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1. Introduction

Let T = (X, E) be a tree with n ≥ 2 vertices, where X = {1, 2, . . . , n}, and let S(T )
be the set of all n-by-n real symmetric matrices A = [aij ] whose graph is T (aij �= 0, 
with i �= j, if and only if there is an edge between i and j). No restriction is placed 
on the main diagonal. If α ⊆ {1, 2, . . . , n}, then we denote the principal submatrix of 
A ∈ S(T ) resulting from deletion (respectively, retention) of rows and columns in α by 
A(α) (respectively, A[α]). When α consists of a single element i, instead of A({i}) we 
simply write A(i). Note that, if we denote by T − α the subgraph of T after removing 
vertices in α and edges incident in at least one vertex of α, then A(α) is a matrix whose 
graph is T −α. Using a similar notation, when α = {i}, we write T − i instead of T −{i}. 
When H is a subgraph of T , A[H] denotes the principal submatrix of A resulting from 
deletion of rows and columns that correspond to vertices not in H.

The multiplicity of λ ∈ R as an eigenvalue of A ∈ S(T ) is denoted by mA(λ), and 
the spectrum of A is denoted by σ(A). As a consequence of the Cauchy interlacing 
theorem [7], we have

mA(λ) − 1 ≤ mA(i)(λ) ≤ mA(λ) + 1, (1)

for all 1 ≤ i ≤ n.
Consequently, we have three possibilities for a vertex removed in T :

• In the case of equality in the right-hand side of (1), the element i is known as a 
Parter vertex of A.
If λ = 0, then the element i (vertex i of T ) is known as a P-vertex of A.

• If mA(i)(λ) = mA(λ), then i is known as a neutral vertex of A.
• If mA(i)(λ) = mA(λ) − 1, then i is known as a downer vertex of A.

When a vertex removed in T verifies mA(i)(λ) ≥ mA(λ), then i is a Parter vertex or 
a neutral vertex of A, and it is known as an F -vertex of A.

Note that if λ �= 0 and λ is an eigenvalue of A, then zero is an eigenvalue of B = A −λI

and mB(0) = mA(λ). So, we can focus our study in the eigenvalue zero.
One may also derive from the right-hand of (1) that mA(α)(0) ≤ mA(0) + |α|, for any 

nonempty subset α of {1, 2, . . . , n}. When we have mA(α)(0) = mA(0) + |α|, we call α
a P -set of A, [10]. The existence of the P -vertices was stated in the next theorem, a 
generalization of the Parter–Wiener Theorem [15,16]. We denote by dT (v) the degree of 
a vertex v of T .

Theorem 1.1. [10] Let A be a Hermitian matrix whose graph is a tree T , and suppose 
that there exists a vertex v of T and a real number λ such that λ ∈ σ(A) ∩σ(A(v)). Then

1. there is a vertex v′ of T such that mA(v′)(λ) = mA(λ) + 1;
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2. if mA(λ) ≥ 2, then v′ may be chosen so that dT (v′) ≥ 3, and there are at least three 
components T1, T2, and T3 of T − v′ such that mA[Ti](λ) ≥ 1, i = 1, 2, 3;

3. if mA(λ) = 1, then v′ may be chosen so that dT (v′) ≥ 2 and there are two components 
T1 and T2 of T − v′ such that mA[Ti](λ) = 1, i = 1, 2.

A characterization of F -vertices was stated in [14]:

Theorem 1.2. [14] Let A be an n-by-n singular, symmetric matrix, and i ∈ {1, . . . , n}. 
The following statements are equivalent:

1. The ith coordinate of every nullvector of A is equal to zero;
2. The vertex i is an F -vertex of A.

Many researchers ([2,3,10,11,13]) have studied P -vertices and P -sets of matrices whose 
graph is a tree. In [2], the authors found an upper bound for the size of any P-set of any 
symmetric matrix of order n. They also characterized the trees where this upper bound 
is attained.

As usual, [9], M(T ) is the maximum multiplicity occurring for an eigenvalue of an 
A ∈ S(T ).

The thrust of this paper is to provide an upper bound and a lower bound on the 
number of P -vertices of a matrix A ∈ S(T ) with nullity M(T ). We also prove that if the 
integer b is a number between these two bounds then there is a matrix C ∈ S(T ) with b
P -vertices and maximum nullity. The structure of matrices with maximum nullity was 
studied in [11]. The following result is a combination of results that were stated there.

Theorem 1.3. [11] Suppose that T is a tree, and A ∈ S(T ) is such that mA(0) = M(T ). 
Then

1. no vertex of T is a neutral vertex of A,
2. the removal of a P -vertex of A in T does not change the status of any other vertex,
3. the each set of P -vertices of A is a P -set of A.

The paper is organized as follows. In Section 2 we introduce some additional notation, 
study the problem when T is a path and present some results useful in the rest of the 
paper. In Section 3 we define a family of subsets of vertices of the tree, T , necessary to 
find bounds of the number of P -vertices in a matrix A ∈ S(T ) with maximum nullity. In 
Section 4 we prove results about the sets defined in Section 3, with smallest cardinality. 
The study about the sets with largest cardinality appears in Section 5. Section 6 is 
dedicated to establish a relation between some of the sets defined in Section 3, in a 
tree T , and a particular subtree of T . Finally, in Section 7 we present the bounds for the 
number of P -vertices of a matrix A ∈ S(T ) with maximum nullity.
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2. The number of P -vertices in a path

In this section we studied the particular case of paths. We do this for motivation, 
and for the readers who may only be interested in paths. Many of the known results 
presented in this work can be found in a good book of spectral graph theory, besides 
the references. The path cover number, P (T ), of a tree T is defined as the minimum 
number of vertex disjoint paths that cover all vertices of T . We will use the following 
fundamental theorem (see [9] or [6]):

Theorem 2.1. If T is a tree then

M(T ) = P (T ).

When T is a path, using last theorem, we conclude that

Corollary 2.2. Let T be a path, A ∈ S(T ) and λ be an eigenvalue of A. Then mA(λ) = 1.

As noted in [10], if T is a path with n vertices, and A ∈ S(T ), then A is permuta-
tionally similar to an n-by-n irreducible tridiagonal symmetric matrix. Consequently, by 
Corollary 2.2, any eigenvalue of A has multiplicity one. Moreover, we have the classical 
fact.

Proposition 2.3. If A is an n-by-n irreducible tridiagonal symmetric matrix, then the 
eigenvalues of A(1) and A(n) each strictly interlace those of A.

When T is a tree, as usual, we denote by L(T ) the Laplacian matrix, i.e., the matrix 
L(T ) = A(T ) −D(T ) where A(T ) is the adjacency matrix of T and D(T ) is a diagonal 
matrix with the degree of vertices of T . It is well known that zero is an eigenvalue of 
L(T ). Moreover, if λ is an eigenvalue of L(T ) then λ ≥ 0. The next result gives the 
multiplicity of the eigenvalue 0 of the Laplacian matrix of a path. It follows from general 
results on for graphs (see theorem 7.1.2 of [1]), and from results in [5]. We include a 
simple proof here for convenience.

Theorem 2.4. Let T be a path. Let L(T ) be the Laplacian matrix of T . Then

mL(T )(0) = 1 = P (T )

and there are no P -vertices of L(T ).

Proof. If T is a path with n vertices, then P (T ) = 1. Since P (T ) = 1 then mL(T )(0) =
1 = P (T ).

Let {1, 2, . . . , n} be the set of vertices of T with i adjacent to i − 1 and i + 1, for 
2 ≤ i ≤ n − 1.
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If i = 1 or i = n, then by Proposition 2.3, i is not a P -vertex of L(T ).
If i ∈ {2, . . . , n −1}, consider the paths T1 and T2, where T1 is the subpath of T indexed 

by vertices 1, . . . i − 1, i and T2 is the subpath of T indexed by vertices i, i + 1, . . . , n. 
Since

mL(T )(i)(0) = mL(T1)(i)(0) + mL(T2)(i)(0),

by Proposition 2.3, i is not a P -vertex of L(T ).
So, we conclude that no vertex of T is a P -vertex of L(T ). �
The next result follows from general results in [12], concerning how the multiplicity 

of an eigenvalue can change when two vertices are deleted (see proposition 4.7). We give 
a self contained proof here.

Lemma 2.5. Let T be a path and let A ∈ S(T ) such that mA(0) = 1. If x and y are 
P -vertices of A then x is not adjacent to y.

Proof. Suppose that x is adjacent to y. By Proposition 2.3 neither x nor y are terminal 
vertices of T . Let T1 and T2 be the two paths of T − x. If A1 is the submatrix of A(x)
associated with T1 and A2 is the submatrix of A(x) associated with T2 then A(x) = A1⊕
A2, mA(x)(0) = 2 and mA1(0) = mA2(0) = 1. Suppose that y is a vertex of T1. Using y
instead of x, we conclude that A(y) = B1⊕B2, mA(y)(0) = 2 and mB1(0) = mB2(0) = 1, 
where B1 and B2 are the submatrices of A(y) associated with the paths of T−y. Suppose 
that x is a vertex of the path associated with B1. By Proposition 2.3, mB1(x)(0) = 0. 
This is impossible because A2 = B1(x). �

As in [13], the number of P -vertices of A ∈ S(T ) is denoted by Pv(A).

Proposition 2.6. Let T be a path with n vertices and let A ∈ S(T ) such that mA(0) = 1. 
Then

0 ≤ Pv(A) ≤
⌊
n− 1

2

⌋
.

Proof. Using Proposition 2.3 we know that a P -vertex is not a terminal vertex of T . By 
Lemma 2.5 we know that there are not adjacent P -vertices. So, Pv(A) ≤

⌊
n−1

2
⌋
. �

Theorem 2.7. Let T be a path with n vertices and let b be an integer such that

0 ≤ b ≤
⌊
n− 1

2

⌋
.

Then, there is a matrix A ∈ S(T ) such that mA(0) = 1 and Pv(A) = b.
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Proof. Let T be a path. If b = 0, then by Theorem 2.4, L(G) is the sought matrix. 
Assume now that b ≥ 1. Remove b vertices i1, . . . , ib from T such that none of the 
removed vertices is a terminal vertex of T , and no two of them are adjacent.

Let P1, . . . , Pb+1 be the paths of T − {i1, . . . , ib} such that P1, and Pb+1 contain the 
terminal vertices of T . We denote the forest of the paths P1, . . . , Pb+1 by G. Let A =
[ai,j ] ∈ S(T ) be a matrix such that A({i1, . . . , ib}) = L(G) (the Laplacian matrix of G), 
and assuming that vertex it, 1 ≤ t ≤ b is adjacent to vertices jt and j′t, ait,jt = ajt,it = c, 
for some c �= 0, and ait,j′t = aj′t,it = −c.

As mL(G)(0) = b + 1, by the Cauchy interlacing Theorem and using Corollary 2.2, 
mA(0) = 1, and i1, . . . , ib are P -vertices of A.

Let v be the n-by-1 vector whose jth coordinates, for j ∈ {i1, . . . , ib} are zero, and 
all the others coordinates are 1. Then v is a nullvector of A. We have proved that A has 
a nullvector whose jth coordinates, for all j ∈ {1, . . . , n} − {i1, . . . , ib}, are not zero. By 
Theorem 1.2, none of the vertices of {1, . . . , n} − {i1, . . . , ib} is a P -vertex of A. Hence, 
Pv(A) = b. �
3. The optimal P -sets

Let T be a tree. We say that a set PT of P (T ) paths realizes T , if PT is a set of P (T )
vertex disjoint paths, occurring as induced subgraphs of T , that cover all vertices of T . 
In [4], the number P (T ) was studied. In particular the next two propositions appeared 
in that paper.

Proposition 3.1. (Proposition 2.2 in [4]) Let T be a tree and i be a vertex of T . Then

P (T ) − 1 ≤ P (T − i) ≤ P (T ) + 1.

Proposition 3.2. (Proposition 3.3 in [4]) Let T be a tree and i be a vertex of T . Then 
P (T − i) = P (T ) + 1 if and only if i is a vertex of degree two in every set of P (T ) paths 
that realizes T .

Remark 3.3. If G is a forest (a union of trees) with components T1, . . . , Tl, then

P (G) =
l∑

j=1
P (Tj).

First we define a family of subsets of vertices of T , AT , that contains two kinds of 
sets necessary to determine a lower and an upper bound of the number of P -vertices in 
a matrix A ∈ S(T ) with maximum nullity.

Definition 3.4. Let T = (X, E) be a tree and Y ⊆ X. Let cT (Y ) be the number of 
components of T − Y and let
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AT = {R : R ⊆ X, cT (R) = P (T ) + |R|}.

A set R ∈ AT is called an optimal P -set of T .
Let sT be the number

sT = min{|R| : R ∈ AT },

and let lT be the number

lT = max{|R| : R ∈ AT }.

A set R ∈ AT of smallest cardinality is called an s-optimal P -set of T .
A set R ∈ AT of largest cardinality is called an l-optimal P -set of T .

Example 3.5. Consider the following tree T with n = 11 vertices.

�

�

� � ��

�

��

� �

�
�

�

1

2

3

6

7 8

9

11

104 5

Note that P (T ) = 3 and no pendant vertex can be a P -vertex. The set AT is the set

{{6}, {3, 9}, {3, 6}, {6, 9}, {3, 6, 9}, {3, 5, 9}, {3, 7, 9}, {3, 5, 7, 9}}.

So,

• {6} is an s-optimal P -set and sT = 1, and
• {3, 5, 7, 9} is an l-optimal P -set and lT = 4.

The next theorem shows another characterization of the elements of AT that justifies 
the name of optimal P -sets.

Theorem 3.6. Let T = (X, E) be a tree and R be a subset of X. Then

cT (R) ≤ P (T ) + |R|.

Moreover, cT (R) = P (T ) + |R| if and only if
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1. there exists A ∈ S(T ) with mA(0) = M(T ) and whose set of P -vertices is R, and
2. each component of T −R is a path.

Proof. By Proposition 3.1,

P (T −R) ≤ P (T ) + |R|.

Since

cT (R) ≤ P (T −R)

we conclude that

cT (R) ≤ P (T ) + |R|.

Now assume that cT (R) = P (T ) + |R|. Then P (T − R) = cT (R) and consequently, 
each component of T −R is a path.

Let A be a matrix in S(T ) with A(R) equal to the Laplacian matrix of T −R. Then 
by Theorem 2.4 we have mA(R)(0) = M(T −R) = P (T −R) = cT (R), and

M(T ) ≥ mA(0) ≥ mA(R)(0) − |R| = cT (R) − |R| = P (T ) = M(T ).

Therefore, M(T ) = mA(0) = mA(R)(0) − |R| and R is a P -set of A.
Using Theorems 1.3 and 2.4 we know that the elements of X −R are downer vertices 

of A. So, R is the set of P -vertices of A.
Conversely, suppose that R is a subset of X and 1. and 2. hold. Using Theorem 1.3, 

X−R is the set of downer vertices of A. Let S be a component of T−R and x be a vertex 
of S. By Theorem 1.3, x is a downer vertex of A[S]. This implies that mA[S](0) ≥ 1. 
Since S is a path then mA[S](0) = 1.

So,

cT (R) = mA(R)(0) = mA(0) + |R| = P (T ) + |R|. �
Using the proof of last theorem we have the following corollary.

Corollary 3.7. Let T be a tree and R be an optimal P -set of T . Let A ∈ S(T ) such that 
A(R) is equal to the Laplacian matrix of T −R. Then mA(0) = M(T ) and R is the P -set 
of A.

4. The optimal P -sets with smallest cardinality

The purpose of this section is to establish proprieties of the optimal P -sets with 
smallest cardinality of T , where T is a tree different from a path.
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Theorem 4.1. Let T be a tree. Let R be an optimal P -set and let x ∈ R. Then

1. x is a vertex of degree two in every set of P (T ) paths that realizes T ,
2. dT (x) ≥ 2,
3. if dT (x) = 2, then R− x is an optimal P -set of T .

Proof. Since R is a set of AT ,

cT (R) = P (T ) + |R|.

By Theorem 3.6, there exists A ∈ S(T ) with mA(0) = M(T ) and whose set of P -vertices 
is R, and each component of T −R is a path. So, P (T −R) = cT (R). Consequently,

P (T −R) ≤ P (T − (R− x)) + 1 ≤ P (T − x) + |R− x| ≤ P (T ) + |R| = P (T −R),

and we conclude that P (T−x) +|R| −1 = P (T ) +|R| and P (T−R) = P (T−(R−x)) +1. By 
Proposition 3.2, x is a vertex of degree two in every set of P (T ) paths that realizes T , 
and by Remark 3.3 and Proposition 3.2, x is a vertex of degree two in every set of 
P (T − (R− x)) paths that realizes T − (R− x). Thus, dT (x) ≥ 2 and dT−(R−x)(x) ≥ 2.

If dT (x) = 2 then dT−(R−x)(x) = 2 and cT (R) = cT (R−x) +1. Therefore, cT (R−x) =
cT (R) − 1 = P (T ) + |R| − 1 = P (T ) + |R− x| and R− x is an optimal P -set of T . �

Using the last theorem we conclude the following corollary.

Corollary 4.2. Let T be a tree that is not a path. Let R be an s-optimal P -set of T . Then

dT (x) > 2, ∀x ∈ R.

In [8] the authors defined a generalized star. Let T be a tree that is not a path. We 
say that S is a pendant generalized star of T with central vertex x if

• S is a generalized star with central vertex x,
• dT (x) > 2,
• when we remove the vertices of S from T , we obtain a nonempty tree, denoted by 

T \ S, and
• x is adjacent to a vertex of T \ S.
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Example 4.3. Consider the following tree T with n = 11 vertices.
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The subgraph of T induced by vertices 1, 2, 3, 4 is a pendant generalized star of T
with central vertex 3.

Proposition 4.4. Let T be a tree. Then sT ≤ P (T ) − 1.

Proof. The proof is by induction on the number l of vertices with degree greater than 2. 
If l = 0, then T is a path, and so sT = 0 and P (T ) = 1. Therefore, sT ≤ P (T ) − 1.

Let l ≥ 0, and assume that the result is true for trees with at most l vertices of degree 
greater than two. Let T1 be a tree with l+ 1 vertices of degree greater than two, and let 
PT1 be a set of P (T1) paths that realizes T1. Let S be a pendant generalized star of T1

with central vertex y. Let P be the path in PT1 where y belongs. Then dP (y) = 2. In fact 
suppose that dP (y) ≤ 1. Since there are at least 2 components of T1 − y that are paths, 
if C1 is one of these paths that has no common vertices with P , then the concatenation 
of C1 and P results in a set, of P (T1) −1 paths, that realizes T1, which is impossible. By 
Proposition 3.2, P (T1−y) = P (T1) +1. By Remark 3.3, P (T1−y) = P (T1\S) +dT1(y) −1. 
As T1 \ S is a tree with at most l vertices of degree greater than two, by induction, 
sT1\S ≤ P (T1 \ S) − 1.

Let R be an s-optimal P -set of T1 \ S. So,

cT1(R ∪ {y}) = cT1\S(R) + dT1(y) − 1 = P (T1 \ S) + |R| + dT1(y) − 1 =

P (T1 − y) − dT1(y) + 1 + |R| + dT1(y) − 1 = P (T1) + 1 + |R| = P (T1) + |R ∪ {y}|.

Therefore, R ∪ {y} is an optimal P -set of T1 and

sT1 ≤ |R| + 1 = sT1\S + 1 ≤ P (T1 \ S) = P (T1 − y) − dT1(y) + 1 =

= P (T1) − dT1(y) + 2 ≤ P (T1) − 1.

So, we have the result. �
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5. The optimal P -sets with largest cardinality

As expected, the purpose of this section is to establish properties of the optimal P -sets 
with largest cardinality of T , where T is a tree different from a path.

Theorem 5.1. Let T = (X, E) be a tree. Let R be an optimal P -set and let x ∈ X − R

such that dT−R(x) = 2, then R ∪ {x} is an optimal P -set of T .

Proof. Since R is an optimal P -set then cT (R) = P (T ) + |R|. Because dT−R(x) = 2 then 
cT (R∪{x}) = cT (R) +1. Consequently, cT (R∪{x}) = P (T ) + |R| +1 = P (T ) + |R∪{x}|
and R ∪ {x} is an optimal P -set of T . �

The following corollary is the characterization of the components of T −R when R is 
an l-optimal P -sets of a tree and it is an easy consequence of last theorem.

Corollary 5.2. Let T = (X, E) be a tree. Let R be an l-optimal P -set. Then each compo-
nent of T −R is isomorphic to K1 or K2.

6. Pendant generalized stars and optimal P -sets

Let T be a tree and S be a pendant generalized star of T . In this section, we describe 
relations between some optimal P -sets of T \ S and of T .

Lemma 6.1. Let T = (X, E) be a tree. Let S be a pendant generalized star of T with 
central vertex x. Let R ∈ AT such that x /∈ R and dT (z) > 2, ∀z ∈ R. Then dT (x) = 3.

Proof. Suppose dT (x) = s ≥ 4. Since, by Theorem 3.6, T −R is a union of paths, s ≥ 4
and x /∈ R, then at least two neighbors of x belong to R and have degree 3 or more. We 
obtain a contradiction because one of these two neighbors of x is a vertex of S and has 
degree at most 2. �
Lemma 6.2. Let T = (X, E) be a tree. Let S be a pendant generalized star of T with 
central vertex x. Let w be the vertex of T \S adjacent to x. Let R ∈ AT such that x /∈ R

and dT (z) > 2, ∀z ∈ R. Then

1. w ∈ R and dT (w) ≥ 3.
2. w and x are not in the same path for any set of P (T ) paths that realizes T .
3. P (T ) = P (T \ S) + 1.
4. R is an optimal P -set of T \ S.

Proof. 1. Assume that w /∈ R. Since by Theorem 3.6, T − R is a union of paths, and 
x /∈ R and dT (x) ≥ 3, we conclude that there is a vertex a2, adjacent to x, such that 
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a2 is not a vertex of T \ S and a2 ∈ R. Since dT (a2) ≤ 2 we obtain a contradiction. 
Then w ∈ R and by hypothesis, dT (w) ≥ 3.

2. Let S1, . . . , SP (T ) be a set of P (T ) paths that realizes T , and assume that x, w ∈ S1. 
Since x /∈ R, by Lemma 6.1, dT (x) = 3. Let a1 and a2 be the vertices adjacent to x, 
different from w. Suppose that dS1(x) = 1. Let S2 be the path where a1 belongs. So, 
dS2(a1) = 1 and S1 ∪ x ∪ S2, S3, . . . , SP (T ) is a set of P (T ) − 1 paths that realizes 
T . This is impossible, therefore dS1(x) = 2. Let a2 be the vertex of S1. Assume that 
a1 is a vertex of S2. Let S′

1 and S′′
1 be the subpaths of S1 − x, and assume that a2

is a vertex of S′
1. Then S′′

1 , S2 ∪ x ∪ S′
1, S3, . . . , SP (T ) is a set of P (T ) paths that 

realizes T , and w is a terminal vertex of S′′
1 . This is impossible by Theorem 4.1, 

because w ∈ R.
3. By Theorem 4.1, w is a vertex of degree two in every set of P (T ) paths that realizes 

T . Using 2. and the fact that dT (x) = 3 we conclude that P (T ) = P (T \ S) + 1.
4. Using 1., 3., then

cT\S(R) = cT (R) − 1 = P (T ) + |R| − 1 = P (T \ S) + |R|.

So, R is an optimal P -set of T \ S. �
Lemma 6.3. Let T = (X, E) be a tree. Let S be a pendant generalized star of T with 
central vertex x. Let R ∈ AT such that x ∈ R and dT (z) > 2, ∀z ∈ R. Then R− x is an 
optimal P -set of T \ S.

Proof. By Theorem 4.1, x is a vertex of degree two in every set of P (T ) paths that 
realizes T . By Proposition 3.2, P (T−x) = P (T ) +1. Since P (T \S) +dT (x) −1 = P (T−x), 
we conclude that

cT\S(R− x) = cT (R) − dT (x) + 1 = P (T ) + |R| − dT (x) + 1 =

= P (T \ S) + |R| − 1 = P (T \ S) + |R− x|.

So, R− x is an optimal P -set of T \ S. �
The next theorem will be used in Section 7 to show that there are no gaps in the 

cardinality of AT , when T is a tree.

Theorem 6.4. Let T = (X, E) be a tree that is not a path, R∗ be an s-optimal P -set of T , 
and U∗ be an l-optimal P -set of T . Let U be the set of all elements of U∗ that are vertices 
of degree greater than two of T and let Y be a subset of X − R∗ of largest cardinality 
that

• the subgraph spanned by vertices in Y is the null graph, and
• dT−R∗(v) = 2, for all v ∈ Y .
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Then,

|U | ≤ sT + |Y |.

Proof. Let S be a pendant generalized star of T with central vertex x. By Theorem 4.1, 
U is an optimal P -set of T . We will divide the proof in four cases:

Case 1: If x /∈ R∗ and x /∈ U then, by Lemma 6.2, R∗ and U are optimal P -sets of T \S. 
Let w be the vertex of T \ S adjacent to x, by Lemma 6.2, then w ∈ R∗ ∩ U .

We repeat the process with T \ S and

• if dT\S(w) > 2, we consider the sets R∗, U and Y ∩ (R \ S),
• if dT\S(w) = 2, we consider the sets R∗ − w, U − w and Y ∩ (T \ S).

Case 2: If x /∈ R∗ and x ∈ U .
Because x /∈ R∗, by Lemma 6.1, dT (x) = 3. Let w be the vertex of T \ S adjacent 

to x, by Lemma 6.2, then w ∈ R∗. Let P1 be the path of T −R∗ where x belongs. Then 
dP1(x) = 2. So dT−R∗(x) = 2. If x /∈ Y , then at least one of the vertices of P1 that are 
adjacent to x is in Y . So, we associate the vertex x to a vertex of P1 that is in Y .

By Lemma 6.2 we have that R∗ is an optimal P -set of T \S and by Lemma 6.3, U −x

is an optimal P -set of T \ S.
We repeat the process with T \ S and

• if dT\S(w) > 2, we consider the sets R∗, U − x and Y ∩ (T \ S),
• if dT\S(w) = 2, we consider the sets R∗ − w, U − x and (Y ∪ {w}) ∩ (T \ S).

(Note that in this case, dT (w) = 3 and since w ∈ R∗ and x ∈ U , by Theorem 4.1 and 
Lemma 6.2, w and x are vertices of degree two in every set of P (T ) paths that realizes 
T and they do not belong at the same of these paths. So, the vertices adjacent to w, 
different from x, are not in Y .)

Case 3: If x ∈ R∗ and x /∈ U .
By Lemma 6.3 we have that R∗ − x is an optimal P -set of T \ S and by Lemma 6.2, 

U is an optimal P -set of T \ S and w ∈ U .
We repeat the process with T \ S and

• if dT\S(w) > 2, we consider the sets R∗ − x, U and Y ∩ (T \ S),
• if dT\S(w) = 2 and w ∈ R∗, we consider the sets R∗ \ {x, w}, U −w and Y ∩ (T \S),
• if dT\S(w) = 2, w /∈ R∗ we associate the vertex w with the vertex x, and we consider 

the sets R∗ − x, U − w and (Y − w) ∩ (T \ S).

Case 4: x ∈ R∗ and x ∈ U .
By Lemma 6.3, R∗ − x and U − x are optimal P -sets of T \ S. We repeat the process 

with T \ S and we consider the sets R∗ − x, U − x and Y ∩ (T \ S).
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Because each time we repeat the process and we remove a vertex of U we also remove 
a vertex of R∗ or of Y , we conclude that |U | ≤ sT + |Y |. �
7. The number of P -vertices in a tree

In this section, using the last sections, we determine an upper and a lower bound for 
the number of P -vertices of a matrix A ∈ S(T ) with nullity M(T ), where T is a tree. 
We also prove that if b is an integer between these two bounds, then there is a matrix 
A ∈ S(T ) such that mA(0) = M(T ) and A has b P -vertices.

Proposition 7.1. Let T be a tree and let A ∈ S(T ) with mA(0) = M(T ). Then

sT ≤ Pv(A) ≤ lT .

Proof. Let B be the set of all P -vertices of A. If T1 is a component of T −B that is not 
a path, using the fact that B is the set of P -vertices of A, by Theorem 1.1,

mA[T1](0) ≤ 1.

Since we are assuming that T1 is not a path there is a vertex x of T1 such that 
dT1(x) > 2. Let A′

1 ∈ S(T1) such that mA′
1
(0) = dT1(x) − 1 (for instance we can consider 

the Laplacian matrix associated to each component of T1 − x). Denote by A′ ∈ S(T ) a 
matrix whose summands of A′(B) are the same of A(B) except A[T1] that is replaced 
by A′

1. Therefore, by the Cauchy interlacing Theorem

mA′(0) ≥ mA′(B)(0) − |B| > mA(B)(0) − |B| = mA(0) + |B| − |B| = M(T ).

This is impossible. Then T − B is a union of paths. By Theorem 3.6, B is an optimal 
P -set of T . So, sT ≤ |B| = Pv(A) ≤ lT . �
Theorem 7.2. Let T = (X, E) be a tree and let b be an integer such that

sT ≤ b ≤ lT .

Then, there is a matrix A ∈ S(T ) such that mA(0) = M(T ) and Pv(A) = b.

Proof. Let B be an s-optimal P -set of T . If all vertices of T − B have degree at most 
one, let Y = ∅. If T −B has at least one vertex of degree 2, let Y be a subset of X −B

of largest cardinality that

• the subgraph spanned by vertices in Y is the null graph, and
• dT−B(v) = 2, for all v ∈ Y .
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By Theorem 5.1, B ∪Y is an optimal P -set of T . Let U∗ be an l-optimal P -set of T and 
let U be the elements of U∗ that have degree greater than two in T . By Theorem 4.1, U
is an optimal P -set of T . By Theorem 6.4, |U | ≤ |B ∪ Y |.

• If |B| ≤ b ≤ |B ∪ Y |, since by Theorem 4.1, there is an optimal P -set, F , such that 
B ⊆ F ⊆ (B ∪ Y ) with cardinality b, by Theorem 3.6 we have the result.

• If |U | ≤ b ≤ |U∗|, since by Theorem 5.1, there is an optimal P -set, H, such that 
U ⊆ H ⊆ U∗ with cardinality b, by Theorem 3.6 we have the result. �
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