastly, we demonstrate that the implementation of a two-step packaging process, which 

separates the formation of genome complexes and the assembly of all required proteins for release, is 

crucial to achieve a substantial DIP advantage over STV production. Overall, our simulations suggest 

that a combination of various random effects influences the replication of STVs and DIPs inducing a 

broad distribution of progeny particle release. The stochastic model developed in this thesis provides 

an ideal basis for the analysis of these effects and their impact on DIP interference and production. 

 

 

 

 

Keywords: Defective interfering particle, influenza A virus, interference mechanism, stochastic 

mathematical model, stochastic effects 
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Resumo 
 

 

Partículas defeituosas interferentes (DIPs) são versões mutagénicas do vírus, sendo 

caracterizadas por apresentarem secções internas do seu genoma excluídas. Estas secções são 

geradas aleatoriamente durante a replicação do vírus e o genoma incompleto interfere com a 

propagação do seu vírus standard (STV), advindo numa redução da concentração de vírus infeciosos. 

Consequentemente, o uso de DIPs foi recentemente proposto para terapia antiviral, o que resultou 

num aumento da procura de um processo de produção viável e de um conhecimento mais aprofundado 

do mecanismo de interferência. A dinâmica de infeção foi analisada através de uma abordagem de 

modelação determinística, no entanto, o impacto de efeitos estocásticos causados pela variabilidade 

celular, diferentes cenários de coinfecção e replicação independente dos diferentes segmentos do 

genoma permanecem assim largamente elusivos. Portanto, desenvolveu-se um modelo estocástico da 

replicação do vírus influenza A e DIPs que considera o impacto de efeitos aleatórios na produção de 

STVs e DIPs. Foi descoberto que a nucleoproteina viral (NP), que é essencial para a encapsidação do 

RNA viral (vRNA), é fortemente afetado por flutuações e três subpopulações distintas advêm do nosso 

modelo. Além disso, simulações efetuadas em que um DIP e um STV infetam a célula, resultam 

maioritariamente em simulações não produtivas causadas geralmente por uma falha durante a 

endocitose de partículas e pela degradação aleatória de vRNAs. Mais adiante, a produção de DIP é 

otimizada quando o STV entra no núcleo primeiro e a entrada da DIP é atrasada entre 1.5 e 3 horas. 

Finalmente, demonstrou-se que a implementação de um processo de empacotamento com duas 

etapas, separando a formação de complexos genómicos e a montagem de todas as proteínas 

necessárias para a libertação de partículas, é crucial para conferir uma vantagem substancial à DIP 

em relação à produção de STV. Em geral, as simulações sugerem que as combinações de vários 

efeitos aleatórios influenciam a replicação de STVs e DIPs, resultando numa distribuição de partículas 

produzidas muito alargada. O modelo estocástico desenvolvido nesta tese consiste uma base ideal 

para a análise destes efeitos e do seu impacto na produção e interferência das DIPs. 

 

 

Termos-chave: Partículas defeituosas interferentes, vírus influenza A, mecanismo de 

interferência, modelo matemático estocástico, efeitos estocásticos 
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1 Introduction 
 

 

Influenza A viruses (IAVs) are intracellular pathogens that infect cells and take over the 

biosynthetic machinery and cell resources to spread the infection by producing progeny viruses. They 

infect an extensive number of species, e.g. poultry, wild birds, pigs, horses, dogs, sea mammals and 

humans [1]. An influenza infection in humans causes the flu which is a contamination of the epithelial 

cells of the upper respiratory tract characterized by symptoms as high fever, dry caught, headache and 

rhinitis [2]. The seasonal infection in healthy individuals is usually not severe and patients recover after 

one or two weeks of treatment. However, the elderly, the young and individuals with compromised 

immune system are most susceptible to this contagious disease which leads to an increased mortality 

among these risk groups [2]. The World Health Organization estimates that IAV annually causes up to 

5 million cases of severe illness and 250 000 to 500 000 deaths [1]. Due to its segmented genome 

comprising eight single-stranded RNAs, antigenic drift and shift can easily occur during replication 

resulting in new and more potent IAV strains [3]. Besides the seasonal epidemics, specific mutations 

which may include a combination of viruses from different host species are responsible for global 

pandemics which occur every 50-60 years [4]. The most disastrous outburst was the “Spanish flu” in 

1918 with an estimated number of 50 million deaths [5]. Moreover, during the most recent pandemic of 

2009 22 million cases were reported worldwide and the estimated number of casualties rose up to 

203 000 [6]. 

These dramatic events increased the demand for research in the field of IAV infection with the aim 

of developing treatment and prevention strategies. Currently various antiviral drugs are available to treat 

IAV infections, however, the most effective method to prevent severe illness and propagation is 

vaccination. Usually, researchers are focused on infectious influenza virus particles, i.e. virus particles 

which are responsible for infecting cells, producing progeny virions and spreading the disease. 

However, it has been found that in both IAV infection and vaccine production, the majority of progeny 

particles are non-infectious [7,8]. There are different types of non-infectious particles, but we focused 

on the study of defective interfering particles (DIPs) which are characterized by carrying an internal 

deletion in at least one of their genome segments. Since their coding sequence is lacking a part of the 

genetic information, they are unable to produce all the proteins required for their propagation. 

Consequently, their replication depends on the coinfection with a complete functional virus that will 

provide the missing protein(s) [9]. Several experiments show that DIPs can impair the replication and 
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production of IAV [7,10]. Moreover, it has been suggested that these defective particles can also impact 

other properties of the virus, e.g. its evolution and pathogenicity [11,12]. Since DIPs can interfere with 

the virus replication and considerably reduce the production of infectious virions, they have been 

proposed as a potential antiviral agent [13,14]. Recent studies showed that the administration of DIPs 

in mice and ferrets protects them from severe illness and death [15,16]. Furthermore, it has been 

suggested that DIP production can potentially overcome the limitations of conventional vaccination 

methods [13]. 

In order to find novel and efficient antiviral strategies, an extensive understanding of the complex 

steps of the viral life cycle is crucial. However, the inherent biological mechanism of DIP interference 

on IAV replication is not completely understood. Systems biology approaches, which comprise the 

computational and mathematical modelling of complex biochemical processes, can support the 

elucidation of the intracellular interactions during DIP replication. These approaches have a special 

importance for virology since the resources and reactants used in viral experiments can be very 

expensive. Mathematical models can overcome this burden by reducing costs associated with this 

research and provide a prediction of the system dynamics in different initial infection conditions. 

However, is important to notice that the model needs to be supported by experimental data to achieve 

a reliable description. Therefore, it is essential to validate the model predictions with laboratorial 

experiments. In the last decades, theoretical studies of intracellular IAV replication have been used for 

process optimization of vaccine production and the developing new treatment methods [17]. Frequently, 

these mathematical models are developed assuming that the system dynamics can be described with 

a deterministic approach. However, stochastic effects have a major impact in systems with a low 

number of molecules [18]. Since a single virus can infect a cell and replicate, this process is highly 

susceptible to stochastic fluctuations which are caused by the random nature of biochemical reactions 

[19]. Such random effects impact virus replication resulting in a wide-spread distribution of virus yields 

and a large cell-to-cell heterogeneity. These random scenarios can be simulated and analysed using a 

stochastic modelling approach [20]. 
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2 Theoretical Background 
 

 

2.1 Discovery of defective interfering particles 
 

Cells infected by IAV release infectious and non-infectious particles. Moreover, the majority of 

progeny particles are non-infectious and were observed for the first time in 1944 by Friedewald and 

Pickels during sedimentation experiments using high speed centrifugation [21]. Then, 10 years later 

von Magnus suggested that these particles might impair influenza virus replication since he observed 

a reduction in the ratio of infectious over non-infectious virus particles after successive passages in 

embryonated chicken eggs at high multiplicity of infection (MOI) [21]. In 1970, Huang and Baltimore 

coined the term “defective interfering particles” (DIPs) to describe these non-infectious virus particles. 

DIPs do not encode for all viral proteins due to an internal deletion in at least one of their genome 

segments (“defective”). Therefore, they depend on a coinfection with a completely functional standard 

virus (STV) that provides the missing resources for replication [22]. Additionally, DIPs impair STV 

propagation, as shown by von Magnus, by interfering with the regular virus replication (“interfering”).   

The exact mechanisms of this interference are not fully understood, however, an advantage of the DIP 

at the replication and/or packaging level was suggested by previous studies [10,23].  

 

2.2 Influenza A virus structure and DIP de novo generation 
 

IAV is a member of the Orthomyxoviridae family and contains a segmented genome which consists 

of eight single-stranded viral RNAs (vRNAs) of negative polarity (Figure 2.1A). The genome segments 

are present inside the spherical virus particle as viral ribonucleoprotein complexes (vRNPs). These 

complexes include the vRNA which is associated to the polymerase complex (RdRp) and multiple 

copies of the nucleoprotein (NP) (Figure 2.1C) [24]. Each segment has a double-helical structure and 

the polymerase is attached to both 5’ and 3’ ends of the vRNA [25]. The NP encapsidation stabilizes 

the vRNA which prevents degradation processes in the host cell nucleus [26]. The eight genome vRNPs 

form a “7+1” configuration inside the virus particle: a central segment is surrounded by the other seven 

vRNPs [27]. 

Each genome segment encodes for at least one protein which is essential to virus propagation 

(Figure 2.1B) [28]. The vRNP segments 1 to 3 encode for three protein sub-units which form the RdRp 
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complex: polymerase basic proteins 1 and 2 (PB1 and PB2) and the polymerase acidic protein (PA). 

NP, which is responsible for stabilizing the vRNA, is derived from segment 5. The virus envelope surface 

contains the glycoproteins hemagglutinin (HA) and neuraminidase (NA) which are encoded by 

segments 4 and 6, respectively. Furthermore, the matrix protein 2 (M2) is also located on the lipid 

membrane surface. M1 forms a layer underneath the virus envelope and is also associated to vRNPs. 

Both proteins are transcribed from spliced viral mRNA of segment 7. The shortest genome segment 8 

encodes for the nuclear export protein (NEP) and the non-structural protein 1 (NS1). Other viral proteins 

were observed in the IAV particles, however, they are not essential for virus replication as they were 

only expressed under laboratory experiments and in a few virus strains [29].  

 

 

DIPs carry at least one defective interfering (DI) segment which contains internal deletions in the 

coding sequence of its genome (Figure 2.2A). These deletions can vary in size and affect different 

segments [8,12]. However, it has been found that deletions on segments 1 to 3, which encode for the 

three RdRp subunits, are most common [30,31]. The average size of deletions is between 300 to 500 

nucleotides (nt), but DI vRNAs can lack more than 80% of their original functional segment [12,30]. 

Consequently, DIPs are incapable to replicate on their own and require a coinfection with a STV which 

provides the missing protein(s). Since the DI segment has the 3’ and 5’ promoters which enable the 

polymerase attachment, DI vRNA replication is possible (Figure 2.2B) [32]. Furthermore, transcription 

of DI mRNA can occur and truncated versions of proteins, which usually lost their function, can be 

synthesized. Due to the double-helical structure of vRNPs, it has been suggested that DIPs might be 

generated by an erroneous translocation of the viral polymerase during replication [8,12]. This can be 

Figure 2.1 | Influenza A virus particle, genome structure and encoding proteins. (A) Structure and proteins of 

an influenza A virus particle. The represented proteins are: PB – polymerase basic protein, PA – polymerase acidic 

protein, HA – hemagglutinin, NP – nucleoprotein, NA – neuraminidase, M – matrix protein, NEP – nuclear export 

protein. (B) Diagram of different genome segments encoding viral proteins. The boxes represent the encoded 

proteins and the lines at the end of each box are the non-coding regions. The V-shapes indicate the introns of the 

spliced mRNAs of segment 7 and 8. NS1 – non-structural protein 1. (C) Structure of an influenza A virus 

ribonucleoprotein (vRNP). Figure taken from the PhD dissertation of Heldt [1]. 
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caused by the premature dissociation of the RdRp from the template and reattachment further on the 

sequence space (Figure 2.2C). However, the molecular mechanism of the DIP de novo generation is 

still largely elusive. Concerning this matter, our research group is currently modelling and developing 

different hypothesis to further understand how DIPs are generated. 

 

 

2.3 Influenza A virus intracellular life cycle 
 

The deterministic intracellular model of IAV replication was developed by Heldt et al. and describes 

the IAV life cycle in a single mammalian cell using ordinary differential equations (ODEs) [33]. The 

detailed description of this model is provided by Frank Stefan Heldt as part of his PhD dissertation [1]. 

The IAV life cycle comprises the virus entry into the host cell, the vRNA replication and synthesis of all 

viral proteins and the release of progeny virions into the extracellular space. We assumed in our model 

that the core mechanisms for STV and DIP replication are very similar. In this section we explain the 

essential steps of the viral life cycle implemented in the original model (Figure 2.3) and in the next 

section we will highlight the adjustments for DIP replication. 

 

Virus entry 

The IAV entry into the host cell is initiated by the interaction of specific viral envelope proteins with 

the receptor binding sites of the cell: HA protein attaches to neuraminic acids (sialic acids) on the host 

Figure 2.2 | Structure of a defective interfering particle (DIP) and de novo generation mechanism of 

defective RNA. (A) Morphology of a DIP with a defective segment 3 (B) Structure of a full-length (FL) and defective 

interfering (DI) RNA. The functional RNA has an open reading frame (ORF) represented by the straight lines. The 

defective RNA carries an internal deletion in its segment which is indicated by the V-shape line. The red boxes 

represent the terminal promoter sequences. (C) Potential mechanism for DI RNA de novo generation. The 

polymerase normal pathway along the template is represented by the sequential numbers and black arrows. The 

translocation of the polymerase with dissociation and reattachment at number 2 and 4, respectively deletes the 

internal coding sequence and originate DIPs. This path is indicated by the red dashed line. Figure adapted from 

the PhD dissertation of Heldt [1].  
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cell surface which promotes virus entry [34]. An endosome is formed on the cell surface which induces 

virus entry through a receptor-mediated endocytosis. The virus goes through endocytosis until the 

acidification in late endosomes which enables the virus envelope to fuse with the endosomal membrane 

[34,35]. This reaction results in viral uncoating, i.e. protons enter the virus particle through M2 ion 

channels causing the vRNPs to detach from M1 proteins which promotes the release of vRNPs into the 

host cell cytoplasm. During endocytosis, the virus can either successfully fuse with the viral envelope 

and release its vRNPs or fail to fuse and the virus particle will eventually be degraded. The fusion 

process in late endosomes is the only step during cell entry in which the virus can be degraded in the 

model, which can prevent further replication. Note that other biological processes can cause virus 

degradation, e.g. fail to attach the cell surface or cytoplasmatic transport, however such mechanisms 

were neglected in the model. 

 

 

Nuclear import of vRNPs 

After the viral fusion the vRNPs travel through the cytoplasm. Since the virus does not possess all 

the enzymes and resources necessary for its replication, it requires to take control over the biosynthesis 

machinery in a host cell’s nucleus to promote its propagation. Experimental data suggest that the eight 

vRNPs are transported together across the cytoplasm and only separate when they reach the 

karyoplasm [36]. The model does not directly consider cell compartments, however, it contains an 

inactive cytoplasmic state of vRNPs which is converted into separated nuclear vRNP segments when 

Figure 2.3 | Diagram of the influenza A virus life cycle. To simplify the figure, only one of the eight vRNPs is 

represented and non-structural proteins were omitted. Solid arrows indicate synthesis or protein attachment and 

dashed arrows represent transport processes. The different life cycle steps are indicated by the numbers: 1 – 

attachment, 2 – endocytosis, 3 – fusion in late endosomes, 4 – nuclear import, 5 – transcription, 6 – replication 

(cRNA synthesis), 7 – protein translation, 8 – cRNA encapsidation, 9 – replication (vRNA synthesis), 10 – vRNA 

encapsidation, 11 – M1 and NEP binding, 12 – nuclear export, 13 – virus assembly and budding. Figure taken from 

the PhD dissertation of Heldt [1]. 
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the genomes reach the nucleus. The nuclear import of vRNPs occurs via an active transport mechanism 

mediated by transport receptors located on the nucleus membrane [37,38]. Inside the nucleus each 

vRNP segment behaves as an independent functional structure [36]. 

 

Viral replication 

Once inside the nucleus, the eight vRNP segments are used as templates to produce viral mRNA 

and the complementary RNA (cRNA). However, the mechanism which coordinates the synthesis of 

both molecules is still under debate and different hypothesis were proposed in the past decades [25]. 

The most accepted theories are the switching and the stabilization hypothesis. 

The switching hypothesis suggests that before cRNA synthesis, an initial round of viral protein 

translation occurs which promotes the accumulation of soluble NP, i.e. free NP that is not attached to 

vRNAs. This hypothesis proposed that NP switches the vRNP activity from transcription to replication 

(Figure 2.4A) [39]. The theory is supported by laboratory experiments which show that the synthesis of 

cRNA depends on NP [40] and a study with temperature-sensitive NP mutants which revealed a 

reduced cRNA synthesis and normal viral mRNA production [41]. However, other experimental data 

showed that over expressed NP did not increase cRNA replication [42]. By contrast, the stabilization 

hypothesis suggests that both viral mRNA and cRNA are synthesised early on after vRNPs nuclear 

import. This theory describes that due to the attachment of RdRp and NP the nascent cRNA forms 

cRNP which prevents its degradation by cellular nucleases, i.e. cRNA does not accumulate unless 

these proteins stabilize it (Figure 2.4B) [43]. This hypothesis is supported by in vitro experiments which 

showed that both transcription and replication occur early on and in the absence of free NP [44]. The 

vRNA synthesis proceeds from the positive-stranded cRNP which was formed previously. In a similar 

way, the vRNA needs to be stabilized by the viral polymerase and NP such that vRNPs can be formed 

in the host nucleus [45]. Is important to notice that in the model all intermediate molecules (cRNA, 

vRNA, cRNP and vRNP) can be degraded by nucleases during replication, however, the stabilized 

RNPs are degraded significantly slower. 

Figure 2.4 | Different hypothesis for the transition mechanism from transcription to replication.                       
(A) Switching hypothesis – the transcription of mRNA by the polymerase occurs early in infection. Accumulation of 
NP switches the polymerase toward replication. (B) Stabilization hypothesis – vRNPs engage both transcription 
and replication early in infection. cRNA requires stabilization of viral polymerase and NP to prevent its degradation 
by cellular nucleases. Figure taken from the PhD dissertation of Heldt [1]. 
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Transcription and protein synthesis 

Experimental data showed that in infections with IAV the number of viral mRNA is negatively 

correlated to its length, i.e. shorter mRNAs are in higher abundance [46]. The transcribed viral mRNAs 

are then transported to the cytoplasm where the protein translation will take place. The viral mRNA 

needs to compete for transcripts and resources of the cell. To achieve this, several mechanisms are 

triggered that enables the viral mRNA to have preferential access to these resources and take over the 

cell translation machinery [47]. The synthesised proteins can engage two different pathways: they can 

either enter the cell nucleus or be transported to the plasma membrane [37,38]. RdRp and NP enter 

the nucleus to stabilize the newly produced vRNA and cRNA. Furthermore, a fraction of M1 and NEP 

takes the first path, and the remaining fraction takes the second route since they are involved in the 

nuclear export of vRNPs as well as in the process of virus particle release. Finally, the surface proteins 

HA, NA and M2 are processed in the endoplasmic reticulum and Golgi complex and transported to the 

plasma membrane.  

 

Nuclear export of vRNPs 

After replication, the newly synthesised vRNPs can either be used as template for viral mRNA and 

cRNA production or be exported from the nucleus to be assembled into progeny virions. It has been 

suggested that the nuclear vRNPs can be divided into two types: the active vRNPs which participate in 

viral mRNA and cRNA synthesis and the inactive ones that leave the nucleus and produce new viral 

particles [48]. Laboratory experiments showed that overexpression of M1 protein inhibit the viral mRNA 

transcription suggesting that this protein is a the mediator for vRNP inactivation [49,50]. There is further 

evidence that M1 binds to NP [49] and also to RNA [51] to promote the nuclear export of vRNPs. 

Additional studies illustrate the importance of M1: experiments with a fluorescence marker for NP, which 

can be used to localize vRNPs, showed that cells that lack M1 or were treated with antibodies which 

retain M1 in the cytoplasm, lead to an accumulation of vRNPs inside the nucleus [52]. Furthermore, 

another study, in which an M1 production inhibitor was applied, resulted in the nuclear retention of 

vRNPs [53]. It was also suggested that NEP participates in the export process: experimental work 

revealed that no vRNP was exported from the nucleus after injection of anti-NEP antibodies [54]. 

However, it has also been observed that even in complete absence of NEP nuclear export still occurs 

[55]. This results indicates that NEP is not a determinant factor for vRNP nuclear export or at least 

suggests that this protein is not required in high quantities [39]. 

 

Viral packaging and release 

After replication and protein synthesis, the intracellular IAV continues its life cycle with the 

processes of virus packaging and finally the release from the host cell. To form a functional virus 

particle, one copy of each vRNP genome segment is required. However, whether the eight vRNP 

segments are assembled by a random mechanism or in a segment-specific packaging has been 



9 
 

debated for several years [56]. Experimental studies showed that the genome segments form a “7+1” 

configuration where seven segments display a ring around a central vRNP [27,57]. Further experiments 

indicated that this complex configuration might be mediated by RNA-RNA interactions between the IAV 

genome segments [58,59]. In addition, it has been observed that DIPs compete for their full-length (FL) 

segments in a segment-specific way during packaging [7,10]. These experimental results provide strong 

evidence that the viral genome assembly is controlled by a specific packaging mechanism. The virus 

assembly includes the aggregation of vRNP segments and the packaging of the structural proteins. It  

has been suggested that the M1 protein has a very important role during the virus assembly since 

observations showed it attaches to vRNPs, forms a layer underneath the virus envelope and interacts 

with HA and NA facilitating an association with the cell membrane [60]. The virus particle release is 

initiated by the formation of a bud which is mediated by the interaction of HA, NA and M2 with the cell 

membrane. Then, the bud is extended and the vRNPs segments are incorporated into the progeny 

particle. In the final steps M2 promotes the membrane curvature and the separation of the budding 

particle [61]. Once in the cell exterior, NA removes the sialic acids from the viral envelope which 

prevents HA from binding to other progeny particles.  

 

2.4 DIP interference 
 

Since influenza virus DIPs carry an internal deletion in at least one of their genome segments, they 

do not possess the complete coding sequence to synthesise all proteins. Consequently, they depend 

on coinfections with STVs that provide the missing protein(s) to form progeny particles. During these 

coinfections, DI RNA interferes with the STV replication which results in a reduction of the infectious 

virus titer and mainly progeny DIPs are produced [11,13]. However, the molecular mechanism inducing 

this interference is still not completely understood [12]. 

Several experiments showed a preferential amplification of the DI RNAs over the FL genome 

segments [7,62] which indicates that the interference can emerge during RNA replication. cRNA 

synthesis has been suggested to be the step comprising the replication advantage [63]. In this regard, 

it has been proposed that the reduced length of the DI vRNA induces this advantage, because synthesis 

processes could occur faster [12,13]. Since the viral polymerase synthesizes a constant number of 

nucleotides per unit time, shorter RNAs can be generated in greater abundance if the necessary 

resources are available. This theory is in agreement with experimental data from a dual luciferase 

reporter assay for RNA replication [64]. In this experiment, the shorter of the two luciferase-encoding 

influenza virus-like RNAs showed a higher interference potential on luciferase expression when 

compared to the longer reporter segment. Although shorter DI segments are assumed to be synthesised 

faster, large deletions can also disrupt terminal packaging signals [13]. This indicates that there may 

exist an optimal length of DI RNA at which DIPs achieve the maximum replication advantage and are 

still efficiently packaged into progeny particles. However, it has been observed that some DI RNAs do 

not accumulate to high levels in coinfected cells [7] which indicates that RNA length is not the only 

determinant factor of interference. 
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Other interference mechanism has been suggested to be the competition for limited viral and/or 

cellular resources [13]. Experimental studies support this assumption, because the competition 

between DI RNA and FL segments for viral polymerases has been observed in vesicular stomatitis virus 

(VSV) and influenza virus. Furthermore, different DI segments showed a more efficient packaging which 

results in an increased production of DIPs to the detriment of STV release [10,23]. Besides the 

competition for resources, it has also been hypothesised that the proteins synthesised from the DI RNA 

could contribute to the interference mechanism. Since the DI segment has the 3’ and 5’ promoters, the 

polymerase can transcribe DI mRNAs and synthesise truncated versions of proteins [62]. However, 

these proteins are shorter than the functional ones, are therefore very likely to lose their function and 

do not show an increased interference potential [12,62]. 

 

2.5 Therapeutic potential of DIPs 
 

In recent years, DIPs have been suggested to be used in antiviral therapies due to their 

interference with STV replication which efficiently reduces the infectious virus yield [13,14]. 

Experimental results revealed that the administration of DIPs prevented mice and ferrets from 

developing lethal infections caused by different IAV strains [15,16]. More precisely, it reduced fever, 

weight loss, respiratory symptoms and the infectious load. Additionally, it was shown that the 

administration of DIPs between 24 and 48h post virus infection completely prevented clinical disease 

and death in mice [15]. Furthermore, it was observed that coinfections with STV and DIPs activate the 

immune response inducing anybody production [16]. Hence, research results suggest that DIPs have 

a major potential to be used for the prevention of IAV infections and as antiviral medication, especially 

when the infectious strain is unknown or resistant to other antiviral drugs [15]. 

 

2.6 Intracellular deterministic model of influenza A virus and DIP 

replication 
 

A deterministic intracellular model of DIP replication was developed by Laske et al. [9] which 

constitutes an extension from the previously implemented deterministic model of the IAV life cycle [33]. 

This model provided novel insights about the factors which influence DIP production focussing in the 

replication advantage, coinfection timing and DI RNA originated from different genome segments. The 

model comprises a DIP carrying a DI vRNA which has a replication advantage at the cRNA synthesis 

level due to its reduced length. 

Using the deterministic model of DIP replication, Laske et al. evaluated the effect of the length 

dependent replication advantage on STV and DIP production. The obtained results suggested that there 

is an optimal DI RNA synthesis rate which results in a maximum DIP production. Model simulations 

showed that when the replication advantage increases above its optimum, the production of DI 

segments consumes an increasing amount of proteins which leads to the depletion of NP. 
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Consequently, the DIP release is reduced due to protein limitation. The authors concluded that at the 

optimum replication advantage, a balance between the FL and DI RNA synthesis is established such 

that the pool of viral resources would not be depleted. 

Additionally, the authors evaluated the impact of different time delays of successive confections 

with STV and DIP. The results showed that DIP produced progeny particles only if DIP infection was 

delayed no longer than 3 hours after STV infection. It has been suggested that when the STV replication 

already progressed too far, DIP replication does not occur. In this case, the high levels of M1 and NEP 

accumulated in the cytoplasm promote the attachment of these proteins to the DI vRNP which become 

inactive. To compile these findings, simulations with different DI segments were performed. The model 

results showed that a defect in segment 3 provides an advantage in DIP replication compared to a DIPs 

carrying a defective segment 4 when STV coinfection is delayed more than 3 hours. Furthermore, 

simulations with DI segments 5 showed to be less productive than a DI segment 3 for all tested delays. 

The authors concluded that defects in segments which encode for proteins of the polymerase complex 

can provide an advantage in DIP replication. Hence, these DIPs can overcome DIPs with other defective 

segments after several passages and emerge as the dominant species, explaining why most DI RNAs 

of IAV are originated from segments 1 to 3.  

 

2.7 Intracellular stochastic model of influenza A virus replication 
 

Cell-to-cell variability is a phenomenon usually observed in nature and most of these fluctuations 

are caused by the random nature of biochemical reactions [19]. By contrast to the deterministic model, 

which considers that the reactants in the system are continuous variables, the stochastic approach 

defines them as discrete numbers of molecules that can be changed by random events. Stochastic 

models can provide valuable information about how the system dynamics respond to the random effects 

inherent to biological processes [65]. Furthermore, for the same initial conditions the deterministic model 

provides one definitive result, however, stochastic model simulations result in a distribution that reflects 

the variance introduced by the randomness of biochemical reactions [3]. The stochastic effects are 

more pronounced in systems with a low number of molecules [18]. This is the case in virus infections 

since one single viral particle can be sufficient to infect an entire organism. However, stochastic 

simulations are usually more computationally demanding since the credibility of the stochastic results 

is related to the number of simulations performed [66].  

A stochastic intracellular model of IAV replication was implemented by Heldt & Dorl [3,67] which is 

a new approach to the previous deterministic model of the IAV life cycle [33]. Model simulation results 

showed that the randomness of biochemical reactions, i.e. stochastic effects, have a significant impact 

on IAV replication at the single-cell level. The experiments performed in this study include the single-

cell analysis of viral replication dynamics using real-time RT-qPCR and the observed results were 

complemented with the stochastic intracellular model. The authors focussed on different sources of 

noise affecting virus replication, genome segmentation, infections at low MOI and stochastic effects 

during virus entry. 
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The stochastic model of IAV replication showed that one of the major sources of variability in IAV 

infection is the segmented genome since each segment is affected by stochastic effects independently. 

Furthermore, simulations indicated that the viral replication process, which is assumed to be 

autocatalytic, amplifies heterogeneity in the levels of viral RNA. The authors suggested that the genome 

segmentation combined with the autocatalytic synthesis of vRNA from cRNA and vice versa, are the 

cause for the large fluctuations detected in the model for RNA and proteins levels which affect virus 

production. 

The model predicted that nearly 93% of simulations performed at MOI 1 did not release any 

progeny virion. In half of these simulation runs the virus failed to fuse its envelope with the endosomal 

membrane. Another reason for this high percentage of non-productive infections is segment loss which 

is caused by the degradation of vRNA in the nucleus by cellular nucleases. If the vRNA of one or more 

genome segments is completely degraded before replication, the virus lacks part of its genome and, 

consequently, is unable to produce any viral particle. Due to these observations, the authors concluded 

that fusion failure and segment loss events are the major steps in virus infection that induce the cell-to-

cell heterogeneity observed in IAV production. 

 

2.8 Stochastic simulation algorithms 
 

The stochastic chemical kinetics considers that in a well-stirred system 𝑁 chemical species 

{𝑆1, 𝑆2, … , 𝑆𝑁} interact through 𝑀 chemical reactions {𝑅1, 𝑅2, … , 𝑅𝑀}. 𝑋𝑖(𝑡) denotes the number of 

molecules of species 𝑆𝑖 in the system at time 𝑡. The goal of a stochastic simulation is to estimate the 

state vector 𝑋(𝑡) ≡ (𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑁(𝑡)) knowing that the system was in state 𝑋(𝑡0) =  𝑥0 at some 

initial time 𝑡0 [20]. The changes in the species populations are caused by the chemical reactions. In this 

context, stochastic simulations use state-change vectors and propensity functions to characterize each 

reaction channel 𝑅𝑗. The change in the system is not given by ODEs as in the deterministic model, but 

rather using a state change vector which is represented as: 𝜈𝑗 ≡ (𝜈1𝑗, 𝜈2𝑗, … , 𝜈2𝑗), where 𝜈𝑖𝑗 is the 

change in the molecular population of 𝑆𝑖 induced by a single 𝑅𝑗 reaction. If the system is in state 𝑥 and 

one 𝑅𝑗 reaction occurs, the system will jump to state 𝑥 + 𝜈𝑗. Furthermore, the reaction constants are 

described in the form of propensity functions rather than reaction rates as in the deterministic approach. 

The propensity function is represented as: 𝑎𝑗(𝑥) 𝑑𝑡, which is the probability, given 𝑋(𝑡) = 𝑥, that one 

𝑅𝑗 reaction will occur in the next infinitesimal time interval [𝑡, 𝑡 + 𝑑𝑡] [20]. The time to the next reaction 

occurring is an exponentially distributed random variable with average 1 𝑎0(𝑥)⁄  and 𝑎0(𝑥) = ∑ 𝑎𝑗(𝑥), 

which represents the sum of all propensity functions. 

These concepts are included in the chemical master equation (CME) which determines the 

probability that each species will have a specific molecular population at a given future time point [68]. 

However, an analytical solution for the CME is usually quite complicated to obtain even for simple 

systems. To approximate a solution, Gillespie proposed a Monte Carlo procedure to simulate time 
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trajectories of the molecular populations described by the CME. This procedure was named stochastic 

simulation algorithm (SSA) and has been used as the basis for stochastic simulations until today [69,70]. 

The SSA is usually preferred over other iteration methods due to its accurate results and simple 

coding [71]. However, it simulates every single reaction separately which makes it very inefficient for 

systems with a high number of molecules, as is the case for IAV infection. During later stages of 

infection, this problem becomes even more challenging as the amount of interacting molecules 

increases rapidly from a low number to millions of molecules. As the population of some species 

increases, the values of the propensity functions increase substantially [3]. Consequently, 𝑎0(𝑥) 

achieves higher values and the time until the next reaction is on average reduced which results in more 

simulations per time unit. To improve computational speed, Gillespie proposed an extension to the SSA 

named Tau-leaping in 2001 [72]. This algorithm approximates the result of the SSA by advancing the 

system by a time step 𝜏 during which multiple reaction events can occur simultaneously. Hence, 

computational efficiency can be increased by this method as it allows to aggregate a high number of 

individual reactions in a single computational step. However, the leap condition has to be considered: 

𝜏 has to be small enough that none of the states 𝑋𝑖 in the system change by an amount above a certain 

threshold, which is normally defined as 3%.  

As mentioned before, the stochastic algorithm to simulate influenza virus infection was previously 

developed by Heldt & Dorl and we opted to use this algorithm as a basis for our model [3]. The SSA 

implementation followed the steps described in the original work of Gillespie [70] and the Tau-leaping 

procedure was based on the work of Cao et al. [73], which has been indicated as the most efficient 

method for explicit tau-leaping [20]. The step-by-step explanation of the algorithm procedure can be 

consulted in the Bachelor thesis of Sebastian Dorl [3]. 
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3 Models and Methods 
 

 

3.1 Implementation of biochemical reactions 
 

Our stochastic model of DIP replication is based on a previous stochastic model of the intracellular 

life cycle of IAV developed by Heldt & Dorl [3,67]. We extended this model by implementing the 

mechanism of DIP interference described in the deterministic model of DIP replication implemented by 

Laske et al. [9]. For most of our simulations, we established a DI RNA derived from segment 3, which 

encodes for the polymerase acidic protein (PA). This specific segment was chosen,  because it is one 

of the polymerase-encoding segments which are the most abundant DI segments found in IAV 

production [30,31]. Furthermore, the previous deterministic DIP model also established a DI RNA for 

segment 3 and to enable the comparison between both models we opted to apply the same modification 

in our implementation. In the following, we provide a complete list of the biochemical equations 

established in our model. For a comparison between different DI segments, we also applied a DI RNA 

derived from segment 4 which encodes for HA. 

 

Virus entry 

The extracellular STVs (𝑉𝐸𝑥) and DIPs (𝐷𝐸𝑥) bind to free binding sites, i.e. sialic acids, on the 

cell surface (𝐵𝑛), 

  

  

𝑤𝑖𝑡ℎ    𝐵𝑛 = 𝐵𝑛
𝑇𝑜𝑡 − 𝑉𝑛

𝐴𝑡𝑡 − 𝐷𝑛
𝐴𝑡𝑡    𝑎𝑛𝑑    𝑘𝑛

𝐷𝑖𝑠 =
𝑘𝑛

𝐴𝑡𝑡

𝑘𝑛
𝐸𝑞 ,      𝑛 ∈ { 𝐻𝑖, 𝐿𝑜 } 

𝑉𝑛
𝐴𝑡𝑡 and 𝐷𝑛

𝐴𝑡𝑡 denote the STVs and DIPs, respectively, which are attached to binding sites of type 𝑛. 

Experimental data showed that two types of binding sites can be distinguished: high affinity sites 

𝑉𝐸𝑥 + 𝐵𝑛               𝑉𝑛
𝐴𝑡𝑡 

 

   𝑘𝑛
𝐴𝑡𝑡   

ሱۛ ۛۛ ሮ 
   𝑘𝑛

𝐷𝑖𝑠   
ርۛ ۛۛ ሲ 

𝐷𝐸𝑥 + 𝐵𝑛               𝐷𝑛
𝐴𝑡𝑡 

 

   𝑘𝑛
𝐴𝑡𝑡   

ሱۛ ۛۛ ሮ 
   𝑘𝑛

𝐷𝑖𝑠   
ርۛ ۛۛ ሲ 

(3.1) 

(3.2) 
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(𝑛 = 𝐻𝑖) which represents the attachment to sialic acids and low affinity (𝑛 = 𝐿𝑜) that correspond to 

binding sites with less specific interactions [35]. The number of free binding sites is calculated by 

subtracting the number of attached particles from the total number of binding sites (𝐵𝑛
𝑇𝑜𝑡). The particles 

can attach to these sites with rate 𝑘𝑛
𝐴𝑡𝑡 or dissociate from them with rate 𝑘𝑛

𝐷𝑖𝑠, which is calculated from 

the equilibrium constant 𝑘𝑛
𝐸𝑞

. 

After attachment to the cell surface, the particles are imported by receptor-mediated endocytosis, 

 
𝑉𝑛

𝐴𝑡𝑡
   𝑘𝐸𝑛   
ሱۛ ۛۛ ሮ 𝑉𝐸𝑛 + 𝐵𝑛 

  

 
𝐷𝑛

𝐴𝑡𝑡
   𝑘𝐸𝑛   
ሱۛ ۛۛ ሮ 𝐷𝐸𝑛 + 𝐵𝑛 

 

𝑉𝐸𝑛 and 𝐷𝐸𝑛 represent the STVs and DIPs in endosomes and 𝑘𝐸𝑛 is the endocytosis rate. Since our 

model assumes a fast recycling of receptors, the binding sites become available instantaneously when 

particles begin endocytosis [67]. 

The particles in endosomes can either fuse with the endosomal membrane or be degraded in 

lysosomes,  

 
𝑉𝐸𝑛

   𝑘𝐹𝑢𝑠   
ሱۛ ۛۛ ሮۛ 𝑉𝐶𝑦𝑡 

  

 
𝐷𝐸𝑛

   𝑘𝐹𝑢𝑠   
ሱۛ ۛۛ ሮۛ 𝐷𝐶𝑦𝑡 

 
 

 
𝑉𝐸𝑛

   𝑘𝐸𝑛
𝐷𝑒𝑔

   
ሱۛ ۛۛ ሮۛ Ø 

  

 
𝐷𝐸𝑛

   𝑘𝐸𝑛
𝐷𝑒𝑔

   
ሱۛ ۛۛ ሮۛ Ø 

 

𝑤𝑖𝑡ℎ    𝑘𝐸𝑛
𝐷𝑒𝑔

=
1 − 𝐹𝐹𝑢𝑠

𝐹𝐹𝑢𝑠
𝑘𝐹𝑢𝑠,    𝑎𝑛𝑑    0 < 𝐹𝐹𝑢𝑠 ≤ 1 

 

𝑘𝐹𝑢𝑠 and 𝑘𝐸𝑛
𝐷𝑒𝑔

 are the rates of fusion and degradation, respectively. The 𝐹𝐹𝑢𝑠 represents the fraction 

of fusion-competent particles, which is derived from experiments showing that half of the infecting 

virions fail to reach the nucleus [74]. After fusion, STVs and DIPs release their genome into the 

cytoplasm. Experimental data showed that upon fusion, the eight genome segments of IAV travel 

together through the cytoplasm until they reach the nucleus [36]. Hence, we assumed that both particles 

deliver a complex which includes all eight genome segments. These complexes that carry the genomes 

of either an STV or DIP are denoted as 𝑉𝐶𝑦𝑡 and 𝐷𝐶𝑦𝑡 either is they are derived from STVs or DIPs, 

respectively. 

 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Nuclear import of vRNPs 

When the vRNP complex enters the nucleus, the segments separate and act as independent 

functional units for replication and transcription.  

 

 
𝑉𝐶𝑦𝑡

    𝑘𝐼𝑚𝑝    
ሱۛ ۛۛ ۛۛ ሮ 𝑉𝑝1

𝑁𝑢𝑐 + 𝑉𝑝2
𝑁𝑢𝑐 + 𝑉𝑝3

𝑁𝑢𝑐 + ⋯ + 𝑉𝑝8
𝑁𝑢𝑐 

  

 
𝐷𝐶𝑦𝑡

    𝑘𝐼𝑚𝑝    
ሱۛ ۛۛ ۛۛ ሮ 𝑉𝑝1

𝑁𝑢𝑐 + 𝑉𝑝2
𝑁𝑢𝑐 + 𝑉𝑝4

𝑁𝑢𝑐 + ⋯ + 𝑉𝑝8
𝑁𝑢𝑐 + 𝑉𝑝𝐷𝐼

𝑁𝑢𝑐 

  

 

The STV complex splits into its eight FL vRNPs (𝑉𝑝𝑖
𝑁𝑢𝑐) with 𝑖 = {1, … , 8}, and DIP complex separates 

its seven FL segments and a DI vRNP of segment 3 (𝑉𝑝𝐷𝐼
𝑁𝑢𝑐). 𝑘𝐼𝑚𝑝 is the nuclear import rate. 

 

Viral replication 

Once inside the nucleus, the vRNPs are used as template for replication. 

 

 
𝑉𝑝𝑖

𝑁𝑢𝑐
    𝑘𝐶

𝑆𝑦𝑛
    

ሱۛ ۛۛ ۛሮ 𝑉𝑝𝑖
𝑁𝑢𝑐 + 𝑅𝑖

𝐶 

 
 

 
𝑉𝑝𝐷𝐼

𝑁𝑢𝑐
    (𝐹𝐴𝑑𝑣+1)𝑘𝐶

𝑆𝑦𝑛
    

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮۛ 𝑉𝑝𝐷𝐼
𝑁𝑢𝑐 + 𝑅𝐷𝐼

𝐶  

 
 

𝑤𝑖𝑡ℎ    𝐹𝐴𝑑𝑣 = (
𝐿3

𝑉

𝐿𝐷𝐼
𝑉 − 1) ,      𝑖 = {1, … , 8} 

 

To replicate the viral genome, the cRNA of each FL segment (𝑅𝑖
𝐶) is synthesised with rate (𝑘𝐶

𝑠𝑦𝑛
). 

Based on experimental data, we assumed that the DI cRNA (𝑅𝐷𝐼
𝐶 ) has a replication advantage over the 

FL segments [63]. This advantage is represented as an advantage factor (𝐹𝐴𝑑𝑣) and its implementation 

follows the description of the previous deterministic model of DIP replication [9]. The value of this factor 

is derived from the difference in length of segment 3 vRNA (𝐿3
𝑉) and of the DI vRNA (𝐿𝐷𝐼

𝑉 ). 

Based on the stabilization hypothesis, the newly synthesised cRNA needs to be stabilized by the 

binding of polymerase complexes (𝑃𝑅𝑑𝑅𝑝) and NP (𝑃𝑁𝑃) to prevent its degradation by cellular 

nucleases [43].  

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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𝑅𝑖

𝐶 + 𝑃𝑅𝑑𝑅𝑝

    𝑘𝑅𝑑𝑅𝑝
𝐵𝑖𝑛𝑑     

ሱۛ ۛۛ ۛۛ ሮۛ 𝑅𝑅𝑑𝑅𝑝,𝑖
𝐶  

 
 

 
𝑅𝐷𝐼

𝐶 + 𝑃𝑅𝑑𝑅𝑝

    𝑘𝑅𝑑𝑅𝑝
𝐵𝑖𝑛𝑑     

ሱۛ ۛۛ ۛۛ ሮۛ 𝑅𝑅𝑑𝑅𝑝,𝐷𝐼
𝐶  

 
 

 
𝑅𝑅𝑑𝑅𝑝,𝑖

𝐶 + [𝐿𝑖
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄ ]𝑃𝑁𝑃

    𝑘𝑁𝑃
𝐵𝑖𝑛𝑑    

ሱۛ ۛۛ ۛۛ ሮ 𝐶𝑝𝑖 
  

 
𝑅𝑅𝑑𝑅𝑝,𝐷𝐼

𝐶 + [𝐿𝐷𝐼
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄ ]𝑃𝑁𝑃

    𝑘𝑁𝑃
𝐵𝑖𝑛𝑑    

ሱۛ ۛۛ ۛۛ ሮ 𝐶𝑝𝐷𝐼 

 
 

The RdRp attaches to FL and DI cRNA with rate 𝑘𝑅𝑑𝑅𝑝
𝐵𝑖𝑛𝑑  and forms FL and DI RdRp-cRNA complexes 

(𝑅𝑅𝑑𝑅𝑝,𝑖
𝐶  and 𝑅𝑅𝑑𝑅𝑝,𝐷𝐼

𝐶  respectively). Subsequently, multiple molecules of NP bind to these complexes 

with rate 𝑘𝑁𝑃
𝐵𝑖𝑛𝑑 and form FL and DI cRNPs (𝐶𝑝𝑖 and 𝐶𝑝𝐷𝐼 respectively). Since NP needs to cover the 

complete vRNA (see Figure 2.1C), the number of NP molecules in one cRNP is calculated based on 

the length of the segment (𝐿𝑖
𝑉 or 𝐿𝐷𝐼

𝑉 ) and the number of nucleotides bound by one NP molecule (𝑁𝑁𝑃
𝑁𝑢𝑐). 

The second step of replication uses the newly formed cRNP as a template, 

 
𝐶𝑝𝑖

    𝑘𝑉
𝑆𝑦𝑛

    
ሱۛ ۛۛ ۛሮ 𝐶𝑝𝑖 + 𝑅𝑖

𝑉 
  

 
𝐶𝑝𝐷𝐼

    𝑘𝑉
𝑆𝑦𝑛

    
ሱۛ ۛۛ ۛሮ 𝐶𝑝𝐷𝐼 + 𝑅𝐷𝐼

𝑉  

 
 

the FL and DI vRNAs (𝑅𝑖
𝑉 and 𝑅𝐷𝐼

𝑉  , respectively) are synthesised with rate 𝑘𝑉
𝑆𝑦𝑛

. 

Similar to the encapsidation of cRNAs, the progeny vRNAs are stabilized by the attachment of 

polymerase complexes (𝑃𝑅𝑑𝑅𝑝) and NP (𝑃𝑁𝑃), 

 
𝑅𝑖

𝑉 + 𝑃𝑅𝑑𝑅𝑝

    𝑘𝑅𝑑𝑅𝑝
𝐵𝑖𝑛𝑑     

ሱۛ ۛۛ ۛۛ ሮۛ 𝑅𝑅𝑑𝑅𝑝,𝑖
𝑉  

 
 

 
𝑅𝐷𝐼

𝑉 + 𝑃𝑅𝑑𝑅𝑝

    𝑘𝑅𝑑𝑅𝑝
𝐵𝑖𝑛𝑑     

ሱۛ ۛۛ ۛۛ ሮۛ 𝑅𝑅𝑑𝑅𝑝,𝐷𝐼
𝑉  

 
 

 
𝑅𝑅𝑑𝑅𝑝,𝑖

𝑉 + [𝐿𝑖
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄ ]𝑃𝑁𝑃

    𝑘𝑁𝑃
𝐵𝑖𝑛𝑑    

ሱۛ ۛۛ ۛۛ ሮ 𝑉𝑝𝑖
𝑁𝑢𝑐 

  

 
𝑅𝑅𝑑𝑅𝑝,𝐷𝐼

𝑉 + [𝐿𝐷𝐼
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄ ]𝑃𝑁𝑃

    𝑘𝑁𝑃
𝐵𝑖𝑛𝑑    

ሱۛ ۛۛ ۛۛ ሮ 𝑉𝑝𝐷𝐼
𝑁𝑢𝑐 

 
 

where 𝑅𝑅𝑑𝑅𝑝,𝑖
𝑉  and 𝑅𝑅𝑑𝑅𝑝,𝐷𝐼

𝑉  denote the FL and DI RdRp-vRNA complexes, respectively. The binding 

of NP induces the formation of progeny FL and DI vRNP segments (𝑉𝑝𝑖
𝑁𝑢𝑐 and 𝑉𝑝𝐷𝐼

𝑁𝑢𝑐 respectively). 

 

 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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Nuclear export of vRNPs 

The newly produced vRNPs can either be used as templates for viral mRNA and cRNA synthesis 

or be exported from nucleus to be included into new progeny particles. Our model describes nuclear 

export as a two-step process. First, the M1 protein (𝑃𝑀1) binds to the vRNP segments and forms either 

functional (𝑉𝑝𝑀1,𝑖
𝑁𝑢𝑐

) or defective (𝑉𝑝𝑀1,𝐷𝐼
𝑁𝑢𝑐

) M1-vRNP complexes. As a preparation for nuclear export, 

M1 binding is responsible for the inactivation of vRNPs which prevents viral mRNA and cRNA synthesis 

[49,50]. 

 
𝑉𝑝𝑖

𝑁𝑢𝑐 + [𝐿𝑖
𝑉 𝑁𝑀1

𝑁𝑢𝑐⁄ ]𝑃𝑀1

    𝑘𝑀1
𝐵𝑖𝑛𝑑    

ሱۛ ۛۛ ۛۛ ሮ 𝑉𝑝𝑀1,𝑖
𝑁𝑢𝑐  

  

 
𝑉𝑝𝐷𝐼

𝑁𝑢𝑐 + [𝐿𝐷𝐼
𝑉 𝑁𝑀1

𝑁𝑢𝑐⁄ ]𝑃𝑀1

    𝑘𝑀1
𝐵𝑖𝑛𝑑    

ሱۛ ۛۛ ۛۛ ሮ 𝑉𝑝𝑀1,𝐷𝐼
𝑁𝑢𝑐  

 
 

𝑘𝑀1
𝐵𝑖𝑛𝑑 denotes the M1 binding rate. The number of M1 proteins necessary to cover the vRNP is 

calculated based on the length of the segment (𝐿𝑖
𝑉 or 𝐿𝐷𝐼

𝑉 ) and the number of nucleotides bound by one 

M1 molecule (𝑁𝑀1
𝑁𝑢𝑐). 

In the final step of nuclear export, NEP binds to the inactivated vRNPs and induces their transport 

to the cytoplasm. 

 
𝑉𝑝𝑀1,𝑖

𝑁𝑢𝑐 + 𝑃𝑁𝐸𝑃

    𝑘𝐸𝑥𝑝    
ሱۛ ۛۛ ۛሮ 𝑉𝑝𝑀1,𝑖

𝐶𝑦𝑡
 

  

 
𝑉𝑝𝑀1,𝐷𝐼

𝑁𝑢𝑐 + 𝑃𝑁𝐸𝑃

    𝑘𝐸𝑥𝑝    
ሱۛ ۛۛ ۛሮ 𝑉𝑝𝑀1,𝐷𝐼

𝐶𝑦𝑡
 

 
 

𝑉𝑝𝑀1,𝑖
𝐶𝑦𝑡

 and 𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

 represent the NEP-M1-vRNP complex in the cytoplasm derived from a FL or DI 

segment, respectively. 𝑘𝐸𝑥𝑝 is the export rate. It has been suggested that NEP is not required in 

stochiometric quantities [39]. Therefore, we established that one molecule is sufficient to start the 

nuclear export. This transport process was assumed to occur fast. 

 

Transcription and proteins synthesis 

According to the stabilization hypothesis, the progeny vRNPs in the nucleus start to replicate and 

transcribe viral mRNA of their respective FL genome segment (𝑅𝑖
𝑀

) [44]. Experimental evidence 

indicates that truncated versions of proteins can be generated from the DI segment [62], however they 

are likely to have lost their function. Therefore, and to improve computational performance, the 

transcription of viral mRNAs from defective segments was not considered in our model.  

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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𝑉𝑝𝑖

𝑁𝑢𝑐
    𝑘𝑀

𝑆𝑦𝑛
𝐿𝑖

𝑀⁄     
ሱۛ ۛۛ ۛۛ ۛۛ ሮۛ 𝑉𝑝𝑖

𝑁𝑢𝑐 + 𝑅𝑖
𝑀 

 

𝑘𝑀
𝑆𝑦𝑛

 denotes the transcription rate. In experiments a negative correlation between the IAV mRNA and 

their length was observed, showing that shorter mRNAs are more abundant [46]. Hence, we established 

that the transcription of viral mRNA is length-dependent (𝐿𝑖
𝑀). Subsequently, viral mRNA is exported 

to the cytoplasm. This step is not explicitly implemented in our model since mRNA export occurs fast 

[75].  

Once the viral mRNA is in the cytoplasm, protein translation is initiated. The viral mRNAs of 

segment 1 – 3 encode for the three subunits (PA, PB1 and PB2) of the viral polymerase complex 

(𝑃𝑅𝑑𝑅𝑝). 

 
𝑅1

𝑀 + 𝑅2
𝑀 + 𝑅3

𝑀
    𝑟𝑅𝑑𝑅𝑝    
ሱۛ ۛۛ ۛۛ ሮ 𝑅1

𝑀 + 𝑅2
𝑀 + 𝑅3

𝑀 + 𝑃𝑅𝑑𝑅𝑝 

  

𝑤𝑖𝑡ℎ    𝑟𝑅𝑑𝑅𝑝 =
𝑘𝑃

𝑆𝑦𝑛

𝐷𝑅𝑖𝑏
𝑚𝑖𝑛(𝑅1

𝑀, 𝑅2
𝑀, 𝑅3

𝑀) 

 

During the implementation of the previous stochastic model of IAV replication, the authors identified the 

synthesis of each individual polymerase subunit and their assembly as the most time-consuming step 

during simulation [3]. Hence, to reduce the time of each simulation, the synthesis of RdRp is performed 

as a single-step reaction and its synthesis is limited by the least abundant of the three viral mRNAs 

encoding for the RdRp subunits. Since multiple ribosomes can bind to a single mRNA, the protein 

synthesis in the model is assumed to be proportional to the protein synthesis rate (𝑘𝑃
𝑆𝑦𝑛

) over the 

distance between two adjacent ribosomes on a viral mRNA (𝐷𝑅𝑖𝑏). 

The viral mRNAs of segments 4 – 6 encode for HA (𝑃𝐻𝐴), NP (𝑃𝑁𝑃) and NA (𝑃𝑁𝐴) proteins, 

respectively. 

 

 
𝑅4

𝑀
    𝑘𝑃

𝑆𝑦𝑛
𝐷𝑅𝑖𝑏⁄     

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 𝑅4
𝑀 + 𝑃𝐻𝐴 

 
 

 
𝑅5

𝑀
    𝑘𝑃

𝑆𝑦𝑛
𝐷𝑅𝑖𝑏⁄     

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 𝑅5
𝑀 + 𝑃𝑁𝑃 

 
 

 
𝑅6

𝑀
    𝑘𝑃

𝑆𝑦𝑛
𝐷𝑅𝑖𝑏⁄     

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 𝑅6
𝑀 + 𝑃𝑁𝐴 

 
 

 

The synthesis of these proteins occurs as described above. 

 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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The M1, M2 and NEP are transcribed from spliced viral mRNAs of segment 7 and 8.  

 

 
𝑅7

𝑀
    𝑘𝑃

𝑆𝑦𝑛
(1−𝐹𝑆𝑝𝑙7) 𝐷𝑅𝑖𝑏⁄     

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 𝑅7
𝑀 + 𝑃𝑀1 

 
 

 
𝑅7

𝑀
    𝑘𝑃

𝑆𝑦𝑛
𝐹𝑆𝑝𝑙7 𝐷𝑅𝑖𝑏⁄     

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 𝑅7
𝑀 + 𝑃𝑀2 

 
 

 
𝑅8

𝑀
    𝑘𝑃

𝑆𝑦𝑛
𝐹𝑆𝑝𝑙8 𝐷𝑅𝑖𝑏⁄     

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 𝑅8
𝑀 + 𝑃𝑁𝐸𝑃 

 
 

 

𝐹𝑆𝑝𝑙7 is the fraction of viral mRNA of segment 7 which encodes for M1 protein. Furthermore, 𝐹𝑆𝑝𝑙8 

represents the fraction of viral mRNA of segment 8 encoding for NEP. To reduce computational costs, 

the synthesis of non-structural proteins, e.g. NS1 which is derived from the spliced viral mRNA of 

segment 8, was neglected in our model. 

 

Viral packaging and release 

The particle assembly step in our model is based on previous experimental work which suggests 

a segment-specific packaging mechanism [57]. After the nuclear export, the progeny FL and DI vRNPs 

in the cytoplasm (𝑉𝑝𝑀1,1
𝐶𝑦𝑡

 and 𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

, respectively) form complexes that contain one copy of each 

genome segment.  

 

 
𝑉𝑝𝑀1,1

𝐶𝑦𝑡
+ 𝑉𝑝𝑀1,2

𝐶𝑦𝑡
+ 𝑉𝑝𝑀1,3

𝐶𝑦𝑡
+ ⋯ + 𝑉𝑝𝑀1,8

𝐶𝑦𝑡     𝑘𝐶𝑝𝑙𝑥    
ሱۛ ۛۛ ۛۛ ሮ 𝑉𝐶𝑝𝑙𝑥

𝐶𝑦𝑡
 

  

 
𝑉𝑝𝑀1,1

𝐶𝑦𝑡
+ 𝑉𝑝𝑀1,2

𝐶𝑦𝑡
+ 𝑉𝑝𝑀1,4

𝐶𝑦𝑡
+ ⋯ + 𝑉𝑝𝑀1,8

𝐶𝑦𝑡
+ 𝑉𝑝𝑀1,𝐷𝐼

𝐶𝑦𝑡     𝑘𝐶𝑝𝑙𝑥    
ሱۛ ۛۛ ۛۛ ሮ 𝐷𝐶𝑝𝑙𝑥

𝐶𝑦𝑡
 

 
 

 

These complexes are formed with rate 𝑘𝐶𝑝𝑙𝑥. The vRNP complexes can either contain the FL segment 

3 (𝑉𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

) or the DI segment (𝐷𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

). Both segments compete to be incorporated into progeny particles. 

After the assembly of the vRNP-complexes, the final step of release is the packaging of viral 

proteins. 

 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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𝑉𝐶𝑝𝑙𝑥

𝐶𝑦𝑡
+ 𝑁𝑃𝐻𝐴

𝑃𝐻𝐴 + 𝑁𝑃𝑁𝐴
𝑃𝑁𝐴 + 𝑁𝑃𝑀2

𝑃𝑀2 + (𝑁𝑃𝑀1
− ∑[𝐿𝑖

𝑉 𝑁𝑀1
𝑁𝑢𝑐⁄ ]

𝑖

) 𝑃𝑀1

   𝑟𝑉
𝑅𝑒𝑙   

ሱۛ ۛۛ ሮ 𝑉𝑅𝑒𝑙 

 

 

 𝐷𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

+ 𝑁𝑃𝐻𝐴
𝑃𝐻𝐴 + 𝑁𝑃𝑁𝐴

𝑃𝑁𝐴 + 𝑁𝑃𝑀2
𝑃𝑀2

+ (𝑁𝑃𝑀1
− ∑[𝐿𝑘

𝑉 𝑁𝑀1
𝑁𝑢𝑐⁄ ] −

𝑘

[𝐿𝐷𝐼
𝑉 𝑁𝑀1

𝑁𝑢𝑐⁄ ]) 𝑃𝑀1

   𝑟𝐷
𝑅𝑒𝑙  

ሱۛ ۛۛ ሮ 𝐷𝑅𝑒𝑙 

 

 

𝑤𝑖𝑡ℎ    𝑖 = {1,2,3 … , 8}   𝑎𝑛𝑑    𝑘 = {1,2,4, … , 8} 

 

𝑁𝑃𝑗
 with 𝑗 = {𝐻𝐴, 𝑁𝐴, 𝑀1, 𝑀2} represents the number of each protein inside one particle. However, 

M1 is also included in the vRNPs. Therefore, we subtracted the amount of protein in a complete set of 

eight vRNPs from the total protein level inside a particle. The release of progeny STVs (𝑉𝑅𝑒𝑙) and DIPs 

(𝐷𝑅𝑒𝑙) occurs with rates 𝑟𝑉
𝑅𝑒𝑙 and 𝑟𝐷

𝑅𝑒𝑙, respectively. 

The release rates are determined by the product of the specific release rate 𝑘𝑅𝑒𝑙, the abundance 

of either STV 𝑉𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

 or DIP 𝐷𝐶𝑝𝑙𝑥

𝐶𝑦𝑡
 vRNP-complexes and the protein content. The release rate was 

multiplied by eight to obtain a similar release rate as in the original model of IAV life cycle, where the 

virus assembly was determined by the total amount of vRNPs inside the cytoplasm [67], instead of a 

complex containing all eight genome segments. 

 

 
 

𝑟𝑉
𝑅𝑒𝑙 = 8𝑘𝑅𝑒𝑙𝑉𝐶𝑝𝑙𝑥

𝐶𝑦𝑡
∏

𝑃𝑗

𝑃𝑗 + 𝐾𝑉𝑅𝑒𝑙𝑁𝑃𝑗𝑗

 

 

 

 
𝑟𝐷

𝑅𝑒𝑙 = 8𝑘𝑅𝑒𝑙𝐷𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

∏
𝑃𝑗

𝑃𝑗 + 𝐾𝑉𝑅𝑒𝑙𝑁𝑃𝑗𝑗

 

 

 

𝑤𝑖𝑡ℎ    𝑗 ∈ {𝐻𝐴, 𝑁𝐴, 𝑀1, 𝑀2} 

 

The influence of proteins during release is considered as a Michaelis-Menten-like mechanism, where 

𝐾𝑉𝑅𝑒𝑙 represents the number of virus particles for which viral components must be present to reach half 

the maximum release rate. 

 

 

(3.37) 

(3.38) 

(3.39) 

(3.40) 
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Regarding the reactions described above, all molecules containing RNAs (with exception of 𝑉𝐶𝑦𝑡) 

are affected by degradation.  

 

 
𝑅𝑖

𝑉
    𝑘𝑅

𝐷𝑒𝑔
    

ሱۛ ۛۛ ۛۛ ሮ Ø,        𝑅𝑖
𝐶

    𝑘𝑅
𝐷𝑒𝑔

    
ሱۛ ۛۛ ۛۛ ሮ Ø,        𝑅𝑖

𝑀
    𝑘𝑀

𝐷𝑒𝑔
    

ሱۛ ۛۛ ۛۛ ሮ Ø, 
 

 

 
𝑅𝐷𝐼

𝑉
    𝑘𝑅

𝐷𝑒𝑔
    

ሱۛ ۛۛ ۛۛ ሮ Ø,        𝑅𝐷𝐼
𝐶

    𝑘𝑅
𝐷𝑒𝑔

    
ሱۛ ۛۛ ۛۛ ሮ Ø, 

 

 

 
𝑅𝑅𝑑𝑅𝑝,𝑖

𝑉
    𝑘𝑅𝑅𝑑𝑅𝑝

𝐷𝑒𝑔
    

ሱۛ ۛۛ ۛۛ ۛۛ ሮ Ø,        𝑅𝑅𝑑𝑅𝑝,𝑖
𝐶

    𝑘𝑅𝑅𝑑𝑅𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ۛۛ ሮ Ø,        𝑉𝑝𝑖
𝑁𝑢𝑐

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø, 

 

 

 
𝑅𝑅𝑑𝑅𝑝,𝐷𝐼

𝑉
    𝑘𝑅𝑅𝑑𝑅𝑝

𝐷𝑒𝑔
    

ሱۛ ۛۛ ۛۛ ۛۛ ሮ Ø,        𝑅𝑅𝑑𝑅𝑝,𝐷𝐼
𝐶

    𝑘𝑅𝑅𝑑𝑅𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ۛۛ ሮ Ø,        𝑉𝑝𝐷𝐼
𝑁𝑢𝑐

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø, 

 

 

 
𝐶𝑝𝑖

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø,        𝑉𝑝𝑀1,𝑖
𝑁𝑢𝑐

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø,        𝑉𝑝𝑀1,𝑖
𝐶𝑦𝑡

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø, 

 

 

 
𝐶𝑝𝐷𝐼

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø,        𝑉𝑝𝑀1,𝐷𝐼
𝑁𝑢𝑐

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø,        𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

    𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

    

ሱۛ ۛۛ ۛۛ ሮ Ø 

 

 

 

𝑘𝑅
𝐷𝑒𝑔

 denotes for the degradation rate of naked cRNA and vRNA. 𝑘𝑀
𝐷𝑒𝑔

 is the degradation rate of viral 

mRNA. Moreover, the degradation rate of the RdRp-cRNA and RdRp-vRNA complexes is represented 

by 𝑘𝑅𝑅𝑑𝑅𝑝
𝐷𝑒𝑔

. Lastly, 𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

 is the degradation rate of RNPs. According to the stabilization hypothesis, the 

RdRp and NP binding to the RNAs protects them from degradation. Therefore, is assumed that: 

 

 𝑘𝑅
𝐷𝑒𝑔

> 𝑘𝑅𝑅𝑑𝑅𝑝
𝐷𝑒𝑔

> 𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

 

 
 

To determine the total number of FL vRNAs of each segment (𝑅𝑇𝑜𝑡,𝑘
𝑉 ), we summed up the overall 

amount of complexes that contain vRNA in the system: 

 

 𝑅𝑇𝑜𝑡,𝑘
𝑉 = 𝑉𝐻𝑖

𝐴𝑡𝑡 + 𝑉𝐿𝑜
𝐴𝑡𝑡 + 𝑉𝐸𝑛 + 𝑉𝐶𝑦𝑡 + 𝑅𝑘

𝑉 + 𝑅𝑅𝑑𝑅𝑝,𝑘
𝑉 + 𝑉𝑝𝑘

𝑁𝑢𝑐 + 𝑉𝑝𝑀1,𝑘
𝑁𝑢𝑐 + 𝑉𝑝𝑀1,𝑘

𝐶𝑦𝑡

+ 𝑉𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

+ 𝐷𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

 

 

 

𝑤𝑖𝑡ℎ    𝑘 = {1,2,4, … , 8} 

(3.41) 

(3.42) 

(3.43) 
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Since the FL vRNA of segment 3 is not included in the DIP complex particle, the total number of 

vRNAs of segment 3 (𝑅𝑇𝑜𝑡,3
𝑉 ) was calculated as follows: 

 𝑅𝑇𝑜𝑡,3
𝑉 = 𝑉𝐻𝑖

𝐴𝑡𝑡 + 𝑉𝐿𝑜
𝐴𝑡𝑡 + 𝑉𝐸𝑛 + 𝑉𝐶𝑦𝑡 + 𝑅3

𝑉 + 𝑅𝑅𝑑𝑅𝑝,3
𝑉 + 𝑉𝑝3

𝑁𝑢𝑐 + 𝑉𝑝𝑀1,3
𝑁𝑢𝑐 + 𝑉𝑝𝑀1,3

𝐶𝑦𝑡

+ 𝑉𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

 

 

 

Finally, the total DI vRNA abundance in the system was calculated as described below: 

 𝑅𝑇𝑜𝑡,𝐷𝐼
𝑉 = 𝐷𝐻𝑖

𝐴𝑡𝑡 + 𝐷𝐿𝑜
𝐴𝑡𝑡 + 𝐷𝐸𝑛 + 𝐷𝐶𝑦𝑡 + 𝑅𝐷𝐼

𝑉 + 𝑅𝑅𝑑𝑅𝑝,𝐷𝐼
𝑉 + 𝑉𝑝𝐷𝐼

𝑁𝑢𝑐 + 𝑉𝑝𝑀1,𝐷𝐼
𝑁𝑢𝑐

+ 𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

+ 𝐷𝐼𝐶𝑝𝑙𝑥
𝐶𝑦𝑡

 

 

 

 

3.2 Model variations 
 

Experimental data suggests that the DIP possesses an advantage over STV production [63], 

however, is still elusive in which part of the replication process this emerges. We implemented this 

advantage in our model based on the previous deterministic model of DIP replication which assumes 

that due to their shorter length, DI cRNAs segments replicate faster than the FL cRNAs [9]. Hence, the 

factor advantage (𝐹𝐴𝑑𝑣) is represented by the ratio between the length of segment 3 vRNA (𝐿3
𝑉) and 

the length of the DI vRNA (𝐿𝐷𝐼
𝑉 ). In our model, we used a value of 3.65 for 𝐹𝐴𝑑𝑣 . Is important to notice 

that the length dependent replication was only assumed for the DI RNAs since, so far, no link has been 

found between the length of the FL segments and its abundance inside the cell [46,75]. 

 

 
𝑘𝐶,𝐷𝐼

𝑆𝑦𝑛
= (𝐹𝐴𝑑𝑣 + 1)𝑘𝐶,𝐹𝐿

𝑆𝑦𝑛
 ,            𝑤𝑖𝑡ℎ  𝐹𝐴𝑑𝑣 = (

𝐿3
𝑉

𝐿𝐷𝐼
𝑉 − 1) = 3.65 

 
 

 

The cRNA synthesis rate of the DI segment (𝑘𝐶,𝐷𝐼
𝑆𝑦𝑛

) is proportional to the product of the advantage 

factor and the replication rate of the FL cRNA segments (𝑘𝐶,𝐹𝐿
𝑆𝑦𝑛

). This assumption establishes a 

significantly higher replication of the DI cRNA compared to its complementary FL segment (Figure 3.1). 

The resulting increase of DI segment levels induces a preferential packaging of DI vRNPs (Figure 3.1). 

As explained before, the packaging stage includes two steps: first the eight vRNPs in the cytoplasm 

form complexes comprising one copy of each genome segment. Then, the vRNP complexes assemble 

proteins and are released from the cell. The complex formation rate for STV (𝑟𝑆𝑇𝑉
𝐶𝑝𝑙𝑥

) and DIP (𝑟𝐷𝐼𝑃
𝐶𝑝𝑙𝑥

) is 

proportional to the abundance of the cytoplasmic vRNP segment 3 (𝑉𝑝𝑀1,3
𝑐𝑦𝑡

) and DI vRNP (𝑉𝑝𝑀1,𝐷𝐼
𝑐𝑦𝑡

), 

respectively. Since the DI segment is present in higher levels, more DIP complexes can be formed 

which promotes release. 

(3.44) 

(3.45) 

(3.46) 
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 𝑟𝑆𝑇𝑉
𝐶𝑝𝑙𝑥

∝  𝑘𝐶𝑝𝑙𝑥𝑉𝑝𝑀1,3
𝐶𝑦𝑡

∏ 𝑉𝑝𝑀1,𝑘
𝐶𝑦𝑡

𝑘

 

 
 

 𝑟𝐷𝐼𝑃
𝐶𝑝𝑙𝑥

∝  𝑘𝐶𝑝𝑙𝑥𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

∏ 𝑉𝑝𝑀1,𝑘
𝐶𝑦𝑡

 

𝑘

 

 

 

𝑤𝑖𝑡ℎ  𝑘 = {1,2,4, … , 8} 

𝑘𝐶𝑝𝑙𝑥 is the complex formation constant. Furthermore, the complex formation depends also on the 

product of the remaining FL segments (∏ 𝑉𝑝𝑀1,𝑘
𝐶𝑦𝑡

), which assumes that the complex is formed almost 

instantaneously. 

 

 

The assumptions explained below, were implemented in our model. However, in the last section 

of the results chapter we established changes regarding the packaging step in the model. Furthermore, 

we evaluated how these model variations impact the release dynamics and compared them with the 

original one. Firstly, we considered that the complex formation rate is considerably high and may 

generate unrealistic results. Consequently, we modified this parameter by assuming that its value is 

proportional to the least abundant vRNP in the cytoplasm (𝑚𝑖𝑛 (𝑉𝑝𝑀1,𝑘
𝐶𝑦𝑡

)). The modified model was 

named Minimum Packaging Model. 

 𝑟𝑆𝑇𝑉
𝐶𝑝𝑙𝑥

∝  𝑘𝐶𝑝𝑙𝑥𝑉𝑝𝑀1,3
𝐶𝑦𝑡

𝑚𝑖𝑛(𝑉𝑝𝑀1,𝑘
𝐶𝑦𝑡

) 

 
 

 𝑟𝐷𝐼𝑃
𝐶𝑝𝑙𝑥

∝  𝑘𝐶𝑝𝑙𝑥𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

min (𝑉𝑝𝑀1,𝑘
𝐶𝑦𝑡

) 

 
 

𝑤𝑖𝑡ℎ 𝑘 = {1,2,4, … , 8} 

(3.47) 

(3.48) 

Figure 3.1| DIP advantage over STV replication. The implemented advantage factor results in an increased 

replication of DI cRNPs (1) and consequently higher numbers of DI vRNPs. This induces a preferential packaging 

of the DI segment (2) and leads to higher DIP release compared to STVs. Figure adapted from Laske et al. [9]. 

(3.49) 

(3.50) 
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The previously implemented stochastic model of IAV replication established that the virus 

assembly occurs in a single reaction step that combines the eight genome segments and all structural 

proteins. This assumption was implemented in the previous model since the detailed molecular 

mechanism of virus packaging is still elusive. Hence, we were interested to test how this assumption 

would impact the DIP production. To that end, we disregarded the complex formation step in our model 

and implemented the single-step packaging reaction. Since this modified model does not include the 

complex formation step during packaging, but still comprises the replication advantage at the DI cRNA 

synthesis level, this variation of our original model was named Replication Model. The implemented 

biochemical reaction for the release of STV and DIP are represented below: 

 𝑉𝑝𝑀1,1
𝐶𝑦𝑡

+ 𝑉𝑝𝑀1,2
𝐶𝑦𝑡

+ 𝑉𝑝𝑀1,3
𝐶𝑦𝑡

+ ⋯ + 𝑁𝑃𝐻𝐴
𝑃𝐻𝐴 + 𝑁𝑃𝑁𝐴

𝑃𝑁𝐴 + 𝑁𝑃𝑀2
𝑃𝑀2 

+ (𝑁𝑃𝑅𝑑𝑅𝑝
− 8) 𝑃𝑅𝑑𝑅𝑝 + (𝑁𝑃𝑁𝑃

− ∑[𝐿𝑖
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄ ]

𝑖

) 𝑃𝑁𝑃 

+ (𝑁𝑃𝑀1
− ∑ [𝐿𝑖

𝑉 𝑁𝑀1
𝑁𝑢𝑐

⁄ ]

𝑖

) 𝑃𝑀1 + (𝑁𝑃𝑁𝐸𝑃
− 8)𝑃𝑁𝐸𝑃

    𝑟𝑉
𝑅𝑒𝑙    

ሱۛ ۛۛ ሮۛ 𝑉𝑅𝑒𝑙 

 

 

 𝑉𝑝𝑀1,1
𝐶𝑦𝑡

+ 𝑉𝑝𝑀1,2
𝐶𝑦𝑡

+ 𝑉𝑝𝑀1,4
𝐶𝑦𝑡

+ ⋯ + 𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

+ 𝑁𝑃𝐻𝐴
𝑃𝐻𝐴 + 𝑁𝑃𝑁𝐴

𝑃𝑁𝐴 + 𝑁𝑃𝑀2
𝑃𝑀2 

+ (𝑁𝑃𝑅𝑑𝑅𝑝
− 8) 𝑃𝑅𝑑𝑅𝑝 + (𝑁𝑃𝑁𝑃

− ∑[𝐿𝑖
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄ ]

𝑖

− [𝐿𝐷𝐼
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄ ]) 𝑃𝑁𝑃 

+ (𝑁𝑃𝑀1
− ∑ [𝐿𝑖

𝑉 𝑁𝑀1
𝑁𝑢𝑐

⁄ ]

𝑖

− [𝐿𝐷𝐼
𝑉 𝑁𝑀1

𝑁𝑢𝑐⁄ ]) 𝑃𝑀1 + (𝑁𝑃𝑁𝐸𝑃
− 8)𝑃𝑁𝐸𝑃

    𝑟𝐷
𝑅𝑒𝑙    

ሱۛ ۛۛ ሮۛ 𝐷𝑅𝑒𝑙 

 

 

In the one-step packaging model, we assumed that STV is released (𝑉𝑅𝑒𝑙) if the eight FL M1-

vRNPs molecules for each segment (𝑉𝑝𝑀1,𝑖
𝐶𝑦𝑡

) and the all proteins required for assembly are available 

in the cytoplasm. The DIPs (𝐷𝑅𝑒𝑙) are produced when the seven FL M1-vRNPs, the DI M1-vRNP 

(𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

) and the proteins are present in the cytoplasm. 𝑁𝑃𝑗
 stands for the number of each protein 

inside one particle with 𝑗 = {𝑅𝑑𝑅𝑝, 𝐻𝐴, 𝑁𝐴, 𝑁𝑃, 𝑀1, 𝑀2, 𝑁𝐸𝑃}. The amount of required RdRp and 

NEP was determined by the total number of proteins inside a virus particle minus the proteins that are 

already included in the vRNPs. In a similar way, the calculation for NP and M1 was accounting for the 

number of each protein in a complete set of vRNPs depending on the length of each segment. 

The release rate of STVs (𝑟𝑉
𝑅𝑒𝑙) is proportional to the amount of FL vRNP-M1 of segment 3 in the 

cytoplasm (𝑉𝑝𝑀1,3
𝐶𝑦𝑡

). By contrast, the release rate of DIPs (𝑟𝐷
𝑅𝑒𝑙) depends on the abundance of the DI 

vRNP-M1 molecule (𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

). Furthermore, this model variation considers that all the viral proteins 

are necessary for particle release including free polymerases, NP and NEP which are not bound to 

vRNPs. This assumption considers the total number of each protein required per particle (𝑁𝑃𝑗
). 

(3.51) 

(3.52) 
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𝑟𝑉

𝑅𝑒𝑙 = 𝑘𝑅𝑒𝑙𝑉𝑝𝑀1,3
𝐶𝑦𝑡

∏
𝑃𝑗

𝑃𝑗 + 𝐾𝑉𝑅𝑒𝑙𝑁𝑃𝑗𝑗

 

 

 

 
𝑟𝐷

𝑅𝑒𝑙 = 𝑘𝑅𝑒𝑙𝑉𝑝𝑀1,𝐷𝐼
𝐶𝑦𝑡

∏
𝑃𝑗

𝑃𝑗 + 𝐾𝑉𝑅𝑒𝑙𝑁𝑃𝑗𝑗

 

 

 

𝑤𝑖𝑡ℎ    𝑗 ∈ {𝑅𝑑𝑅𝑝, 𝐻𝐴, 𝑁𝐴, 𝑁𝑃, 𝑀1, 𝑀2, 𝑁𝐸𝑃} 

 

3.3 Computation and simulation assumptions 
 

Our stochastic model of DIP replication followed the previously implemented stochastic model of 

the IAV life cycle developed by Heldt & Dorl [3,67]. For model simulation, they used the SSA described 

in the original work of Gillespie [70]. Furthermore, to improve computational performance, an 

approximation method for the SSA, i.e. the Tau-leaping procedure, was applied. This approach was 

developed by Cao et al. and enables to calculate a high number of individual reactions in a single 

computational step [73]. 

In the model, the propensity function 𝑎𝑗(𝑥) 𝑑𝑡, i.e. the probability that reaction 𝑅𝑗 will occur in the 

next infinitesimal time step, was assumed to be equivalent to the reaction rates. Furthermore, the state-

change matrix 𝜈, where 𝜈𝑖𝑗 represents the change in the molecular population of 𝑆𝑖 induced by a single 

𝑅𝑗 reaction, is equivalent to the stoichiometric coefficients. However, in the reactions of NP and M1 

binding to the RNA segments, these values are calculated by dividing the length of the respective 

segment over the number of nucleotides bound by one NP or M1 molecule (𝐿𝑖
𝑉 𝑁𝑁𝑃

𝑁𝑢𝑐⁄  or 𝐿𝑖
𝑉 𝑁𝑀1

𝑁𝑢𝑐⁄ ). 

Since stochastic models considers the state variables as discrete, this result was rounded down to the 

next smaller integer. An example for the establishment of the propensity function and state change 

matrix for the DIP binding and detachment reaction can be observe on Table 3.1. 

The model was implemented in the integrated development environment Visual Studio 2017 

(version 15.0 Community edition) developed by Microsoft using C++ coding language. All the 

simulations were performed on a Linux-based system. The model result files were analysed with 

MATLAB software (version 9.2.0.538062 R2017a). All the parameters implemented in the model can 

be consulted in the appendix (Table A.1.1 and additional parameters for the Replication Model in Table 

A.1.2). 

Each stochastic simulation can be considered as an individual cell. We performed and analysed 

simulations for different initial infection conditions, which vary in the number of initial extracellular STVs 

and DIPs. We established that the representation of these conditions would follow as MOI/MODIP. In 

that notation, MOI stands for multiplicity of infection and is determined by the number of infectious STVs 

(3.53) 

(3.54) 
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(𝑉𝐸𝑥(𝑡 = 0)), and MODIP is the multiplicity of DIPs and comprises the number of extracellular DIPs 

(𝐷𝐸𝑥(𝑡 = 0)).  

 

 

The property which determines the validity of the stochastic simulation datasets is the number of 

individual simulations performed for each initial infection condition. This is particularly important to 

achieve representative averages of the cell populations. To evaluate how many simulations are needed 

to obtain an accurate result we analysed how the average value of DIP release changes with an 

increasing number of simulations (Figure 3.2). We observe that after 1000 simulations the average DIP 

production changes only by 2% and we achieve a stable average. Therefore, we regarded 1000 

simulations as sufficient to analyse our stochastic data for each scenario. 

 

Reaction: DIP binding and detachment from high and low affinity sites 

 

Propensity Function State Change Matrix, 𝝂 

𝑗 𝑎𝑗(𝑥) 𝐷𝐸𝑥 𝐵𝐻𝑖 𝐵𝐿𝑜 𝐷𝐻𝑖
𝐴𝑡𝑡 𝐷𝐿𝑜

𝐴𝑡𝑡 

𝑟𝐻𝑖
𝐴𝑡𝑡 𝑘𝐻𝑖

𝐴𝑡𝑡𝐷𝐸𝑥𝐵𝐻𝑖 -1 -1 - +1 - 

𝑟𝐿𝑜
𝐴𝑡𝑡 𝑘𝐻𝑖

𝐴𝑡𝑡𝐷𝐸𝑥𝐵𝐿𝑜 -1 - -1 - +1 

𝑟𝐻𝑖
𝐷𝑖𝑠 𝑘𝐻𝑖

𝐷𝑖𝑠𝐷𝐻𝑖
𝐴𝑡𝑡 +1 +1 - -1 - 

𝑟𝐿𝑜
𝐷𝑖𝑠 𝑘𝐿𝑜

𝐷𝑖𝑠𝐷𝐿𝑜
𝐴𝑡𝑡 +1 - +1 - -1 

Table 3.1 | Example of the implementation of DIP binding and detachment reactions in the stochastic 

model. The propensity functions correspond to the reaction rates. The state change matrix is constructed 

considering the stoichiometric coefficients for each species in every reaction. 

𝐷𝐸𝑥 + 𝐵𝑛               𝐷𝑛
𝐴𝑡𝑡, 𝑛 ∈ { 𝐻𝑖, 𝐿𝑜 } 

 

   𝑘𝑛
𝐴𝑡𝑡   

ሱۛ ۛۛ ሮ 
   𝑘𝑛

𝐷𝑖𝑠   
ርۛ ۛۛ ሲ 

Figure 3.2 | Average converges with increased number of simulations. The average DIP released was 

calculated while increasing the number of simulations at MOI/MODIP 10/10. After 1000 simulations performed, the 

mean value changes only by 2% and it achieves a stable average. 
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Simulations in which genome segment 7 (encoding M1 and M2) is lost or the level of M1 protein is 

very low lead to the prevention of vRNP export from the nucleus. This results in an exponential increase 

in the RNA segment levels and high computational simulation times. Hence, we implemented a criterion 

that leads to the abortion of such simulations to significantly reduce computational effort. To that end, 

we established that if the number of reactions, R > 4.8x1010, then the simulation would be stopped, and 

the results discarded. Since in some scenarios this criterion is not sufficient to prevent runs with an 

exorbitant accumulation of RNA, we implemented an additional criterion. When a total of 1x108 

reactions occurred in the simulation, the algorithm calculates the average number of vRNPs inside the 

nucleus (
∑ 𝑉𝑝𝑖

𝑁𝑢𝑐

8
). Next, after 1x109 reactions were performed, the same average is determined again. 

In a simulation without vRNA accumulation the export of vRNPs from the nucleus would have already 

been initiated at this point, which would lead to a decreased value. However, if the average number of 

vRNPs inside the nucleus more than doubled between these two steps, we stopped the simulation, 

because this suggests that vRNA is still accumulating in the nucleus. The simulation runs that meet one 

of the two abortion criteria are discarded from all further analysis.  

 

3.4 Data analysis tools 
 

When we apply a set of initial infection conditions, the deterministic model generates only one 

possible outcome. By contrast, the stochastic model considers that randomness is involved in the 

biochemical reactions. Therefore, in each simulation a different sequence of reactions occurs producing 

different results for the same initial conditions. One of our main goals is to compare our stochastic model 

of DIP replication with the previously developed deterministic approach.  

 

Figure 3.3 | Averaged stochastic dynamics and distribution. (A) Dynamics of 𝑉𝑝𝑀1
𝑁𝑢𝑐 of segment 1 until 12 hpi 

at MOI/MODIP 10/10. Two individual stochastic simulations are represented. The average is calculated for each 

time point over 3060 performed simulations. (B) Distribution of the same molecule at 4 hpi (represented by the 

green line in A). The lines are the individual and average results showed in A at the same time point. 
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To illustrate the molecule dynamics of the two approaches, we calculated the average of all 

stochastic simulations for each time point (Figure 3.3A) and compared it with the deterministic result. 

For each time-point (green line in Figure 3.3A corresponds to 4 hours post infection (hpi)), the individual 

stochastic results will deviate from each other which results in a distribution that describes the variance 

introduced by the intrinsic stochasticity of the system (Figure 3.3B).  
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4 Results 
 

 

4.1 DIP interference and comparison with the deterministic model 
 

4.1.1 High MOI and MODIP 
 

To evaluate how the randomness of events affects the IAV replication in the presence of DIPs we 

compared the results of the stochastic model that we developed with the deterministic model previously 

implemented. We performed a total of 3060 simulations for the initial infection condition of MOI/MODIP 

10/10. Our first main goal was to analyse the heterogeneity of DIP replication, so we started by 

observing the distributions of STV and DIP production. At MOI/MODIP 10/10 our simulations reveal that 

STV have a distribution towards low productivity with 60% of simulations being non-productive (Figure 

4.1A) and 39% producing up to 15 virions (Figure 4.1B). Regarding DIP production, only 0.5% of the 

simulations are non-productive and results show a wider distribution (Figure 4.1C). 

 

 

The average virion release is 12 ± 295 STVs per cell. Although this result indicates that STV 

release has a wide-spread distribution, upon closer examination we identified six simulations with a 

range between 1076 and 10423 STV per cell that substantially increase the average and standard 

deviation. The simulations that result in high STV release values have one event in common, which is 

Figure 4.1 | Distribution of standard virus (STV) and DIP production at MOI/MODIP 10/10. (A) Percentage of 

non-productive STV and DIP cells. (B,C) Distribution of total number of released STVs (B) and DIPs (C) until 12 

hpi in stochastic simulations. The lines correspond to the mean value for the stochastic model (solid line) and the 

deterministic result (dashed line). 
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the failure of DIP fusion. This allows the STV to replicate without interference. When we exclude these 

outliers, we obtain an average of 5 ± 5 STVs per cell which is closer to the deterministic result. 

Both DIP and STV release distributions show that the data is shifted away from the right side of 

the histogram, so we can assume that the distributions tend to be skewed to the right. The DIP 

production results (Figure 4.1C) closely follow a log-normal distribution with an average of 312 ± 295 

DIPs per cell which is lower than the deterministic value. In 99% of the simulations the amount of 

produced DIPs varies between 1 and 1500 particles indicating that DIP release is highly susceptible to 

fluctuate due to stochastic effects. 

Overall when we compare the average molecule dynamics in the stochastic simulations with the 

deterministic results we observe that the differences are more significant for STV release. As explained 

before, due to simulations that allow the STV to replicate without interference, virions production differ 

with a factor of 10 from the deterministic solution (Figure 4.2A). DIP production differs with only with a 

factor of 2 (Figure 4.2B). In agreement with the deterministic model, the implementation of a DIP 

replication advantage causes the DI cRNA to replicate faster than the corresponding FL segment. 

Consequently, levels of DI vRNA are almost three orders of magnitude higher than its FL counterpart 

(Figure 4.2C). Furthermore, in our model vRNA and cRNA levels (Figure 4.2D) are very similar with the 

deterministic result that differ with factor ranges between 1.2 and 1.5. Although the intermediate 

Figure 4.2 | Comparison of the stochastic and deterministic simulation. (A,B) Total cumulative released STV 

(A) and DIP (B). (C) Level of total DI and FL vRNA of segment 3. (D) Dynamics of total FL cRNA. The lines 

represent the mean stochastic results of all simulations performed at MOI/MODIP 10/10 (solid line) and the 

deterministic result (dashed line). 
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molecules in our model show very similar dynamics with the deterministic solution, this difference 

became more pronounced during release.  

Our model considers all genome segments individually: cRNA and vRNA of the eight FL segments 

and the DI segment replicate independently, which means that each segment level inside a cell can 

vary significantly. Consequently, the absence or low level for one segment necessary for replication, 

can impair release. By contrast, in the deterministic model a complete set of vRNP reaches the nucleus 

and the segments replicate simultaneously maintaining similar vRNA levels during the infection. Since 

in the stochastic model the abundance of individual vRNA segments can be substantially different, we 

questioned how the DI segment correlates with other FL segments. The factors that affect  vRNA 

abundance can be summarized in two major categories [1]: (I) extrinsic noise such as cell stage, cell 

size or protein content, which affects all individual vRNA levels evenly and increases the vRNA 

intersegment correlation and (II) intrinsic noise, as for example, the independent segment synthesis, is 

related with the randomness of biochemical reactions and affects the vRNA levels differently which will 

lead to a decrease in their correlation. To elucidate how this correlation affects DIP production, we split 

Figure 4.3 | Correlation of the defective interfering vRNA and various vRNA segments and DIP production. 

DI segment 3 correlated with its corresponding FL segment (A), FL segment 4 (B), FL segment 5 (C) and FL 

segment 7 (D). Simulations performed at MOI/MODIP 10/10. The represented vRNA levels are at 12 hpi and the 

black X indicate the deterministic solution. Only cells that produce DIPs are represented. High productive cells 

were defined as the cells that are in the top 10% of all productive cells. 
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the cells into high and low DIP yield: the high DIP productive cells were defined as the cells that are in 

the top 10% of the all productive cells. 

Although high DIP yield cells contain elevated levels of DI and FL vRNA, we can observe that low 

levels of FL segment 3 support high DIP production since DIP do not incorporate this vRNA segment 

in its genome (Figure 4.3A). Most of the FL segments have a weak correlation with the DI segment and 

show lower limit of 103 vRNAs per cell for high yield cells (Figure 4.3B,D) which reveals that intrinsic 

factors influence DIP productivity. By contrast, DI segment has a strong correlation with the FL segment 

5 (Figure 4.3C), that encodes for NP protein which is essential for packing the free vRNA into vRNP. 

High yield cells have a narrow distribution indicating that DIP production is also affected by extrinsic 

factors. 

Since FL segment 5 correlates strongly with the DI segment 3 we wondered if the same 

dependency was observed when we correlate FL segment 5 with other FL segments and if it affects 

STV production as well. We divided the STV productive cells in high and low yield: the STV high 

Figure 4.4 | Correlation of vRNA segment 5 with defective and functional segment 3 and its influence in 

STV and DIP production. STV production and correlation of FL segment 5 with DI segment 3 (A) and FL segment 

3 (B). DIP production and correlation of FL segment 5 with DI segment 3 (C) and FL segment 3 (D). Simulations 

performed at MOI/MODIP 10/10. The represented vRNA levels are at 12 hpi and the black X indicate the 

deterministic solution. High STV yield and high DIP yield cells were defined as the cells that are in the top 3% and 

top 10% of all productive cells, respectively. 
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productive cells were defined as the cells that are the top 3% of the all productive cells that result in a 

range between 9 and 10423 released STV. As known before, overall the simulations show that there 

are more cells that do not release STV than cells not producing DIPs and that the DI segment 3 level is 

much higher than its complementary FL segment due to the DIP replication advantage. We can observe 

that the correlation coefficient between FL segment 5 and DI segment 3 is higher than with the FL 

segment 3 (Figure 4.4A,B). This weak correlation with FL segment 3 shows that intrinsic factors have 

a role in STV release (Figure 4.4B). When the level of FL segment 5 is lower than 102 vRNAs per cell 

STV do not produce but in the same scenario DIP can still produce low amounts of progeny particles 

(Figure 4.4C). Furthermore, the lower limit at 103 vRNAs per cell for high DIP yield cells shows that DIP 

production can be determinate by the level of FL segment 5 (Figure 4.4D). 

Another limiting factor for DIP replication should be the availability of resources since its genome 

lacks information to encode one protein that is essential for its replication, requiring a coinfection with a 

STV that will provide the missing protein. We analysed the total viral mRNA dynamics which is 

responsible for protein production and the two proteins that we consider to be the most important for 

replication: the viral polymerase complex (RdRp) as the implemented DIP has a defective segment 3 

whose complementary FL encodes for one of the three subunits of the polymerase, and NP because 

as shown previously the level of vRNA segment 5 impacts DIP production. 

Our stochastic model captures the dynamics of total viral mRNA levels although it starts do differ 

from the deterministic simulation with a factor of 1.5 after 2 hpi (Figure 4.5A). As our model reveals a 

1.5 factor difference as well for vRNA dynamics, this deviation is propagated to the mRNA levels due 

to transcription. The stochastic result captures the RdRp and NP level of the deterministic model 

simulation during early infection but after approximately 2 hpi both proteins begin to differ (Figure 4.5B). 

Between 2 and 7 hpi RdRp shows a slightly lower level than deterministic model because we assumed 

that the polymerase complex formation rate is proportional to the least abundant of the three mRNA 

that encode for RdRp subunits (segment 1 – 3). In the majority of simulations segment 3 is the last 

abundant segment since the DIP genome contributes to the abundance of all FL segments with 

Figure 4.5 | Comparison of viral mRNA and protein dynamics for stochastic and deterministic model 

simulations at MOI/MODIP 10/10. (A) Total viral mRNA of all eight segments. (B) Total unbound RdRp (red line) 

and NP (green line). The lines represent the mean stochastic results of all simulations performed at MOI/MODIP 

10/10 (solid line) and the deterministic result (dashed line). 
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exception of segment 3. Later in infection we can observe that our model has increased levels of 

unbound RdRp that differ with a factor of 1.8 from the deterministic simulation. 

NP represents by far the highest deviation between the stochastic and the deterministic model 

regarding all molecules in the system at 12 hpi. In addition, since all intermediates begin to slightly differ 

after NP begins to significantly diverge, we suspect that NP is causing other molecules dynamics 

differences. This raised the question about what causes this large discrepancy and how the NP level is 

distributed. 

 

 

When we compare the histograms of HA and NP we observe that HA has a log-normal distribution, 

but NP distribution reveals to be much more spread out. The levels of NP range over six orders of 

magnitude and three subpopulations with distinct characteristics emerge (Figure 4.6A,B). The NP 

distribution shows its highest peak when levels at 12 hpi are low and in this range, NP has a narrow 

distribution. We observe that DIP will strongly replicate and STV also displays a small cluster of high 

productive cells. In this area the low level of NP indicates that the increased FL and DI vRNP replication 

consumes almost all free NP available. The second NP subpopulation displays a more spread 

distribution with range between 103 and 106 proteins per cell. In this region cells continue to show high 

DIP yields while STV production is lowered. Lastly, when NP levels are above 106 proteins per cell, it 

shows an approximately uniform distribution and the STV mainly do not produce any progeny virions 

although DIP are still produced in low amounts. It is also important to notice that when levels of NP are 

high we can find few simulations that result in STV replication without DIP interference.    

Although the peak of NP distribution occurs at low protein levels, which result in higher yields for 

both STV and DIP in agreement with the deterministic model, most of our simulations show higher NP 

levels. The simulations that show very high levels of NP may occur due to fusion failure events or the 

loss of at least one genome segment. Such imbalance in replication, which is not accounted for in the 

Figure 4.6 | Levels and distributions of HA and NP related to STV and DIP yield. (A) Protein distributions and 

STV production. (B) Protein distributions and DIP production. Results at 12 hpi with initial conditions MOI/MODIP 

10/10. The black X indicates the deterministic solution. 
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deterministic model, would lead to an accumulation of NP, because less vRNA would need to be 

stabilized by the protein. Furthermore, we observe that there are more cells that produce high amounts 

of DIPs when at least low amounts of STV is released. The cause for that could be that STV release 

indicates a balanced replication of all segments which increases the availability of resources for DIP 

release. However, DIPs are also released when the cells do not produce any STV, but their yield is 

reduced.  

 

4.1.2 Low MOI and MODIP 
 

So far, the stochastic simulation results are in good agreement with the dynamics described by the 

deterministic model considering high MOI and MODIP conditions. Most properties, e.g. the average 

amount of vRNA molecules, capture deterministic averages well despite large distributions.  However, 

some molecules, i.e. NP and released STV particles, show significant differences that could be used 

as starting points for further analysis.  In this section we want to evaluate how the stochastic effects 

impact DIP production for low initial infection conditions, so we performed a total of 6352 simulations 

for MOI/MODIP 1/1. We were able to perform a higher number of simulations for this scenario due to 

the reduced amount of infecting virus particles. This decreased the number of molecule interactions 

significantly leading to an overall reduction in the necessary computation time. 

 

In low MOI and MODIP conditions our simulations reveal that STV and DIP show a trend towards 

low productivity with 94% and 85% of the cells being non-productive, respectively (Figure 4.7A). Both 

releases have a wide-spread distribution which indicates that the production of virus particles is highly 

variable in this scenario. The STV production distribution shows a wider spread when compared with 

the high MOI and MODIP result with a maximum release of 15401 STV per cell. The average virus 

release is 75 ± 693 STV per cell which is considerably higher than the average deterministic result. As 

explained before the high average and standard deviation values are caused by the 2.5% of simulations 

that produce more than 200 STV per cell (Figure 4.7B). The average DIP release amounts to 8 ± 59 

Figure 4.7 | Distribution of STV and DIP production at MOI/MODIP 1/1. (A) Percentage of non-productive STV 

and DIP cells. (B,C) Distribution of total number of released STVs (B) and DIPs (C) until 12 hpi in stochastic 

simulations. The lines correspond to the mean value for the stochastic model (solid line) and the deterministic result 

(dashed line). 
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DIP per cell which is very low compared with the deterministic simulation that on average produces 171 

DIP per cell. The high percentage of cells that do not produce DIPs in low infection conditions shifts the 

average release to a very low value. In contrast to STV production, the maximum number of DIP release 

is just 3350 DIPs per cell and only 1% of simulations have a release higher than 200 DIPs per cell 

(Figure 4.7C). 

Overall the differences between the stochastic and deterministic model are more pronounced at 

low MOI/MODIP conditions. Release of both STVs and DIPs shows strong deviations from the 

deterministic results at 12 hpi (Figure 4.8A,B). Furthermore, the higher differences are also observed 

for FL vRNA segment 3 and total FL cRNA (Figure 4.8C,D) which will influence the STV production and 

increase its deviation from the deterministic simulation. This higher discrepancy between the stochastic 

and deterministic model is caused by the imbalanced replication which results in an elevated 

percentage of DIP and STV non-productive cells. These non-productive simulations emerge mainly due 

to stochastic factors, e.g. failure of virus fusion, which occurs when either STV or DIP fail to enter the 

cell, and genome segment loss which means that vRNA is degraded in the nucleus. In general, when 

DIPs fail to fuse, the STV can replicate without interference and potentially release high numbers of 

virions. In contrast, when the STV fails to fuse, the DIP cannot replicate by itself, which greatly reduced 

Figure 4.8 | Higher differences between the stochastic and deterministic simulation at MOI/MODIP 1/1.   

(A,B) Total cumulative released STV (A) and DIPs (B). (C) Levels of total DI and FL vRNA of segment 3.                    

(D) Dynamics of total FL cRNA. The lines represent the mean stochastic results of all simulations (solid line) and 

the deterministic result (dashed line). 
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the average DIP release in the low MOI/MODIP infection scenario. This topic will be discussed in more 

detail in the next chapter. 

Once again, we decided to analyse the correlation of DI and FL segment 3 with FL segment 5 to 

investigate how these impact STV and DIP replication. Our hypothesis that cells showing high STV 

yields are generated in the absence of DI genome segments was confirmed by the stochastic simulation 

results. We observed that all simulations with high STV yields had a DI segment 3 level equal to zero 

(due to logarithmic scale these data cannot be observed in Figure 4.9A). Furthermore, the correlation 

coefficients between the segments are significantly reduced compared with the high MOI and MODIP 

scenario. This difference can be explained by the increased influence of stochastic effects that highlight 

the importance of intrinsic noise at low initial conditions. Besides, FL segment 3 distribution has the 

most disperse data comprising almost eight orders of magnitude (Figure 4.9B). As observed before, 

high DIP yield cells show a strong correlation between DI segment 3 and FL segment 5 which indicates 

that extrinsic factors also affect DIP replication (Figure 4.9C) and DIPs can still strongly replicate when 

FL segment 3 levels are low (Figure 4.9D).    

Figure 4.9 | Correlation of vRNA segment 5 with defective and functional segment 3 and its influence in 

STV and DIP production. STV production and correlation of FL segment 5 with DI segment 3 (A) and FL segment 

3 (B). DIP production and correlation of FL segment 5 with DI segment 3 (C) and FL segment 3 (D). Simulations 

performed at MOI/MODIP 1/1. The represented vRNA levels are at 12 hpi and the black X indicate the deterministic 

solution. High STV yield and high DIP yield cells were defined as the cells that are in the top 10% of all productive 

cells. 
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In the deterministic model enveloped particles can be degraded or fuse with the membrane, both 

with roughly the same rate. This leads to only ~50% of the initially provided particle to reach the nucleus. 

The same dynamics was also implemented in the stochastic model, although, as the the deterministic 

model approaches the problem as a continuous system, the results are very different. In the 

deterministic simulation of a MOI/MODIP 1/1 scenario, half of each particle will successfully fuse and 

induce progeny particle production. It is obvious that this does not happen in real biological systems, 

as one complete viral particle is necessary to infect a single cell. In this context, the stochastic model is 

more realistic by supporting four possible fusion scenarios: STV fuses alone, DIP fuses alone, both fuse 

or both fail fusing. In the scenario that STV fuses alone, viral replication occurs without interference 

leading to higher amounts of viral cRNA and viral mRNA (Figure 4.8D and Figure 4.10A). 

 

 

 

Regarding protein levels, for MOI/MODIP 10/10 our model captured the RdRp dynamics of the 

deterministic model, although NP was the molecule that showed the highest difference in our 

simulations. Up to 2 hpi, in a low initial infection condition scenario, our protein dynamics have very 

similar levels with the deterministic result. Then, beginning at approximately 2 hpi, protein levels start 

to deviate (Figure 4.10B). Although the overall difference between the stochastic and deterministic 

model during the progression of infection is higher for NP, at 12 hpi RdRp deviation is more pronounced.  

To understand the reason why our average RdRp and NP dynamics are so different from the 

deterministic simulation we observed the distributions of both proteins. Our simulations reveal that 60% 

and 24% of simulations do not produce any RdRp and NP, respectively (Figure 4.11A). The higher 

percentage of cells that do not produce RdRp is caused by the fusion failures of STV which prevent the 

production of the polymerase complex because the DIP has a defective segment 3. NP can be produced 

Figure 4.10 | Comparison of viral mRNA and protein dynamics for stochastic and deterministic model 

simulations at MOI/MODIP 1/1. (A) Total viral mRNA of all eight segments. (B) Total unbound RdRp (red line) and 

NP (green line). The lines represent the mean stochastic results of all simulations performed at MOI/MODIP 1/1 

(solid line) and the deterministic result (dashed line). 
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if either STV or DIP or both enter the cell since the implemented DIP has a functional segment 5 that 

enables to synthesise NP protein in the absence of STV coinfection. 

 

 

 

 

RdRp distribution is spread over ten orders of magnitude and consists of two subpopulations 

(Figure 4.11B): the first cluster has a narrow distribution between 1 and 102 proteins per cell and shows 

a trend towards lower protein levels. The second subpopulation has a wider distribution with lower and 

upper limits of 103 and 1010 proteins per cell. 

When we analyse the NP levels at 12 hpi we observe a wide-spread distribution that comprises 

eleven orders of magnitude and three distinct subpopulations emerge (Figure 4.11C). The cell 

subpopulation located between 105 and 107 proteins per cell has a narrow distribution and the overall 

NP peak is in the centre of this distribution at approximately 106 proteins per cell. The more dispersed 

subpopulations are observed at ranges between 1-105 and 107-1011 proteins per cell. Although, as we 

explained in the previous section, in cells showing high DIP yields and low levels of NP at 12 hpi were 

observed because vRNA uses most of the protein to form vRNP. In summary, the NP protein has an 

extra layer of variability and its disperse distribution can be caused either by segment 5 loss or by 

increased vRNP replication. 

The different fusion failure and segment loss events increase the heterogeneity in protein levels 

and consequently affect the STV and DIP production. To analyse how the different RdRp and NP levels 

impact progeny release we combined both proteins levels and virus particles production in the same 

graph (Figure 4.12). 

Figure 4.11 | Distributions of RdRp and NP in a MOI/MODIP 1/1 scenario. (A) Percentage of cells that do not 

produce RdRp and NP. (B,C) Distribution of unbound RdRp (B) and NP(C) at 12 hpi. 
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We observe that the deterministic result is in an area where RdRp and NP levels are low, which 

indicates that this region corresponds to the scenario in which both DIP and STV successfully fused. 

When RdRp level is low at 12 hpi DIP and STV release progeny, although we observe that DIP has 

more productive cells in this region. For higher RdRp levels ranged between 103 and 1010 proteins per 

cell we observe two distinct subpopulations: when NP levels are higher than 106 proteins per cell STV 

replicates without interference due to DIPs that fail to enter the nucleus. In contrast, when NP levels 

are low we observe two scenarios: if NP is lower than 103 proteins per cell DIP releases progeny 

particles, by contrast if NP level is higher than 103 STV replicates alone. In between we have a common 

region approximately at 103 where both DIP and STV replicate. Interestingly, we showed before in 

Figure 4.11C that the peak of NP distribution as around 106 proteins per cell, although Figure 4.12 only 

shows few simulations located in that region (due to logarithmic scale). These simulations correspond 

to scenarios in which STV fails to fuse and this prevents RdRp production. Due to the lack of viral 

polymerases neither STVs nor DIPs produce progeny in this scenario. 

 

4.1.3 Impact of MOI and MODIP 
 

After we analysed in detail how the stochastic effects impact the STV and DIP replication for high 

and low MOI and MODIP we investigated how different combinations of initial condition would affect 

DIP production. To that end, we performed a total of 19180 simulations for MOI and MODIP 1, 2, 5 and 

10. The number of simulations performed for each combination of initial conditions can be consulted in 

the appendix (Table A.2.1). Initially, we fixed the MODIP at 1 and increased the MOI. Then, we fixed 

the MOI at 1 and subsequently increased the MODIP. We compared the average DIP production from 

our stochastic simulations with the deterministic result. 

Figure 4.12 | Levels of RdRp and NP related to STV and DIP yield. (A) Protein levels and STV production. (B) 

Protein levels and DIP production. Results simulated at 12 hpi with initial conditions of MOI/MODIP 1/1. The black 

X indicates the deterministic solution. 
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We observe higher DIP releases with increasing MOI for both models. Furthermore, the differences 

between the average stochastic simulations and the deterministic solution regarding DIP production 

become less pronounced when MOI is higher (Figure 4.13A). As shown before, for low initial infection 

conditions stochastic effects are more pronounced and will affect the outcome of the system. In addition, 

our data reveal that higher MOIs increase the average DIP release and its standard deviation (Figure 

4.13B). This result suggests that higher number of initial STV particles infecting a single cell increases 

the potential for DIP to release higher amounts of progeny. 

 

 

 

 

When we maintain a constant MOI of 1 and increase the MODIP we observe that the differences 

between the average stochastic simulations and the deterministic solution are slightly more pronounced 

compared with the increased MOI scenario (comparing Figure 4.13A and Figure 4.14A). When the 

MODIP is increased, DIP production in the deterministic model barely changes. In contrast, the average 

stochastic simulations show a larger increase in DIP productivity (Figure 4.14A). On average, the 

stochastic model shows that an increased MODIP can benefit DIP production and its standard deviation 

does not vary significantly (Figure 4.14B). 

Figure 4.13 | Average cumulative DIPs released with increasing MOI. (A) Average cumulative DIP production 

of stochastic simulations and comparison with the deterministic solution. (B) Average cumulative DIP production 

and standard deviation. Represented results at 12 hpi and different MOIs. 
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One of the sources that causes variability in replications is the different vRNP levels inside the cell 

nucleus, so we defined two ratios and evaluated how it influences STV and DIP replication: 

 

 𝑚𝑒𝑎𝑛(𝑉𝑝𝑁𝑢𝑐)

𝐹𝐿 𝑉𝑝𝑁𝑢𝑐  𝑆𝑒𝑔𝑚𝑒𝑛𝑡 3
                    

𝐷𝐼 𝑉𝑝𝑁𝑢𝑐𝑆𝑒𝑔𝑚𝑒𝑛𝑡 3

𝐹𝐿 𝑉𝑝𝑁𝑢𝑐𝑆𝑒𝑔𝑚𝑒𝑛𝑡 3
 

 

 

The first ratio represents the disadvantage of the FL segment that corresponds to the DI segment 

and is calculated by dividing the average of all functional vRNP by the FL vRNP segment 3. The second 

ratio represents the statistical advantage of DI segment 3 over its complementary FL segment. These 

ratios were quantified in our simulations at 3 hpi, which represent a time at which viral replication has 

on average already started. In Figure 4.15 these simulations are represented by their STV and DIP 

release at 12 hpi. As this evaluation resulted in very disperse data clouds (Figure 4.15A,C), we decided 

to group STV and DIP release in subclasses of 50 particles per cell and for each we calculated the 

average of the respective ratio (Figure 4.15B,D). 

We observe that higher STV production is achieved when the mean of FL vRNP over the FL vRNP 

segment 3 ratio is around 1 (Figure 4.15A,B). This shows that the level of FL segment 3 should be 

similar to the average vRNP level to increase STV production. If we focus on DIP replication lower 

values for the ratio of DI segment 3 over its complementary FL segment are beneficial for DIP production 

(Figure 4.15C,D). This result indicates that higher levels of FL vRNP segment 3 increases DIP release. 

However, high levels of DI vRNP seem to result in a disadvantageous self-inference. 

 

 

Figure 4.14 | Average cumulative DIP released and increased MODIP. (A) Average cumulative DIP production 

of stochastic simulations and comparison with the deterministic solution. (B) Average cumulative DIP production 

and standard deviation. Represented results at 12 hpi and different MODIPs. 

(4.1) 
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4.2 Non-productive simulations 
 

4.2.1 Effects of MOI and MODIP 
 

As shown in the previous section, in a MOI/MODIP 1/1 scenario most of the simulations do not 

achieve production of STV or DIPs. The two main reasons that induce non-productive cells are: (I) 

fusion failure which occurs when either STV or DIP fail to fuse their envelope with the endosomal 

membrane preventing them to enter the nucleus and (II) segment loss of at least one genome segment 

due to degradation of vRNA by cellular nucleases. In this section we will study how often these events 

occur for different combinations of MOI/MODIP and how this impacts STV and DIP replication. For the 

first comparison, we maintained the MODIP at 1 and increased the MOI. Then, we fixed the MOI at 1 

and increased the MODIP. 

Figure 4.15 | vRNP ratios and impact on STV and DIP release. STV disadvantage ratio of the average of all 

functional vRNP over the FL vRNP segment 3 inside the nucleus and STV production (A) and the average of the 

respective ratio (B). Statistical DIP advantage ratio of DI segment 3 over its complementary FL segment inside the 

nucleus and DIP production (C) and the average of the respective ratio (D). Ratios are quantified at 3hpi and virus 

particle production at 12 hpi. 



46 
 

First, we analysed the STV production. When we increased the MOI, we observe a 70% decrease 

in the number of non-productive cells (Figure 4.16A). Moreover, the impact of fusion failures and 

segment loss decreased, since higher MOIs lead to more STVs successfully entering the nucleus, which 

also support the replication of vRNPs. By contrast, co-infections with MOI 1 and higher MODIPs show 

that the percentage of unproductive simulations barely changes (slightly increases from 94% to 96%), 

highlighting a strong DIP interference due to its high factor advantage (Figure 4.16B). Furthermore, 

since the functional genome segments contained in the DIP support the replication of these vRNPs, the 

segment loss probability is decreasing. 

It is important to notice that for both scenarios the impact of other reasons preventing STV release 

increases with higher initial MOI or MODIP conditions. These other reasons contemplate, e.g., an 

imbalanced replication of the genome segments or DIP interference. As explained before, since our 

model considers that all genome segments can replicate independently, higher availability of vRNPs for 

replication can increase the differences of independent segments levels during replication and impair 

STV release. Furthermore, increasing MODIP can result in a considerably higher DIP interference which 

impairs STV replication.  

 

 

When we focus on cells that do not produce DIPs, our simulations reveal that the increase of either 

the MOI or the MODIP lead to very similar scenarios. (Figure 4.17A,B). Increasing either MOI or MODIP 

will lower the number of cells that do not produce DIPs. If the MOI is increased, more resources (vRNPs) 

are available for DIP replication. If the MODIP is increased, the chances of the DI vRNP segment to be 

synthesised for DIP production is higher. Furthermore, when MOI or MODIP is increased to 10, we 

observe a 58% and 54% reduction in the non-productive cells, respectively (when we compare the 

results for MOI or MODIP of 1 and 10). The failed fusion and segment loss probability decreased as 

well.  

Figure 4.16 | Factors which develop STV non-productive cells. (A) Percentage of STV non-productive cells at 

different MOIs. (B) Percentage of STV non-productive cells at different MODIPs. 
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As seen before, DIP replication requires that both DIP and STV successfully fuse and enter the 

cell. By contrast, STV propagation depends solely on its fusion although DIP can interfere and lower 

STV release. Regarding segment loss, as shown before, the DI segment has a replication advantage 

causing faster replication, which lowers the probability of DI segment to be degraded compared to a 

regular FL vRNA segment. Overall our simulation results expose these factors and we can conclude 

that failed virus particle fusion strongly affects DIP replication and segment loss has a bigger impact on 

most STV replication. 

Since DIP replication depends on both STV and DIP, the reasons that cause cells to not produce 

DIP are much more complex. We wanted to analyse these factors in more detail, so we split the cells 

that do not release DIPs in different subcategories. The cells that showed failed fusions were grouped 

into simulations in which either DIP or STV fails to fuse or both fail to fuse simultaneously. The segment 

loss category was sub divided depending on if the DI or at least one FL segment got degraded. 

When we maintain a constant MODIP of 1 and increase the MOI, more particles are available to 

infect a cell. Accordingly, the probability of simultaneous fusion failure of STV and DIP is reduced 

(Figure 4.18A). Furthermore, the number of simulations in which STV fails to fuse alone decreases as 

well. In the same scenario, the FL segment loss probability decreases due to higher levels of functional 

vRNA which prevents its degradation (Figure 4.18B). Additionally, higher MOI increases the probability 

of DI segment loss. Although DIP itself has a replication advantage, when only one DIP enters a cell 

and the MOI is higher, STV can overcome this advantage. High MOI allow STV to replicate faster and 

consequently can win the competition for the viral polymerase complexes, which in turn increase the 

FL vRNP levels even more. Furthermore, these higher levels of FL vRNAs can deplete the available 

NP, which is essential for vRNA stabilization. Without stabilization, DI segments have a higher chance 

to be degraded. 

 

Figure 4.17 | Factors preventing DIP production. (A) Percentage of DIP non-productive cells at different MOIs 

with a fixed MODIP of 1. (B) Percentage of DIP non-productive cells at different MODIPs with a fixed MOI of 1. 
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Interestingly, when the MOI is increased from 1 to 2 the amount of FL segment loss events 

increased. This raised the question about what percentage of segment loss it is observed for each 

genome segment. To that end, we calculated the percentage of each segment that was degraded over 

the number of all segment loss simulations. As explained previously, our data shows that when the MOI 

is increased, most of the FL vRNA segments have a lower degradation probability (Figure 4.19). The 

DI segment, however, shows an almost constant segment loss probability with increased MOI. The FL 

segment 3 has considerably higher segment loss susceptibility than the others FL segments. 

 

 

When we fix the MOI at 1 and increase the MODIP, as we have only one STV to infect a cell, the 

number of simulations in which only STV fails to fuse increases (Figure 4.20A). By contrast, the number 

of simulations in which all DIPs fail to fuse decreased.  Additionally, we observe a reduction in the 

Figure 4.18  | Detailed factors which prevent DIP production at different MOIs and a fixed MODIP of 1.       

(A) Percentage of factors which cause failed fusions. (B) Percentage of factors which cause segment loss. 

Figure 4.19 | Percentage of segment loss for each vRNA segment at MODIP 1 and different MOI. 



49 
 

number of events in which STV and DIP simultaneously fail to enter the cell at higher MODIP. As 

expected, higher levels of DI vRNA will prevent loss of the defective segment (Figure 4.20B). 

Furthermore, the FL segment loss is reduced as well when MODIP is increased since DIP contributes 

with its functional genome segment to increase the overall FL vRNA levels lowering their degradation 

probability with exception to FL segment 3. 

 

 

Again, we evaluated the segment loss event in individual vRNA segments. Overall our results 

reveal that vRNA degradation is reduced with higher MODIP with exception of FL segment 3 (Figure 

4.21). It is important to highlight that, due to its lower level, segment 3 has by far the highest probability 

of being degraded and for all MODIP scenarios. Segment 7 has a lower segment loss probability due 

to our aborted simulations criterium. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 | Detailed factors which prevent DIP production at different MODIPs and a fixed MOI of 1.           (A) 

Percentage of factors which cause failed fusions. (B) Percentage of factors which cause segment loss. 

Figure 4.21 | Percentage of segment loss for each vRNA segment MOI 1 and different MODIP. 
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Finally, we wanted to confirm if all segment loss simulations result in non-productive cells. 

Surprisingly, in a total of 932 simulation that showed segment loss a few cells indeed did produce 

progeny particles. As expected, when the DI segment is degraded STVs can be produced (Table 4.1). 

When FL segment 3 was degraded, 220 simulations showed DIP release in which 57% or these runs 

produced more than one DIP. In addition, we found release of exactly one progeny particle in 

simulations with the other segment loss occurrences. We suggest that this occurred due to the vRNP 

being exported from the nucleus before it could replicate. In summary, the release of 1 progeny particle 

should not be considered production, but instead a re-packaging of the incoming vRNP.    

 

 

 

4.2.2 Filtering non-productive simulations 
 

In the previous sections we analysed how different MOI and MODIP scenarios affect DIP 

production. We concluded that at MOI/MODIP 1/1 the differences between our implemented stochastic 

model and the deterministic simulation are more pronounced. Furthermore, in this scenario the 

stochastic effects have a higher impact which will result in increased number of non-productive 

simulations. Hence, first we filtered out the non-productive cells which were induced due to fusion failure 

and next excluded the simulations which resulted in segment loss. Then, we compared the filtered 

results with the deterministic model. To that end, we examined the DIP release and NP dynamics due 

to their importance for our analysis so far. 

 
Segment lost 

#1 #2 #3 #4 #5 #6 #7 #8 DI #3 

STV 
Productive Cells 

3 0 1 3 1 0 0 0 48 

DIP 
Productive Cells 

13 13 229 12 21 21 4 5 1 

 Number of Simulations 

Table 4.1 | Number of simulations which showed STV or DIP production despite losing (at least) 

one genome segment 

Figure 4.22 | Filtered results and comparison with the deterministic model at MOI/MODIP 1/1. Comparison 

of the mean stochastic result of the unfiltered and filtered simulations with the deterministic model for total DIP 

release (A) and NP (B). 
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When we exclude the non-productive simulations, we observe that the difference between our 

average stochastic simulations and the deterministic model are reduced, although significant 

differences remained. DIP release initially differed with a factor of 21 and after filtering the difference 

was reduced to a factor of 2.5 which reflects a good improvement (Figure 4.22A). Regarding NP, even 

after filtering the simulations we obtain very high deviations from the deterministic simulation (Figure 

4.22B). 

Since filtering of the non-productive cells did not greatly improve the observed differences to the 

deterministic model for DIP release and NP dynamics, we calculated the standard deviation for these 

molecules to understand if this parameter would be improved. We can observe that since the standard 

deviation is very high, when we filter the simulations we obtain a reduced standard deviation for DIP 

release (Figure 4.23A). However, for NP the standard deviation is lowered at the beginning but remains 

unchanged at 12 hpi (Figure 4.23B). This observation further supports that the wide-spread distribution 

of NP, which results from a mixture of different stochastic events, is an inherent characteristic of the 

stochastic model and is not improved when we focus on the productive simulations. 

 

 

4.3 Timing investigation 
 

4.3.1 Randomly generated delay 
 

In the previous section we analysed the factors that prevent particle production in our simulations 

and identified that both STV and DIP entry have a major influence on the infection progression. The 

stochastic model considers that when STV and DIP are placed in the extracellular medium at the same 

time, each particle can take different times to travel through the cytoplasm and reach the nucleus. The 

stochastic model simulates various time delays during STV and DIP import, e.g. delays for cell entry, 

fusion or nucleus entry. In this section we will study the time delay between STV and DIP nucleus entry, 

Figure 4.23 | Standard deviation and filtered results during infection at MOI/MODIP 1/1. Standard deviation 

of the total DIP release (A) and NP (B) divided by the mean stochastic result at the same time point during 

simulation. 
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i.e. nuclear import, since this is the factor that determines the beginning of replication. We divided our 

simulations in the two possible scenarios regarding nucleus entry: either STV enters first so the DIP 

entry is delayed, or the DIP reaches first the nucleus and STV entry is delayed. 

As we showed before, fusion failure is the major factor that prevents progeny production. Since we 

are interested in analysing the impact of the delay in production, we filtered our results: for this section 

we only considered simulation in which both STV and DIP fused successfully, and we obtained a total 

of 3313 runs for this initial infection conditions. The nucleus entry delay was divided into class sizes of 

0.1 hours which resulted in a normal distribution with mean approximately zero (Figure 4.24A). 

However, the probability for STV and DIP entering the nucleus at exactly the same time is low, as only 

eight simulations showed this feature. 

 

 

Our simulations reveal that on average DIP production is increased when DIP entry is delayed 

(Figure 4.24B). This scenario benefits DIP production, although STV release is impaired. This last result 

is unexpected since increasing DIP delay should benefit STV production. This indicates that the average 

release might not be representative due to low number of simulations obtained for 1.5 and 2 hours 

delay. If STV entry is delayed the production of both STVs and DIPs is impaired. When STV entry is 

delayed DIP release is more strongly affected than STV. 

In the previous section we found that simulations which release exactly one progeny particle can 

be caused by re-packaging of the particle that entered the cell. Therefore, from here on we will consider 

these cells as non-productive. In addition, since for the scenario of a 2 h or larger entry delay we 

obtained a low number of simulations, we will analyse this case in the next section. The total number 

of simulations obtained for each time delay can be consulted in the appendix (Table A.2.2).  

Figure 4.24 | Nucleus entry delay influence STV and DIP production. (A) Nucleus entry delay distribution.    

(B) Average STV and DIP release and standard deviations for different delays at 12 hpi. Only simulations in which 

both STV and DIP fused successfully were considered. 
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The distribution of STV release is wide and heterogeneous (with a maximum release of 10616 STV 

per cell at 0.5h post DIP entry) which impedes analysis and graphical representation. For that reason, 

we will focus our examination to cells that do not produce STVs. Even though we excluded all 

simulations with fusion failures, for each time delay most cells do not produce STVs (Figure 4.25). When 

DIP entry is delayed the STV non-productive cells are reduced by 8% when compared to the 0.5h and 

1.5h delay scenarios (Figure 4.25A). When DIP enters first the percentage of cells that do not release 

STV are always higher than 95% (Figure 4.25B). This result shows that increased delays in DIP entry 

lead to less STV non-productive simulations. 

 

 

Overall both distributions of DIP production, whether STV or DIP entry is delayed, are skewed to 

the right and the average DIP release for all time delays is improved when DIP entry is delayed (Figure 

4.26A,B). The maximum release was 3617 DIP per cell when DIP entry is delayed 0.5h. By contrast 

when STV entry is delayed the maximum release was only 1002 DIP per cell. This data supports that 

DIP production is improved when STV enters first the nucleus. 

When DIP entry is delayed 1.5h the maximum value we obtained from the simulations is 3042 

DIPs per cell. In this scenario have the higher average DIP production. When DIP entry is delayed 1h 

we obtained more simulations that release more than 200 DIPs per cell however the maximum DIP 

release was only 1698 DIPs per cell. This suggests that DIP production is improved when the time delay 

of DIP entry is increased till 1.5h, although due to low number of simulations obtained at 1.5h DIP delays 

we cannot confirm this hypothesis based on our simulations. 

The percentage of cells that do not produce DIPs when DIP entry is delayed is much lower than 

when STV entry is delayed (Figure 4.26C,D). When DIP entry is delayed we observe a 5% increase in 

cells that do not produce DIPs although when STV entry is delayed data shows a 21% increase in the 

non-productive simulations. 

Figure 4.25 | STV non-productive and 1 STV release simulations and nucleus entry delay. Percentages of 

STV non-productive and 1 STV release cells when DIP entry is delayed (A) and STV entry is delayed (B) Only 

simulations in which both STV and DIP fused successfully were considered. 
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4.3.2 Induced delay 
 

Previously, we investigated the effect of time delays between the nuclear import of STV and DIP 

by observing the results of our random simulations. However, the time delay distribution showed that 

delays higher than 2 hours did occur very rarely with the settings we used. Since we were also interested 

to analyse how higher delays would impact STV and DIP replication, we developed a strategy to induce 

an exact nucleus entry delay. To do that, we simulated our model with either one STV or one DIP 

outside the cell. The virus entry was simulated normally, and the time point of nuclear import of the 

respective vRNPs was determined. Then, after a specific time delay we introduced the vRNP segments 

of the other particle directly inside the nucleus and proceeded with the rest of the simulation. We 

performed simulations for time delays of 2, 3 and 4 hours in both directions and only considered 

simulations in which the initial particle fused successfully. The total number of simulation runs performed 

for each condition can be consulted in the appendix (Table A.2.3). 

 

 

Figure 4.26 | DIP release and non-productive simulations with nucleus entry delay. (A,B) Distribution of DIP 

total production at 12 hpi when DIP entry is delayed (A) and STV entry is delayed (B). (C,D) Percentages of DIP 

non-productive and 1 DIP release cells when DIP entry is delayed (C) and STV entry is delayed (D). Only 

simulations in which both STV and DIP fused successfully were considered. 
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Increased DIP delays result in higher mean STV production (Figure 4.27A). This information can 

be confirmed as well by the violin plots in which dots represent the exact STV release (Figure 4.27C). 

We observe that delaying DIP entry by 4 hours increases STV production. This result was expected, 

since a delayed DIP entry provides more time for the STV to replicate without interference, which 

increases its production. By contrast, a delayed STV entry leads to a decrease in the mean STV release 

(Figure 4.27B) and more than 95% of simulations do not generate progeny virions (Figure 4.27D). 

 

 

Overall our data show that the mean DIP release is increased when DIP entry is delayed (Figure 

4.28A,B). However, delaying DIP entry more than 2 hours decreases its average release. This indicates 

that an already advanced STV replication can suppress DIP production (Figure 4.28A). When we focus 

on DIP distribution, we observe that a DIP entry delay between 2 and 4 hours enables some cells to 

produce more than 600 DIPs per cell (Figure 4.28C). In the scenario that DIP entry is delayed exactly 

2 hours we observe a higher number of cells that release less than 300 DIPs per cell when comparing 

with higher other delays. Furthermore, the same scenario shows a higher number of simulations which 

produce more than 600 DIPs per cell as well. By contrast, when STV entry is delayed, it will strongly 

Figure 4.27 | STV release and non-productive simulations with an induced delay. (A,B) Average STV 

production and standard deviation at 12 hpi when DIP entry is delayed (A) and STV entry is delayed (B). (C) STV 

production distribution when DIP entry is delayed. Each dot represents an individual simulation result for STV 

release. (D) Percentage of cells that release 0 or 1 STV when STV entry is delayed. Only simulations in which both 

STV and DIP fused successfully were considered. 
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decrease DIP production and we observe that most of the productive cells release less than 150 DIPs 

per cell (Figure 4.28D). 

 

 

In the previous paragraphs we analysed the randomly generated and induced delays separately. 

To achieve a better overall understanding of how the time delay affects DIP production, we combined 

both data sets: the randomly generated delay ranges between 0.1 and 1.5 hours and the induced delay 

data corresponding to the range between 2 and 4 hours for a delay of either STV or DIP entry.  

When DIP entry is delayed between 0 and 2 hours, the mean DIP production increases. Moreover, 

if the delay is increased further, DIP release decreases (Figure 4.29A). By contrast, the mean DIP 

production decreases with increased delays in STV nucleus entry (Figure 4.29B). However, we observe 

that for a delay of STV entry of exactly 2 hours, the mean DIP yield is higher than when STV entry is 

delayed 1.5 hours. This discrepancy in the DIP release trend can be explained by the low number of 

simulations obtained (63 runs) for an STV entry delay of 1.5 hours. This could result in an average DIP 

production that is not representative for this scenario, which is also supported by the increased standard 

deviation. 

Figure 4.28 | Distribution of DIP release with induced delay. (A,B) Average DIP production and standard 

deviation when DIP entry (A) and STV entry is delayed (B). (C,D) Distribution of DIP production when DIP entry (C) 

and STV entry is delayed (D). Results were obtained at 12 hpi and only simulations in which both STV and DIP 

fused successfully were considered. 
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The maximum mean DIP production is achieved when DIP entry is delayed between 1.5 and 2 

hours (Figure 4.29A). However, this range is right at the limit between the randomly generated and 

induced delay. In addition, similar to the observation in the previous paragraph, there is a possibility 

that the calculated mean DIP yield is not representative since we obtained only 65 simulations for this 

category. In summary, we determined that the optimum average DIP production is achieved when DIP 

entry is delayed between 1.5 and 3 hours. 

 

 

In the previous sections we focused solely on the evaluation of DIPs carrying a defective segment 

3, which is one of three segments that encode a protein of the polymerase complex. Since other DI 

segments can emerge in DIP de novo generation, we contemplated how DIP production would be 

affected by a defective segment encoding a protein that is non-essential for RNA synthesis. To that 

end, we analysed DIPs with a defective segment 4, which encodes for HA. We performed simulations 

for 2, 3 and 4 hours delay between either STV or DIP nucleus import and compared them to the results 

obtained for DI segment 3. The total number of simulations performed for each scenario can be 

consulted in the appendix (Table A.2.4). 

Overall when the DIP entry is delayed, the average DIP release was very similar regarding if it was 

carrying a defective segment 3 or 4 (Figure 4.30A,B). However, we observe some differences in the 

distribution of DIP production (Figure 4.30C,D). When DIP entry is delayed 2 hours our data show that 

a DI segment 3 will increase the number of simulations that release DIPs (Figure 4.30C). Furthermore, 

delaying DIP entry by 4 hours with a DI segment 4 impairs the release since we observe that few 

simulations release less than 150 DIPs per cell (Figure 4.30D). 

 

 

 

Figure 4.29 | DIP release results with compiled random and induced delays. Average DIP production and 

standard deviation when DIP entry (A) and STV entry is delayed (B). Results were obtained at 12 hpi and only 

simulations in which both STV and DIP fused successfully were considered. 
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In the scenario that DIP carries a defective segment 3, when STV entry delay is increased, the 

mean DIP production decreases strongly (Figure 4.31A). However, if DIP is originated from a DI 

segment 4, our result shows a less pronounced decrease in the average DIP yield (Figure 4.31B).  

When we focus in the DIP production distribution when STV entry is delayed, we can observe 

some differences regarding if DIP carries a defective segment 3 or 4 (Figure 4.31C,D). Less than 6% 

of the cells produce less than 10 DIPs per cell with DI segment 3 when STV entry is delayed 2 hours 

(Figure 4.31C). However, in the same scenario when DIP carries a defective segment 4 more than 12% 

of the cells release less than 10 DIPs per cell (Figure 4.31D). 

 

 

 

Figure 4.30 | DIP release when DIP entry is delayed for DI derived from segments 3 and 4. The DI segments 

originate from segment 3 (A,C) and segment 4 (B,D). (A,B) Average DIP production and standard deviation.       

(C,D) Distribution of DIP production with the indicated delay of DIP entry. Results were obtained at 12 hpi and only 

simulations in which both STV and DIP fused successfully were considered. 
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4.4 Model variations 
 

4.4.1 Minimum packaging model 
 

As explained in the previous chapters of this thesis, we know that DIP has an advantage over STV 

replication. However, is it still unknown in what part of the replication process this advantage emerges 

and how to quantify it. In this section we implemented variations in our model regarding the packaging 

advantage of DIPs and in the next section we will study different values for the DIP replication 

advantage. Our goal was to analyse how different approaches of implementing a DIP advantage affect 

both STV and DIP production. 

In our model the packaging of STVs and DIPs includes two key steps: first all eight vRNP genome 

segments congregate to form a complex and in the next step STV and DIP complexes compete for 

proteins to incorporate into progeny particles. In the original model the complex formation rate is 

proportional to the product of each vRNP abundance in the cytoplasm (Equations (3.47) and (3.48)). 

Figure 4.31 | DIP release when STV entry is delayed for DI derived from segments 3 and 4. The DI segments 

originate from segment 3 (A,C) and segment 4 (B,D). (A,B) Average DIP production and standard deviation. (C,D) 

Distribution of DIP production with the indicated delay of STV entry. Results were obtained at 12 hpi and only 

simulations in which both STV and DIP fused successfully were considered. 
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This leads to an almost instantaneous formation of the complexes, because normally the most abundant 

vRNPs in the cytoplasm reach high numbers. We modified this complex formation rate and in the new 

model version this rate is proportional to the least abundant vRNP in the cytoplasm (Equations (3.49) 

and (3.50)). To distinguish both models during our analysis the original model was named Complex 

Model and the modified one Minimum Packaging Model. 

Since we want to analyse our result in a more precise manner, we decided to exclude possible 

sources of variability in our data. To that end, we moved away from analysing the data by the MOI and 

focused on the amount of STVs or DIPs that were imported into the nucleus. These particles which 

successfully entered the nucleus will be referred to as fused STVs and fused DIPs. Thus, we excluded 

the effects of fusion failures that strongly increase the heterogeneity in the simulations. Furthermore, 

we can observe that in an MOI/MODIP 10/10 scenario the fused STVs and DIPs show a Poisson 

distribution and there are various different combinations possible for the initial number of particles that 

entered the nucleus successfully (Figure 4.32A,B). 

 

 

To elucidate how the number of fused STVs and DIPs impacts the release we performed several 

simulations with different MOI/MODIP combinations and grouped our results by the amount of fused 

particles. For each group we calculated the mean STV and DIP production. The results are illustrated 

in heat maps where the grey colour represents areas for which we did not obtain any simulations and 

the dark blue regions correspond to an average production close to zero.  

As it would be expected, STV production is maximized when DIP fails to fuse and increases with 

the number of STVs fused (Figure 4.33A). Furthermore, the mean STV release is nearly zero when at 

least two DIPs fused. Interestingly, our data show that increasing the number of fused DIPs does not 

benefits its release. However, DIP yield is increased in a scenario that few numbers of DIPs successfully 

Figure 4.32 | Distribution of fused particles at MOI/MODIP 10/10. Distribution of fused STVs (A) and DIPs (B).  
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enter a cell and higher amount of STV fused (Figure 4.33B). More precisely, the maximum average DIP 

production obtained was when 9 STV and 1 DIP entered the nucleus.  

 

 

When we compare both the Complex Model and the Minimum Packaging Model we do not observe 

significant differences. We can highlight that in the scenarios where 1 fusing DIP is combined with 2 

and 5 STV entering the cell, the Minimum Packaging Model reveal a mean STV release higher than the 

Figure 4.33 | STV and DIP release with different implementations of particle packaging. (A,B) Average STV 

(A) and DIP (B) production considering a complex formation rate proportional to the product of each vRNP 

abundance in the cytoplasm – Complex Model. (C,D) STV (C) and DIP (D) average production  considering a 

complex formation rate proportional to the least abundant vRNP segment – Minimum Packaging Model. Results 

were obtained at 12 hpi and only simulations in which both STV and DIP fused successfully were considered. 
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mean DIP production (Figure 4.33C,D). Furthermore, in agreement with the Complex Model, the 

maximum average DIP yield in the Minimum Packaging Model is achieved when 1 DIP and 8 STV 

successfully fused (Figure 4.33D).   

Since overall the average production was not affected by the new implemented complex formation 

rate, we wondered if we can observe some differences in the release dynamics. Furthermore, we want 

to investigate if this variation in the model has a bigger impact either on STV or DIP release. During this 

analysis we focused in the scenario that exactly one STV and one DIP fused successfully. We 

performed 1927 simulations with the Minimum Packaging Model at these initial infection conditions. 

Our results reveal that the STV release dynamics is slightly lower for the Minimum Packaging 

Model (Figure 4.34A). Since the new complex formation rate is proportional to the least abundant vRNP 

this will slow down the packaging step which affects STV production. By contrast, the DIP release 

dynamics is very similar for the both models (Figure 4.34B). In summary, the complex formation rate 

implemented in the Minimum Packaging Model mainly impacts STV release, which indicates that in 

most simulations the FL segment 3 should be the least abundant segment in the cytoplasm. 

 

 

Furthermore, we calculated the STV and DIP complex formation and release rates based on the 

level of complexes and progeny produced between two consecutive time points. As it would be 

expected from what we observed previously, the STV complex formation and release rates are higher 

for the original Complex Model (Figure 4.35A,C). Surprisingly, we observed some differences in the two 

models regarding the complex formation and release rates for DIPs (Figure 4.35B,D). When the cells 

start to release the first particles after 3 hpi we can observe that both rates are lower for the Minimum 

Packaging Model. However, at approximately 6 hpi, the rates shift and during later infection stages the 

Complex Model has lower complex formation and release rates.  

 

Figure 4.34 | Release dynamics using different packaging approaches. STV (A) and DIP (B) release dynamics 

over the course of infection. Only simulations in which both STV and DIP fused successfully were considered. 
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4.4.2 Replication model 
 

In the previous section we evaluated how a different approach of implementing the packaging of 

vRNPs affects both STV and DIP release dynamics. In this section we focused on the DIP replication 

advantage as we were interested to compare the replication and packaging advantage. Therefore, we 

analysed if an increased advantage factor will benefit DIP propagation and how this impacts the level 

of different genome segment.  

We modified the original model by excluding the complex formation step (Equations (3.35) and 

(3.36)). In the new model we assumed that the packaging of particles occurs in a single reaction step 

which assembles the eight vRNPs and all proteins necessary for particle release (Equations (3.51) and 

(3.52)). Although the packaging advantage was excluded in the modified model, DIP replication 

advantage is maintained due to the implemented advantage factor. We will compare the original model 

which includes both replication and packaging advantage (Complex Model) with the new model that 

comprises only the replication advantage (Replication Model).  

Similarly, as in the previous section we used heat maps to compare the general release for each 

combination of STV and DIP fusion. The results show a clear difference between STV and DIP 

Figure 4.35 | Complex formation and release rates using different packaging approaches. (A,B) Complex 

formation rate of STV (A) and DIP (B). (C,D) Release rate of STV (C) and DIP (D). Only simulations in which both 

STV and DIP fused successfully were considered. 
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production when we compare the Complex Model (Figure 4.33A,B) and the Replication Model (Figure 

4.36A,B). However, we can highlight some similarities with the original model, e.g. in the scenario that 

1 DIP successfully fuses. Here an increasing number of fused STVs leads to an increased average DIP 

production for both models (Figure 4.36B). Although in this scenario, we observe that the STV 

production overcomes the DIP release in the Replication Model (Figure 4.36A). 

 

 

Overall, we observed that the average STV and DIP production are very similar in the Replication 

Model. These data indicate that when the DIP advantage is only implemented at the replication level, 

this will not improve DIP release. Consequently, the DIP advantage should be implemented 

simultaneously at the replication and packaging level (with a two-step packaging process) to achieve a 

maximum DIP production and higher interference with the STV replication. 

As described before, it has been suggested that DIP has a replication advantage over STV due to 

the shorter length of its DI segment that allows a faster synthesis and consequent accumulation of the 

defective segment. We used the Replication Model to evaluate how the length dependent advantage 

would impact STV and DIP replication. We performed simulations for different replication advantage 

factors ranging from 0 to 5 and calculated the average particle production and segment levels at 12 hpi. 

For this analysis we only considered simulations in which exactly one STV and one DIP fused 

successfully. 

Figure 4.36 | STV and DIP release in the Replication Model. Average STV (A) and DIP (B) production 

considering an advantage factor of 3.65 and packaging occurring in a single step reaction which assembles the 

eight vRNPs and all proteins necessary for particle release. Results were obtained at 12 hpi and only simulations 

in which both STV and DIP fused successfully were considered. 
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The results obtained for the average STV and DIP production confirm what we observed previously 

in the heat maps: when only the replication advantage is implemented, and the complex formation step 

is disregarded, the average production of STVs and DIPs is very similar (Figure 4.37A). Surprisingly, 

when there is no advantage factor (𝐹𝐴𝑑𝑣 = 0), the average release of both particles is different. 

Furthermore, we observe a higher production when the advantage factor is lower than 1. By contrast, 

increased values of advantage impair production. It is important to notice that when the advantage 

factor is higher than 3 the average DIP release is close to zero, although STV still produces low amounts 

of progeny.  

The factor advantage impacts directly the genome segment levels since it affects the cRNA 

synthesis rate. To understand how this advantage would impact the abundance of different segments 

abundance we calculated the average levels of different vRNPs inside the cytoplasm for each factor 

value. Our data show the FL segments 3 and 5 are higher than the DI segment when the advantage is 

lower than 1 (Figure 4.37B). However, in this regime the DI segment has an increasing trend and the 

FL segments are decreasing. By contrast, the DI segment level decreases with higher factor advantage 

values and the FL segments suffer a more accentuated reduction. 

Furthermore, we used a 3.65 factor advantage in the simulations performed for the original Complex 

Model, which represents a disadvantageous scenario for DIP replication as indicated by the results 

obtained in this section. Overall, increased advantage factors up to 1 increase the level of DI segment 

which consequently induce a higher average DIP production. However, then the advantage factor is 

higher than 1, the results for the DI segments strongly fluctuate. This result suggests that probably the 

number of simulations performed was not sufficient to obtain a consistent result. 

 

 

 

Figure 4.37 | Effect of the defective cRNA replication advantage on particle release and genome segment 

levels. (A) Average STV and DIP production for different factor advantages. (B) Average vRNP levels inside the 

cytoplasm depending on the applied advantage factor. Results were obtained at 12 hpi and only simulations in 

which both STV and DIP fused successfully were considered. 
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5 Discussion 
 

 

In recent years, DIPs have become a topic of high interest for researchers due to their potential 

use for antiviral therapy that could support the conventional vaccination methods [13,14]. Due to the 

increased necessity of understanding the mechanism inherent to DIP interference, we implemented the 

replication of DIPs in a general stochastic model of IAV infection, which was developed by Heldt & Dorl 

[3,67]. Our model uses the model adaptation approach previously applied in the deterministic model of 

DIP replication, which was implemented by Laske et al. [9]. We will compare and discuss our results in 

comparison to the deterministic DIP model in this section. To our knowledge, this is the first time that 

the intracellular IAV replication in the presence of DIPs is described with a stochastic model. 

At MOI/MODIP 10/10 due to high number of molecules the stochastic effects should be negligible, 

as a result the average stochastic intracellular dynamics is very similar to the deterministic model. We 

would expect this small deviations at high initial infection condition since differences were detected as 

well when the stochastic model of IAV was compared with the deterministic approach [1]. However, 

significant differences emerge regarding particle release. STV production distribution is skewed to the 

right towards low productivity and 60% of simulations do not produce progeny virions which confirms 

DIP interference in STV replication. Experimental data [7,23] support our model results since most of 

our simulations showed high DIP production (99% of simulations showed between 1 and 1500 DIPs 

released per cell) and impaired STV release (almost 40% of the cells produced between 1 and 15 STVs 

per cell). The average DIP release dynamics is lower than the deterministic result, although the average 

DI vRNA dynamics is slightly higher when compared to the previous deterministic model of DIP 

replication (Figure 4.2B,C). In theory, a higher level of available defective segment should result in an 

increased DIP release. However, this does not occur in our simulations since we defined that all genome 

segments are independent from one another. This assumption was implemented because IAV has a 

segmented genome and consequently each vRNA replicates independently. Therefore, vRNA levels 

inside a cell can vary significantly [67]. By contrast, in the deterministic model vRNA segments replicate 

simultaneously maintaining similar levels. In our simulations the DI segment spans up to 4 orders of 

magnitude and the FL segments range over 6 orders of magnitude (Figure 4.4A,B). Consequently, even 

though DI segment is in high abundance, the absence or low level of one FL segment necessary for 

DIP replication can impair its release. Hence, the segmented genome of IAV can be the major source 

of the variability observed in STV and DIP release at high initial infection conditions.  
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The simulations performed at MOI/MODIP 1/1 showed an even higher deviation from the 

deterministic result. Specifically, in 94% and 85% of simulations cells did not produce STV or DIP, 

respectively. This supports the assumption that stochastic effects, which prevents cells from producing 

progeny, are more pronounced at low initial infection conditions [67]. The major factor which increases 

the number of non-productive cells at low MOI/MODIP in our model is the occurrence of failed particle 

fusions (Figure 4.16 and Figure 4.17). The deterministic model does not account for such events since 

it considers that all variables are continuous: when one STV or DIP enter the cell, a fraction of the 

particle successfully fuses and induces progeny production while another fraction fails to fuse, 

consequently complete failed fusion is not possible. By contrast, the stochastic model approaches the 

system as discrete, so each particle has a chance of successfully entering the cell (roughly ~50% in our 

model). Since in nature one complete viral particle is necessary to infect a cell, the stochastic model 

provides a more realistic representation and describes four possible fusion scenarios: STV fuses alone, 

DIP fuses alone, both fuse or both fail fusing, each event occurring with a ~25% probability in a 

MOI/MODIP 1/1 scenario. Stochastic simulations result in a mixture of these events which contribute to 

the observed cell-to-cell variability. These events determine the outcome of the system and explain the 

increase in the percentage of simulations that do not produce DIPs that was not observed previously at 

MOI/MODIP 10/10. At low initial infection conditions, a DIP will not replicate in the three outlined fusion 

failure scenarios since even if it fuses alone, it does not produce progeny due to the lack of resources 

which can only be provided by the STV [64]. The increased percentage of cells that do not produce 

STV at low initial infection conditions when compared with the MOI/MODIP 10/10 scenario is less 

pronounced (from 60% to 98% of non-productive cells) since it has the possibility to replicate in one of 

the three scenarios: when DIPs fail to fuse, the STV can propagate without interference. 

Another essential event that prevents cells from producing progeny particles and is not considered 

in the deterministic model is segment loss. vRNP segments inside the nucleus can be degraded by 

nucleases before starting replication [65]. In the deterministic model a fraction of the vRNP segment is 

degraded, however part of this genome segment can replicate. By contrast, in the stochastic model one 

degradation event can determine the end of the replication process. Depending in which segment is 

lost, different scenarios can occur in at MOI/MODIP 1/1: either the DI segment is degraded and only 

STV replicates or its corresponding FL segment is lost and just DIP produces progeny. In theory, if one 

of the other FL segments is degraded, this would prevent both STV and DIP propagation since both 

require the incorporation of the other functional segments in their released particles. However, in 

multiple simulations we observed the release production of exactly one progeny particle despite the 

loss of a genome segment necessary for release. We suggest that these events occurred due to the 

respective vRNP being exported from the nucleus before it could replicate, i.e. the RNP segments which 

arrive at the nucleus could still be used for the formation of a single progeny particle. Obviously, this 

event can only occur if M1 and NEP was already synthesised and available to perform the nuclear 

export. Hence, the release of exactly one progeny particle can be considered as a re-packaging of the 

incoming vRNPs when segment loss occurs or release of exactly one particle when no segment was 

lost.   
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Fusion failure and segment loss are two events that affect the success of particle replication. These 

factors, combined with the segment independent replication, can induce fluctuations in the vRNA levels 

which at MOI/MODIP 1/1 span over 8 orders of magnitude (Figure 4.9). The differences in vRNA levels 

also impact protein synthesis. When vRNP enters the nucleus, both mRNA and cRNA can be 

synthesized. Since the mRNA synthesis rate is considerably higher than the cRNA degradation rate, 

primary transcription can occur before the loss of a vRNA segment. Consequently, small amounts of 

mRNA are produced that can synthesise low protein levels resulting in a wide-spread distribution of 

viral proteins [67]. At MOI/MODIP 1/1 the average stochastic RdRp and NP dynamics are considerably 

higher than in the deterministic model (Figure 4.10B). Specifically, in the deterministic model the viral 

polymerase and NP suffer an abrupt reduction at 3 hpi which is caused by a protein limitation due to 

DIP interference. This limitation was not observed in our average stochastic dynamics due to existence 

of different protein subpopulations (Figure 4.11). Specifically, the RdRp cluster observed at low protein 

levels could be caused by the loss of one of the genome segments that encodes for the subunits of the 

polymerase complex. Furthermore, since FL segment 3, which encodes for RdRp, is in low levels inside 

the cell, this might also result in the reduction of polymerase synthesis and establish subpopulations 

with low protein levels [62]. However, the occurrence of low NP levels could be caused either by the 

loss of segment 5 or substantially increased replication of DI vRNA which would require more NP for 

stabilization. The NP and DIP production distributions at MOI/MODIP 10/10 support this assumption 

since we observed that simulations with low levels of NP at 12 hpi showed an increased DIP production 

(Figure 4.6B). Furthermore, simulations in which more than 700 DIPs per cell were released exhibited 

a similar trend in NP dynamics as observed in the deterministic result. This result was not shown, 

because at MOI/MODIP 1/1 we obtained only four simulations that showed such high DIP yield and 

their average would be not representative for a comparison with the deterministic result. Overall, our 

model simulations suggest that, besides the regular DIP and STV production described in the 

deterministic model, different scenarios regarding DIP and STV replication emerge. These include the 

fusion failure of the STV or DIP particle and the loss of any of the genome segments. These events 

combined with the assumption of an independent segment replication cause large fluctuations in the 

vRNA levels which will strongly affect protein levels and particle release. NP is especially affected by 

these events which results in a wide distribution even at high initial infection conditions. 

As explained previously, in a MOI/MODIP 1/1 scenario stochastic effects are inducing a high 

percentage of non-productive cells which increases the differences observed between the stochastic 

and deterministic model results. To investigate how different combinations of MOI/MODIP would impact 

DIP production, we tested different combinations. Therefore, we fixed the MODIP at 1 and increased 

the MOI. Our simulation results reveal that a higher number of initial STV particles infecting a single cell 

increases the average DIP release and the differences between the stochastic average result and the 

deterministic model are reduced with increasing MOI (Figure 4.13). Furthermore, the standard deviation 

of DIP release is higher in the MOI/MODIP 10/1 scenario. This supports the concept that higher MOI 

values not only increase the DIP average production, but also its potential for releasing more progeny 

particles. We suggest that a higher number of initial STV benefits DIP production due to increased 

resources availability, i.e. proteins and FL vRNAs, which are essential for DIP propagation. Additionally, 
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we evaluated how DIP production is affected when we fix the MOI to 1 and increase the MODIP. The 

stochastic model shows that when MODIP is increased, the average DIP release increases although 

the standard deviation does not vary significantly (Figure 4.14). However, experimental studies of IAV 

infection showed that high amounts of initially provided DIPs result not only in a reduction in virus titer, 

but also the total particle concentration decreases [76]. Furthermore, experiments performed in VSV 

showed that increasing the MODIP decreases the overall DIP release [77].  Hence, we suggest that 

increased MODIP values do not improve DIP production but rather that the increased DIP release we 

observe is caused by the reduction of non-productive simulations which increases the average DIP 

release. To further examine this effect, we calculated the ratio of DI segment 3 to its complementary FL 

segment ratio. We observed that lower ratios, i.e. higher levels of FL vRNP segment 3 (and others FL 

segments) compared to the DI segment 3, benefit DIP production since this indicates the presence of 

more FL segments that would increase the availability of resources for DIP release. Furthermore, higher 

levels of DI vRNP seem to result in a disadvantageous self-inference. This might occur due to 

exhaustion of essential proteins, since more DI segments would require stabilization by NP. Finally, to 

evaluate how the levels of FL segment impact STV production, we calculated the ratio of the average 

of the individual vRNP segment levels in a cell over the FL vRNP segment 3. Our results reveal that 

STV production occurs optimally when the ratio is around 1. This indicates that a balanced replication 

of all functional segments is required for high STV production. This requirement is challenged by the 

independent segment replication which can lead to unbalanced replication and impair both STV and 

DIP production. 

The stochastic model considers STV and DIP as two independent particles. At the start of the 

simulation, each particle is transported independently in the cytoplasm. As transport is a random 

process, each particle can reach the nucleus at different time points. Different delays of nuclear import 

can also be simulated with the deterministic model by introducing each particle at a different time point. 

However, when both are placed outside the cell at the same time, STV and DIP are transported together 

and reach the nucleus simultaneously. The time delay events observed in stochastic simulation are one 

factor that increases the cell-to-cell variability observed in our results. To analyse the time delay we 

performed simulations at MOI/MODIP 1/1 but only considered for our analysis simulations in which both 

particles fused successfully. Delays below 1.5 hours were analysed based on our regular simulation 

results in which the differences in time of nuclear import occurred due to the random nature of particle 

transport. Delays from 2 to 4 hours were implemented by inducing the delay. However, the average 

results for delays below 1.5 hours, which occurred in our regular simulation, might not be fully 

representative for each scenario. This is caused by the reduced number of simulations performed for 

an individual scenario since the time delays showed a normal distribution with mean approximately 

zero. Therefore, time delays around zero hours occurred more frequently and their average results are 

more reliable than for delay around 1.5 hours. Altogether, our data show that when the DIP entry is 

delayed more than 3 hours, STV can start its replication without interference which constitutes an 

advantage for STV production. By contrast, when STV entry is delayed its replication begins later which 

increases the number of cells not producing STV. The average DIP production is increased when DIP 

entry is delayed up to 2 hours. This data supports the hypothesis that DIP production is improved when 
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STV enters first since STV starts the synthesis of the proteins earlier, which will increase resource 

availability for DIP production. However, if the STV replication is advanced by a too large margin, DIP 

propagation will be impaired. The maximum DIP release is achieved when its entry is delayed between 

1.5 and 2 hours. However, this range is right at the limit between the randomly generated and induced 

delay and the average calculated at 1.5 hours might not be representative due to the low number of 

simulations performed. Therefore, we suggest that the optimum average DIP production is obtained 

when DIP entry is delayed between 1.5 and 3 hours. This is in agreement with experiments which show 

that DIP interference is only observed if DIP entry is delayed no longer than 3 hours [78]. In addition, 

we also analysed how the delay of nuclear import would affect DIPs carrying a defective segment 4. A 

defective segment 4 allows DIP to replicate and increase its genome segments levels on its own. The 

simulation of this scenario with the deterministic model results in a prevention of STV replication if STV 

entry is delayed more than 3 hours and, consequently, the DIP would lack necessary proteins and not 

release any progeny. However, this complete shutdown of DIP release was not observed in our 

simulations. We assume that, such a complete shutdown of DIP production could also be observed in 

the stochastic model or delays higher than 4 hours, which should be investigated in the future. 

Finally, we analysed different approaches of DIP advantage implementation at the replication and 

packaging steps. In the original model the packaging process comprises two steps: first all eight vRNP 

genome segments get together forming a complex [57] and then both STV and DIP complexes compete 

for proteins to incorporate in their release. The complex formation rate is proportional to the product of 

each vRNP levels in the cytoplasm which leads to an almost instantaneous formation of the complexes. 

We consider that this considerably high rate (in the order of magnitude of 1020 molecules∙cell-1∙h-1) is 

unrealistic due to transport factors that can affect the complex establishment. We modified this 

assumption by implementing a complex formation rate that depends on the least abundant vRNA which 

reduces the rate of formation. Overall, our results show that this modification reduced the average STV 

release dynamics. We suggest that this occur dur to low levels of FL segment 3 in the cell, which 

constitutes a limiting factor for STV production. By contrast, the model modification did not impact DIP 

production since the DI segment is usually present in high levels due to the DIP replication advantage. 

However, we observed that the DIP complex formation and release rates in the modified model is higher 

at 6 hpi than the original model (Figure 4.35B,D). This interesting dynamic may occur since at the 

beginning there are few vRNPs in the cytoplasm, so the complex formation rate is very low, and few 

particles are released from the cell. Consequently, vRNPs will accumulate inside the cell and later in 

infection the complex formation and release rate will be higher due to increased number of available 

genome segments.  

The last model variation was implemented by discarding the complex formation step assuming that 

the assembly of the eight vRNPs and all proteins necessary for packaging occurs in a single step 

reaction. Our results revealed that by implementing only the replication advantage, the DIP and STV 

production are, on average, very similar. These results highlight the importance of the implemented 

complex formation step in the model to achieve a substantial DIP advantage and inhibition of STV 

production. Furthermore, we performed simulations with increased replication advantage factor values. 
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Our results showed that increasing DIP advantage results in a reduction of the FL segments levels. By 

contrast, the DI segment abundance increases with advantage factors up to 1 which improves DIP 

production. For advantage factors above one the DI segment levels decrease which impairs DIP 

release. The previously implemented deterministic model of DIP coinfection also showed a decrease in 

DIP production with an increasing replication advantage factor. In the deterministic simulation this effect 

was related to the depletion of unbound NP. The decrease of FL segment 5  (and others FL segments) 

results in a reduction of NP synthesis and consequently the lack of NP to stabilize vRNA impairs the 

overall production [9]. In summary, the optimal DIP production is achieved when the replication 

advantage factor is below than 1. Furthermore, DIP release is impaired when this factor is too high 

since this will cause an unbalanced replication of FL segments which will eventually decrease protein 

availability.  

In conclusion, we implemented a stochastic intracellular model of influenza A virus and DIP 

replication which highlights the importance of random events during the infection and their effect on 

virus release. In contrast to the deterministic model, the stochastic implementation accounts for the 

independent replication of viral genome segments, the failure of particle fusion, the loss of genome 

segments and the time delay of nucleus entry. Our model shows that these events have a major impact 

during coinfections of STVs and DIPs. However, other sources of cell-to-cell variability highly observed 

in nature, e.g. host factors, immune response or mutations were not considered in our model. Is 

important to note that our model still requires experimental data for validation, however, this is a 

challenge as the experimental methods for quantification are still in development. Furthermore, the 

stochastic simulations performed with our model are highly computationally demanding due to the high 

number of interacting molecules. In addition, a high number of simulations should be performed to 

achieve representative averages of a cell populations. We established to perform more than 1000 

simulations for each condition since we observed that beyond this number of runs we obtained a stable 

average. However, when filtering the results to analyse specific aspects and subpopulations among the 

obtained data, the amount of suitable simulations can be quite low. This constitutes a limitation for our 

modelling results.  

 

 

 

 

 

 

 

 

 

 



73 
 

 

 

 

 

 

6 Conclusion 
 

 

We developed an intracellular stochastic model of IAV and DIP replication with the aim to study 

how different stochastic effects impact DIP production. We could demonstrate that the average 

stochastic dynamics significantly differs from the previous implemented deterministic model. 

Specifically, at MOI/MODIP 1/1 most of the simulations are non-productive as a result of random events 

such as fusion failure and the loss of genome segments. Simulations performed at high MOI/MODIP 

conditions still show wide-spread distributions as a consequence of the implemented independent 

replication of IAV genome segments. Moreover, our simulations are susceptible to different time delays 

between the nuclear import of DIPs and STVs which further increases the heterogeneity of progeny 

production. In addition, these stochastic effects especially impact levels of NP which resulting in the 

emergence of three sub-populations in its distribution, which also strongly affect DIP production.  

The stochastic model we implemented can be used to conduct a comprehensive study of DIPs 

originating from different genome segments in the future. Furthermore, it would be interesting to study 

the competition of different DIPs to identify if a specific DI segment will emerge as a dominant species 

implying that it may be a potent antiviral agent. However, to simulate this scenario a model expansion 

from the intracellular to the population level is necessary. In addition, a more detailed analysis of the 

NP sub-populations could further support the importance of its role in DIP replication. The stochastic 

model could also be extended by the implementation of DIP de novo generation to investigate how this 

process could impact vaccine production and DIP interference. 
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Appendix 
 

 

This chapter comprises additional data regarding the developed intracellular stochastic model of 

IAV and DIP replication. Specifically, includes the implemented parameters values and the number of 

simulations performed for each initial infection condition. 

A.1   Implemented parameters 

 

Table A.1.1 | List of implemented parameters of the model. 

Parameter Value Unit Description Source 

𝐵𝐻𝑖
𝑇𝑜𝑡  150 sites 

total number of high-affinity 
binding sites 

[35] 

𝐵𝐿𝑜
𝑇𝑜𝑡  1000 sites 

total number of low-affinity 
binding sites 

[35] 

𝐷𝑅𝑖𝑏 160 nucleotides 
distance between two adjacent 

ribosomes on an mRNA 
[79] 

𝐹𝐴𝑑𝑣 3.65a - 
replication advantage of DI 

RNA 
[9] 

𝐹𝐹𝑢𝑠 0.51 - 
fraction of fusion-competent 

virions 
[33] 

𝐹𝑆𝑝𝑙7 0.02 - 
fraction of M2-encoding 

mRNAs 
based on ratio of M1 

to M1 in a virion 

𝐹𝑆𝑝𝑙8 0.125 - 
fraction of NEP-encoding 

mRNAs 
[80] 

𝐾𝑉𝑅𝑒𝑙  10 virions 
influence of protein 

concentration on virus release 
[9] 

𝑘𝐻𝑖
𝐴𝑡𝑡 8.09x10-2 site-1∙h-1 

attachment rate to high-affinity 
binding sites 

adjusted to data in 
[35] 

𝑘𝐿𝑜
𝐴𝑡𝑡 4.55x10-4 site-1∙h-1 

attachment rate to low-affinity 
binding sites 

adjusted to data in 
[35] 

𝑘𝑀1
𝐵𝑖𝑛𝑑 1.39x10-6 molecule-1∙h-1 

binding rate of M1 to nuclear 
vRNPs 

[33] 

𝑘𝑁𝑃
𝐵𝑖𝑛𝑑 3.01x10-4 molecule-1∙h-1 

binding rate of NP to RdRp-
RNA complexes 

[33] 

𝑘𝑅𝑑𝑅𝑝
𝐵𝑖𝑛𝑑  1 molecule-1∙h-1 

binding rate of RdRp-
complexes to vRNA/cRNA 

[33] 
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𝑘𝐶𝑝𝑙𝑥 1 molecule-7∙h-1 
formation rate of complexes 

containing eight vRNPs 
fast formation is 

assumed 

𝑘𝑀
𝐷𝑒𝑔

 0.33 h-1 degradation rate of mRNAs [33] 

𝑘𝑅
𝐷𝑒𝑔

 36.36 h-1 
degradation rate of naked 

cRNA/vRNA 
[33] 

𝑘𝑅𝑛𝑝
𝐷𝑒𝑔

 0.09 h-1 degradation rate of RNPs [33] 

𝑘𝑅𝑅𝑑𝑅𝑝
𝐷𝑒𝑔

 4.25 h-1 
degradation rate of RdRp-RNA 

complexes 
[33] 

𝑘𝐸𝑛 4.8 h-1 endocytosis rate [33] 

𝑘𝐻𝑖
𝐸𝑞

 1.13x10-2 site-1 equilibrium constant of high-
affinity binding sites 

[35] 

𝑘𝐿𝑜
𝐸𝑞

 8.33x10-5 site-1 
equilibrium constant of low-

affinity binding sites 
[35] 

𝑘𝐸𝑥𝑝 1x10-6 molecule-1∙h-1 
rate of NEP binding and 

nuclear export 
adjusted to [81] 

𝑘𝐹𝑢𝑠 3.21 h-1 fusion with endosomes rate [33] 

𝑘𝐼𝑚𝑝 6 h-1 nuclear import rate [82] 

𝑘𝑅𝑒𝑙 3.7x10-3 
virions∙ 

molecule-1∙h-1 
virus release rate [33] 

𝑘𝐶
𝑆𝑦𝑛

 1.38 h-1 cRNA synthesis rate [33] 

𝑘𝑀
𝑆𝑦𝑛

 2.5x105 nucleotides∙h-1 mRNA synthesis rate [33] 

𝑘𝑃
𝑆𝑦𝑛

 64800 nucleotides∙h-1 protein synthesis rate [83] 

𝑘𝑉
𝑆𝑦𝑛

 13.86 h-1 vRNA synthesis rate [33] 

𝐿1
𝑀 2320 nucleotides 

length of the mRNA of 
segment 1 

[84] 

𝐿2
𝑀 2320 nucleotides 

length of the mRNA of 
segment 2 

[84] 

𝐿3
𝑀 2211 nucleotides 

length of the mRNA of 
segment 3 

[84] 

𝐿4
𝑀 1757 nucleotides 

length of the mRNA of 
segment 4 

[84] 

𝐿5
𝑀 1540 nucleotides 

length of the mRNA of 
segment 5 

[84] 

𝐿6
𝑀 1392 nucleotides 

length of the mRNA of 
segment 6 

[84] 

𝐿7
𝑀 1005 nucleotides 

length of the unspliced mRNA 
of segment 7 

[84] 

𝐿8
𝑀 868 nucleotides 

length of the unspliced mRNA 
of segment 8 

[84] 

𝐿1
𝑉 2341 nucleotides 

length of the vRNA and cRNA 
of segment 1 

[84] 

𝐿2
𝑉 2341 nucleotides 

length of the vRNA and cRNA 
of segment 2 

[84] 
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𝐿3
𝑉 2233 nucleotides 

length of the vRNA and cRNA 
of segment 3 

[84] 

𝐿4
𝑉 1778 nucleotides 

length of the vRNA and cRNA 
of segment 4 

[84] 

𝐿5
𝑉 1565 nucleotides 

length of the vRNA and cRNA 
of segment 5 

[84] 

𝐿6
𝑉 1413 nucleotides 

length of the vRNA and cRNA 
of segment 6 

[84] 

𝐿7
𝑉 1027 nucleotides 

length of the vRNA and cRNA 
of segment 7 

[84] 

𝐿8
𝑉 890 nucleotides 

length of the vRNA and cRNA 
of segment 8 

[84] 

𝐿𝐷𝐼
𝑉  480a nucleotides 

length of the vRNA and cRNA 
of DI segment 

[9] 

𝑁𝑃𝐻𝐴
 500 

molecules∙ 
virion-1 

number of HA molecules in a 
virus particle 

[84] 

𝑁𝑃𝑀1
 3000 

molecules∙ 
virion-1 

number of M1 molecules in a 
virus particle 

[84] 

𝑁𝑃𝑀2
 40 

molecules∙ 
virion-1 

number of M2 molecules in a 
virus particle 

[84] 

𝑁𝑃𝑁𝐴
 100 

molecules∙ 
virion-1 

number of NA molecules in a 
virus particle 

[84] 

𝑁𝑀1
𝑁𝑢𝑐 200 nucleotides 

number of nucleotides bound 
by one M1 molecule 

[51] 

𝑁𝑁𝑃
𝑁𝑢𝑐 24 nucleotides 

number of nucleotides bound 
by one NP molecule 

[39] 

a Advantage and length for DI RNA of segment 3. Simulations performed for a DI RNA of segment 4 use   

𝐹𝐴𝑑𝑣 = 4.39 and 𝐿𝐷𝐼
𝑉 = 330 nt. 

 

 

Table A.1.2 | List of additional implemented parameters in the Replication Model.b 

Parameter Value Units Description Source 

𝑁𝑃𝑁𝑃
 1000 molecules∙virion-1 

number of NP molecules in a virus 
particle 

[84] 

𝑁𝑃𝑁𝐸𝑃
 165 molecules∙virion-1 

number of NEP molecules in a virus 
particle 

[84] 

𝑁𝑃𝑅𝑑𝑅𝑝
 45 molecules∙virion-1 

number of RdRp molecules in a virus 
particle 

[84] 

b In the modified model was implemented the parameters shown and the values from Table A.1.1. 
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A.2   Number of simulations performed 

 

Table A.2.1 | Number of simulations performed for different initial infection conditions. 

MOI MODIP Number of simulations 

1 1 6352 

2 1 2201 

5 1 854 

10 1 1177 

1 2 1872 

1 5 2857 

1 10 3867 

 

 

Table A.2.2 | Number of simulations obtained for each random generated delay. 

 Average delay (h) Delay range (h) Number of simulations 

T
im

e
 d

e
la

y
  

o
f 

D
IP

 e
n

tr
y

 

2 [2.25 - 1.75] 23 

1.5 [1.75 - 1.25] 65 

1 [1.25 - 0.75] 253 

0.5 [0.75 - 0.25] 853 

 0 [0.25 - 0.25] 990 

T
im

e
 d

e
la

y
  

o
f 

S
T

V
 e

n
tr

y
 

0.5 [0.75 - 0.25] 791 

1 [1.25 - 0.75] 244 

1.5 [1.75 - 1.25] 63 

2 [2.25 - 1.75] 22 

 

 

Table A.2.3 | Number of simulations performed for each induced delay and a DIP carrying a DI segment 3. 

 Exact delay (h) Number of simulations 

T
im

e
 

 d
e
la

y
 o

f 

D
IP

 e
n

tr
y

 

2 877 

3 1057 

4 7528 

T
im

e
  

d
e
la

y
 o

f 

S
T

V
 e

n
tr

y
 

2 1750 

3 2683 

4 6407 
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Table A.2.4 | Number of simulations performed for each induced delay and a DIP carrying a DI segment 4. 

 Exact delay (h) Number of simulations 

T
im

e
 

 d
e
la

y
 o

f 

D
IP

 e
n

tr
y

 

2 570 

3 1302 

4 1304 
T

im
e
  

d
e
la

y
 o

f 

S
T

V
 e

n
tr

y
 

2 1412 

3 1279 

4 1471 

 


