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Resumo 

A produção de componentes através de processos de produção aditiva (PA) permite uma enorme 

liberdade na criação de peças com formas complexas cujo fabrico seria impossível através de 

métodos convencionais. Esta liberdade no entanto, tem os seus limites. Por essa razão quando se 

projeta para PA é necessário ter em conta as seguintes características, não exclusivas: espessuras 

variáveis, canais internos, elementos suspensos, suportes (posição e remoção), redes, e, ao mesmo 

tempo, evitar a distorção do componente. Entretanto a física que opera estas mudanças é de difícil 

prevenção particularmente à micro-escala. De modo a controlar ou prever as consequências deste 

processo produtivo, soluções como simulação dos processos de PA começaram a ser testadas 

como substituto de testes destrutivos. Finalmente os materiais usados desempenham um papel 

importante na ligação entre design e tensões térmicas influenciando o comportamento do(s) 

elemento(s) produzido(s). Neste trabalho um conjunto de dimensões geométricas foi escolhido de 

modo a validar e conduzir um teste de sensibilidade no programa MS Simufact, para que mais 

trabalho nesta área possa ser desenvolvido. O conjunto de dimensões escolhidas foram os diâmetros 

e as circularidades de três anéis concêntricos. Todos os vários inputs foram analisados e 

explicados. Foram considerados dois materiais durante a simulação, inconel 625 para os 

componentes (pó metálico da peça) e aço inoxidável para a base onde a peça é construída. Com 

base nas presunções da teoria e funções do programa, o input central a ser estudado nesta fase 

inicial foi o tamanho dos voxels. Simultaneamente através de um desenho de experiências, outros 

parâmetros e o seu peso foram estudados de modo a determinar os valores de input que forneciam 

o melhor resultado. Os resultados da simulação foram comparados com peças produzidas e 

medidas por um sistema de medição ótico 3D.  

 

Palavras-chave: Produção aditiva, Selective Laser Melting, Simulação de Tensões Térmicas, 

Voxel, Inconel 625. 
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Abstract 

Producing parts trough Additive Manufacturing (AM) processes enables tremendous freedom in 

creating components with free-form and intricate features that would be impossible to 

manufacture through conventional methods. This freedom however does not come without its 

limits. Thus, when designing for AM (DfAM) one should consider, amongst which but not 

exclusively, variable wall thickness, deep channels, overhanging features, supports (position and 

support removal), lattices, as well as avoiding component distortion. Meanwhile the physics 

commanding these changes are hard to predict particularly in the micro-scale. To eliminate or 

minimize such problems solutions like build simulation have started to be looked at as a 

replacement for unwanted destructive tests. Finally, the materials used play a big role linking 

design and thermal stresses to feature behaviour. In this work a set of features was chosen to 

validate and conduct a sensitivity test on MS Simufact simulation software, so that future work in 

this area can be continued. The set of features chosen, were the diameters and roundness of three 

concentric rings. All the various inputs were analysed throughout this work and explained. Two 

materials were considered in the experiment, alloy Inconel 625 for the build powder with a 

stainless-steel build plate base. From the assumptions taken and software functions the first and 

main input to be studied was the voxel size. A relation between the simulated feature and the 

optimal voxel size is what is intended to be achieved. Simultaneously via Design of Experiments 

(DOE), other parameters were studied to assess their overall effect on result. The Simulation run 

results were compared with actual measured parts via a 3D optical measuring system. 

 
 

Keywords: Additive Manufacturing, Selective Laser Melting, Thermal Stresses Simulation, 

Voxel Finite Elements, Inconel 625; 
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1 

Introduction 
 

 

1.1 Motivation 

Additive Manufacturing (AM) is part of the 4th industrial revolution in digital era with advances 

in product design, process engineering, materials, data transfer software and simulation. While this 

advance will certainly shape the pace, direction and rhythm at which the changes in industry will 

be felt, recent developments focus on reducing building times, post process activities and Design 

for AM tools (DfAM) [1, 2].  

AM technology enables great design freedom but not without its limits. As a feature, support 

structures exemplify this relation. To allow some of the increasingly complex shapes more support 

structures need to be added to the design, ultimately increasing build time, extra material 

consumption and additional post processing activities for their removal. When designing for AM 

it is hence paramount to consider the link between function, performance and post-processing [3, 

4].  

Meanwhile the physics behind AM processes is well known but nevertheless extremely complex 

leading to very hard to predict results particularly in the microstructure level [5]. Due to the nature 

of the Design processes, combined with process variability it becomes vitally important to assess 

results prior to build process.  

The requester of the simulation work developed in the following chapters, HiETA technologies, is a 

product development and production company specialised in AM, based in Bristol (United 

Kingdom) that recently was granted a software trial version. This work will look at two geometric 

dimensioning features, diameter and roundness of three rings, to assess the simulation results via a 

sensitivity test. These features were chosen because of the high number of points that they test as 

well as the fact that the three concentric rings occupy all the build plate being a good indicator of 

overall pattern behaviour whilst being fast to build and simple to reshape allowing further 

continuous experiment adaptation.  

The material used for the experiment was Inconel alloy 625 for the building powder with stainless 

steel build plates. The difference in materials is explained by low material cost of steel without 

compromising the thermal stresses deformation resistance.  

The relation between the voxel size and the simulation dimension of the feature will be determined 

via a sensitivity analysis and compared to actual measured value. Understanding this relation would 

enable time and resources savings as well as serve as a base for future work on feature simulation 

definitions. The software used in the experiment is MS Simufact. The software uses measured 

inherent thermal stresses within the calibration building process for a selective laser melting (SLM) 

AM machine [6]. The aim of the approach is to simplify the huge number of different variables 

within the AM building processes. The software’s solver Marc uses finite elements (FE) voxel 

principle to give the approximation result. The AM machine used in the experiment is a Renishaw 

AM 250, and after the builds were processed, they were optically scanned and a dimensional colour 

map as well as the wanted features were created and compared with the one given by the simulation 

run. 
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1.2 Objectives 

 
The main objective of this work is to assess the best use that the requester (HiETA company) can 

make of Ms Simufact Software. Previous versions of the software have shown reliable results but 

were never conclusive enough to fully validate the software and use it as standardised step within 

the design process. Given the myriad of features and shapes that HiETA deals with, it is intended 

to simultaneously adapt different shapes to ideal software parameters. So, one geometry was used 

to validate a procedure model that when implemented would feed himself information whilst 

providing the optimal simulation parameters for that given geometry. Simulation time was not 

considered at this stage of the experiment although it is known that the higher the complexity level 

of simulation, the longer it takes to simulate. 

 

Secondary objectives for the experiment are, to determine the performance of the software both in 

geometric dimensioning and tolerancing (GD&T) accuracy and overall part pattern depiction. The 

part that was used in the experiment is a simple geometry, but as it will be further developed in 

chapter two this does not necessarily imply greater accuracy due to the significant amount of non-

controllable factors.    

  

 

1.3 Plan, resources and document structure 

 
When validating any aspect of a software that tries to simulate a real event one must be cautious 

about the simplification model. To start with, the software is already a simplification of the real 

model and, for this reason, already has an error associated with it. Hence the starting point must 

always be to understand the mechanisms of the solver, its inputs, internal processes and 

assumptions. After this was done (chapter 2 and 3 of this work), the software was tested in its 

capability to adapt to the experiment environment conditions. Sources of error like argon gas flow 

and machine variability (internal vibration and other external factors e.g.) are not depicted by the 

software and must also be considered and were discussed when looking at the result. 

 

The thesis is divided in two main parts. The first one compiles the literature review. Chapters 2 and 

3. In this theoretical section AM technology, machines and processes types were looked at, as well 

as the physics behind thermal stresses, focusing then on the principles of the processes and tools 

used in this experiment. Material properties were also looked as they play a significant variation 

source in the result. Voxel finite elements and optical measurement systems idiosyncrasies were 

highlighted. The second part consisted in the experiment. Starting with the assumptions from theory 

and software calibration, following to the sensitivity analysis (trough Design of Experiments 

(DOE)) based on results and final conclusions. 

 

The resources used were the AM250 Machine to build the ring builds. Ms Simufact simulation 

software to run the simulations, ATOS 3 core scanner and gom software to take the actual 

measurements, and Minitab to run the DOE and sensitivity analysis. Some of the design capability 

and company’s database was also used to make some of the assumptions presented. Although for 

confidentiality and commercial reasons not all the significant tested features could be shown trough 

out this work, whenever possible an image was presented. 
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1.4 Proposed Methodology 

The simultaneous objectives are bond together through the proposed methodology. Since no 

significant internal work had been done to assess the software’s capability the starting point was to 

calibrate the machine, define a case study geometry that could both represent a design challenge 

whilst challenging the simulation tool, measure, compare results and reason on the error sources. 

This underlines the model developed for this geometry and other coming parts that is shown in 

detail in chapter 4. 

The steps taken within the methodology were hence: 

1. Choice of resources 

All the physical and computational resources used, were already property of the company. The Ms 

Simufact and its solver were used for two reasons. First some work had already bene done with 

previous versions of the software and secondly and opportunity came in the form of a trial version.   

2. Resources Setup 

Refers to machine calibration, geometry and feature extraction. Although the software provides 

more than one type of analysis the one studied was Mechanical Analysis. This implies machine 

calibration via inherent thermal strains. Once the geometry was chosen, all the software inputs were 

locked leaving as variable inputs the ones in the software’s analysis widget (Chapter 3). The actual 

experience was set to optimize these inputs. 

3. Actual Experiment  

A DOE was conducted to assess the sensitivity of the inputs within the analysis widget. A screening 

design was created on Minitab and the experiment was created for the four chosen factors where 

the low and high values represent the input limits low and high respectively based on previous 

experiments (i.e the minimum voxel mesh size is 0.6 mm and there is virtually no upper limit. From 

previous experiments it was advised to set the voxel experiment limits between 0.6 mm and 3.6 

mm. Same principle was applied to the remaining factors)  

4. Result Analysis 

This final step represents the information that will be fed to the model depicted in Chapter 4. 
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2 

Additive 

Manufacturing 

In this chapter a brief introduction to AM is presented. General aspects like terminology and AM 

process types are discussed, and a special focus is given to Selective Laser Melting (SLM) the 

used process in the experiment. Introductory AM theory will be followed by an explanation on 

the machine used in the experiment, the material properties of Inconel 625 and company’s 

presentation, finishing by presenting a brief paragraph on inherent thermal stresses principles.  

 

2.1 Introduction to Additive Manufacturing 

Metal Additive Manufacturing is the process of creating a three-dimensional (3D) object from a 

CAD model by building it up from thin layers of metal powder one by one. The vocabulary 

normally used in the industry is Additive Manufacturing whereas in the consumer market it is 

usually referred to as 3D printing [6]. Several processes are part of AM technology. The different 

denominations derive from material or machine technology used. To standardize the different 

processes in 2010, the American Society for Testing and Materials (ASTM) formulated a set of 

standards that classify the range of AM processes into seven categories. Since a detailed 

explanation of all seven of them falls out of the scope of this work, a brief description was 

provided in table 2.1 to highlight the main differences between them [7, 8]. 

 

 

 

Table 2.1 AM Categories [7] 
 

Category Description 

 
 

Vat Polymerization 

An ultraviolet light is used to cure or harden a liquid 

photopolymer resin where required, whilst a platform 

moves the object being made downwards after each new 

layer is cured 

 

Material Jetting 
Material is jetted onto a build platform using either a 

continuous or drop on demand approach 

 

 

 
Binder Jetting 

Uses a powder-based material and a binder acting as an 

adhesive between powder layers. A print head moves 

horizontally along the x and y axes of the machine and 

deposits alternating layers of the build material and the 

binding material. After each layer, the object being printed 

is lowered on its build platform 
platfor 
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Table 2.1 AM Categories [7] (Continue) 

 

 

Category Description 

 
 

Material Extrusion 

Material is drawn through a nozzle, where it is heated and 

is then deposited layer by layer. The nozzle can move 

horizontally, and a platform moves up and down vertically 

after each new layer is deposited 

 
Powder Bed Technology 

 

Powder bed technology (PBT) or powder bed fusion (PBF) 

methods use either a laser or electron beam to melt and 

fuse material powder together (LBM). 

 
Sheet Lamination 

Laminated object manufacturing (LOM) uses a similar 

layer by layer approach but uses paper as material and 

adhesive instead of welding 

Blown Powder Technology  

(DED or LMD) 

Blown Powder Technology consists on direct laser 

deposition (DED) or laser metal deposition (LMD). A 

typical Blown Powder Technology consists of a nozzle 

mounted on a multi axis arm, which deposits melted 

material onto the specified surface, where it solidifies 

 

In addition to the technologies presented above two more (table 2.2) are currently being developed 

according to [8]. 

 
Table 2.2 Developmental AM Categories [8] 

 

Category Description 

Continuous Liquid Interface  
Production 

Like vat polymerization. In Continuous liquid interface 

production (CLIP) the kinetics of photopolymerization 

of resin is coupled with the oxygen-assisted 

polymerization inhibition, as well as the continuous 

motion of the build part 

Directed Acoustic Energy 

Metal Filament Modelling 

A solid metal filament is used as the starting material 

from a 3D dimensional object via the metallurgical 

bonding between filaments and layers 

 

 

Not all the stated above categories can be used as a metal AM process. This is mostly due to 

metals high melting temperature and relatively low  viscosities [9]. Hence a division on the metal 

AM categories can be made, between direct or indirect methods. The approach to direct metal 

AM uses powder that is heated to melting point where it is bonded together selectively. Figure 

2.1 shows the direct metal AM categories branch [10]. 
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Figure 2.1 Overview of metal AM process [10] 

 
 

The machines used in this experiment are Selective Laser Melting (SLM) machines. SLM is 

compound under Powder bed Technology, Laser Beam Melting category stated above. For this 

reason, an explanation on how its fundamental principles work is followed. 

 

 

2.2 Selective Laser Melting Controllable Factors 

Selective laser melting is arguably the most versatile category of AM processes in terms of its 

potential to realize complex geometries along with tailored microstructure. It offers non-net-shape 

production without the need for models or extensive post-process activities, a high material 

utilization rate as well as the highest production flexibility within AM categories [6]. In this work 

the term build direction refers to the direction normal to the powder bed as it is also commonly 

referred within the industry. 

 
A thin layer of powder (typically between 30-60 µm) is spread across a build plate, and a laser 

selectively melts areas of the powder corresponding to a two-dimensional (2D) slice of the CAD 

data for the part. After this, the build plate moves down, another layer of powder is spread over 

the first layer and the process is repeated until the 3D metal component has been built. Figure 2.2 

underlines this process [10].
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Figure 2.2 Selective Laser Melting: (a) SLM process; (b) Platform Cycle [10] 
 

2.2.1 Set-Up Parameters 
 

The scheme presented in Figure 2.2 is a simplified model. When simulating the process, it is 

important to consider the influence of all factors controllable or non-controllable, that may 

influence the result output. In this work, controllable predefined factors are referred to as the 

inputs that are inserted in each machine build set-up. These inputs are summarised in table 2.3. 

and detailed below. 

 
 

Table 2.3 Controllable Factors 
 

Input Description 

Layer thickness The thickness of each layer 

Scan width The length travelled by the laser 

Start angle The orientation in respect to the x build plate axis 

Incremental angle The change of orientation (rotation) between consecutively 
printed layers 

Point distance (mm) Distance between the centres of each successive melt pool 

Exposure time (µs) Length of time the laser will be on for each point 

Power (W) Intensity of the laser beam 

Focus offset (mm) It’s the focal point where the parallel rays of light converge 

 

The term controllable may be deceiving. It simply means that these values can be changed and 

does not necessarily mean that their effects are controlled. Due to the typically long build 

processes within AM, these inputs are roughly an approximation throughout manufacturing. 

Although technology allows a very high precision in inputs like fill hatch paths (heading 2.2.2) 

prediction these are directly influenced by inputs like laser beam power, point distance, or focus 

offset. More detail on controllable inputs is developed below. 

 

The laser’s working principle follows a sequence of discrete point exposures forming a continues 

line. One could arguably say that by simulating this discrete event we could have a closer 

approximation to the actual build result. However, one of the biggest downsides of this approach 

would be a substantial increase in data to simulate as well as an expected increase in unwanted 

noise without simultaneous increase in accuracy. Figure 2.3 shows the typical melting pool result. 

Alongside the inputs presented in table 2.3 an x-y coordinate is attributed to each point. 
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Layer thickness 

 

This inputs value is typically 30 µm or 60 µm. Differences in the choice of one or the other result 

in different heat gradients from the successive melting and cooling variation due to thickness. 

Depending also on geometry, one might be more suitable than the other for a given material. 

 

Scan width 

 

This value represents the maximum distance that a laser travels perpendicular to the build 

direction over the build plate. Its effect increases the simpler the hatch path. 

 
 

Start angle 

 

The starting angle orientation perpendicular to the build direction. It works mostly as a starting 

reference for the subsequent hatching paths, without significant thermal impact. 

 

Incremental angle 

 

The increment on the starting angle in the immediate layer of powder. This input works as a 

minimizer of the heat influence to the layer underneath it. 

 

Point distance 

 

The laser operates through a sequence of discrete point exposures to form a continuous line. Each 

exposure creates a molten pool of metal which takes the form of a bell (Figure 2.3). 
 

Figure 2.3 (a) Isometric view (left-hand); (b) Plan view (right-hand) of a melting pool shape [11] 

 

When overlapped, usually by one third the melting pool connects itself with the next one. The 

distance between the centre of the two melting pools is what the term point distance refers to. 

 

Exposure time 

 

Again, driven by a discrete event. It sets the of the laser on each point. Big variations in this 

input are usually due to different materials, or applications. 
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Power 

 

The intensity of the laser beam typically varies from machine to machine. Renishaw machine 

models are often named after this input. Efficiency of the laser beam is a factor that may change 

over time and influence the output result. Periodic calibration and trial builds help preventing this 

issue. 

 

Focus offset 

 

As per figure 2.4, the focus offset represents the convergence of the parallel rays of light. It is at 

this point that the highest energy is concentrated making it hence ideal for the melting spot. It can 

however be changed in relation to a datum. In this case the datum is the powder bed at any given 

time. Setting the focus offset to Z = 0 places the focal point on the datum line. A positive value 

moves the focal point below the datum line and negative above. 
 

 

 

Figure 2.4 (a) Diameter of focal point. On Renishaw AM machines the average diameter of the focal 

point is 75 µm and the focal point around 2 mm. Giving a ±1 mm tolerance (left hand side); (b) Focal 

point in relation to datum line (left hand side) [11] 

 

 
 

2.2.2 Fill Hatch 
 

The movement the laser describes over the powder bed is called the fill hatch. Different type of 

hatches produces different results due to the thermal behaviour mechanisms. For this reason, 

different geometries are more suitable to different kinds of fill hatches. Another difference 

between hatching paths is the overall build time. 

 

There are three types of fill hatches described both in table 2.4 and shown in figure 2.5. 

 
 

Table 2.4 Fill hatch Types [11] 
 

Fill hatch Description 

Meander Straight line vector path from each side of the border 

Stripes The scanned area is divided into stripes and a meander-like 
technique is used in each stripe 

Chessboard Like stripes only this time the area is divided into squares like a 

chessboard 
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Figure 2.5 Hach types; (a) Meander (left hand side); (b) Stripes (middle); (c) Chessboard (right hand 

side) [11] 

 
 

Meander 

 

The biggest temperature differences are in the middle and edges. Due to the path taken by the 

laser the corners (point A in Figure 2.5 (a)) will be at a higher temperature than the middle (Point 

B in Figure 2.5 (a)). It’s the quickest of the hatch paths, but it is also the one with the most 

inconsistent heat distribution. The Actual build presented in the experiment were build using this 

fill hatch type. 

 

Stripes 

 

Unlike the meander this hatch maintains a more consistent temperature throughout. The width 

of the stripes is user-defined (Figure 2.5 (b)). 

 

Chessboard 

 

The layer is divided into square fields. Each field is rotated successively by 90º and the squares 

are scanned in rows. In each row the squares with black arrows are scanned first. When all squares 

with black arrows have been scanned the squares with white arrows are scanned (Figure 2.5 (c)). 

This hatch type provides little improvement over stripes whilst taking significantly more time to 

scan. For this reason, this is not a commonly used method. 

 

The selection and interaction of all the selected inputs previously explained is responsible (but 

not exclusively as next paragraph suggests) for phenomenon’s like porosity. Porosity is a non- 

desirable factor due to its difficulty to control and unpredictable patterns. Reasons as to why it 

may occur are referred in the next paragraph. For more information on the presented subjects the 

reader is refer to [10, 11, 12]. 

 

2.3 Selective Laser Melting Non-Controllable Factors 

 
Non-controllable factors are hereby treated as the undesired ones that cannot be eliminated. To 

minimize them or put them on a known expected interval it is imperative to understand what 

causes them. Another key aspect worth mentioning is that their effect in this kind of simulation is 

still not yet completely understood. This has mostly to do with the adaptation that needs to be 

done to the solver when simulating this process, their constant and continuous changes and all 

that adding up to the considerable number of controllable factors influence depicted in the 

previous paragraph. Another reason is the fact that this kind of tools is no yet widespread and is 

considerably expansive. It was mentioned above that the gas flow inside the chamber can 

influence the surface finishing of the part. This effect is hard to control but the gas (argon) serves 

a very important purpose as it is used to prevent ignition inside the building chamber making it 

impossible to eliminate for safety reasons. Furthermore, the gas flow creates a flux inside the 

chamber that influences the heat flux through convection (chapter three). Figure 2.6 shows the 

comparison between a simulated and actual part influenced by the gas flow. 



12  

 

 
Figure 2.6 Actual part (a) top half; Simulation run (b) bottom half; The colour map was set at the same 

scale for both parts and the gas pattern was missed by the simulation. The deviation labels shown 

are in millimetres 

 

Since the scope of the work is to establish a ground base connection between simulated parts and 

actual parts, the model was simplified the most and patterns such as the one shown in figure 2.6 

are known to exist but were considered to have a minimal effect. Nevertheless, and since it is 

important to know (especially when considering future work) where they come from an 

explanation of the possible origin of these patterns is followed. 

 

Some of the variation comes from the different sizes in lose powder, laser  beam intensity, wetting 

and other physical behaviours, and thermal conductivity both in gas and solid materials. 

 

Lose powder 

 

The thermal conductivity of lose powder compares to the conductivity of gas by orders of 

magnitude smaller than the conductivity in solidified phase [13]. In addition, when considering 

the intra-particle heat transfer, one can observe that the times scales governing this process are 

larger than the ones governing particle melting. Under typical SLM process conditions, there is 

not enough time for conductive homogenization of non-uniform energy and temperature 

distributions across the powder bed but also across individual particles. As a result, partially 

molten particles may cause defects such as pores or inclusions [12]. Porosity, as stated above is a 

very typical undesired output of the SLM process. 

 

Differences in powder grain size can lead to non-uniform energy distributions which may have 

considerable influence on the resulting melting behaviour and melt pool hydrodynamics yielding 

hence different temperature fields. The wetting behaviour, liquification of metal (either from 

different lose powder grain size or hatch pattern) crucially depends on the material, temperature, 

surface roughness, and surface chemistry. Oxidation is known to considerably decrease the 

wetting behaviour of the melt which might result in instable, balled melt pools and rough surfaces, 

pores on delamination due to insufficient layer-to-layer adhesion [14]. The evolution of the solid- 

phase microstructure characterized by grain size, grain shape (morphology) and grain orientation 

(texture) are governed by the prevalent spatial temperature gradients, the cooling rates, as well as 

the velocity of the solidification front [15]. 

 

Also, the evolution of columnar grain structures oriented in direction of the main temperature 

gradients, usually in build direction, is typical for SLM processes and often yields a strongly 

anisotropic macroscopic material behaviour with higher material strength in the build direction 

[16, 17]. 
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Laser Beam Efficiency 

 

Laser beam efficiency is the percentage of laser beam energy that is lost in heat or light during 

the AM process. Energy from the laser beam (depicted in table 2.3) generates possible energy 

losses in form of thermal radiation emission, thermal convection or heat conduction from the 

solidified material to the underlying built platform. Two regimes can be distinguished: 1st regime 

is given by the temperature field in the direct vicinity of the laser beam Heat affected zone (HAZ) 

[18], which is controlled by highly complex mechanisms such as radiation absorption and heat 

conduction in the powder bed as well as convective heat transfer within the melt pool with all the 

individual physical phenomena and process parameters of influence as discussed above. The 

second regime is prevalent in previously deposited material layers located below the current layer 

and further away from the heat source. The solidified locations experience repeated heating and 

cooling cycles with decreasing amplitudes as both the adjacent scan tracks are processed, and 

consecutive new layers are built. The heat transfer in this regime is rather determined by global 

part properties. 
 

Geometry 

 

Geometry is controlled by design. Nevertheless, as many AM parts are impossible to build 

without the use of supports, and there are undesired behaviours when comparing the build 

orientation and any other orientation, this parameter was developed in this section. Microstructure 

greatly depends on the specific part geometry, e.g. due to heat flux concentration at the transition 

region from bulk material to shoulder columns or thin walls, which are surrounded by the low 

conductivity unfused powder [19, 20]. 

 

Furthermore, prevalent length and time scales determine which physical effects govern the 

process and which are negligible. Typically, viscous and gravity forces can be considered as 

secondary effects while surface tension and capillary forces, wetting behaviour but also inertia 

effects are the primary driving forces that influence the metal pool dynamics and shape as well as 

the surrounding powder morphology by attracting or rejecting individual grains [21]. The heat 

transfer within the melt pool is governed by convection rather than by heat conduction [22], and 

material evaporation may also take place [23]. 

 
 

2.4 Context of the Experimental Study 

 
2.4.1 Renishaw AM 250 

The machine used to produce the parts for this experiment was a Renishaw AM 250 (Figure 2.7). 

The name states the maximum power (watts) of the single SLM laser. The machine manufacture 

is Renishaw. Renishaw is a British company with interests in a variety of areas, but mostly 

metrology and healthcare. It was founded by Sir David McMurtry that after developing a portable 

smaller version of a CMM (the Renishaw equator) whilst working for Rolls Royce, decided to 

patent and develop his idea. Renishaw has a vast experience in the production of 3D parts for 

healthcare especially dental moulds. Its currently the U.K manufacture and developer on AM 

machines. AM250 is one of the first being used for metal applications and as had outstanding 

results. There are currently two other machines from the same manufacturer worth mentioning as 

they are also being used by HiETA. The Renishaw AM 500 and Renisahw AM 500 ML [24]. 
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Figure 2.7 Ren AM250 a); Ren AM250 Build Chamber b) 

 
 

Obvious differences between them are the laser power from which their names are taken from. 

Other than that, an on a more technical aspect the internal powder filter as well as the internal 

powder feed system are amongst the more significant differences. The trend in the newer versions, 

as demanded by the market [20] is to have more autonomous and powerful machines and 

Renishaw’s new releases show exactly that, machines that can work longer and faster with less 

human intervention. Another significant difference lies on the multi-laser machine (ML) that in 

Renishaw’s case uses four 500-watt lasers instead of one. This simple aspect of adding three more 

lasers significantly shortens building time but creates new problems for measuring and simulation 

tools. Each laser is a source of error and the end individual result from each beam has a different 

deviation from nominal. Several works are currently being done to eliminate or minimize these 

sources of deviation. 

 

A continuous adaptation to those changes demanded by market have an intrinsic relation with the 

motivation of this work. 

 

Furthermore, any given part’s result when fixing all the inputs and varying the machine will 

change. This is highly related as seen previously to heat behaviour from different hatch types or 

machine laser power combinations. 

 

2.4.2 Inconel 625 

Inconel 625 is a metal superalloy invented in 1962. Its development started in the 50’s to meet 

the demand for high-strength main stem-line piping material. The typical composition of Inconel 

alloy 625 is presented in table 2.5. 

 
Table 2.5 Composition of Inconel 625 (%) [25] 

 

 

 
The product goals for the development of this new alloy were weldability, high creep resistance, 

and non-age hardening. From the development of such an alloy another one (Inconel 718 was 

discovered), but the main characteristic of Inconel 625 as always been weldability. Alloy 625 is 

used in industries such as aerospace because of its high strength, outstanding fatigue and thermal 

fatigue resistance, oxidation resistance and (not surprisingly) excellent weldability and braze 

ability [25]. Table 2.6 depicts its properties. 
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Table 2.6 Inconel 625 properties [26] 
 

Property Typical value 

Tensile strength 120.00-140.00 (MPa) 

Yield strength 60.00-75.00 (MPa) 

Elongation 55.00-30.00 (%) 

Hardness 145.00-220.00 (MPa) 

 
 

For this reason, alongside its corrosion resistance under a wide range of temperatures, this alloy 

is vastly used in AM technologies. 

 

2.4.3 HiETA Technologies 

The name stands results from the combination of a word and a letter. High efficiency, the Greek 

letter ƞ (eta). It emerged from an idea of one of its founders Drummond Hislop on the late 1990’s 

by realising that a new emerging technology AM would allow new, more efficient architectures 

for compact heat exchangers whilst looking into ways of improving the performance of the 

compact heat exchangers on witch Stirling engine depended. 

 

To this day HiETA as in its core research and development to develop and implement novel 

products in markets such automotive, aerospace, defence, energy and motorsports industry. 

Although a very young enterprise, it is already regarded as a world-class product development 

company. The company’s activities almost all lead to carbon reduction with increasing 

performance of products. Tools such as the one experimented in this work are expected to 

contribute indirectly to the overall cost reduction enhancing market competitivity [27]. 

 
 

2.5 Thermal Stresses  

 
2.5.1 Basic Definitions 

When considering the SLM AM process, three distinct domains of analysis can be set. 

Table 2.7 synthetises those domains. 

 
Table 2.7 Thermal Domain of analysis in SLM 

 

Domain Description 

Macroscopic Component level. Aims to determine residual stresses or 

dimensional distortion effects 

Mesoscopic Detection of defects such as excessive surface 

roughness, residual porosity or inclusions 

Microscopic Investigates the metallurgical microstructure 

evolution resulting from the high temperature 

gradients and extreme heating and cooling rates  

This work is focused on modelling behaviours at the macroscopic scale. There is an obvious 

connection between all the domains [28], and although that was considered spatially trough the 

presentation of the equations of equilibrium, the selected theory that will now be presented had a 

higher focus on explaining the changes in a macroscopic scale, since the main studied outcome 

expresses itself in this scale. 
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Any object contains a certain amount of thermal energy. Thermal energy is the energy contained 

in the kinetic energy of the random motion of molecules in a body on an atomic level. Temperature 

is a measure of the averaged kinetic energy of the random particle motion. Only a large number of 

particles together can have temperature. This property always seeks equilibrium, meaning that the 

body with higher kinetic energy will hit the particles of the body with lower kinetic energy raising 

its temperature whilst at the same time reducing its own. This translates by the flow of heat within 

the body from warmer towards colder parts. Heat can be described as the transfer of thermal energy 

from one place to another. It only exists as a flow of energy. Hence, to alter the temperature of an 

object one would need a heat flow. The amount of energy (Joules) required to raise the temperature 

of the object by one Kelvin is called the object’s heat capacity (Joules/Kelvin). The heat capacity 

of an object depends on its mass (Kg) and the specific heat capacity of material. Every material has 

a certain specific capacity [29]. 

We can consider three fundamental modes of heat transfer depicted in Table 2.8. 

 

 

Table 2.8 Fundamental modes of heat transfer 
 

Heat Transfer mode Description 

Conduction The heat is transferred via molecules vibration. 

The molecules with a bigger level of vibration 

transfer some of that kinetic energy to the 

slower-moving ones 

Convection Occurs when a group of molecules with a 

certain thermal energy is physically moved to 

another location. Often a flowing liquid absorbs 

heat from a warmer body and then transports it 

to a colder body elsewhere 

Radiation Emission and absorption of photons. Each 

photon as a certain energy and that is the energy 

that is either emitted or absorbed by a given 

body  

SLM process experience all these three fundamental modes of heat transfer. On the one hand, there 

are variations inside the chamber due to the argon gas flow that will transfer heat via convection. 

On the other hand, the laser is melting material by raising its temperature to material melting point 

(molecule vibration) and although this last one is arguably the most significant one of the three 

[28], there is also radiation present and emitted by the laser. It is this symphony of fundamental 

heat transfer modes allied with the technology presented in the previous chapter that playfully 

shapes and deforms the material in the desired formats. 

 

 

2.5.2 Inherent strains 

 
When particles of a continuous substance move so that distances between particles are changed, 

the substance is said to be deformed. The concept of deformation is purely geometrical or kinetical 

and hence independent of the nature of the medium and of the causes of deformation [28]. 

 

For most metallic alloys if the stress is below the material yield strength, the material behaves 

elastically, and the stress is proportional to the strain. In this elastic region, the linear stress-strain 

relation follows Hooke’s law [30]. Inherent strain method is a destructive method developed in 

1975 [31]. This method is described in the next paragraph. 
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During SLM thermal-mechanical process, let the deformation be described as 𝑑𝜀𝑖𝑗 consisting 

in an element of elastic strain 𝑑𝜀𝑖𝑗
𝑒 , plastic strain 𝑑𝜀𝑖𝑗

𝑝
, thermal strain 𝑑𝜀𝑖𝑗

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 and phase 

transformation induced strain 𝑑𝜀𝑖𝑗
𝑝ℎ𝑎𝑠𝑒

. As given by the equation 2.1.  
 
 

𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝 + 𝑑𝜀 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑑𝜀𝑝ℎ𝑎𝑠𝑒 (2.1) 

 

Once the heating and cooling processes are finished, the residual total strain 𝜀 can be calculated 
as the summation resulting in equation 2.2. 

 

𝜀 = 𝜀𝑒 + 𝜀𝑝 + 𝜀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝜀𝑝ℎ𝑎𝑠𝑒 (2.2) 

 

The inherent strain 𝜀∗ is defined by the difference between deformation strain and elastic strain as 
per equation 2.3. 

 

𝜀∗ = 𝜀 − 𝜀𝑒 (2.3) 

 

The distribution of the inherent strain and residual stress can be assumed to be uniform [32]. 

Based on this statement and equation 2.3 the calibration principle is explained (see chapter six). 

 

2.5.3 Equations of Equilibrium 

 
Although this experience will not deal directly with the equilibrium equations since the gradients 

movements are estimated trough the inherent thermal strains the exposure of the equations of 

movement and the application of the gradient to the heat equation was considered here to provide 

a better understanding of what the inherent thermal strains are modelling. 

 

In figure 2.8 a parallelepiped used in the determination of the equations of equilibrium is shown. 
 

Figure 2.8 Determination of the equations of equilibrium [28] 
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From it we can define X, Y and Z as the components of the body forces (including inertia forces) in 

the x, y and z directions respectively. For small displacements such as the ones seen in SLM process 

we can write equations 3.3.1, 3.3.2 and 3.3.3. 
 

𝑋 = −𝜌 
𝜕2𝑢

 
𝜕𝑡2 

 

𝑌 = −𝜌 
𝜕2𝑣

 
𝜕𝑡2 

 

𝑍 = −𝜌 
𝜕2𝑤

 
𝜕𝑡2 

(2.4) 

 
(2.5) 

 
(2.6) 

 

Where 𝜌 is the mass density, u, v and w are the components of the displacement vector in the x, 
y and z directions respectively, and t is time. 
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3 

Experimental Setup  

This chapter presents both the software simulation principles and the optical scanning 

measurement system.  After introducing the working principles, concepts like voxel and finite 

elements theory were also investigated. Although closely placed to the border of the scope of this 

work an explanation as such is necessary to give some clearance on any uncertainty derived from 

such measuring system. 

 

3.1 Ms Simufact Additive AM 

Simufact is a simulating manufacturing software tool with more than twenty years of experience. 

It is a product from MSC Software, one of the ten original software companies and global leader 

in simulation software and services. It has been vastly used for other process and industries in the 

past providing linear and nonlinear finite element analysis (FEA) where 90% of the top 

manufacturers use MSC software products. The company was founded in 1963 when it was 

awarded the original contract from NASA to commercialize the FEA software known as 

NASTRAN (NASA Structural Analysis). MSC has pioneered many of the technologies that are 

now relied upon by industry analysing and predicting stress, strain, vibration & dynamics, 

acoustics, and thermal analysis with MSC Nastran [33]. MSC acquired or developed over its 

history many other well-known computer aided engineer systems (CAE) such as Marc, the one 

solver in Simufact and used in this experiment. The software’s documentation on previous 

experiences suggests advantages in both the macro, meso and micro scale approach with better 

time/detail results to the macro scale. 

 

3.2 Marc Solver 

Marc is an advanced nonlinear simulation solver used to simulate responses under static dynamic 

and multi-physics loading scenarios. Although this experience only looks to the AM build 

process, the software and the solver can also be used to determine the material behaviour under 

support removal or heat treatment conditions. 

 
The main variables of a linear FEA analysis are depicted in table 3.1. 

 
Table 3.1 FEA linear analysis variables [34] 

 

Variable Description 

Mesh Normally the CAD design without any change. Support 

structure can be generated be the software or imported 

separately 

Material Constants Material properties such as strength, ductility and yield 

point pre-defined on the software 

Constraints Constraints used to limit part movement hence limiting rigid 
body motion  
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It is important to point out that in a non-linear FEA load increments and non-convergence of runs 

increase the complexity of the analysis. 

The next section of this chapter explains what a voxel is. Nevertheless, the variables presented in 

table 3.1 are used and linked by the solver trough voxels. The mesh particularly is filled with 

voxels (voxel mesh) with coordinates whose behaviour (deviation from thermal gradient field) is 

then followed and simulated. 

 
Whilst the material constants and movement constraints were kept unchanged during this 

experiment as they are imposed either by design or material specifications, the construction of the 

mesh and its influence on the result was the subject of this study. The smaller the voxel the highest 

the level of detail. This affirmation does not always stand has for increasingly short values the 

noise increases significantly. The change of the voxels size parameter for both the build mesh and 

the build plate are trying to map a connection between the size values and simulation run time. If 

the interested pattern on the geometry can be studied with bigger voxels, then the simulation time 

shortens. Obviously too big of a voxel can generate error from model geometry simplification but 

defining an acceptable voxel size for a given geometry will also allow the separate import of parts 

to the software and based on previously determined geometries set different voxel sizes, reducing 

overall simulation time without compromising accuracy. The origin of the term and fundamental 

working principle are presented in the following section. 

 
 

3.3 Voxel 

A voxel is a volume element. They are the three-dimensional representation of a pixel. In 

computers the two main ways of representing graphics are vector and raster. Vectors are a 

mathematically precise way of describing an image and raster graphics are an array of colour 

values that are positioned one after the other into a grid pattern [27]. 

 

A voxel mesh refers to a mesh that has different number of nodes in neighbouring cell layers 

(Figure 3.1). This allows the creation of finer resolutions in necessary areas without increasing 

the number of cells in other areas. Amongst the many advantages is the creation of cells with 

minimum skewness, automatic mesh generation and uniformity in cell shapes and sizes. The voxel 

meshes are not yet validated in boundary layer computations. As for disadvantages, it is important 

to point out that since a voxel as a cube-like shape, the objects representation results in a step like 

surface of the object (a parallelism between this 3D shape and the raster 2D representation can be 

made here). The voxel creation utility is embedded in the software and is the central study of this 

work [35]. 
 

Figure 3.1 Voxel mesh of three layers; [35] 

 
 

The finite volume method (FVM) is a numerical technique that transforms the partial differential 

equations representing conservation laws (see chapter 3) over differential volumes into discrete 
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algebraic equations over finite volumes (voxels) [36]. The partial differential equations are then 

discretized/transformed into algebraic equations by integrating them over each discrete element. 

The system of algebraic equations is then solved to compute the values of the dependent variable 

for each of the elements. In the finite volume method, some of the terms in the conservation 

equation are turned into face fluxes and evaluated at the finite volume faces. Because the flux 

entering a given volume is identical to that leaving the adjacent volume, the FVM is strictly 

conservative. This inherent conservation property of the FVM makes it the preferred method in 

computer fluid dynamics (CFD). Two other important aspects of FVM are that it can be formulated 

in the physical space on unstructured polygonal meshes and the fact that it is quite easy to 

implement a variety of boundary conditions in a non-invasive manner, since the unknown 

variables are evaluated at the centroids of the volume elements, not at their boundary faces. 

 

In Simufact Additive, the influence of the mesh representation with respect to the real part is 

determined by a solid fraction. Those elements that are partially filled will have a solid fraction < 

1.0 (100%) (E.g. surface elements). 

 

The meshing starts with creating one hexahedral element within the part which has eight gauss 

points. This one hexahedral element will be subdivided in to eight more hexahedral sub-elements. 

Control points will be created for all eight sub-elements, figure 3.2. [37]. 
 

Figure 3.2 Control points for one voxel [37] 

 

 

3.4 Simulation Parameters 

 
The software has previously determined parameters for inputs such as material and machine. 

Before running a simulation, the process, components, manufacturing and analysis widgets need 

to be completed accordingly. These are the widgets depicted in the top menu of the software in 

the same order as it is shown in figure 3.3. 
 

 

Figure 3.3 Simufact Status bar 
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Where: 

 

Process – Yellow 

Component – Orange 

Manufacturing – Green 

Analysis – Blue 

 

Each widget parameters inputs influence was considered as per the following paragraphs. The 

last grey square represents the simulation run widget. 

 

3.4.1 Process 
 

The process widget is where the choices of machine and process are commanded. Table 

3.2 shows the options and their description. 

 
Table 3.2 Process widget parameters 

 

Parameter Description 

Process type The manufacturing process to be simulated 

AM machine The software is shipped with pre-set parameters 

on AM machines from several manufacturers. 

The choice of machine is done here 

AM build analysis type Choice between Mechanical, Thermal or 

Thermomechanical analysis. 

Type of simulation Manufacturing or Calibration simulation 

Manufacturing process stages The selection of processes to simulate is done here.  

 

All the parameters in the process widget were fixed for the experiment at: 

 

• Process type - Metal powder bed fusion 

• AM Machine - Renishaw AM 250 

• AM build analysis type - Mechanical 

• Type of Simulation - Manufacturing 

• Manufacturing process stages - Build 

 

3.4.2 Component 
 

It is through the component widget that the part is imported. If the part has a support structure it 

can be imported here as well or created by the software. Table 3.3 depicts the possible choices on 

this widget. 
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Table 3.3 Component widget parameters 
 

Parameter Description 

Parts In the parts properties, material properties 

such as relative material density can be 

selected here. Parts dimensions can also be 

changed here 

Supports Can be imported or generated. Similarly, to 

parts the relative material density can be 

select here and the support structure 

reconfigured 

Base Plate Base plate material, dimensions and fixations 

position are selected here 

Material Access to material powder data base and 

selection  

 

 

 

For the component widget the inputs were: 

 

• Part - Ring build CAD 

• Support - None (non-existent for the experiment) 

• Base Plate - 316L_baseplate (Stainless Steel) 

• Material - IN-625_powder (Inconel 625) 

 

The part was centred on the build plate with the same orientation of the actual builds. Base plate 

deformation and thickness (15 mm) were selected here, as well as the position and dimension of 

the bolt holes on the build plate as per the actual process values. 

 
 

3.4.3 Manufacturing 
 

The parameter allows the selection of the calibrated machine values. The several stages selected 

on the first widget can be detailed here. In this case we have (table 3.4) 

 

 

Table 3. 4 Manufacturing widget parameters 

 
Parameter Description 

Build Build parameters are defined here. The calibration file from 

the actual machine is imported here. Machine working inputs 

such as layer thickness, scan with, start angle and incremental 

angle are selected here. The post build parameters for this 

experiment are select here. In this case they refer to the order 

in which the bolts are extracted from the build plate  
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Figure 3.4 shows the pop-up window with the options that appear after clinking on the build icon. 
 

Figure 3.4 Build selection menu 

 

The values shown are the ones used in all the experiments that follow, both the experiment and 

one of the confirmations runs. The second confirmation run did not use the inherent thermal 

stresses calculation and so the menu changes and is presented in chapter 7. 

3.4.4 Analysis 
 

The analysis widget compiles three sub menus depicted in table 3.5 

 
Table 3.5 Analysis widget parameters 

 

Parameter Description 

Surface mesh Triangle elements are used to construct the surface 

mesh. Since the CAD was imported directly to the 

software, this feature was not changed 

Voxel mesh Creation parameters of the hexahedral 

elements (voxel) 

Solver Choice of the number of cores used during the simulation 

process  
 

The changes on the simulation occur here at this widget. The voxel mesh menu is what is the 

object of the study. For this reason, a figure was presented of the window selection on this 

parameter (Figure 3.5). 
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Figure 3.5 Meshing properties 

 

Figure 3.5 depicts the parameters that were changed in this experiment they are described in table 

3.6. 

 
Table 3.6 Studied variables 

 

Variable Description 

Voxel Size The edge length of the voxel element 

Minimum fraction for part Allows the specification of the minimum 

voxel fraction for the part. All voxels with a 

fraction less than the specified value will be 

removed from the voxel mesh 

Voxel size (Base plate) The edge length of the base plate voxel 

element 

Number of layers (Base Plate) Number of voxel layers over the thickness of the base 
plate  

  

3.5 Optical Measuring System 

 

An optical measuring system (OMS) is a device that measures the geometry of physical objects 

via the wave properties of light. The usage of this kind of systems is gradually increasing mostly 

due to limitations on coordinate measuring machines (CMM), ease of usage and high accuracy 

[38]. In its basic form, a vision system consists of optical and electronic components to achieve 

three processes depicted in table 3.7. 

 



26  

 
Table 3.7 Basic constituents of an Optical Measuring System 

 

Basic Constituent Description 

Image Formation and Sensing The object can be illuminated via light 

transition trough or around itself or by 

reflecting light. The illuminated object is 

then imaged to a detector camera, by a 

suitable optical arrangement 

Image Processing After the object has been imaged the 

resulting mesh needs to be processed by 

some form of computer or 

microprocessor 

Communication The final process is to communicate the 

results of the measurements to the operator. 

The simplest method is to display graphically 

the image and measurements on a monitor 

 

Optical measuring process layout can be generally looked up as seen in figure 3.6. 
 

 

Figure 3.6 Macro image processing system [39] 

 

The layout presented in figure 3.6 is like the one used by the tool used in the experiment. Main difference 

being that the source of light is incorporated between the lenses. Figure 3.7 shows the operation principle 

of the gom Scanner. 
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Figure 3.7 Atos gom scanner [30] 

 

Precise fringe patterns are projected onto the surface of the object and are captured by two cameras 

based on the stereo camera principle. As the beam paths of both cameras and the projector are 

known in advance due to calibration, 3D coordinate points from three ray intersections can be 

calculated. This triple scan principle offers advantages for measuring reflective surfaces and 

objects with indentations. The result is complete measuring data without holes or erratic points 

[40]. 

 

Working with blue light technology means that interfering ambient light can be filtered out during 

image acquisition. The light sources are so powerful that measuring date is captured even on non-

cooperative surfaces. 

 

As any measuring tool there is an uncertainty associated with the measurements. The sources of 

uncertainty for the actual measurements taken during the experiment is explained in the next 

paragraph. 

 

3.6 Measurement uncertainty 

 
The actual parts build for feature acquisition were measured with the gom scan. For this reason, it 

is important to have an idea of the uncertainty associated with the measurements since the value 

provided by the measuring equipment was the real or best value of the features. 

 

The measuring system used in the experiment relies on pixel calibration. For this case the 

uncertainty contributions that apply are the uncertainty form calibration (calibration plate), the 

pixel calibration value, and the magnification & distortion errors. Other factors that contribute to 

the overall uncertainty, vary from measurement set to measurement set. They are essentially 

related to the number of shots taken and room temperature (automatic thermal compensation 

corrections with an associated uncertainty). 

 

The equipment is calibrated weekly and the data monitored so that all measurements can be related 

to the external calibration. 
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External calibration of this equipment set the uncertainty value at 

 
 

± 1.2 𝜇𝑚 + 2.5 × 𝑙 × 10−6 

 

For k=2 (95% confidence level) Where l is the length (m) measured. The build plate is 250 mm 

long. But assuming the length to be the perimeter of the outer ring (See chapter 4) with Ø 225 mm, 

the following is obtained: 
 

 

 

 
Substituting above, 

 
2. 𝜋. 

225. 10−3 
 

 

2 

 
= 0,7068 𝑚 

 

1.2 + 2.5 × 0.7068 = 1.2 µ𝑚 
 
 

To account for temperature variations, external factors and the overall length of the part measured, 

the uncertainty considered was ± 2.0 µm. 

 

This rounding value is an overestimate. The best way to determine the uncertainty of an optical 

measuring system is through a Gauge R&R study. For this reason, to the value calculated in 3.1 

a wider interval was considered by rounding the value to next biggest whole number.



29  

4 

Experiment Methods 
With this chapter the second part of the dissertation begins. In it, the previously stated results 

from theory are used to set the calibration of the machine. It begins by stating the sequence of the 

model used for the experiment. It also presents the geometry that was built, the actual 

measurements and the end of the chapter shows the statistical techniques used through design of 

experiments. 

 

4.1 Experience Model 

This paragraph describes the model used to conduct the experiment. It was already stated that the 

software’s capability has never been tested within the company scope completely. For this reason, 

the starting point was to understand the process functions and significant variance sources. The 

idealised model that was used in the ring build experiment is depicted in the flowchart shown in 

figure 4.1. This accounts for the possibility that there is already a previous voxel size shape 

relation but was built considering also the situation where novel geometries are being tested and 

for this reason it was used for the experiment. 

 

At the initial stage it is important to register all relevant data that might be used in the future. So, 

the flowchart presented considers the record both the simulation parameters and statistical 

analysis in several steps of the way. 

 

The model’s complexity was also kept simple. This was done for the same reason stated above. 

Since this is an initial draft, simplicity is key to build on further complex models. One of the 

things that this model doesn’t account is simulations with different voxel sizes trough out the build 

design. By combining the ideal voxel size of complementary or converging geometries within the 

same build the simulations times could be greatly reduced. 
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Figure 4.1 Flowchart of the applied model 

 

 

4.2 Calibration 

 
As stated in chapter 2, the software has a pre-set parameter for both the 250 W and 500 W 

Renishaw machines. This allows the possibility of running the experiments without the need for 

a previous calibration. However, it is well known that each machine has a different behaviour due 

to several external factors (availability, maintenance room vibration, idle times, e.g.). For this 

reason, the machine used in the experiment was calibrated. 

 

Calibration process is sensible to powder as well as the controllable parameters (table 
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2.3 chapter 2), and machine. Meaning that any change in these parameters implies a new calibration 

to guaranty maximum accuracy levels. However, the main source of variation is the machine, not 

only for the laser power, but also because of model machine processes. 

 

The calibration process aims to determine the inherent thermal strains. As discussed in chapter 2, 

these inherent strains are related to material properties and trough them the 

history of the cooling of the material to room temperature (thermal shrinkage) can be accessed. 

 
The process consists in building the sample/calibration build (CAD provided by the software) 

strategically cut the sample build and getting the values for 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 based on reverse 

engineering. Several layers of printed material are considered at once in one finite element layer 
and the homogenized values of the inherent strains sum up the influence of the process parameters 
(controllable factors, hatching type and external factors). Figure 4.2 shows the actual sample build 
before and after cutting. 

Figure 4.2 Calibration samples before and after cutting (a) top half; and (b) bottom half. 
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𝑖=1 𝑟 𝑖 

The final part of the calibration process is done by the software. The only input that it takes is the 

ΔZ, the grow in eight seen in the profile Figure 6.1 b). To calibrate the part, the software uses the 

method of least squares, to minimize the difference between the simulated values and the 

measured values by equation 4.1. 
 

 
 

 

 
Where 

𝑆 = 𝑚𝑖𝑛 ∑𝑛 2 (4.1) 

 

𝑟𝑖 = 𝑍𝑖 ,𝑠𝑖𝑚 − 𝑍𝑖 ,𝑒𝑥𝑝 

i= current running index 

n=amount of sampling points 

𝑟𝑖 – difference between z-distortion of experiment and simulation 

𝑍𝑖 ,𝑠𝑖𝑚-z-distortion of simulation 

𝑧𝑖,𝑒𝑥𝑝-z-distortion of experiment 

Figure 4.3 shows the calibration results for Ren AM2. 
 

 

Figure 4.3 Calibration results 
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4.3 Build Design 

 
The geometry selected to run the experiment was the “Ring Build” shown in Figure 4.4. This 

simple shape was initially designed to assess the symmetric behaviour in relation to a central axis 

over three distances (tree ring builds). It came about after a recent project where a circular heat 

exchanger with a circular shape had as a critical dimension an outer diameter. It was discovered 

that the behaviour changed from machine as expected but also from the distance to the centre as 

this part had a smaller inner diameter that consistently performed better to nominal. It was then 

suggested that a simpler similar geometry could be used to determine machine behaviour within 

that feature. The sharp edge and the rectangular shape on the opposing end are reference points 

regarding both build orientation and used for metrology alignments. 
 

 

Figure 4.4 Ring Build 

 
 

This being an initial approach to the software adaptation to feature, the choice of the feature to 

simulate does not come lightly. Ring builds are cheap, quick and low time consuming. Adding to 

that they provide a radial relation in virtually all the powder bed scope. For these reasons they 

seemed to be the perfect candidate to start establishing such a relation. Given that the part is 

essentially symmetrical on both x and y planes the feature chosen was the internal diameter of the 

three ring builds, as well as roundness to test the software’s limits. Since the measurements were 

all taken via computer aided software roundness was also used to compare results and take 

conclusions. Table 4.1 explicit the nominal measurements. 

 
Table 4.1 Nominal Ø and roundness values for all three rings 

 

Dimension Nominal Value (mm) 

Cylinder 1 ID 45 

Cylinder 2 ID 145 

Cylinder 3 ID 225 
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Three ring builds were produced in the same AM250 machine and Figure 4.5 represents the 

statistical results for the six GD&T features considered in the three builds sample. 
 

Figure 4.5 Summary of the three ring builds 

 

From the results shown in Figure 4.4 and theory from chapter four, a Design of Experiments was 

conducted to determine the optimal inputs for the simulation run that would give the closest results 

to the ones shown in Figure 4.5. Using the average values as target. (Table 4.2). 

 

Table 4.2 Targeted values for Optimization 
 

Dimension Target (mm) 

Cylinder 1 ID 45.024 

Cylinder 2 ID 145.460 

Cylinder 3 ID 225.795 

Roundness 1 0.225 

Roundness 2 0.377 

Roundness 3 0.465 

 

A note for these results, as expected from previously stated internal case studies, the distance from 

the centre of the build plate increases the deviation from nominal. This behaviour is seen both in 

the cylinder’s diameter and the roundness features. 
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4.4 Design of Experiments 

 
Three ring builds where built and measured in AM 250. It was assumed as per common rule in 

industry that dimensions such as the ones studied (i.e. diameter and roundness) follow a normal 

distribution. Since the sample size is small, a verification of normality was not conducted. 

 

Considering the inputs that the software takes, and the assumptions from literature review a 

Design of Experiments was set for the simulation runs to determine the optimal value for the mesh 

voxel size, build plate voxel size, minimum mesh voxels percentage and build plate layers. Table 

4.3 summarizes the experiment design where: 

 

• A – Mesh voxel (high 3.6, low 0.6) 

• B – Minimum fraction (high 15, low 0.0) 

• C – Plate voxel (high 3.6, low 1.8) 

• D – Layers (high 9, low 1) 

 

To test the solver and try to depict any discrete simulation within it, two replicates were considered 

for the four factors design. The simulations were run digitally over the course of three consecutive 

days, and for that reason only one block was considered. 
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Table 4.3 Randomized design table of the experiments 
 

  Run  Block  A  B  C  D  

  1  1  +  -  -  +  

  2  1  +  0  +  -  

  3  1  -  -  +  +  

  4  1  0  +  +  +  

  5  1  -  -  0  -  

  6  1  -  0  -  +  

  7  1  -  -  +  +  

  8  1  +  -  +  0  

  9  1  -  -  0  -  

  10  1  0  -  -  -  

  11  1  +  +  -  -  

  12  1  +  +  0  +  

  13  1  +  +  -  -  

  14  1  +  0  +  -  

  15  1  0  0  0  0  

  16  1  0  +  +  +  

  17  1  0  0  0  0  

  18  1  -  +  -  0  

  19  1  -  +  -  0  

  20  1  0  -  -  -  

  21  1  +  +  0  +  

  22  1  +  -  -  +  

  23  1  -  +  +  -  

  24  1  -  0  -  +  

  25  1  +  -  +  0  

  26  1  -  +  +  -  
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4.5 Results and Discussion 
 

4.5.1 Simulation runs 

 
The experiment was run as stated above. The values of each studied feature are shown in table 

4.4 and the figures of each simulation run can be found in Appendix A. All dimensional values 

presented are in mm. 

 
Table 4.4 Simulation results 

 

Run 

Order 

Replicate Ø 1 Ø 2 Ø 3 Roundness 

1 

Roundness 

2 

Roundness 

3 

1 1 44.964 144.973 224.962 0.012 0.018 0.026 

2 1 44.963 144.979 224.967 0.012 0.017 0.026 

3 1 44.961 144.978 224.980 0.005 0.006 0.013 

4 2 44.963 144.982 224.981 0.009 0.011 0.017 

5 1 44.962 144.980 224.982 0.005 0.007 0.013 

6 2 44.957 144.975 224.984 0.004 0.007 0.016 

7 2 44.961 144.978 224.980 0.005 0.006 0.013 

8 1 44.963 144.957 224.941 0.012 0.021 0.034 

9 2 44.962 144.980 224.982 0.005 0.007 0.013 

10 1 44.961 144.982 224.978 0.010 0.010 0.019 

11 2 44.969 144.983 224.982 0.015 0.020 0.022 

12 1 44.965 144.980 224.975 0.041 0.037 0.035 

13 1 44.969 144.983 224.982 0.015 0.020 0.022 

14 2 44.963 144.979 224.967 0.012 0.017 0.026 

15 1 44.963 144.982 224.980 0.009 0.012 0.019 

16 1 44.963 144.982 224.981 0.009 0.011 0.017 

17 2 44.963 144.982 224.980 0.009 0.012 0.019 

18 1 44.958 144.975 224.985 0.004 0.008 0.015 

19 2 44.958 144.975 224.985 0.004 0.008 0.015 

20 2 44.961 144.982 224.978 0.010 0.010 0.019 

21 2 44.965 144.980 224.975 0.041 0.037 0.035 

22 2 44.964 144.973 224.962 0.012 0.018 0.026 

23 1 44.962 144.978 224.982 0.004 0.009 0.015 

24 1 44.957 144.975 224.984 0.004 0.007 0.016 

25 2 44.963 144.957 224.941 0.012 0.021 0.034 

26 2 44.962 144.978 224.982 0.004 0.009 0.015 
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From table 4.4 four important results came about. The first is that despite the voxel variance the 

diameters and roundness experiment very little variation. The mean and standard deviation (SD) 

of those values is depicted in table 4.5. The second result is the discovery that different replicates 

do not change the outcome meaning that no discrete events are being simulated. This is an 

important confirmation for the future application of the model as it cuts the number of runs to 

half. This result can also be seen in the images in Annexe A. Table 4.6 shows the relation between 

the simulation run and its replicate. Another conclusion derived from the non-influence of the 

replicates results in the fact that the random order has no significance and can also be used to 

simplify future experiments. 

 
Table 4.5 Average and SD of the simulation runs 

 

   Ø 1 Ø 2 Ø 3 
Roundness 1 Roundness 2 Roundness 3 

44.962 144.977 224.975 0.011 0.014 0.021 

 0.003 0.007 0.012 0.010 0.009 0.007 

 
 

Table 4.6 Run number and replicates relation 
 

1st Replicate 2nd Replicate 

1 22 

2 14 

3 7 

5 9 

10 20 

12 21 

13 11 

15 17 

16 4 

18 19 

23 26 

6 24 

8 25 

 

The third and most important result is that the simulated values are under nominal whilst the actual 

values are above. This result is alarming because both the magnitude of the deviation and its 

direction are different witch compromises any use of pattern recognition trough the software. 

 

Confirmation experiences were run to determine the root of this discrepancy. These experiments 

are developed at the end of this chapter. Nevertheless, the model was followed to determine an 

optimal statistical value, both to confirm the discrepancy and be used as a standard input in the 

confirmation experiences. 

 

From the DoE an analysis of variance (ANOVA) was done, and the results were plotted for a full 

quadratic term analysis. Figures 4.6 to 4.11 show these results. For a 95% confidence level (p-

value = 5%), the F-Fisher value is 2.131, meaning that factors above this threshold are 

significative. 

 

Finally, another important aspect that is confirmed in the figures of Annexe A, is that although 

the behaviour from the centre of the build plate to the extremities is different, it shows the reverse 

expected pattern. As it suggests that the performance to nominal increases with the distance from 

centre (middle and outer rings present a closer to nominal colour map). 
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Figure 4.6 Significant factors on the diameter 1 response 

 

 

Figure 4.7 Significant factors on the diameter 2 response 

 

 

Figure 4.8 Significant factors on diameter 3 response 
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Figure 4.9 Significant factors on roundness 1 response 

 

 

Figure 4.10 Significant factors on roundness 2 response 

 

 

Figure 4.11 Significant factors on roundness 3 response 
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The same weight was given to all factors. Results show that each factor contributes differently to 

the output of the features. Not surprisingly the voxel size revelled to be the most significant but 

depending on the feature, the significance of B and C vary. This is explained by the way the voxel 

mesh is constructed and the absence of non-controllable factors in the simulation process. Features 

like roundness were expectedly hard to represent and the inclusion of that feature was used mainly 

to test the software limits. For this reason, when defining the most significant factor only the 

results from figure 4.6 to 4.8 were considered (diameters). 

 

From those figures results the order: 

 

A B C D 

 

Finally, the optimization plot for the targeted diameters and the result is shown in Figure 4.12 
 

 

Figure 4.12 Sensitivity analysis and best combination of factors (not targeting Roundness) 

 

This result confirms what was expected and presents a confirmation of the theory. The result the 

closest to the target value is the biggest voxel mesh which was expected since the pattern shown 

in the simulation is the opposite to the on seen on the actual builds. 

 

Although the origin of the difference in patterns was unknown a further simulation was run with 

the optimized results to use as comparison in the hypotheses confirmation experiments. Hence, 

from figure 4.12 the values were: 

 

• A – 3.4485 (mm) 

• B – 15 (%) 

• C – 1.80 (mm) 

• D – 1
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Figure 4.12 is the interface menu of the sensitivity analysis. The red line on each subsection of 

the graph is can be changed and its influence is depicted immediately on the other graph 

subsections allowing the individual influence of each factor to be seen on the other factors 

 

4.5.2 Discussion 

 
Several challenges are presented when conducting a study from the very beginning. Combining 

highly sensitive features like roundness from different locations at this scale was known to be a 

risk, and it was taken because of the flexibility that technology allows on adding or deleting a 

feature without compromising the whole experience. For this reason, when determining the 

optimal experimental value roundness was not considered. Nevertheless, AM simulation requires 

at the macro scale heat behaviour pattern recognition and the experimental patterns were not 

confirmed by the simulation. 

 

The remaining of this chapter investigates the reasons as to why the discrepancy occurred. The 

tool used to compare the surfaces was a colour map representation of the deviation from nominal 

(CAD). Figures 4.13 to 4.15 depict the actual builds used as a target for the DoE optimization. 

The colour map scale is presented on the right side of the figure. 

 

The three builds were produced sequentially over the course of two days. They are present in the 

order of manufacturing 
 
 

Figure 4.13 Actual Build number 1 
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Figure 4.14 Actual Build number 2 

 
 

Figure 4.15 Actual Build number 3 

 

The surface pattern deviation clearly doesn’t change within the builds and is consistent with 

previous experiments (Figures 4.20 to 4.22). 

 

To have an idea of the discrepancy level shown in the previous result tables the same scale was 

used and colour map plotted like the actual builds. The result is seen in Figure 4.16. 
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Figure 4.16 Simulation optimization result (-0.5 mm to 0.5 mm scale) 

 
 

The simulated values are closer to nominal throughout the geometry and no pattern is seen at this 

scale. Another comparison was generated with a scale from -0.05 mm to 0.05 mm so that a 

behaviour patter could be spotted. Figure 4.17 shows this comparison. 
 

Figure 4.17 Simulation optimization result (-0.05 mm to 0.05 mm scale) 

 

The smaller scale revels the opposite pattern of the actual builds. Since previous internal results 

were able to predict patterns up to a 1 mm scale, four experiments were conducted to determine 

the origin source of the error, document it and update the model. 

 

4.6 Confirmation Experiments 

To determine the origin of the difference in patterns and direction values, two confirmation 

experiments were done. The first tests the calibration parameters and the second the AM machine. 

 

All the further simulations were done using the same inputs presented in chapter four, 
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and for the voxel parameters the DoE optimizer was used. They were used for the need to fix a 

value and not for being optimal. Since they have bigger size voxel the simulation time for these 

experiments was also reduced this way. 

 

4.6.1 Calibration Test 
 

To assess if the origin of the discrepancy is related with the calibration process, a simulation was 

done with the parameters determined in paragraph 4.5.1. Comparing these results with the ones 

from Figures 4.16 and 4.17 via a surface colour map comparison, patterns can be detected. 

 

This method of simulation considers different inputs than the one used in manual calibration. It 

estimates the inherent strains trough the hatch type (Meander in this case), the average beam 

power, efficiency and width. 

 

The results of the estimated calibration run with the fixed voxel size values is depicted in Figure 

4.18 
 

Figure 4.18 Simulation optimization result with estimated calibration values (-0.5 mm to 0.5 mm scale) 

 
 

Figure 4.18 shows a much more sensitive simulation result. However, both the pattern and 

direction are still inconsistent with the measured parts. Adding to that the height shows an unseen 

pattern so far. 

 

Comparing figure 4.16 with figure 4.17 suggests that the type of calibration influences the result. 

 

 
 

4.6.2 AM Machine 
 

To clarify if the machine used in the experiment was causing the error due to unspotted 

malfunction, the same design was built in another AM250 machine. The sample size was three 

ring builds. Results are shown in both table 4.7 and Figure 4.19. 
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Table 4.7 Average and SD of the simulation runs (2nd AM250) 
 

Dimension Average (mm) 

Cylinder 1 ID 45.175 

Cylinder 2 ID 145.497 

Cylinder 3 ID 225.779 

Roundness 1 0.109 

Roundness 2 0.226 

Roundness 3 0.305 

 

Again, a similar patter as to the previous AM250 machine. With closer values to nominal near the 

centre of the build plate. As seen by Figures 4.20 to 4.22. 
 

Figure 4.19 Summary of the three ring builds (2nd AM250) 

 

 

From figure 4.19  we can see the dimensional trend on each studied feature, as well as the three-

size sample  statistical values.
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Figure 4.20 Actual Build 1 (2nd AM250) 

 
 

Figure 4.21 Actual Build 2 (2nd AM250) 
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Figure 4.22 Actual Build 3 (2nd AM250) 

 
 

From this experience it is concluded that it’s unlikely that a machine malfunction was the root 

cause of the discrepancy. The pattern is like the one seen in the previous AM250, and the increase 

in in the second ring proximity to nominal is due to the thickness of the build plate, that in this lot 

was a 30 mm plate. 

 

From these results the flowchart previously developed needs to be updated by the following in 

figure 4.23. 
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Figure 4.23 Updated flowchart of the model 
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5 

Conclusions and 

Future work 
The results obtained through the course of this experiment suggest that the software cannot be 

validated for the chosen geometry. Two different calibration methods were tested and in both 

cases the simulation didn’t represent the manufactured part. This was tested in more than one 

machine and the output was similar in both cases. 

 

As for the root cause of this difference, further investigation needs to be conducted to assess if the 

material used was either: 

 

• a) contaminated 

• b) changed/mixed 

 
The effect of contamination is unlikely to have occurred, but could explain the differences 

observed, since a different material have different heat capacities. The second b) is more likely to 

have occurred during the experiment as the powder itself is sieved and reused but is unlikely to 

result in the discovered patterns. Further investigation on this subject will be conducted. 

 

Another source of deviation that was not fully explained in this work is scaling. Scaling is a 

common practice in SLM and is used to undermine the effects of some of the non-controllable 

factors. Usually the magnitude of the scale is an increase in 0.05 % in the x and y directions. 

Again, this factor doesn’t completely justify the observed deviations and hence further work will 

be developed to assess its impact. 

 
It is not entirely clear as to why the error exists, but calibration methods were shown to have an 

impact on the outcome of the simulation. Another discovery was the non-consideration of discrete 

events between runs. Meaning that if the source of the error is discovered and the software is 

validated for purpose within the company the response delivered by the method depicted in Figure 

4.1 can be used has a methodology. Another conclusion derived from the experiment is the need 

to update that model with the one depicted in Figure 4.23. 

 

The outcome was unexpected since previous simulations had been run and never a discrepancy 

such as this one was seen. Geometry as the cause of error can be discarded because in SLM AM, 

due to the nature of the process the region in direct contact and closet to the build plate is the one 

that presents the best results. And the overall material size of the part provides less complexity 

for the simulation process. 

 

 

After   the experience was conducted the results were shared with the software development team. 

An initial evaluation suggests that the more likely sources of error are the type of analysis 

(Mechanical Analysis) and the chosen geometry. For this reason, an opportunity in future work 

emerges by allowing further collaborative work between the software company and HiETA.  



52  

 

 

 
 

The non-controllable factors play a big role in SLM AM processes and they are known to generate 

unpredictable patterns, but even these don’t explain the change in direction between simulation 

and actual parts. 

 

Human non-recorded influence such as powder contamination over the length of the experiment 

is also a possible source of simulation result deviation. Further work needs to be done in the 

validation of the software. Success conditions must be tested to understand the source of the 

deviations presented. Once this is understood the model can be run and the optimal voxel 

geometry relation portfolio can be created. 

 

Within the company a calibration period must be set for all the machines and different material. 
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Surface Simulations results 
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