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Abstract

Neuroevolution is a field in which evolutionary algorithms are applied with the goal

of evolving Artificial Neural Networks (ANNs). These evolutionary approaches can be

used to evolve ANNs with fixed or dynamic topologies. This paper studies the Seman-

tic Learning Machine (SLM) algorithm, a recently proposed neuroevolution method

that searches over unimodal error landscapes in any supervised learning problem,

where the error is measured as a distance to the known targets. SLM is compared with

the topology-changing algorithm NeuroEvolution of Augmenting Topologies (NEAT)

and with a fixed-topology neuroevolution approach. Experiments are performed on a

total of 6 real-world datasets of classification and regression tasks. The results show

that the best SLM variants outperform the other neuroevolution approaches in terms

of generalization achieved, while also being more efficient in learning the training data.

Further comparisons show that the best SLM variants also outperform the common

ANN backpropagation-based approach under different topologies. A combination of

the SLM with a recently proposed semantic stopping criterion also shows that it is

possible to evolve competitive neural networks in a few seconds on the vast majority

of the datasets considered.
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Resumo

Neuro evolução é uma área onde algoritmos evolucionários são aplicados com o ob-

jetivo de evoluir Artificial Neural Networks (ANN). Estas abordagens evolucionárias

podem ser utilizadas para evoluir ANNs com topologias fixas ou dinâmicas. Este artigo

estuda o algoritmo de Semantic Learning Machine (SLM), um método de neuro evolu-

ção proposto recentemente que percorre paisagens de erros unimodais em qualquer

problema de aprendizagem supervisionada, onde o erro é medido como a distância

com os alvos conhecidos previamente. SLM é comparado com o algoritmo de alteração

de topologias NeuroEvolution of Augmenting Topologies (NEAT) e com uma aborda-

gem neuro evolucionária de topologias fixas. Experiências são realizadas em 6 datasets

reais de tarefas de regressão e classificação. Os resultados mostram que as melhores

variantes de SLM são mais capazes de generalizar quando comparadas com outras

abordagens de neuro evolução, ao mesmo tempo que são mais eficientes no processo

de treino. Mais comparações mostram que as melhores variantes de SLM são mais efi-

cazes que as abordagens mais comuns de treino de ANN usando diferentes topologias

e retro propagação. A combinação de SLM com um critério semântico de paragem do

processo de treino também mostra que é possível criar redes neuronais competitivas

em poucos segundos, na maioria dos datasets considerados.

Palavras-chave: Semantic Learning Machine, NEAT, Neuroevolution
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1
Introduction

Accelerated by outstanding accomplishments in matching patterns in complex data,

such as recognizing objects on images [4, 9, 18], interpreting natural language [11, 21]

and controlling autonomous vehicles [2], Artificial Neural Networks (ANNs) have at-

tracted enormous interest in both research and industry. Although ANNs can generate

complex solutions that can substitute human operations in various tasks with superior

performance in terms of accuracy and speed [23], they are essentially only built upon

two simple base components: neurons and synapses (connections). Inspired by the

anatomy of the human brain, neurons aggregate a set of input connections and gener-

ate one output, determined by their activation function. To create networks, neurons

are connected over synapses, so that the output of one neuron serves as input for the

other.

For ANNs to perform well on a certain task, it is critical to locate a combination of

satisfying connection weights. For this purpose, weights are adjusted in a learning

process, based on provided training data. The most relevant approach is Backpropa-

gation [15], where the error between prediction and ground truth is distributed back

recursively through adjacent connections. However, Backpropagation fails to answer

the question of how to define the general topology of neurons and synapses. Devis-

ing suitable topologies is crucial, since it directly affects the speed and accuracy of

the learning process [24]. Yet still, this challenge is traditionally approached with

evaluating several different combinations, which is tedious and does not guarantee to

converge near the global optima.

Topology and weight evolving ANNs (TWEANNs) address this issue by developing

satisfactory combinations of topology and weights. TWEANNs belong to the research

field of neuroevolution, an area within artificial intelligence (AI) that deals with breed-

ing ANNs in an evolutionary process. Inspired by Darwinism, ANNs are evaluated
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CHAPTER 1. INTRODUCTION

and selected for reproduction, based on a defined fitness function. Next, chosen solu-

tions create offspring by randomly crossing over their genetic traits. The constructed

offspring are prone to further, randomly occurring mutations. Consequently, offspring

can differ from their parents in terms of connection weights as well as number of

neurons and connections. The breeding cycle is repeated for a certain number of gen-

erations or until a satisfying solution is found.

This paper studies the application of several neuroevolution methods to the task of su-

pervised machine learning. Of particular interest is the study of the recently proposed

Semantic Learning Machine (SLM) algorithm. Perhaps the most interesting charac-

teristic of SLM is that it searches over unimodal error landscapes in any supervised

learning problem where the error is measured as a distance to the known targets. The

SLM is explored and compared against other neuroevolution methods as well as other

well-established supervised machine learning techniques.

The paper is organized as follows: Chapter 2 describes the main neuroevolution meth-

ods under study; Chapter 3 outlines the experimental methodology; Chapter 4 reports

and discusses the experimental results; finally Chapter 5 concludes.
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2
Neuroevolution with Dynamic Topologies

This chapter briefly describes the two Topology and Weight Evolving Artificial Neural

Network algorithms under study: Semantic Learning Machine and NEAT.

2.1 Semantic Learning Machine

SLM [6, 8] is a neural network construction algorithm originally derived from Geo-

metric Semantic Genetic Programming (GSGP) [12]. A common characteristic with

GSGP is that SLM searches over unimodal error landscapes, implying that there are no

local optima. This means that, with the exception of the global optimum, every point

in the search space has at least one neighbor with better fitness, and that neighbor is

reachable through the application of the variation operators. As this type of landscape

eliminates the local optima issue, it is potentially much more favorable in terms of

search effectiveness and efficiency. The strength of the SLM comes from the associated

geometric semantic mutation operator. This operator allows to search over the space

of neural networks without the need to use backpropagation to adjust the weights

of the network. As the issue of local optima does not apply, the evolutionary search

can be performed by simply hill climbing. The SLM mutation operator was originally

specified for neural networks with a single hidden layer [6], but it was subsequently

extended to be applicable to any number of hidden layers [8]. For further details the

reader is referred to [6] and [8].

2.2 NeuroEvolution of Augmenting Topologies

One of the most popular and widely used TWEANN algorithms is NeuroEvolution of

Augmenting Topologies (NEAT) [19], which has been applied to various applications,

3



CHAPTER 2. NEUROEVOLUTION WITH DYNAMIC TOPOLOGIES

such as controlling robots and video game agents [20], computational creativity [17,

22], and mass estimation optimization [1]. In NEAT genes represent connections, speci-

fying the in-neuron, the out-neuron, the weight and whether the connection is enabled.

Also, genes store the information about their historical origin in a global innovation

number that is shared among all solutions for genes of the same structure (in-neuron

and out-neuron). Mutation in NEAT can change both weights and topology. For ad-

justing the weight of existing connections, NEAT perturbs the current value with a

defined weight and probability. Regarding topology mutations, NEAT can add a new

connection or add a new neuron. The addi ng-link mutation creates a new connection

gene with a random weight between two previously unconnected neurons. In the

adding-node mutation, a new intermediate neuron is created between the in-neuron

and the out-neuron of an existing connection. When an unprecedented topology mu-

tation occurs, a new innovation number is assigned to the corresponding gene. For

the crossover operation, both parent topologies are aligned, based on the innovation

number. When constructing offspring, genes present in both parents are inherited at

random with equal probability, whereas the isolated genes are always chosen from the

more fit parent. During the selection process, NEAT protects innovation by speciating

the population, where a solution’s fitness is adjusted by diving it by the number of

solutions in its species. Solutions are placed in the same species when they show high

topological compatibility. The topological compatibility between solutions is calcu-

lated as a linear combination between the matching and isolated genes as well as the

average connection weight difference. Over the course of the evolutionary process,

solutions of initially minimal structures are augmented incrementally. For further

details the reader is referred to [19].
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3
Experimental Methodology

This chapter describes the experimental settings considered to achieve the results dis-

cussed in the subsequent section of the paper, and the datasets taken into account for

assessing the performance of SLM and the comparative algorithms over regression and

classification problems. All datasets under study were split into training (50%), valida-

tion (30%) and testing(20%). The best parameter configuration for models under study

was determined by choosing a random configuration from a grid on configurations

defined in Section 3.1, training it on the training data, and evaluating the performance

on the validation data. Each model was given 300 seconds for parameter tuning. After-

wards, the parameter configuration with the best performance on validation data was

selected and evaluated on testing data. The training, validation and testing samples

were paired for all models. This procedure was repeated 30 times on different sam-

ples for statistical validity. Performance is evaluated as the root mean squared error

(RMSE).

3.1 Settings

All genetic approaches use populations of 100 individuals and stop the evolutionary

process after 200 generations, if not stated otherwise. The SLM variant under study

uses a optimal learning step for each application of the mutation operator, using the

pseudo-inverse between prediction and target vector. The evolutionary process is

stopped, based on the Error Deviation Variation (EDV) semantic stopping criterion [7].

This semantic criterion can be used to stop the search before overfitting starts to occur.

The stopping criterion was tested for a threshold of 0.25 and 0.5. The mutation oper-

ator adds one neuron to each hidden layer. The added neurons connect to a random

subset of previous nodes, where the subset size is taken from a uniform distribution
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CHAPTER 3. EXPERIMENTAL METHODOLOGY

between 1 and a defined maximum. The maximum was tested for 1, 10, 50 and 100.

For the number of layers, we tested 1 to 10 layers. All hidden neurons in the last

hidden layer have the hyperbolic tangent as their activation function, whereas the

activation function for the remaining hidden nodes was randomly chosen from the

identity function, the Sigmoid function, the rectified linear unit (ReLU) function and

the hyperbolic tangent function. This guarantees that, for each application of the mu-

tation operator, the semantic variation always lies within the interval [−ls, ls], where

ls represents the learning step.

The NEAT parameters can be found in Table A.1 and Table A.2. Also, we tuned the

adding-node-mutation probability for 0.1 and 0.25, the adding-link-mutation proba-

bility for 0.1 and 0.25, and the compatibility threshold for 3 and 4.

We added a fixed-topology neuroevolution approach to the benchmark, where weights

of an ANN are optimized, using simple Genetic Algorithms (SGA). For the SGA, we

chose a tournament selection with tournament size 5, an arithmetic crossover operator

and a Gaussian mutation operator with standard deviation of 0.1. We evaluated mu-

tation rates of 0.25 and 0.5, as well as crossover rates of 0.01 and 0.1. For the hidden

topology we analyzed the following topologies: one hidden layer with one hidden neu-

ron, one hidden layer with two hidden neurons, two hidden layers with two hidden

neurons each, three hidden layers with three hidden neurons each and three hidden

layers with five hidden neurons each.

Furthermore, we compared the results with the ones achieved with the Multilayer Per-

ceptron (MLP) with backpropagation and with Support Vector Machines (SVM). To

that end we used the Scikit-learn framework [14]. The parameter search grid for MLP

and SVM can be found in Table A.3 and Table A.4 respectively.

3.2 Classification Datasets

The following classification datasets were studied:

• German Credit Data (Credit): the dataset classifies people, described by a set

of attributes, as good or bad credit risks. The dataset contains 1000 instances,

700 people with good risk and 300 people with bad risk. Each instance has 24

numerical input variables [10].

• Pima Indians Diabetes (Diabetes): the dataset classifies females of Pima Indian

heritage, based on positive or negative diabetes tests. The dataset contains 768 in-

stances, 500 negative tests, and 268 positive tests. Each instance has 8 numerical

input features [10].

• Connectionist Bench (Sonar): the dataset classifies sonar signals bounced off a

metal cylinder and those bounced off a roughly cylindrical rock. The dataset
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contains 208 observations, 111 that bounced off a metal cylinder and 97 that

bounced off a rock. Each instance has 60 numerical input features [10].

3.3 Regression Datasets

The following regression datasets were studied:

• Music: The dataset relates music to its geographical origin in longitude and

latitude. It contains 1059 songs from 33 countries. Each instance contains 68 cat-

egorical and numerical audio features [10, 25]. Categorical features are coerced

to binary indicator variables and missing values are imputed using the median.

• Parkinson Speech (Parkinson): The dataset relates speech recordings of patients

to the Unified Parkinson’s Disease Rating Scale (UPDRS) score. The dataset

contains 1040 recordings of 20 healthy and 20 afflicted people. Each recording

has 26 numerical input features [10, 16].

• Student Performance (Student): This dataset relates students of two Portuguese

schools to their final year grade on a scale from 0 to 20. It contains informa-

tion about 395 students with a mean grade of 10.42. Each observation has 30

categorical and numerical features [5, 10].
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4
Experimental Study

This chapter presents the results obtained in the experimental phase by applying SLM

and the other aforementioned ML techniques. Considering the large experimental

campaign performed, we decided to present all the results on unseen data, while

we limit the discussion about training performance to a few representative examples.

Finally, we comment on the execution time of the SLM and we compare the resulting

solutions with respect to the one obtained by NEAT, focusing on their number of nodes.

4.1 Results

The discussion starts by analyzing the plots reported from Figure 4.1(a) to Figure 4.1(f).

Each plot displays the mean and standard error of the best training error (i.e., the fit-

ness on known instances). Considering the training fitness, SLM shows the same

evolution of fitness in all the considered datasets and it is the best performer among

the other competitors. In some plots, like (a) and (f), the SLM produces fitness values

that are not only better than the ones achieved by NEAT and SGA but it seems that

fitness could improve further, if more epochs were considered. Furthermore, SGA

outperforms NEAT on all displayed plots.

While results on the training set are important to understand the ability of the SLM

to learn the model of the training data, it is even more important and interesting to

evaluate its performance on unseen instances. Considering the plots reported from

Figure 4.2(a) to Figure 4.2(f), one can see that the SLM produces good quality solutions

that are able to generalize over unseen instances. In particular, the SLM presents a

desirable behavior in the vast majority of problems, showing better or comparable per-

formance with respect to the other competitors without overfitting the training data.

Focusing on the other techniques, NEAT is the worst performer in 4 out of 6 datasets,
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Figure 4.1: Evolution of mean and standard error of the best fitness on the training
sets for the following datasets: (a) Credit; (b) Diabetes; (c) Sonar; (d) Concrete; (e)
Parkinson; (f) Music. The legend for all the plots is: NEAT SGASLM
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4.1. RESULTS

Table 4.1: Mean values for number of hidden neurons and processing time for NEAT,
SGA and SLM on the Credit, Diabetes, Sonar, Concrete, Music and Parkinson dataset.

Hidden Neurons
NEAT SGA SLM

Credit 3.23 5.6 29.83
Diabetes 3.97 5.47 19.2

Sonar 5.97 6.77 168.07
Concrete 4.33 6.1 329.67

Music 3.5 5.37 99.13
Parkinson 4.63 6.43 37.7

Processing time (s)
NEAT SGA SLM

Credit 289.17 147.86 1.94
Diabetes 206.4 80.83 0.94

Sonar 118.18 278.71 8.39
Concrete 267.6 94.23 21.15

Music 668.94 435.53 10.87
Parkinson 493.62 253.2 4.09

while it achieves comparable performance with respect to the SGA in the remaining

datasets. Also, plots (b) and (e) make apparent how SLM takes advantage of the EDV

stopping criterion and terminates the evolutionary process before overfitting occurs.

To summarize the results of this first part of the experimental phase, it is possible to

state that the SLM is able to outperform SGA and NEAT with respect to the training

fitness, by also producing models able to generalize over unseen instances. This is a

very promising result that we are going to discuss more in the remaining part of the

paper.

To that end, we reported in Figure 4.3 the results of SLM and other well-known ma-

chine learning techniques that are commonly used to solve classification and regression

problems. Starting the discussion, it is possible to observe that the SLM tends to pro-

duce competitive generalization errors in all the considered datasets. Regarding MLP

and SVM, the SLM obtained better results for (a) and (b), while producing comparable

solutions for the remaining problems. Comparing with SGA, SLM performs better

on (a) and (d), with comparable results on the remaining datasets. Most importantly,

SLM is able to outperform NEAT on all the displayed datasets. Finally, by analyzing

Table 4.1, it is possible to compare the number of nodes of the models obtained with

the SLM , with NEAT, and SGA as well as the running time of these techniques. Al-

though SLM produces the most complex (with the most hidden neurons) solutions,

these solutions can be generated in a negligible amount of time. Compared to NEAT

and SGA, SLM can develop solutions between one and two orders of magnitude faster

(e.g. results on Credit).

All in all, at the end of the experimental campaign, it is possible to state that the SLM

is a neuroevolution algorithm that is competitive with state of the art methods for
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Figure 4.2: Evolution of mean and standard error of the best fitness on the testing
sets for the following datasets: (a) Credit; (b) Diabetes; (c) Sonar; (d) Concrete; (e)
Parkinson; (f) Music. The legend for all the plots is: NEAT SGASLM
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Figure 4.3: Boxplots of generalization error for the following datasets: (a) Credit; (b)
Diabetes; (c) Sonar; (d) Concrete; (e) Parkinson; (f) Music. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, and the
whiskers extend to the most extreme data points, excluding outliers.
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regression and classification problems and, built in a negligible amount of time and

able to generalize over unseen instances. These features pave the way for future work

in the area at the intersection between neuroevolution and deep learning, with the

possibility of evolving the structure of deep networks in a tolerable amount of time.

To assess the statistical significance of the results presented in Figure 4.3, a statistical

validation was performed. The statistical validation considers, for each dataset, the

SLM and compares it with the other techniques. First of all, given that is not possible

to assume a normal distribution of the values obtained by running the different tech-

niques, we ran the Shapiro-Wilk test and we considered a value of α = 0.05. The null

hypothesis of this test is that the values are normally distributed. The result of the test

suggests that the alternative hypothesis cannot be rejected. Hence, the Mann-Whitney

U test with paired samples is conducted for comparing the results returned by the SLM

and the other considered algorithms under the null hypothesis that the SLM’s median

value is greater or equal to the competitive algorithm’s median value, across repeated

measures. Also in this test a value of α = 0.05 was used and the Bonferroni correction

was considered. Table 4.2 reports the p-values returned by the Mann-Whitney test,

and bold is used to denote values suggesting that the alternative hypotheses cannot

be rejected. According to these results, out of 10 problems, the best SLM variant out-

performs (1) MLP in 2 problems; (2) NEAT in 6 problems; (3) SGA in 4 problems;

(4) SVM in 3 problems. On the Credit dataset, SLM can outperform all competitors

with statistical significance. In the remaining comparisons, there was no evidence of

statistically significant difference between the SLM and the other competitors.

Table 4.2: P-values for Mann-Whitney U test between SLM and competitive algorithms,
where the null hypothesis states that the SLM’s median unseen error is greater or equal
to the competitive algorithm’s median unseen error.

MLP NEAT SGA SVM
Credit 9.13E-07 4.89E-06 4.58E-02 9.13E-07

Diabetes 9.13E-07 6.52E-05 7.64E-01 9.13E-07
Sonar 2.49E-01 1.02E-03 7.50E-02 3.11E-01

Concrete 1.00E+00 9.13E-07 9.13E-07 9.02E-01
Music 6.93E-02 1.02E-03 5.07E-05 3.36E-02

Parkinson 1.77E-01 1.24E-06 4.31E-04 1.01E-01

4.2 Ensemble Approach

The promising results obtained at the end of the experimental phase, both in terms of

performance, running time and number of neurons, led us to consider a new compari-

son. In particular, we want to compare results achieved by considering an ensemble

of SLM against the ones obtained with Random Forests (RFs) [3]. To perform this

analysis, ensembles of 25 SLM models and tree predictors (for RFs) were built. The
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4.2. ENSEMBLE APPROACH

comparison was performed considering the same datasets under study as introduced

in Section ??. Figure 4.4 reports the generalization error for the 6 considered datasets.

As one can see, the SLM ensemble outperforms the RFs ensemble on (a), (b) and (c),

while generating comparable results in (e) and (f). These excellent results are also

strengthened by the fact that the SLM ensemble model is formed by weak SLM learn-

ers that contain only a few nodes (as already discussed in the previous analysis). To

statistically validate the results of this comparison the same aforementioned statistical

procedure was used. The following p-values were obtained: 9.13e−07 for (a), 9.13e−07

for (b), 2.25e−06 for (c), 1.00e0 for (d), 5.25e−01 for(e) and 9.36e−01 for (f).
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Figure 4.4: Boxplots of generalization error for the following datasets: (a) Credit; (b)
Diabetes; (c) Sonar; (d) Concrete; (e) Parkinson; (f) Music. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, and the
whiskers extend to the most extreme data points, excluding outliers.
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Conclusion

This paper studied different variants of the SLM algorithm, a recently proposed neu-

roevolution method. Comparisons were performed against other neuroevolution meth-

ods and other well-established supervised machine learning methods. It is shown that

the best SLM variants are able to outperform most of remaining methods on the ma-

jority of the 6 real-world datasets considered. Particularly interesting are the results

of the SLM variation that computes the optimal mutation step for each application of

the mutation operator, and that, at the same time, uses a recently proposed semantic

stopping criterion to determine when to stop the search. This variant is able to evolve

competitive neural networks in a few seconds on the vast majority of the datasets.

An initial assessment of the usage of this SLM variant to create ensembles of neural

network is also performed. This initial assessment shows that this approach is able to

outperform the random forests algorithm on three out of six selected datasets.
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APPENDIX A. PARAMETER CONFIGURATIONS

Table A.1: First set of NEAT parameter. Parameter names and values are taken
from [13]. [] defines the beginning of a configuration section, {} defines a tunable
parameter from Section 3.1.

Parameter Value
fitness_criterion mean
fitness_threshold 10
no_fitness_termination True
pop_size {population_size}
reset_on_extinction True
[DefaultSpeciesSet]
compatibility_threshold {compatibility_threshold}
[DefaultStagnation]
species_fitness_func mean
max_stagnation 15
species_elitism 1
[DefaultReproduction]
elitism 1
survival_threshold 0.2
min_species_size 1
[DefaultGenome]
activation_default random
activation_mutate_rate 0.01
activation_options sigmoid identity relu tanh
aggregation_default sum
aggregation_mutate_rate 0
aggregation_options sum
bias_init_mean 0
bias_init_stdev 1
bias_init_type gaussian
bias_max_value 30
bias_min_value -30
bias_mutate_power 0.1
bias_mutate_rate 0.01
bias_replace_rate 0.01
compatibility_disjoint_coefficient {compatibility_disjoint_coefficient}
compatibility_weight_coefficient {compatibility_weight_coefficient}
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Table A.2: Second set of NEAT parameter. Parameter names and values are taken
from [13]. [] defines the beginning of a configuration section, {} defines a tunable
parameter from Section 3.1.

Parameter Value
conn_add_prob {conn_add_prob}
conn_delete_prob {conn_delete_prob}
enabled_default True
enabled_mutate_rate 0.01
enabled_rate_to_false_add 0
enabled_rate_to_true_add 0
feed_forward True
initial_connection partial_nodirect 0.25
node_add_prob {node_add_prob}
node_delete_prob {node_delete_prob}
num_hidden 1
num_inputs {num_inputs}
num_outputs 1
response_init_mean 1
response_init_stdev 0
response_init_type gaussian
response_max_value 30
response_min_value -30
response_mutate_power 0
response_mutate_rate 0
response_replace_rate 0
single_structural_mutation False
structural_mutation_surer True
weight_init_mean 0
weight_init_stdev 1
weight_init_type gaussian
weight_max_value 30
weight_min_value -30
weight_mutate_power {weight_mutate_power}
weight_mutate_rate {weight_mutate_rate}
weight_replace_rate 0.1

Table A.3: Parameter configuration search grid for Multilayer Perceptron. Parameter
names according to [14].

Parameter
Start
(inclusive)

End
(inclusive)

Step size
(multiplicative)

alpha 10−6 10−1 10
learning_rate_init 10−6 10−1 10
hidden_layer_sizes [(1), (2), (2, 2), (3, 3, 3), (5, 5, 5), (2, 2, 2, 2)]
activation [’identity’, ’logistic’, ’tanh’, ’relu’]
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APPENDIX A. PARAMETER CONFIGURATIONS

Table A.4: Parameter configuration search grid for Support Vector Machine. Parameter
names according to [14].

Parameter
Start
(inclusive)

End
(inclusive)

Step size
(additive)

C 0.1 1 0.1
epsilon 0.1 0.5 0.1
degree 1 4 1
gamma 0.1 0.5 0.1
coef0 0.1 0.5 0.1
kernel [’linear’, ’poly’, ’rbf’, ’sigmoid’]
probability TRUE

26






	Contents
	List of Figures
	List of Tables
	Introduction
	Neuroevolution with Dynamic Topologies
	Semantic Learning Machine
	NeuroEvolution of Augmenting Topologies

	Experimental Methodology
	Settings
	Classification Datasets
	Regression Datasets

	Experimental Study
	Results
	Ensemble Approach

	Conclusion
	Bibliography
	Parameter Configurations

