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 Abstract 

 

This work considers characterizing, modelling and mapping malaria 

occurrence and its mortality trend for Precision Public Health in Chimoio. 

Mozambique. Malaria is an ancient disease and a major public concern 

especially in the African continent. The majority of deaths occur among 

children living in Africa (91 %), where a child dies every minute and half from 

malaria. The data for malaria cases and mortality were obtained from the 

weekly BES from 2006 to 2014 and Civil Registration books from 2007 to 

2014respectively. To model malaria cases ARIMA was used while for 

mortality trends, Intervention time series analysis (ITSA) was used. Package 

tscount and R version 3.3.2, Biestat 5.0 and SPSS were employed to fit, 

assess and predict model and statistical analysis. In Chimoio, malaria 

occurrence and mortality is increasing annually and presents a spatial and 

temporal pattern peaking during weeks 1 to 12 (January to March). The rural 

areas of the municipality have more malaria and mortality cases, followed by 

suburbs, and urban areas have fewer cases. Children under 5 years of age 

are three times more prone to get malaria than the rest of the population. The 

Chimoio climate seems ideal for malaria occurrence. Children between 1 – 4 

years old are 13% of Chimoio population, but represent 25% of malaria 

mortalities. The entire municipality presents a malaria risk, 96% with 

moderate risk and 4% with high-risk areas. The use of Intervention time series 

analysis approach for modelling malaria mortality is suggested, and on owing 

to its flexibility and interpretation. The practicality of the statistical modelling 

method was validated to detect the lagged relationship between malaria 

cases and mortality. Based on the results, malaria cases and mortality can be 

predicted two months in advance. This modelling approach is robust, and can 

predict the expected number of malaria and mortality cases in advance. Thus, 

timely prevention and control measures can be effectively planned in 

Chimoio, such as the elimination of vector breeding places, correct time and 

place to spray insecticides, and awareness campaigns weeks before the 
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malaria peak season. This can lead to a reduction in malaria cases, by 

knowing the best moment for spraying, saving time and cost of insecticide 

application and preventive programmes, and guiding smart environmental 

care (Precision Public Health). 

 

Key words: Malaria, malaria mortality, modelling, forecasting, ARIMA, ITSA.  
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 Resumo 

 

Considera-se neste trabalho a caracterização, modelagem e 

mapeamento da ocorrência da malaria e suas tendências de mortalidade, 

para a Saúde Publica de Precisão em Chimoio, Moçambique. A malária é 

uma doença milenar sendo um grande problema de Saúde Pública, 

especialmente em África onde ocorre o maior número de mortalidade em 

crianças (91%) estimando-se que em cada minuto e meio uma criança morre 

de malária. Os dados de malária e mortalidade foram recolhidos dos Boletins 

Epidemiológicos Semanais de 2006 a 2014 e dos livros de registos dos 

Serviços de Registo e Notariado no período entre 2007 a 2014 

respetivamente. Para a modelação da malaria foi usado o ARIMA enquanto 

para as tendências de mortalidade o a análise de série temporal de 

intervenção (ITSA). Os pacotes estatísticos tscount, R versão 3.3.2, Bioestat 

5.0 e o SPSS versão 20 foram usados para modelar, aceder e realizar 

predição do modelo e testes estatísticos apropriados. Em Chimoio a 

ocorrência da malaria e mortalidade tendem a crescer anualmente, exibindo 

padrões temporais e espaciais sendo o seu pico entre as semanas 1 a 12 

(janeiro a março) e as áreas rurais apresentam mais malária e mortalidade, 

seguida dos subúrbios sendo a zona urbana a que menos casos apresenta. 

+As crianças com menos de 5 anos de idade tem três vezes mais 

suscetibilidade de contrair malária. O Clima de Chimoio parece ser ideal para 

a ocorrência da malária. As crianças entre 1 – 4 anos de idade 

constituem13% da população, entretanto representam 25 % dos casos de 

mortalidade por malária. Toda a superfície municipal apresenta risco para 

contrair malaria sendo, 96% áreas de risco moderado e 4% de risco alto. 

Sugere-se o uso da abordagem de series temporais generalizadas para a 

modelação devido a sua flexibilidade e facilidade de interpretação. A 

praticabilidade da modelação estatística foi validada para detetar a distância 

entre a ocorrência da malária e mortalidade. Com base nos dados a 

ocorrência de malária e mortalidade podem ser previstos com antecedência. 
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Esta forma de abordar a modelação é robusta, pode fazer a previsão 

atempada da malária e mortalidade, permitindo medidas de prevenção e 

controlo atempadas e uma planificação efetiva em Chimoio consistindo em 

eliminação de áreas para a reprodução do vetor, tempo e local correto para 

a pulverização com inseticidas, fazer as campanhas de prevenção antes do 

pico da malária. Estas medidas podem resultar em poupança de custos e 

tempo nas medidas preventivas para além de reduzir os efeitos nefastos para 

o ambiente (Saúde Publica de Precisão).  

 

Palavras-chave: Malária, mortalidade, modelação, previsão, ARIMA, ITSA.  
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1. Introduction 
 

One of the United Nation’s sustainable development goals for 2030 is 

to end the epidemics of AIDS, tuberculosis, malaria and other neglected 

tropical diseases (United Nations, 2015). Malaria is a very old disease and is 

a major public health problem in Africa. Sub-Saharan Africa carries a 

disproportionately high portion of the global malaria burden. In 2015, the 

region was home to 88% of malaria cases and 90% of malaria deaths. The 

number of malaria deaths globally was 438,000 in 2015 (WHO, 2013a). Most 

deaths occur amongst children living in Africa, where a child dies every minute 

and half from malaria (CDC, 2014b; WHO, 2013a). 

According to the Mozambican Ministry of Health, the country recorded 

over six million cases of malaria in 2015 (Norheim, Admau, Godal, Hum, & 

Kruk, 2015) and deaths due to malaria (per 100,000 persons) was 42.75 in 

2013 (Ranking, 2016). Malaria killed 3,245 people and is the second cause 

of death in the country, at 19.2% (GDB profile, 2016).  

Mozambique was recently ranked fifth in Africa for the number of 

malaria cases (Global Fund, 2015) and reported over six million cases of 

malaria in 2015 (MISAU, 2016). Malaria represents 45% of all cases in 

outpatient visits, 56% of inpatient visits at paediatric clinics, and around 26% 

of all hospital deaths (UCSF Global Health Group, 2013).  

According to the Ministry of Health the country registered in the first 

quarter of 2017 over two million cases of malaria. The provinces of Manica, 

Tete, Gaza and Inhambane presented the highest numbers. Malaria is 

broadly recognised as endemic in Mozambique, with seasonal peaks during 

the wet season, between November and March, but predominantly in 

February. (Zacarias & Andersson, 2010). 

Malaria undermines not only the people’s health but also their working 

capacity, hampering the social and economic development of the countries 

involved. The disease constitutes an enormous cost both to individuals and 
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 governments. Costs to individuals and their families include purchase of 

drugs for treating malaria at home; expenses for travel to, and treatment at, 

dispensaries and clinics; lost days of work; absence from school; expenses 

for preventive measures; expenses for burial in case of deaths. 

Several institutions and the Mozambican Government have initiatives 

to combat malaria and despite the efforts, the number of cases continues to 

increase annually. Most research projects focus on the clinical aspects of the 

disease such as chemoprophylaxis, and vaccine development. However, 

disease eradication should not only involve the medical disciplines, but also 

health economics, geography and ecology, and the social sciences to design 

and implement control strategies in real life settings (Alilio, Bygbjerg, & 

Breman, 2004).  

The Mozambican strategy for malaria combat includes: i) integrated 

vector management through indoor residual spraying to eliminate the 

mosquitoes, and bed net usage; ii) diagnosis and cases management through 

effective diagnosis and treatment (WHO. 2015a). 

The malaria life cycle has three components: (i) the growth of the 

Anopheles female mosquito from egg to adult to parasite transmission; (ii) the 

development of the Plasmodium parasites (gametocyte to sporozoites) that 

are able to infect humans; and (iii) the incubation period in the human host 

from infection to malaria symptoms CDC (2014b); Crutcher and Hoffman 

(1996). 

Chimoio is the capital of Manica Province in the Centre of 

Mozambique. It is the fifth-largest city in Mozambique, with an estimated 

population of 324,816 (IDS, 2013), all of whom are at risk of contracting 

malaria. The major cause of death in the municipality in 2013 was malaria at 

15%. The incidence of malaria is 20.1%, and the attributable factor 16% with 

differences in weekly and yearly malaria occurrence. (João & Ferrão, 2013) 

Urban malaria in Africa is a problem of substantial and growing 

proportions since these areas are growing quickly, especially in suburbs with 

poor houses and drainage, farming activities, large amount of vegetation, fruit 
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trees, and persistent poverty. Children and pregnant women are severely and 

disproportionately affected by malaria in high malaria burden countries 

(UNICEF, 2015).  

An association between malaria prevalence and socioeconomic 

status of households was established in Mozambique. (IDS, 2013). 

There are conflicting reports regarding the impact of urbanization on 

malaria endemic trends. Some authors (Hay, Guerra, Tatem, Atkinson, and 

Snow (2005); Hay, Smith, and Snow (2008)) claim that the urbanization 

process results in profound socio-economic and landscape changes that 

reduce malaria in urban areas, while some report an increase in malaria in 

urban regions due to population increase, over-crowding, and poor sanitation 

(Qi et al. (2012); Saraiva, Amorim, Moura, Martinez-Espinosa, and Barbosa 

(2009)). 

Few spatial studies of malaria have been reported for Mozambique 

and most studies on malaria variation are based on monthly data (Thompson 

et al. (1997); Zacarias & Andersson, 2010). 

The maps that exist on malaria were produced at the National or 

Continental level, such as MARA (2004), and have limited operational use to 

support local programme activities.  

The patterns of malaria transmission at the local level, especially in 

Chimoio, have not been studied or precisely defined. This type of research is 

needed in order to develop cluster risk maps and identify locations and 

populations at risk for appropriate planning and implementation of targeted 

and epidemiologically sound preventive and control measures against the 

disease.  

Precision Health is defined as improving the ability to prevent disease, 

promote health, and reduce health disparities in populations by: 1) applying 

emerging methods and technologies for measuring disease, pathogens, 

exposures, behaviours, and susceptibility in populations; and 2) developing 

policies and targeted public health programmes to improve health (CDC, 

2014b).  
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 Many time-series studies and studies of epidemics have been carried 

out to determine explanatory variables for changes in malaria transmission, 

but most fail to take climatic factors into account (Srimath-Tirumula-Peddinti, 

Neelapu, & Sidagam, 2015). It is well known that the practice of precision 

health was enabled by the advent of Global Positioning Systems (GPS) and 

Global Navigation Satellite Systems (GNSS). The Geographical Information 

System (GIS) is a powerful tool for the health practitioner and researchers 

due to its ability to incorporate data from different sources to produce new 

information that permits the creation of maps of spatial variability (Milla, 

Lorenzo, & Brown, 2005).  

Malaria transmission is highly influenced by environmental and 

climatic conditions, but the effects are often not linear and varies over areas 

covered by different agro-ecological zones Gosoniu, Vounatsou, Sogoba, 

Maire, and Smith (2009), thus resources for control have to be spread in time 

and space. Climatic factors such as temperature, relative humidity, 

precipitation and evaporation influences the lifecycle and development of both 

the mosquito vector and the parasite (An, 2011). As mentioned by The Global 

Fund, 90% of malaria cases are related to environmental factors.  

Understanding the trends and variation of deaths is of paramount 

importance for precision public health. Precision public health is a relatively 

new concept and its ultimate goal is to develop and implement health 

interventions that can benefit the right population at the right time (M..J. 

Khoury, 2015). Civil registration constitutes the most timely and accurate 

source of information on mortality and causes of death. In Mozambique 

registration of deaths falls under the Ministry of Justice (UTREL, 2005). 

Geographic information systems can help to describe variations in 

malaria mortality and this is important to identify areas at high risk, to assist 

in designing appropriate interventions, or lead to further investigations to 

identify important risk factors (Kazembe, Kleinschmidt, & Sharp, 2006). 

As stated elsewhere, the best ways to help the living is by counting 

the dead. Few data on malaria mortality, trends and characteristics of malaria 
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death exist in Mozambique, particularly in Chimoio. The few existent data are 

from hospitals and do not represent the entire community.  

Malaria can be cured in cases where the Plasmodium parasite is 

susceptible to the anti-malaria drug, and it can be prevented using indoor and 

outdoor spraying, mosquito repellents, and bed nets. For significant reduction 

and elimination, strong and long-term actions are needed. Daily or weekly 

variations in the values of weather elements and disease data are often of 

greater importance in determining the efficiency of a climate-disease model. 

However, most studies only use monthly data WHO (2013a) and Omonijo, 

Matzarakis, Oguntoke, and Adeofun (2011). 

Mathematical models can describe, explain, or predict disease 

trends/occurrence, they can test multiple scenarios, combine strategies for 

intervention, and provide a verifiable prediction on what can be expected from 

implemented schemes (Nakul, Schapira, Smith, Hay, & Richard, 2010).  

This thesis consider the case of Chimoio municipality in the central 

region of Mozambique (Map 1).  

 

Map 1: Chimoio Map 

Source: Ferrão, Mendes, Painho, & João, 2016 
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 1.1. Malaria 

1.1.1. Malaria facts 

Malaria is an ancient disease and poses a substantial public health 

problem in Africa. Almost half of the population lives in areas susceptible of 

malaria. In 2008, 139 countries reported malaria cases (CDC, 2014) as 

presented in Map 2. 

 

Map 2: Approximation of the parts of the world where malaria 
transmission occurs 

Source: (CDC, 2014b) 

In 2015, 212 million malaria cases were reported that resulted in 

429,000 deaths worldwide. Most of the deaths (91%) occurred in Africa 

(WHO, 2015b). Children and pregnant women are the most at risk.  

A very efficient mosquito (Anopheles gambie complex) is responsible 

for the high transmission. The parasite species infecting humans are: 

 Plasmodium falciparum, a parasite found in the tropics and 

subtropics, especially in Africa, being the predominate specie, and it can 

cause anaemia. The parasite can also clog small blood vessels and if it occurs 

in the brain, may result in cerebral malaria that can be fatal. 

 Plasmodium vivax, a parasite that is mainly found in Asia, 

Latin America and some parts of Africa. This parasite can activate and 
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inactivate in the blood (relapse) several months or years after the biting of an 

infected mosquito. 

 Plasmodium ovale, a parasite found manly in West Africa and 

Western Pacific islands. This parasite can infect persons that are negative for 

the Duffy blood group, being the case for several sub-Saharan Africa 

habitants. 

 Plasmodium malariae, a parasite found globally. If not 

treated P. malariae causes a long lasting chronic infection that can last a 

lifetime. The disease can cause serious complications such as nephrotic 

syndrome.  

 Plasmodium knowlesi, a parasite found in South East Asia, 

it has in recent years proved to be a significant cause of zoonotic malaria in 

the region, especially in Malaysia. It is a natural pathogen of long and pig 

tailed macaques (CDC, 2014b). 

Malaria affects five times more people than AIDS/HIV, leprosy, 

measles and tuberculosis combined (WHO, 2013a). Malaria symptoms 

include high fever, headache, vomiting and joint aches, and generally 

symptoms appear 10 to 15 days after the infected mosquito bite. If not rapidly 

treated, the disease can quickly become life-threatening by disrupting the 

blood supply to vital organs. (WHO, 2013a). 

Clinical illness is caused by erithocityc stage of the parasite. No 

diseases is associated with sporozoites, the developing liver stage of the 

parasite, the merozoites released from the liver, or gametocytes. The initial 

symptom’s and signs are associated with the rupture of the red blood cells 

when erythrocytic-stage schizonts mature. The symptoms includes fever, 

chills, sweating, headache, weakness, and other symptoms. Later, severe 

disease may develop, with an abnormal level of consciousness, severe 

anaemia, renal failure, and multisystem failure (Crutcher & Hoffman, 1996).  

Malaria undermines people’s health and their working capacity, 

hampering the social and economic development of a country. Malaria 

imposes enormous cost both to individuals and governments and for 
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 individuals costs include purchase of medicines to treat the disease; expense 

to travel to clinics; loss of working days since in average a person with malaria 

will stay absent for three days; school absenteeism, preventive measures 

expenses such as indoor spraying and repellent usage; expenses for burials 

in cases of fatalities. Government costs includes maintenance, supply and 

staffing health facilities, purchase of medicines and supplies; public health 

interventions against malaria, such as spraying with insecticides, distribution 

of bed-nets, loss of working days resulting in income loss; lost days of work 

with resulting loss of income; and lost opportunities for joint ventures and 

tourism (Gallup, Sachs, & Mellinger, 1999); (CDC, 2014b). 

1.1.2. Malaria life cycle 

The malaria life cycle has three components: (i) the development of 

the Anopheles from egg to adult stage for parasite transmission; (ii) the 

development of the Plasmodium parasites (gametocyte to sporozoites) to 

infect humans; and (iii) the incubation in the human host from invasion to 

malaria symptoms (Crutcher & Hoffman, 1996). 

(i) The growth of the Anopleles female mosquito from egg to adult 

to parasite transmission. 

The anophenine mosquitoes undergo four stages in their life cycle that 

is: egg, larva, pupa, and adult (Figure 1). The first three development stages 

are aquatic and they last 8 to 14 days, depending on the species and the 

ambient temperature. The Anopheles mosquito acts as malaria vector in the 

adult stage. In this stage the adult female can live up to a month (or more in 

captivity) but most probably do not live more than 1-2 weeks in nature.  

Once ingested by a mosquito, and before they are infectious to 

humans, malaria parasites must undergo development within the mosquito 

(Figure 2). The expected time for the development in the mosquito (the 

extrinsic incubation period) ranges from 10 to 32 days, and it depends on the 

parasite species and temperature. If a mosquito does not survive longer than 

the extrinsic incubation period transmit any malaria parasites (CDC, 2014b) 
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Figure 1: The mosquito life-cycle 

Source: (malaria.com) 

.  

(ii) The development of the Plasmodium parasites (gametocyte to 

sporozoites) that are capable to infect humans.  

In nature, mononucleate sporozoites in the salivary glands of female 

infected mosquitoes are injected into a human host through a bite, when the 

mosquito feeds. The sporozoites quickly invade liver parenchymal cells, 

where they mature into liver-stage schizonts, which burst to release 2,000 to 

40,000 mononucleate merozoites. In the case of Plasmodium vivax and 

Plasmodium ovale infections, maturation of the schizonts may be delay for 1 

to 2 years.  

(iii) The incubation period in the human host from infection to 

malaria symptoms.  

Each merozoites can infect an erythrocyte. Within erythrocyte, the 

merozoites a mononucleate gametocyte – the sexual stage, infectious for 

Anopheles mosquitoes or, over 48 to 72 hours, into an eritocytic stage 

containing 10 to 36 merozoites. Rupture of the schizont releases these 
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 merozoites, which infect other red cells. If a vector mosquito ingests 

gametocytes, the gametocytes develop in the mosquito gut gametes, which 

undergo fertilization and mature in 2 to 3 weeks to sporozoites (Crutcher & 

Hoffman, 1996).  

 

Figure 2: The Malaria life cycle 

Source: (Crutcher & Hoffman, 1996) 

1.1.3. Major factors for malaria occurrence 

 

Malaria transmission is highly influenced by environmental, climatic 

conditions and non-climatic conditions. 

1.1.3.1. Environmental and climate conditions  

  The weather affects the malaria occurrence by affecting the 

mosquito vector (species, population dynamic, gonotrophic cycle and 

survival). An estimated 90 % of malaria cases are related to environmental 

factors (WHO, 1997). The environmental and climate factors that influence 

malaria occurrence are: 

a) Temperature: the ranges of maximum and minimum 

temperature greatly affects the development of the malaria parasite and its 



 

11 

mosquito vector, determining the malaria transmission. Temperature affects 

the life cycle of the malaria parasite. The time required for the parasite to 

complete its development is 10 days, but this time can be shorter or longer 

depending on temperature. Temperature lower than 18oC and higher than 

40oC are not conducive to the mosquito and parasite gonotrophic cycle and 

survivorship. Malaria transmission in environments colder than 18oC may 

occur because the mosquito often lives in houses which tend to be warmer 

than the outside temperatures Blanford et al. (2013), Beck-Johnson et al. 

(2013), Yé, Kyobutungi, Louis, and Sauerborn (2007). Temperature between 

25 to 35oC is the optimum for mosquito and malaria development (Parham & 

Michael, 2010). In Chimoio weeks 16 to 18 and weeks 20 to 40 presents an 

average temperature bellow 18 oC. 

b) Altitude: altitude influences the malaria distribution and transmission 

indirectly, through its effect on temperature. Beyond 1500 meters mosquitoes will 

hardly survive and over 2,400 meters, malaria will not occur (LabSpace, 2014). Areas 

over 1100 meters are classified as having a low malaria risk (Chikodzi, 2013). In 

Chimoio the altitude is below 771 meters (Map 3) and 100 % of the area presents a 

high and moderate risk for malaria occurrence.  

c) Precipitation: malaria occurrence increases during the rainy 

season. When the rains fall, pools are created for mosquito breeding since 

malaria vectors mainly breed in stagnant water and rarely in moving water 

(Chikodzi, 2013). A weekly precipitation of more than 10 mm will propitiate 

the development of the mosquitoes. The average annual precipitation for 

Chimoio is 917 mm and the weekly average precipitation is 17 mm. The all of 

Chimoio presents a precipitation risk for malaria. 
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Map 3: Chimoio elevation Map 

Source. (Google maps, 2016) 

d) Relative humidity (RH): RH below 60 % shortens the life span 

of the mosquitoes. That is the reason why the mosquitoes are more active 

and prefer feeding during the night, where the relative humidity is higher than 

the day time. If the average monthly relative humidity is below 60%, it is 

believed that the life of the mosquito is so short that very little or no malaria 

transmission is possible. LabSpace (2014), Yamana and Eltahir (2013), (Gao 

et al., 2012). In Chimoio, only seven weeks of the year that is week 30 to 31 

and week 35 to 38 presents a relative humidity below 60 %.  

e) Normal differencing index (NDVI): the trees can be a good 

resting area for the mosquitoes since they keep a fresh and humid 

environment during the day, ideal for the mosquitoes. In Brazil de Oliveira, 
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dos Santos, Zeilhofer, Souza-Santos, and Atanaka-Santos (2011) noted that 

high numbers of notified malaria cases were located near areas with high 

NDVI values. Based on NDVI, Chimoio presents 88 % of high-risk of malaria.  

f) Land Use and Land Cover (LULC): The areas with crops, 

grass and water bodies as the high-risk areas of malaria. Areas such as 

shrubs and mosaic cover vegetation are classified has having a moderate risk 

of malaria, while the areas with forest, bare, and urban settlements are 

classified as having the lowest risk of malaria (Chikodzi, 2013). Chimoio 

presents 4 % high risk of malaria occurrence). 

g) Slope: Areas on flat ground are more prone to accumulate 

water from rain increasing the malaria risk Krefis et al. (2011); Framcis Mulefu 

(2016). In Chimoio 66 % of the area is a high risk are for malaria. 

1.1.3.2. Non-climatic factors 

Several non-climatic factors influence malaria occurrence and include: 

a) Malaria vectors: not all mosquitoes transmit malaria, only female 

Anopheles can carry the malaria parasite. Distinct species of Anopheles differ 

in their transmission capacity, depending on the biology and behavior of the 

mosquito. Mosquitos in the Anopheles gambiae group feed on humans or 

animals. A. gambiae are very good malaria vectors since they prefer to feed 

on humans rather than animals (LabSpace, 2014), (CDC, 2014b). The main 

vectors of malaria in Mozambique belong to the groups A. funestus and A. 

gambiae (Arroz, 2016).  

b) Malaria parasites: As stated previously there are five malaria 

parasites. In Mozambique Plasmodium falciparum is the most frequent 

parasite, responsible for 90.0% of all malarial infections, while Plasmodium 

malarie and Plasmodium ovale represent 9 and 1 % of the cases respectively 

Instituto Nacional de Estatistica (2011), WHO (2015a). Malaria cases 

diagnosed by health personnel in Chimoio indicated that over 21% 

prevalence were classified as being the highest malaria risk areas, between 

14 and 21% were classified as being of moderate malaria risk and, less than 

14% were classified as having the lowest risk of malaria occurrence.  
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 c)  Water development projects and distance from water bodies: 

big and small development projects, e.g. dams and ponds, can increase the 

malaria incidence, in villages that are located near them. They create more 

breeding habitats and more vectors implies more malaria transmission. 

Thompson et al. (1997) reported that in Maputo, Mozambique, the risk of 

malaria was 6.2 times greater for individuals living less than 200 meters from 

the breeding sites than that of individuals living 500 meters or more away from 

the breeding sites. In Tanzania, improved socioeconomic status due to rice 

growing has been found to lead to reduced malaria prevalence, in spite of 

increased mosquito populations among villages adjacent to flooded rice fields 

(Mutero, MCcartney, & Boelee, 2006). In Chimoio 43 % of the total area is at 

high risk of malaria. 

d) Distance from Roads (DTR) 

The Euclidian distance for the nearest road measure the accessibility 

of rapid treatment for a malaria patient. Places over 5 kilometres from the 

roads are classified as having a high risk to malaria, those between 2.6 km 

and 5 km from roads are classified to be of moderate risk and those less than 

2.5 km from the roads are classified as having the lowest risk of malaria 

infection. In Chimoio 40 % of the area is at high risk for malaria.  

e) Population movements and migration: population 

movements have significant implications for malaria transmission. War, 

migrations and tourism may expose non-immune individuals to an 

environment with high malaria transmission (CDC, 2014b). 

f) Urbanization: the incidence of malaria is generally lower in 

urban areas than in rural areas. There are several reasons for this: 

 Although there is plenty of space for vector breeding in rural 

villages, mosquito breeding sites in urban areas are limited because more 

space is covered by houses.  

 People in urban areas may have more access to health care 

and malaria prevention strategies than people in rural villages.  
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However, rapid urbanization of areas within or on the outskirts of 

urban centres is commonly done in an uncontrolled fashion without thought 

or planning. Conditions are crowded, and settlers tend to dig pits to extract 

stone and soil for house construction, creating numerous breeding grounds 

for mosquitoes. According to Tatem, Gething, Smith, and Hay (2013) the 

urbanization process results in profound socio-economic and landscape 

changes that reduce malaria transmission. Socio-economic and 

demographics: Aspects such as poverty, population density, distance from 

roads. Malaria prevalence can also influence in malaria occurrence.  

g) Population density (Pop dens) 

Data on population density were calculated from the National census 

population projections for 2014. In the study places over 9000 people/ km2 

were classified to be at highest risks to malaria, those between 6001 to 9000 

people/ km2, were classified to be of moderate risk, and those less than 6000 

person/ km2 were classified to be as low-risk of malaria infections. In Chimoio 

only 8 % of the total area is at high-risk for malaria occurrence. 

h) Human host factors: human factors include: 

 Genetic factors: biologic characteristics present from birth can 

protect against certain types of malaria. Two genetic factors, both associated 

with human red blood cells, have been shown to be epidemiologically 

important. Persons who have the sickle cell trait (heterozygotes for the 

abnormal haemoglobin gene HbS) are relatively protected against P. 

falciparum malaria and thus enjoy a biologic advantage). 

  Acquired immunity: acquired immunity greatly influences how 

malaria affects an individual and a community. After repeated attacks of 

malaria a person may develop a partially protective immunity. Such "semi-

immune" persons often can still be infected by malaria parasites but may not 

develop severe disease, and, in fact, frequently lack any typical malaria 

symptoms. 
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  Pregnancy: pregnancy decreases immunity against many 

infectious diseases. Women who have developed protective immunity against 

P. falciparum tend to lose this protection when they become pregnant). 

 Behaviours: Agricultural work such as harvesting (also 

influenced by climate) may force increased night-time exposure to mosquito 

bites. Raising domestic animals near the household may provide alternate 

sources of blood meals for Anopheles mosquitoes and thus decrease human 

exposure. 

 Age: Children under five years of age have weak immunity to 

malaria infection. Immunity to malaria develops slowly after several infections 

and children need at least five years to develop their immunity. 

i) Vector resistance to insecticides: Some insecticides are 

used to kill mosquitoes and protect communities from mosquito bites. 

However, after repeated application of these chemicals, the mosquitoes 

develop insecticide resistance. This means a large number of mosquitoes will 

survive in the community, and the risk of malaria infections rises and many 

people can be affected (CDC, 2014b), (WHO, 2015a). 

j) Drug resistance in malaria parasites: drugs kill the malaria 

parasite inside the human body. However, after repeated use of an anti-

malaria medicine, the parasite can develop resistance to that particular drug 

or to similar medicines. As a result, the parasites inside the human body can 

no longer be killed and patients cannot be cured unless new drugs are 

developed for treatments. In Mozambique drug resistance to cloroquine and 

lumefantrine drugs has been reported by Raman et al. (2011). 

Malaria is a curable disease if the parasites remain susceptible to 

available treatments, and it can be prevented by using several methods. 

However, long-term and sustained implementation of prevention and control 

measures is necessary to significantly reduce or eliminate the problem from 

a country or a specific geographic area. As a result of long-term successful 

interventions, a local population can lose their immunity to malaria in an area 

where it has been reduced to a low level for some time. 
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1.1.4. Mathematical Modelling  

Models using climate variables can predict malaria risk and 

transmission, and following up such models with research on climate change 

may help lay the groundwork for effective malaria prevention and control in 

Chimoio municipality. 

Although the history of modelling mortality is very long, malaria 

mortality forecasting is much more recent. Mortality forecasting is generally a 

low-cost implementation solution, and its use may help in Precision Public 

Health and help in malaria eradication. 

Mathematical modelling uses computer-based models to describe, 

explain, or predict behaviour or phenomena in the real world. It is particularly 

useful in investigating questions or testing ideas within complex systems. For 

this reason, modelling can be especially helpful in informing decision-making 

in global malaria control and eradication efforts because they involve 

extensive changes to a complex web of interconnected biological systems 

(Heesterbeek et al., 2015). 

Establishing optimal policies and programs to support these efforts is 

complicated by the potential for parasites and vectors to evolve, the waxing 

and waning of human immunity, behavioural changes in human and vector 

populations, and interactions among large numbers of heterogeneous sub-

populations of the organisms involved. Mathematical modelling can build on 

available data, test multiple scenarios and combinations of intervention 

strategies, and make verifiable predictions on what can be expected from 

these strategies (RBMP, 2015). 

 

1.1.4.1. Malaria modelling 

 

Mortality modelling has a very long history. Numerous models have 

been proposed since Gompertz published his law of mortality in 1825. 

Mathematical modelling of malaria transmission also has a long history. It has 

helped us to understand the transmission mechanism, design and improve 
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 control measures, forecast disease outbreaks, etc. The so-called Ross–

Macdonald model is the earliest malaria model (Bacaër, 2011). The 

Macdonald studies resulted in very beneficial impacts in the collection, 

analysis, and interpretation malaria epidemiology (Molineaux, Gramiccia, & 

World Health Organization, 1980). 

Spatial heterogeneities have also been incorporated into 

epidemiological models by using reaction-diffusion equations by some 

researchers (Murray & Kirschner, 1989), (Smith & Ruktanonchai, 2010), 

(Mandal, Sarkar, & Sinha, 2011), and (Reiner, Niermann, Jekauc, & Woll, 

2013). 

Maude et al. (2014), produced a free, internet-based, user-friendly 

and interactive mathematical model of malaria elimination as a tool for policy 

makers that enable optimisation of local malaria elimination strategies before 

commitment of valuable resources. 

 Zacarias and Andersson (2010) studied the spatial and 

temporal patterns of malaria incidence so as to determine the means by which 

climatic factors such as temperature, rainfall and humidity affect its 

distribution in Maputo province, Mozambique. They presented a model of 

malaria that evolves in space and time in Maputo province Mozambique. 

Gomez-Elipe, Otero, van Herp, and Aguirre-Jaime (2007) forecasted 

malaria incidence based on monthly case reports and environmental factors 

using ARIMA in Burundi. The Box-Jenkins modelling procedure was used to 

determine an ARIMA model for malaria in Zambia (Jere & Moyo, 2016). In 

Ghana, time Series Analysis of Malaria Cases was used Alhassan, Isaac, and 

Emmanuel (2017), in Sudan. Hussien, Eissa, and Awadalla (2017), 

developed a simple applicable and accurate model to predict malaria 

incidence using ARIMA model. 

1.1.4.2. Malaria mortality modelling 

Mortality forecasting is a more recent endeavour. Only three decades 

ago, the methods in use were relatively simple and involved a fair degree of 

subjective judgment (Pollard et al., 1987). It is only in the last 15 years or so 
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that more sophisticated methods have been developed and applied (Booth & 

Tickle, 2008). 

There are some studies in malaria mortality forecasting using ARIMA. 

Aregawi et al. (2014) conducted a study in Ethiopia using ARIMA for 

forecasting malaria mortality. In Nigeria modelling and Forecasting Malaria 

Mortality Rate using SARIMA Models was performed by (Ekezie, Opara, & 

Okenwe, 2014). 

The common time series procedure to analyses interventions is based 

on autoregressive integrated moving average (ARIMA) models (Box & Tiao, 

1975). In the ARIMA framework, there is a need to for transform the non-

stationary series to a stationary prior to the analysis. The Intervention Time 

Series method (ITS) provide an alternative method to the modelling 

interventions (Harvey, 1989). 

Intervention time series analysis is an important method for analysing 

the effect of sudden events (unplanned) on time series data. ITSA methods 

are quasi-experimental in nature and the validity of modelling with these 

methods depends upon assumptions about the timing of the intervention and 

the response of the process to it. ITSA was used in Australia in a heroin 

shortage case and enabled valuable insights about consequences of 

unplanned and poorly identified interventions while minimizing the risk of 

spurious results (Gilmour, Degenhardt, Hall, & Day, 2006). 

ITSA was also used in crime rates in Virginia, USA (Sridhar, Seymour, 

& Shepherd, 2003). 

The principal advantages of the ITSA over the ARIMA method are:  

a)  Whereas trend and seasonal are explicitly modelled, in the 

ARIMA models they are removed from the series before any analysis is 

performed; 

b)  In the ARIMA models the observed time series is differenced 

prior to the analysis, in order to obtain an approximation to stationary time 

series, while in the ITSA approach the time series is modelled directly in 

levels, whether stationary or not; 
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 c)  Missing data, stochastic explanatory variables, and 

multivariate data are easily incorporated into the ITSA methodology, whereas 

within the ARIMA framework this is not so straightforward (Sridhar et al., 

2003). 

1.1.5. Malaria Mapping 

Mapping refers to the creation of graphic representation of information 

and it uses spatial relationship within the graphic to represent some 

relationship within the data (Kraak, 2005). Several projects exist to map 

malaria. The Malaria Atlas Project aims to disseminate free, accurate and up-

to-date information on malaria and associated topics, organized on a 

geographical basis (MAP, 2014). 

Malaria Program and the Medicines for Malaria Venture (MMV) 

launched a newly-designed mapping tool that allows users to build 

customized maps using data from WHO’s World Malaria Report. There is a 

free platform called Global Malaria Mapper that is accessible to interested 

individuals and organizations over the world (MMV, 2014). 

Building spatial models of disease prevalence and risks, including 

maps is one of the central objective of epidemiology. The risk maps can be 

used for the identification of appropriate strategies to respond to disease 

outbreaks and vector, reservoir and agent control. Various technique can be 

employed to build a risk map usage of clinical data, distribution of the disease 

agents, reservoir’s and vectors, based on surveys or expert opinion (Chikodzi, 

2013). 

1.1.6. Precision Public Health 

The concept of Precision Public Health is relatively new and was 

probably derived from the Agricultural term Precision Agriculture (PA), an 

innovative concept of agricultural production based on information 

technologies in crop production (Sarauskis et al., 2015).  

Precision Health is defined as improving the ability to prevent disease, 

promote health, and reduce health disparities in populations by: 1) applying 

emerging methods and technologies for measuring disease, pathogens, 
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exposures, behaviours, and susceptibility in populations; and 2) developing 

policies and targeted public health programmes to improve health (Muin, 

Takes, Hosli, & Lapaire, 2015). This technique is based on specific site 

observation, and measuring and responding to variability in disease trends. If 

related to socio-demographic characteristics, using weekly data, it can lead 

to decision support systems that help to eradicate disease, optimise 

resources, and minimise the impact on the environment.  

Public precision health strategies can support decisions to reduce 

malaria by optimising resource use (M. J. Khoury, Iademarco, & Riley, 2016). 

For example, decisions can focus spraying efforts to reduce vector numbers, 

where to build a water body, and when to drain it.  
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 1.2. Thesis structure and motivation 

1.2.1. Thesis structure 

This thesis in structured in six sections inter-correlated starting from 

accessing the malaria profile in Chimoio over 9 years, modelling the climate 

data and their relationship with malaria in the same period, access the death 

caused by malaria in the municipality. Based on the information a malaria 

map of risk for Chimoio was produced and conclusions were derived. 

The spatio-temporal variation and socio-demographic characters of 

malaria are presented in section 2. Weekly malaria data for nine years (2006 

to 2014) were collected from the district Epidemiological Bulletin and 

incidence by season, age, gender, and residence was calculated. SPSS 

version 20 was used for statistical analysis and ArcGis 10.1 was used to 

produce maps.  

The evidences indicated that Malaria is increasing in the suburbs, and 

rural areas present more cases of malaria compared to urban areas, 

suggesting that malaria varies in time and space, and that a precision public 

health strategy should be used to control malaria occurrence.  

In section 3, modelling the influence of climate on malaria occurrence in 

Chimoio was carried out. Time series analysis was conducted using data on 

weekly climatic variables and weekly malaria cases in Chimoio, from 2006-

2014. Cross-correlation analysis, linear processes, namely ARIMA models 

and regression modelling, were used to develop the final model. The 

evidence found was that the Chimoio climate seems ideal for malaria 

occurrence. Malaria occurrence peaks during January to March in Chimoio. 

As the lag effect between climatic events and malaria occurrence is important 

for the prediction of malaria cases, this can be used for designing public 

precision health measures. The model can be used for planning specific 

measures for Chimoio.  

In section 4 the malaria mortality characterization and the relationship 

between malaria mortality and climate in Chimoio was established. The 

malaria mortality data and climate data were extracted from the Chimoio Civil 
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Registration records, and from the Regional Weather station, from 2010 to 

2014. ANOVA, Tukey’s, Chi-square, and time series analyses were carried 

out and an intervention analysis model (ITSA) developed. The evidences 

were that malaria mortality is increasing in Chimoio; children between 1 – 4 

years old represent 13% of Chimoio population, but account for 25% of 

malaria mortality. Malaria mortality shows seasonal and spatial 

characteristics. 

In section 5, using the climate, socio-demographic and clinic variables the 

malaria risk areas of Chimoio were mapped and modelled. A 30m*30m Land 

sat image, ArcGis 10.2 and, BioclimData, and Weather station climatic data 

were used. A conceptual model for spatial problems was used to create the 

final risk Map. The evidence found was that Chimoio presents 96% of the 

area with moderate risk and 4% with high-risk. The central and south-west 

“Bairros” namely Centro Hipico, Trangapsso, Bairro 5 and 1o de Maio have a 

high-risk, while the rest of the “Bairros” having a moderate risk of malaria. 

September is the month with the lowest risk to contract malaria.  

In section 6, based on the results it is concluded that Precision Public 

Health strategies that target malaria occurrence and mortality weekly, and 

temporal and spatial distribution can be formulated to combat and eradicate 

malaria in Chimoio Municipality. The model are robust and, can predict the 

expected number of malaria cases at least two months in advance, and timely 

prevention and control measures can be effectively planned in Chimoio, such 

as the elimination of vector breeding places, correct time and place to spray 

insecticides, and awareness campaigns weeks before the malaria peak 

season. This can lead to a reduction in malaria cases and mortality.  

 

1.2.2. Thesis objectives 

 

1.2.2.1. Main Objective 
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 The main objective of this theirs is to assess the malaria variation in 

Chimoio Municipality to derive appropriate measurements for malaria 

reduction or eradication 

1.2.2.2. Specific objectives 

The specific objectives of this thesis are: 

a) To Model malaria and cases mortality in Chimoio  

b) To Map malaria in Chimoio.  

c) From the model and the map derive strategies for Precision Public 

Health for malaria eradication in Chimoio municipality. 

1.2.3. Thesis contribution 

The major contributions of the work are: 

a) We expect to demonstrate how ARIMA modelling can be used to 

forecast malaria occurrence 

b)  How ITSA can be used to forecast malaria mortality 

c) How spatio-temporal variation can be used for Precision Public 

Health and help local communities in malaria combat and 

eradication in Chimoio and perhaps throughout Mozambique. 

1.2.4. Thesis motivation 

The motivation to carry out this work includes the following reasons: 

 The need to contribute to malaria eradication in Mozambique, in 

general, and Chimoio, in particular. 

  Swaziland is a relative small neighbouring African country with a 

landscape and weather similar to Chimoio Municipality and using an 

integrated strategy for malaria eradication, managed to eradicate 

malaria in 2016.  

 With commitment from everybody willing to eradicate the disease, it is 

anticipated that Chimoio municipality can achieve the same results. 
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 Despite all individual measures to control malaria, personally I suffer 

on average 3 malaria per year with a peak of six malaria in 7 

months. 
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 2. Spatio-temporal variation and socio-demographic 

characters of malaria in Chimoio municipality, 

Mozambique (*) 

 

(*)“To a large extend, this chapter corresponds to “Spatio-temporal variation and socio-

demographic characters of malaria in Chimoio municipality, Mozambique” published in 

“Malaria Journal;15:329” in 2016. 

 

Abstract 

Background 

In Africa, urban malaria is a major concern, since the towns and especially 

their suburbs are growing quickly. In Mozambique, malaria represents 45% 

of all cases of outpatient visits and 56% of inpatient visits at paediatric clinics. 

Malaria is a major public health burden in Chimoio Mozambique and few 

studies on malaria exist. 

Methods 

The study was carried out to establish the spatiality and temporality of malaria 

and describe socio-demographic characteristics of malaria patients in 

Chimoio. Weekly malaria data for nine years (2006 to 2014) were collected 

from the district Epidemiological Bulletin and incidence by season, age, 

gender, and residence was calculated. SPSS version 20 was used for 

statistical analysis and ArcGis 10.1 was used to produce maps.  

Results 

The annual overall average of malaria incidence was 20.1 % and the 

attributable fraction (AF) of malaria was 16%. There were differences in 

weekly and yearly malaria occurrences throughout the period. There was no 

difference in malaria cases between male and female patients. Children 

under five years of age are three times more prone to malaria than adults (p 

< 0.05). Three temporal clusters of malaria were identified: Cluster 1, weeks 
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25 to 47 with average weekly cases of 618 (sd= 251.9), Cluster 2, weeks 18 

to 24 and 48 to 51 with average weekly cases of 1,066 (sd= 317.4). Cluster 

3, weeks 1 to 17 and 52 with average weekly cases of 1,587 (sd= 722.4). 

Similarly, three different clusters were identified according to residential 

areas: cluster 1 (10%) mostly urban, Cluster 2 (22%) mostly suburbs, Cluster 

3 (28%) mostly rural areas.  

Conclusion 

Malaria is increasing in the suburbs, and rural areas present more cases of 

malaria compared to urban areas. This article is an initial step to understand 

the dynamics of malaria in Chimoio. Results suggest that malaria varies in 

time and space, and that precision public health strategy should be used to 

control malaria occurrence. Studies on weather factors affecting malaria 

cases, bed net usage, and others should be undertaken. 

  



 

28 

 
2.1. Research objective 

 

The goal of this study was to determine the spatial and temporal 

patterns or clusters of malaria distribution and socio-demographic 

characteristics of malaria patients in Chimoio Municipality to help decision-

making in Precision Public Health strategies in malaria prevention and 

eradication, using weekly data. 

2.2. Methods 

2.2.1. Study area and population  

 

Chimoio is a municipality in Manica Province in the central region of 

Mozambique, -19° 6' 59 S, 33° 28' 59 E (Map 6).  

Adapted from CENACARTA 

Map 4: Administrative Map of Chimoio, with Population Density (person/km2) 
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The population of Chimoio was 237,497 inhabitants in 2007, with a 

3.5% annual growth rate. Men and women represent 52% and 48% of the 

population respectively. Population from 0 to 5 years comprises 17% of the 

inhabitants (INE, 2012). The city is administratively divided into three urban 

districts with 33 residential areas called ́ Bairros´, (Map 7) comprised of urban, 

suburban, and rural areas. 

 

Source: (Google maps, 2016) 

The urban area consists of colonial buildings; one to four storey brick 

houses with large streets and large areas of private open space. There are 

sewage and sanitation facilities in place. The residents of these areas have 

medium to high-income levels. On the contrary, most of the suburbs are 

crowded; some housing units are made of bamboo and wooden poles, and 

few are of bricks and concrete. In those areas there is poor sanitation, narrow 

or non-existent streets, and the income levels are low to medium. Rural areas 

Map 5: Partial view of Chimoio. 1=Urban, 2=Suburb, 3=Rural 
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 consist of scattered houses, covered with grass, and that are inhabited by 

low-income residents. There is no electricity and running water and they are 

continuously expanding.  

The area is 174 km² at an altitude of 750 meters. Chimoio has a warm 

temperate climate with dry winters from April to July, hot and dry summer from 

August to October, and hot humid summer from November to March. The 

average temperature in Chimoio is 21.5 °C. With an annual rainfall average 

of 1143 mm, Chimoio has 201 dry, 41 intermediate, and 123 wet days, and 

the wet period is from 26 November to 29 March (Westerink, 1995).  

Chimoio has six public health centres’, one Provincial hospital, and 

two private clinics. The oldest health centres (more than ten years) are Centro 

de Saúde Eduardo Mondlane (CSEM), Centro de Saúde 1o de Maio 

(CS1Maio), Centro de Saúde Namahonha (CSNh) and Centro de Saúde 

Chissui (CSCh). The other two centres, Centro de Saúde 7 de Abril (CS7Abril) 

and Centro de Saúde Vila Nova (CSVN) are more recent (less than five 

years). 

2.3. Study subjects  

 

In the public health centres and in the provincial hospital malaria cases 

and other occurrences are compiled daily to produce the Weekly 

Epidemiological Bulletin (BES) and then sent to the Chimoio Directorate of 

Health, where data are summarized into a Weekly District Epidemiological 

Bulletin and channelled to the Provincial Directorate of Health (DPS). Weekly 

malaria data from the nine years period (2006 to 2014) were collected from 

the district BES: missing bulletins were completed at DPS. The data collected 

provides information on cases of malaria, gender, and age of the patients. 

Total malaria cases for each week for the nine year period (2006 to 2014) 

were added and averaged. The aggregated values starting with Week 1 to 

Week 52 for the nine-year period represent the variables of the study. 
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Data from the area of residence of the patients were collected from 

Centro de Saúde Eduardo Mondlane (CSEM), Centro de Saúde 1o De Maio 

(CS1Maio), and Centro de Saúde Nhamaonha (CSNh), (see Map 6), which 

are the largest and oldest clinics in Chimoio Municipality. Proportional 

randomized sample data from daily record books of the clinics (n = 35,864) 

were used of which 18,292 were from CSEM, 9,185 from CS1Maio, and 8,387 

from CSNh. Data collected were from 2009 to 2014 due to data availability 

and aggregated on a weekly basis.  

Malaria cases from 2006 to 2009 included cases confirmed either by 

microscopy or rapid diagnostic test (RDT), and also clinical malaria (fever) 

diagnosed by health personnel. From 2010 to 2014 malaria cases that were 

recorded were only from microscopy and RDT. An adjustment for clinical 

malaria was made for the years 2006 to 2009 since from 2010 to 2014 of the 

total fever cases, 78% were malaria cases.  

To compute the attributable fraction (AF) of malaria, monthly data from 

CSEM were used from 2006 to 2014 and aggregated on a monthly basis. This 

clinic is the oldest health centre in Chimoio accounts for 57% of all malaria 

cases in the period (227,814).  

The AF of malaria was calculated using the following formula: 

𝐴𝐹(%) =
𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑉𝑖𝑠𝑖𝑡𝑠
× 100 

Population estimates for Chimoio by locality, gender, and age for the 

years 2006 to 2014 were calculated based on the 2007 national census using 

the mean annual population growth rate for Chimoio of 3.5%. Average 

population for the study period was calculated (Table 1). 

2.4. Data analysis  

 

Total malaria cases per week were derived from the collected data 

adjusted to the population increase per year (3.5%). The malaria incidence 

per 100 person-year was calculated from the total number of cases occurring 
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 in each week in each Bairro divided by the total person-week and then 

multiplied by 100.   

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 (%) =
𝑁𝑜. 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒
× 100 

Linear trend analysis, and multi-way ANOVA to test difference 

between years and weeks using Tukeys’ test for mean separation were 

performed. Chi-square for proportion of gender and age and Phi, Cramer's V 

test was used for statistical significance. Regression analysis to test 

association between malaria cases and population density of residential 

areas was performed. Temporal and spatial hierarchical cluster analysis 

using square Euclidean distance was performed to identify cluster between 

the weeks and between residential areas in malaria incidence and 

dendrograms were produced. All tests were performed using Microsoft Excel 

(Analysis ToolPak) and SPSS IBM version 20; spatial maps were produced 

to analyse spatial variation along the years using ArcGis version 10.1. 
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2.5. Results 

2.5.1. Malaria cases and incidence in Chimoio 

 

Table 2 reports that malaria cases in Chimoio between 2006 and 2014 

amounted to 490,555. In 2010 the fewest cases were recorded, 41,925, and 

then in 2014 they almost doubled to 84,707. The incidence of malaria 

decreased from 2006 to 2010 and increased from 2012 to 2014. The annual 

average incidence of malaria was 20.5% with a maximum of 25.3% in 2007 

and a minimum of 15.5% in 2010. 

 

Table 1: Weekly cases of Malaria in Chimoio 2006 to 2014 

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 Overall 

Nr. Cases 45,458 60,306 58,333 39,874 41,925 47,107 52,463 60,381 84,707 490,555 

Week Average 874 1,160 1,122 767 806 906 1,009 1,161 1,629 1,048 

SD 316.6 477.4 584.4 397.5 349.4 477.4 498.2 715.4 1126.6 642.1 

Max 1,75 3,06 3,09 1,7 1,78 2,17 2,26 3,22 4,44 2,61 

Min 438 222 397 276 317 332 425 281 489 353 

Population 231,462 238,768 250,088 259,764 269,818 280,263 291,116 302,392 314,108 270,864* 

Incidence (%) 19.6 25.3 23.3 15.4 15.5 16.8 18.0 20.0 27.0 20.1** 

* Average Population, **average cases/divided by average population x 100 

Figure 3 presents the temporal linear trend of malaria in Chimoio. 

Figure 3 A shows the temporal distribution of Malaria for each year and Figure 

3 B shows the average variation over the 9 years. In terms of weeks, the 

lowest week recorded was 222 cases per week in week 27 in 2007 and the 

highest record was 4438 in week 8 in 2014. There is a high weekly variation 

in malaria cases ranging from 222 to 4438 cases per week, CV, 61% (3A). 
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On average week six presents the highest cases of malaria with 1,919 

cases and week 33 the lowest 419 (3B). Malaria weekly average was 1,048 

(sd 642.1) cases ranging from 806 cases in 2010 to 1,629 cases in 2014. 

Malaria cases (1,048) presented a difference between years (p < 0.05), the 

calculated F value was 22.1while the critical table value was 1.96. Malaria 

cases (1,048) also shows a difference between weeks (p < 0.05), the 

calculated F value was 11.55 while the critical table value was 1.38. 

Table 3 presents the summary and the mean separation of malaria 

cases between the years. Years 2009 and 2010 differs from years 2006, 

2007, 2008, 2011, 2012, and 2013; and year 2014 differs from the other years 

in malaria cases. 

Table 2: Summary and malaria cases mean separation between years 

*Different letter indicates difference between years. Tukeys’ test (p<0.05) 

 

(year) 2009 2010 2006 2011 2012 2008 2007 2013 2014 

N 52 52 52 52 52 52 52 52 52 

Mean* 767a 806a 874b 906b 1009b 1122b 1160b 1161b 1629c 

SD 397.5 349.43 316.56 477.44 498.16 584.45 477.45 715.42 1126.62 

Figure 3: Weekly malaria Cases in Chimoio 2006 to 2014. Annual (A), Average (B) 
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2.5.2. Temporal clusters of malaria in Chimoio  

 

A temporal cluster analysis of malaria occurrence was performed, and 

the results are summarized in the dendrogram in Figure 4. Three temporal 

clusters of malaria were identified: Cluster 1 comprises weeks 25 to 47 with 

an average of weekly cases of 618 (sd = 251.9), 44% of the total weeks, 

representing the dry season; Cluster 2 comprises weeks 18 to 24 and 48 to 

51 with an average for weekly cases of 1066 (sd = 317.4), 21% of the total 

weeks, the intermediate season; Cluster 3 comprises weeks 1 to 17 and 52 

with an average for weekly cases of 1587 (sd = 722.4), 35% of the total 

weeks, the wet season.  

 

Figure 4: Temporal Cluster of Malaria in Chimoio 2006 to 2014 

There is a difference (p<0.05) between cluster 1 (618), cluster 2 

(1,066) and cluster 3 (1,587). The calculated F value was 185.35 while the 

critical table value was 3.02. Table 4 presents the malaria cases mean 

separation between the three clusters. 
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Table 3: Summary week cluster malaria mean separation 

 

 

 

 

 

*Different letter indicates difference between years. Tukeys’ test (p<0.05) 

2.5.3. Malaria cases by gender and age 

 

In terms of gender, there is no overall difference (p > 0.05) between 

women (51%), and men (49%), between adult women (52%) and adult men 

(48%), or female children (50.3%) and male children (40.7%), Chi square 2, 

df = 1. In terms of age, out of 490,555 cases of malaria in Chimoio, 235,830 

(48%) were in children under five years and 254,725 (52%) in patients over 

five years old. A difference (p < 0.001) is clear between these two groups, the 

calculated Pearson Chi-Square was 48;, df = 1.  

2.5.4. Attributable fraction of malaria in Chimoio 

Figure 5 presents the trend of malaria cases and patient visits to 

CSEM from 2006 to 2014 and the monthly AF. From 2006 to 2014 CSEM was 

visited by 1,885,195 patients and 259,252 were tested positive for malaria 

(5A). The monthly peak of malaria was in February for years 2006, 2007, 

2010, 2011, 2012, 2013, March for years 2009 and 2014, and December for 

year 2008 (5B). The annual average AF of malaria was 16%. 

Groups Cluster 1 Cluster 2 Cluster 3 

N 207 99 162 

Mean* 618a 1066b 1587c 

SD 215.89 371.37 722.42 
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Figure 5: (A) Malaria cases and patient visits (B) Attributable Fraction 
of Malaria 

Years 2010, 2011, and 2012 recorded the lowest AF of malaria in 

Chimoio, 5.7% and the year 2009 the highest, 27%. There is no difference (p 

>0.05) in AF malaria among years, the calculated Pearson Chi-Square was 

54.00, df = 48. There is a difference (p<0.001) in AF malaria among months, 

the calculated Pearson Chi-Square was 913.349,, df = 693.  

2.5.5. Relationship between malaria cases and population 

density 

 

Map 6 presents the Chimoio population density per bairro, and the 

population density varies from 28 to 17,049 (person/km2). A regression 

analysis was performed to determine the association between population 

density by residential area and malaria cases. From Table 5 there is a 

medium positive correlation, r = 0.407 between malaria cases and population 

density and the r2 value indicates 0.165, which implies that 16.5% of malaria 

cases are attributed to population density. At 0.05 significance level the 

calculated F value is 5.741 while the critical table value is 1.344. Thus, malaria 

cases significantly depend on population density.  
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 Furthermore, from the coefficients in Table 6, the beta value is positive 

(0.407), That is, as population density increases malaria cases increase as 

well. 

 

Table 4: Model Summary Regression Malaria cases and Population 
Density 

Model R 
R2 

Adjust 
R2 

Std. 
Error  

R2 F df1 df2 
Sig F Durbin - 

        
 
Estimate Change Change     Change Watson 

1 .407a 0.17 0.14 1529.74 0.17 5.74 1 29 0.02 1.62 

a. Predictors: (Constant), Population density (Km2) 
b. Dependent Variable: Malaria Cases, R2= R square 

 
 

Table 5: Regression Coefficients. Malaria Cases and Population 
Density 

Model Unstan (b)   Stand (c)   T Sig.  95% confidence Collineraty   

  Coeffic.   Coeffic Beta     interval for B Tolerance VIF 

  
B 

Std. 
Error                 

1 (Cosntant) 1071.4 400.498   2.68 0.01 252.3 1890.508     

  Population                   

  
density 
(Km2) 

0.145 0.061 0.41 2.4 0.02 0.021 0.269 1 1 

a. Dependent Variable: Malaria Cases 
b) Unstandardized 

c) Standardized 

2.5.6. Malaria Clusters per Residential Area. 

 

Figure 6 presents the dendrogram clusters by residential areas. Three 

clusters were identified. Cluster 1 comprises the following bairros: Bairro 1, 2, 

4, Herois Mocambicanos, 7 de Abril, 7 de Setembro, Bloco 9, Nhamatsane, 

Tembwe, Agostinho Neto and Eduardo Mondlane. The average incidence is 

10.6% and represents 35% of the Bairros of the municipality, most of them 

urban areas. Cluster 2, comprises the following Bairros: Hombwa, Josina 

Machel, 3 de Fevereiro, Vila Nova, Mudzingazi, Bairro 3, 5, Nhamadjessa, 
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Nhamaonha, Francisco Manyanga, 25 de Junho, Centro Hipico, Textafrica, 

16 de Junho, and Chinfura. The average incidence is 21.9% and represents 

8% of the Bairros of the Municipality, most of them are suburbs. Finally, 

cluster 3 comprises the following Bairros: Nhauriri, Chissui, Sitanha, 1 de 

Maio and Trangapasso. The average incidence is 28.4% and represents 16% 

of the bairros of the municipality, which are mostly rural areas. There is a 

difference (p <0.05) between malaria clusters, and the calculated Pearson 

Chi-Square was 7.99,, df = 2. 

 

Figure 6: Malaria Clusters by Residence in Chimoio 2006/2014 
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 2.5.7. Malaria incidence from 2010 and 2014 

 

Map 8 depicts the incidence of malaria for the 5 years under analysis 

(2010–2014). Map 8a–e shows the spatial distribution of malaria for each year 

and Fig. 7f shows the spatial variation over the 5 years. It is possible to see 

that the incidence of malaria varies spatially in the Chimoio the municipality 

(Agostinho Neto, Heróis Moçambicanos, Tembwe, and Hombwa) show 

values consistently below average of up to 1.5 standard deviations whereas 

areas located in the southeast (Trangapasso) and southwest (Nhaurire and 

Textafrica) of the district show values consistently above the average of up to 

2.5 standard deviations.  

In terms of malaria variation, from 2009 to 2014 Sitanha, the most 

rural bairro, presented a reduction of malaria incidence of 5 to 15%; 

Nhamatsane, Herois Mocambicanos, Tembwe, and Hombwa, rural bairros, 

and Bairro 1, 2, 3, 4, and Bloco 9 urban bairros, presented a reduction of 4 to 

6%. Bairros 1o de Maio, Francisco Manhanga and Nhamaonha, new suburbs, 

presented the highest increase of 7 to 26% and the rest of the bairros, which 

are old suburbs had an increase from 7 to 16%. Overall, and for the five years, 

malaria incidence has increased between 7 and 26% in the bairros situated 

in the central eastern part of the municipality (suburbs) and decreased 

between 4 and 15% in the other areas (rural and urban). 



 

41 

 

Map 6: incidence of Malaria. a–e Spatial distribution. f Spatial variation. 

Major Chimoio Bairros: 1= Agostinho Neto, 2= Herois Moçambicanos, 3= 

Tembwe, 4= Trangapasso, 5=Hombwa 6=Nhamadjessa, 7=Nhamatsane, 

8= 25 de Junho, 9= Vila Nova, 10= Circulo Mudzingadzi, 11= Nhauriri, 12= 

1 de Maio, 13=Sitanha, 14=Chianga, 15= 7 de Abril, 16=Bairro 5, 17= 

Chissui, 18= Centro Hipico, 19= Francisco Manyanga, 20= Nhamaonha, 

21= Bairro 4, 22= Mudzingadzi, 23= Eduardo Mondlane, 24= Bairro 1, 25= 

Bairro 2 
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 2.6. Discussion 

 

Malaria epidemiology has never been investigated in the study area 

before. The overall annual incidence of malaria in Chimoio was 20.5%. 

Maputo city reported 15.7% Macedo de Oliveira et al. (2011)  and Manica 

Province 43% (IDS, 2013). Incidence of malaria in Chimoio is lower than in 

Manica Province due to the fact that Chimoio is an urban area and residents 

have more resources for malaria prevention, and the weather is cooler than 

in many parts of the country. Overall malaria cases and incidence have been 

increasing in Chimoio in recent years, especially in suburbs. After a decrease 

in 2010 with 41,925 cases reported and 15.5% incidence, 84,704 cases were 

reported in 2014, showing an incidence of 27%.  

These results are in concordance with a study of patterns and trends 

of malaria conducted in Kenya that found an increase of 111.13% and 

109.52% per annum in 1988-2002 and 1998-2005 respectively for morbidity 

and hospitalization (Ernst et al., 2009). This increase in the Chimoio results 

is probably due to the 3.5% annual increase in population, reduced efforts to 

combat malaria and persistent poverty. However this is contrary to reports of 

a substantial reduction of malaria incidence in sub-Saharan Africa (WHO, 

2013a) and (WHO, 2015b).  

The greatest number of cases occurs mostly in February (peak of the 

rainy season) and the fewest number of cases in September (dry season). 

This is in concordance with Zacarias and Andersson (2010) who finds that 

the peak of malaria in Mozambique occurs during the rainy season. It should 

the noted that the 20.5% incidence may be overestimated as it does not 

consider the same people being diagnosed more than once in a year, or 

underestimated since generally there are cases that are not reported, 

especially those which are far from health centres, self-medication, and use 

of traditional healers. 

It was reported that in Chimoio the land cover is changing towards 

less vegetation M.A.M. and J.A.A. (2015); Hay et al. (2005) and Hay et al. 
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(2008) claim that the urbanization process results in profound socio-economic 

and landscape changes that reduce malaria in urban areas, this is in line with 

findings of this study that the incidence of malaria is decreasing in rural areas. 

The results of this study differ from those in Amazonia, where the population 

increase resulted in occupation of more space and increases in disease 

incidence (Saraiva et al., 2009). There is a difference in malaria occurrence 

between years and this is in line with CDC (2014b) and Zacarias and 

Andersson (2010).  

Contrary to most research UNICEF (2015) and WHO (2015b), this 

study did not find any difference between women and men in malaria cases, 

between adult women and adult men, or between female children and male 

children. The chances of getting malaria are the same (gender equality) in 

Chimoio. This can be explained by the high malaria incidence in the area, 

which puts the entire population at risk (Zacarias & Andersson, 2010). 

There was a difference between children under 5, (48%) and 

population over five (52%). Children under five comprise 17% of the 

population of Chimoio but accounted for 48% of the malaria cases, almost 

three times more. This disproportion is also reported by other authors 

UNICEF (2015) and IDS (2013). This is probably due to the fact that children 

under five years of age have little immunity to the malaria parasite.  

Very few studies have been carried out using weekly data Kim, Park, 

and Cheong (2012) and Krefis et al. (2011). Most use monthly data and 

differentiate malaria cases between dry and rainy season or cooler and hot 

seasons Omonijo et al. (2011), Tonui, Samuel, Kabiru, Ephantus, and 

Kiplagat (2013) and Yeshiwondim, Gopal, Hailemariam, Dengela, and Patel 

(2009). The results of this study almost coincide with the results of Westerink 

(1995) who reported that Chimoio has 201 dry (29 weeks), 41 intermediate (6 

weeks), and 123 wet days (17 weeks), suggesting that malaria cases vary in 

these three periods. In terms of Precision Public Health, the three distinct 

periods should have different approaches regarding prevention and combat. 
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 The attributable fraction of malaria was 16%. In Mozambique 45% of 

all cases in outpatient visits are due to malaria UNICEF (2015) in Manica 

Province 43% IDS (2013), meaning that the AF of malaria in Chimoio is 

almost a third of the province and the country value. This may be due to the 

cooler weather and the fact that country averages include rural areas, where 

there is more malaria than in cities, and in the cities there are more malaria 

control interventions.  

In terms of malaria cases related to population density, there was a 

medium positive correlation r = 0.407 between the population density and 

malaria incidence and the R2 value indicates 0.165, which implies that 16.5% 

of malaria cases are attributed to population density. The extremes of both 

low and high population density modify malaria transmission and have 

profound consequences for estimates of Chimoio´s Mozambique public 

health burden.  

In terms of residential areas, annual malaria incidence varies from 9% 

to 45%, meaning that Chimoio is an area with hypo endemic and 

mesoendemic malaria (Worrall, Basu, & Hanson, 2005). In terms of malaria 

spatiality, in rural areas malaria incidence is decreasing, probably due to the 

reduction in vegetation cover and deforestation, and in urban areas probably 

due to availability of better measures and living conditions. In suburban areas 

malaria incidence is increasing, probably due to increasing poverty, poor 

sanitation and poor living conditions. Other studies report the same pattern of 

findings IDS (2013) and WHO (2015b). 

 

2.7. Conclusions  

 

This study concludes that in Chimoio the incidence of malaria 

presents a spatial and temporal pattern. Malaria cases have been increasing 

over the years, especially in suburbs, and there is a difference in malaria 

cases by year and weeks. There is no gender difference in malaria cases. 
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Children under 5 years of age are three times more prone to get malaria than 

the rest of the population. There are three different periods of malaria in 

Chimoio: hot and rainy season, dry and cool season, and hot and dry season 

(dry, wet, and intermediate). Sixteen percent of visits to the health centres are 

from malaria patients.  

The rural areas of the municipality have more malaria cases, followed 

by suburbs, and urban areas have fewer malaria cases. Overall, and for the 

5 years studied malaria incidence has increased between 7 and 26% in the 

bairros situated in the east central part of the municipality (suburbs) and 

decreased between 4 and 15% in the other areas (rural and urban). 

Precision Public Health strategies that target malaria weekly according to 

the positive cases, and temporal and spatial distribution can be formulated 

to combat and eradicate malaria in Chimoio Municipality. Studies on 

weather and climate factors affecting malaria, bed net usage, and others 

should be undertaken. 

  



 

46 

 3. Modelling the influence of climate on malaria 

occurrence in Chimoio Municipality, Mozambique (*) 

(*) To a large extend, this chapter corresponds to “Modelling the influence of climate on 

malaria occurrence in Chimoio Municipality, Mozambique” published in “Parasites & 

Vectors, volume;10:260” in 2017. 

 

Abstract 

Background 

 Mozambique was recently ranked fifth in the African continent for the 

number of cases of malaria. In Chimoio municipality cases of malaria are 

increasing annually, contrary to the decreasing trend in Africa. As malaria 

transmission is influenced to a large extent by climatic conditions, modelling 

this relationship can provide useful insights for designing precision health 

measures for malaria control. There is a scarcity of information on the 

association between climatic variability and malaria transmission risk in 

Mozambique in general, and in Chimoio in particular. Therefore, the aim of 

this study is to model the association between climatic variables and malaria 

cases on a weekly basis, to help policy makers find adequate measures for 

malaria control and eradication. 

 

Methods 

Time series analysis was conducted using data on weekly climatic 

variables and weekly malaria cases (counts) in Chimoio municipality, from 

2006 to 2014. All data were analysed using SPSS-20, R 3.3.2 and BioEstat 

5.0. Cross-correlation analysis, linear processes, namely ARIMA models and 

regression modelling, were used to develop the final model. 

 

Results 

Between 2006 and 2014, 490,561 cases of malaria were recorded in 

Chimoio. Both malaria and climatic data exhibit weekly and yearly systematic 

fluctuations. Cross-correlation analysis showed that mean temperature and 
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precipitation present significantly lagged correlations with malaria cases. An 

ARIMA model (2,1,0) (2,1,1)52, and a regression model for a Box-Cox 

transformed number of malaria cases with lags 1, 2 and 3 of weekly malaria 

cases and lags 6 and 7 of weekly mean temperature and lags 12 of 

precipitation were fitted. Although, both produced similar widths for prediction 

intervals, the last was able to anticipate malaria outbreak more accurately. 

 

Conclusion 

The Chimoio climate seems ideal for malaria occurrence. Malaria 

occurrence peaks during January to March in Chimoio. As the lag effect 

between climatic events and malaria occurrence is important for the 

prediction of malaria cases, this can be used for designing public precision 

health measures. The model can be used for planning specific measures for 

Chimoio municipality. Prospective and multidisciplinary research involving 

researchers from different fields is welcomed to improve the effect of climatic 

factors and other factors in malaria cases. 

3.1. Research objective 

 

The objective of this study was to model the effects of several climatic 

variables (i.e. maximum, minimum, and mean temperature, relative humidity, 

precipitation, wind speed, visibility and precipitation) on malaria occurrence in 

Chimoio municipality, using weekly data to define the role of each variable in 

malaria occurrence. 

3.2. Methods 

3.2.1. Study area and population 

 

Chimoio is a municipality in the central region of Mozambique 

(19°6'59"S, 33°28'59"E). The population of Chimoio is currently estimated to 

be 324,816 within an area of 174 km2 at a mean altitude of 750 meters (INE, 
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 2012). The climate is warm and temperate with dry winters from April to July, 

hot, dry summers from August to October and hot, humid summers from 

November to March. The average mean temperature is 18°C, the minimum 

average temperature is 13.9°C, and the maximum average temperature is 

24°C. The annual precipitation average is 1,143 mm and the wet period is 

from November to March. The average annual relative humidity (RH) is 67.4% 

(Westerink, 1995). 

 

3.2.2. Study subjects 

 

Weekly malaria data from the nine-year period (2006 to 2014) were 

collected from the district Weekly Epidemiological Bulletin (BES) as described 

elsewhere (Alilio et al., 2004). Daily climate variables such as daily mean 

temperature (T), minimum temperature (Tm), and maximum temperature 

(TM) (°C), relative humidity (RH) (%), wind speed (W) (km/h), visibility (V) 

(km) and precipitation (P) (mm) were collected from Chimoio Weather Station 

and, Tutitiempo weather records from the years 2006 to 2014 (Tutitiempo, 

2015). 

3.2.3. Data analysis 

 

Weekly cases of malaria and weekly average values for TM, Tm, T, 

RH, W, V, and P (week 1 to week 52) were calculated and used to estimate 

the effect of climatic factors on malaria occurrence. All data from climate and 

clinical records were checked for missing values. Missing values were 

replaced by the average of nearest values. ANOVA to test differences 

between years was performed. The model used was: 

Yij = μ + i + ij   (1) 

where: μ is the grand mean, i are deviations from the grand mean due 

to the treatment levels and, and ij are the error terms (ANOVA, 2016). 
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The modelling strategy followed included: (i) exploring malaria cases 

and climatic variables data through descriptive statistics; (ii) using a Box-

Jenkins approach to time series analysis (including transformation and 

differentiation for stationarity); (iii) using cross-correlation analysis between 

climatic variables and malaria cases for identification of climatic variables 

predictor lags; (iv) regression analysis of malaria cases on a malaria moving 

average forecast (simple exponential smoothing) and on its lags 1, 2 and 3 

and lags 6 and 7 of mean temperature and lag 12 of precipitation; and (v) 

forecasting at regular intervals of 4 weeks for last 52 weeks (2014) left out of 

model estimation processes. 

All statistical analyses were performed with SPSS-20, R 3.3.2 and 

BioEstat 5.  

3.3. Results 

 

Figures 7 and 8 present box plots of malaria and climate variables for 

Chimoio by malaria season (October to September 2006 to 2014) along with 

values for maximum, minimum and the median. Between 2006 and 2014, 

490,561 cases of malaria were recorded in Chimoio.  
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Figure 7: box plots of malaria and climate variables for Chimoio by 
malaria season (October to September 2006 to 2014) 

  



 

51 

 

The weekly average number of malaria cases was 1,048 (SD = 

642.12). There were differences in the mean number of cases between 

malaria season years (F(8, 51) = 22.1, P = 0.0001). Week 40 (in 2006/2007) 

Figure 8: box plots of malaria and climate variables for Chimoio by malaria season 
(October to September 2006 to 2014) 
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 presented the lowest number of cases, 222, and, week 21 (in 2013/2014) 

presented the highest number of cases, 4,438. The maximum temperature 

weekly average was 26.9 °C (SD = 3.28), and there were no differences in 

TM between malaria season years (F(8,51) = 2.46, P = 0.0132). The minimum 

temperature weekly average was 16.2°C (SD = 3.49), and there were 

significant differences between malaria season years (F(8, 51) = 20.8, P = 

0.0001). Mean temperature weekly average was 21.9°C (SD = 2.92), and 

there were significant differences between malaria season years (F(8, 51) = 

39.9, P = 0.0001). Relative humidity weekly average was 71.7% (SD = 9.86), 

and there were significant differences between malaria season years in RH 

(F(8, 51) = 2.65, P = 0.0079). The wind speed weekly average was 7.9 km/h 

(SD = 3.21), and there were significant differences between malaria season 

years (F(8, 51) = 4.88, P = 0.0001). Visibility weekly average was 20.7 km (SD 

= 43.75), and there were significant differences between malaria season 

years (F(8, 51) = 4.88, P = 0.0001). Precipitation weekly average was 17.5 mm 

(SD = 31.95), and there were no differences between malaria season years 

(F(8, 51) = 1.5, P = 0.144). Annual average precipitation was 913.4 mm (SD = 

166.20).  

Figures 9 and 10 present time series plots of malaria cases (solid 

black line) and climatic variables (dashed red lines). Both malaria cases 

series and climatic time series from 2006 to 2014 exhibited seasonal patterns. 
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All series presented several peaks and fluctuations. The weekly peaks in the 

series seem to be separated by more than few weeks indicating a cyclical 

Figure 9: box plots of malaria and climate variables for Chimoio by malaria season 
(October to September 2006 to 2014). 9a-malaria and maximum temperature, 9b- 
malaria and minimum temperature, 9c- malaria and mean temperature, 9d- malaria and 
relative humidity 
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 pattern.  

 

Figure 10: box plots of malaria and climate variables for Chimoio by 
malaria season (October to September 2006 to 2014). 9a-malaria and 
wind speed, 9b- malaria and visibility, 9c- malaria and precipitation 

Figure 11 presents the time series of malaria cases before and after  

Box-Cox transformation ( = -0.5). Figure 11a suggests increasing variability 

in the malaria cases series along with a slightly increasing trend suggesting 

both first non-seasonal and seasonal differences might be necessary to turn 

the series weakly stationary. After applying a Box-Cox transformation (Fig. 

11b) 



 

55 

 

Figure 11: Malaria cases between 2006 and 2014, before (a) and after 
(b) Box-Cox transformation (λ = -0.5) 

Figure 11a suggests increasing variability in the malaria cases series 

along with a slightly increasing trend suggesting both first non-seasonal and 

seasonal differences might be necessary to turn the series weakly stationary. 

After applying a Box- Cox transformation (Fig. 11b), the variance was clearly 

stabilized, and no trend can be overtly observed.  

Figure 12 presents the time series of malaria cases, between 2006 to 

2014, after Box- Cox transformation ( = -0.5) and non-seasonal first (lag 1) 

and seasonal differences (lag 52). 
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Figure 12: time series of malaria cases, between 2006 to 2014, after 
Box- Cox transformation (λ = -0.5) and non-seasonal first (lag 1) and 
seasonal differences (lag 52) 

Figure 13 presents the autocorrelation (ACF) and partial 

autocorrelation (PACF) functions of the transformed and differenced malaria 

cases time series in Chimoio. Autocorrelation is plotted up to lag 150. For 
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modelling purposes, the last 52 weeks, starting at week 1, 2014 (January 

2014 through December 2014), were left out for forecasting assessment.  

 

Figure 13: Autocorrelation (a) and partial autocorrelation (b) functions of the 
transformed and differenced malaria cases time series in Chimoio, 2006 to 
2014. Last 52 weeks, starting at week 1, 2014 (January 2014 through 
December 2014) were left out for model forecasting assessment. 
Autocorrelation is plotted up to lag 150 
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 Both the ACF and PACF suggest ARMA(2,0) and ARMA(2,1) patterns 

for non-seasonal and seasonal components leading to a Seasonal 

ARIMA(2,1,0)(2,1,1)52. Indeed, among the all experimented models (up to the 

second order in autoregressive and moving average components) ARIMA 

(2,1,0) (2,1,1)52 was the one leading to the smallest AIC to the Box-Cox 

transformed series: 

(2) 

Where y’’t is the Box-Cox transformed malaria cases series, et is 

considered white noise and Φ1 = -0.3395 (standard error, SE = 0.0518), Φ2 = 

-0.2323 (SE = 0.0511), Φ1 = -0.4299 (SE = 0.0551), Φ2 = -0.2672 (SE = 

0.0426), and θ1 = -0.3267 (SE = 0.0843). All the coefficients were statistically 

significant at 0.05. Diagnostic checks for residuals of the estimated model are 

presented in Fig. 14. 
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Residual autocorrelation was still significant for some lags. Prediction 

for the last 52 observations (the entire year of 2014, which contains the last 

Figure 14: Diagnostic checks of ARIMA (2,1,0) (2,1,1)52 residuals. a Time series of 
residuals. b Autocorrelation function of residuals. c Partial autocorrelation function of 
residuals 
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 malaria outbreak peak) that were left out of the modelling procedure is 

presented in Fig. 15.  

Forecasting was done on a 4-week long period basis (t+1, t+2, t+3, 

t+4), based on an estimated seasonal ARIMA model for data up to t. On the 

one hand, a 4-week long forecasting period is not large enough to produce 

inaccurate forecasts by a seasonal ARIMA model. On the other hand, it is 

sufficiently large to anticipate perfectly manageable Precision Public Health 

malaria outbreak evolution. Figure 9b, besides the data, mean forecasts and 

respective 80% confidence prediction limits, also contains the historical 

means of weeks 1 to 52 (dashed yellow vertical lines), which given the rising 

pattern of malaria cases in the last years tends to underestimate the outbreak 

peak. Although the last weeks’ forecasts followed the actual values, it seems 

to be underestimating the outbreak peak. 
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Figure 15: ARIMA (2,1,0) (2,1,1)52 (a) and regression (b) forecasts of the last 52 
observations that were left out of the modelling procedure. Black, red dashed blue 
and green lines represent, malaria cases (counts) and their forecasts, 80% confidence 
limits and 52-week historic means, respectively. Dashed yellow vertical lines denote 
the thirteen 4-week long prediction periods 
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 Although the purpose of this first modelling step was to approximate a 

possible model for malaria cases time series, the goal of this study was to find 

a prediction model for malaria cases that can take advantage of the 

relationship between malaria and climatic variables.  

A cross-correlation analysis was performed to find the best predictor 

lags of the climatic variables. To keep interpretability, first and seasonal 

differences (lag 52) were applied to climatic variables prior to cross-

correlation calculation. No stabilising variance transformation was applied as 

the predictors will be used in a regression setting where the predictors are 

assumed non-stochastic variables. Several climatic variables exhibited 

significant cross-correlations with malaria past (negative) lag 52. Therefore, 

attention was drawn to (negative) lags that are known to be closely related to 

parasite life cycle, namely lags -1, -2, , 12 weeks. Only minimum temperature 

(lags -6 and -7) and precipitation (lag -12) exhibited significant cross-

correlation. Figure 10 presents the cross-correlation functions between 

minimum temperature and precipitation (after first and seasonal differences) 

and Box-Cox transformed and differenced malaria cases. Lags -1, -2, and -3 

of the Box-Cox transformed malaria cases series and lags -6, and -7 of 

minimum temperature and lag -12 of precipitation were used in the regression 

model (figure 16). 
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Historical means of malaria cases (already discussed) could provide 

insightful information for the regression model. To introduce in the 

regression model the memory of the time series process, it was decided to 

Figure 16: cross-correlation functions between minimum temperature and 
precipitation (after first and seasonal differences) and Box-Cox transformed and 
differenced malaria cases 
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 include in the regression model, as an independent variable, one-step-

ahead forecasts of a simple exponential smoothing model (α=0.6). The 

estimated model is:  

 (3) 

where y*
t denotes for Box-Cox transformed malaria cases series (with no 

differences), yses is the simple exponential smoothing forecast at t, using data 

up to t-1 (α=0.6) and Tm and P correspond to minimum temperature and 

precipitation time series. The regression coefficients 0 = 0.0701 (SE = 

0.0152), 2 = 0.0370 (SE = 0.0065), 3 = 0.0194 (SE = 0.0056) and 6 = 

0.0008 (SE = 0.0003) were marginally statistically significant at P = 0.05 and 

R2 = 0.726. Residual analysis shows the model can capture almost all 

temporal dependence, as despite some autocorrelations being statistically 

significant, they are smaller than 0.2 (Fig. 16).  

To compare with previous ARIMA model, in the estimation process, 

the last 52 observations were left out for forecast assessment purposes. 

Figure 9b presents last 52-point forecasts of the regression model (3) along 

with the 95% confidence limits in the original scale, i.e. after applying inverse 

Box-Cox transformation ( = -0.5). Forecasts were done on 4-week forecast 

bases as before. Point’s forecasts seem to follow closely malaria series 

values, though the outbreak peak is being overestimated. The width of 

prediction intervals was like the ones produced by seasonal ARIMA model 

(close to 600 cases, an accuracy perfectly manageable by Public Precision 

health), though anticipation of outbreak’s peak seems to be more accurate 

(last observations of 2014). (Figure 17). 
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Figure 17: Diagnostic checks of regression model (3) residuals (coefficient of 
determination R2 = 72.5. a Time series of residuals. b Autocorrelation function of 
residuals. c Partial autocorrelation function of residuals 
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 3.4. Discussion and conclusions 

 

Although malaria shows seasonality according to the climate, very few 

studies have been conducted on the association between the malaria 

occurrences with climate variables using weekly resolution and with high 

malaria occurrence volume in the Southern region of Africa, giving more 

accurate results.  

In this study, malaria cases are increasing, contrary to the decreasing 

tendency reported in neighbouring Malawi Kazembe, Kleinschmidt, and 

Sharp (2006), and, South Africa (Ngomane & de Jager, 2012). The increasing 

tendency, could be probably due to improved accessibility to health centres 

and decreased vector control due to the scarcity of resources for malaria 

control.  

On average, week 6 presented the peak of malaria cases and week 

33 the lowest number of cases of malaria; these results are consistent with 

previously published studies in Mozambique, Maputo Zacarias and 

Andersson (2010), and Chimoio (Ferrão et al., 2016). The ARIMA model 

developed in this study, ARIMA (2,1,0) (2,1,1)52,attempted to provide an easy 

technique to predict the expected number of malaria cases per week based 

on past observed cases, although it does not account for climate factors. 

Cross-correlation analysis showed that mean temperature, and 

precipitation presented significantly lagged correlations with malaria cases. A 

regression model of a differenced (lag1 and lag 12) Box-Cox transformation 

( = -0.5) of malaria cases on lag 1, 2 and 3 of weekly malaria cases and lag 

6 and 7 of weekly mean temperature and lag 12 of precipitation was found as 

the best prediction model for weekly malaria cases.  

As shown in Fig. 15, historical means failed completely, especially at 

the peak of the malaria occurrence. Although the two models developed in 

this study produced prediction intervals having widths of some hundred 

cases, the regression model was the one able to anticipate accurately the 

peak of the occurrence. ARIMA model was also used for malaria forecasting 
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in South Africa Ngomane and de Jager (2012), Zambia Jere and Moyo (2016), 

Burundi Gomez-Elipe et al. (2007) and India Kumar et al. (2014) with 

comparable results. 

Malaria transmission occurs throughout the year with peaks between 

weeks 1 to 12. The onset of rain occurs in mid-November. This indicates that 

malaria occurrence has a strong association with rainfall six to eight weeks 

before, coinciding, with the malaria cycle three components: (i) the growth of 

the Anopheles female mosquito from egg to adult to parasite transmission; (ii) 

the development of the Plasmodium parasites (gametocyte to sporozoites) 

that are able to infect humans; and (iii) the incubation period in the human 

host from infection to malaria symptoms CDC (2014b) and (Krefis et al., 

2011). Thus malaria occurrence peak can be expected 45 to 60 days after 

the onset of rain. Similar results were also found in Mozambique Ferrão et al. 

(2016) and South Africa (Ngomane & de Jager, 2012). Increased precipitation 

can provide more breeding sites for mosquitoes, but excess rain can also 

destroy breeding sites (Bai, Morton, & Liu, 2013). 

Temperature affects the development of malaria; the parasite does not 

develop below 18 °C and over 40 °C Pascual, Ahumada, Chaves, Rodo, and 

Bouma (2006) and (EFE & Ojoh, 2013). A rise in temperature can reduce the 

time for production of new generations and also shortens the incubation 

period of the parasite in mosquitoes. Sporogonic cycles take about 9 to 10 

days at temperatures of 28 °C, but temperatures above 30 °C and below 16 

°C have a negative impact on parasite development (Alemu, Abebe, Tsegaye, 

& Golassa, 2011). The highest proportion of vectors surviving the incubation 

period is observed at temperatures between 28–32 °C (Sena, Deressa, & Ali, 

2015). In this study, the average maximum temperature recorded was 26.8 

°C ranging between 22.3–31°C suggesting that Chimoio is the ideal location 

for malaria breeding. Minimum temperature in the present study was below 

18 °C from week 10 to 40, coinciding with an accentuated reduction in malaria 

occurrence. In this study, the mean temperature was found to be a significant 
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 predictor for malaria occurrence, similar to studies carried out in South Africa 

Ngomane and de Jager (2012) and Burundi, Gomez-Elipe et al. (2007). 

Relative humidity (RH) also plays a role in malaria episodes, and 

mosquitoes become more active when humidity rises. If the average monthly 

relative humidity is below 60%, it is believed that the life of the mosquito is so 

short that very little or no malaria transmission is possible Arab, Jackson, and 

Kongoli (2014) and Yamana and Eltahir (2013). Relative humidity in this study 

was 72.1% and only four weeks of the year presented RH less than 60% 

implying that humidity does not restrict malaria occurrence in Chimoio. Similar 

results were also reported in a study in Ghana (Krefis et al., 2011). 

Wind speed was found to be a significant influence in malaria 

occurrence in Nigeria Omonijo et al. (2011) and EFE and Ojoh (2013). In this 

study, the wind speed was not found to be a significant predictor for malaria 

occurrence in Chimoio. Visibility was not found to be a significant predictor for 

malaria occurrence consistent in studies in Nigeria Omonijo et al. (2011) and 

South Africa (Ngomane & de Jager, 2012). Most Anopheles mosquitoes are 

crepuscular (active at dusk or dawn) or nocturnal (active at night) (Suárez-

Mutis, Fé, Alecrim, & Coura, 2009). 

It has been found that fog day frequency had a positive effect on 

malaria incidence in the following year (Tian et al., 2008).  

The R-square in this study was 0.725 implying that 72.5% of the 

variance in malaria occurrence can be explained by variance in the predictive 

variables. In Burundi, 82% was reported (Gomez-Elipe et al., 2007). The 

results are higher than a study in Nigeria that found 66% ANOVA (2016) and 

lower than the Global Fund Report Global Fund (2015) that indicated that 

90% of malaria cases are related to environmental factors. Other factors such 

as poor prevention strategies, lack of funds, poor sanitation, inadequate 

drainage systems, and planning problems, amongst others, also contribute to 

the occurrence of malaria. Geographical and environmental factors such as 

altitude and land cover are also variables that influence malaria occurrence 

(CDC, 2014a). 
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 The assumption the factors other than climate remained constant over 

the period, is a limitation of the present model that makes it difficult to 

generalize the results to other regions. From the results of the present study, 

it can be stated that malaria occurrence in Chimoio depends on to a large 

extent on precipitation, and mean temperature. The results also indicate that 

if strong actions are not taken at the right time and place, malaria cases will 

continue to occur in the municipality. 

This model is robust and, can predict the expected number of malaria 

cases 3.5 months in advance and, timely prevention and control measures 

can be effectively planned in Chimoio, such as the elimination of vector 

breeding places, correct time and place to spray insecticides, and awareness 

campaigns weeks before the malaria peak season. This can lead to a 

reduction in malaria cases, by knowing the best moment for spraying, saving 

time and cost of insecticide application and, preventive programmes, and 

guiding smart environmental care.  

The Chimoio climate seems ideal for malaria occurrence. A seasonal 

pattern was observed in malaria occurrence in Chimoio with peaks during 

weeks 1 to 12 (January to March). Since the lag effect between climatic 

events and malaria occurrence is important for malaria cases prediction this 

can be used for designing Precision Public Health measures. The model can 

be used for planning specific measures for Chimoio municipality. 

The results from this study cannot confirm or rule out a prediction for 

areas with similar altitude and precipitation as Chimoio. Prospective and 

multidisciplinary research involving researchers from different fields is 

welcomed to improve the effect of climatic factors and other factors in malaria 

cases. The model can also be applied to analyse the spread of other 

infectious diseases and in optimising management efforts. 
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4. Malaria mortality characterization and the relationship between 

malaria mortality and climate in Chimoio, Mozambique (*) 

(*) To a large extend, this chapter corresponds to “Malaria mortality characterization and 

the relationship between malaria mortality and climate in Chimoio, Mozambique” 

published in Malaria Journal, volume;16(1):212 in 2017. 

 

Abstract 

Background 

The United Nation’s sustainable development goal for 2030 is to 

eradicate the global malaria epidemic, primarily as the disease continues to 

be one of the major concerns for public health in sub-Saharan Africa. In 2015, 

the region accounted for 90% of malaria deaths. Mozambique recorded a 

malaria mortality rate of 42.75 (per 100,000). In Chimoio, Mozambique’s fifth 

largest city, malaria is the fourth leading cause of death (9.4%). Few data on 

malaria mortality exists in Mozambique, particularly in relation to Chimoio. 

The objective of this study was to characterize malaria mortality trends and 

its spatial distribution in Chimoio.  

 

Methods 

Malaria mortality data and climate data were extracted from the 

Chimoio Civil Registration records, and the Regional Weather station, from 

2010 to 2014. The malaria crude mortality rate was calculated. ANOVA, 

Tukey’s, Chi-square, and time series were carried out and an intervention 

analysis ARIMA model developed.  

A total of 944 malaria death cases were registered in Chimoio, 729 of 

these among Chimoio residents (77%). The average malaria mortality by 

gender was 44.9% for females and 55.1% for males. The age of death varied 

from 0 to 96 years, with an average age of 25.9 (SE = 0.79) years old. January 

presented the highest average of malaria deaths, and urban areas presented 

a lower crude malaria mortality rate. Rural neighbourhoods with good 
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accessibility present the highest malaria crude mortality rate, over 85 per 

100,000. Seasonal ARMA (2,0) (1,0)12fitted the data although it was not able 

to capture malaria mortality peaks occurring during malaria outbreaks. 

Intervention effect properly fit the mortality peaks and reduced ARMA’s root 

mean square error by almost 25%.Malaria mortality is increasing in Chimoio; 

children between 1 – 4 years old represent 13% of Chimoio population, but 

account for 25% of malaria mortality. Malaria mortality shows seasonal and 

spatial characteristics. More studies should be carried out for malaria 

eradication in the municipality. 

  



 

72 

 4.1. Research objective 

 

The objective of this study is to determine malaria mortality trends, 

characterize malaria mortality, describe its spatial distribution and variation in 

Chimoio, and verify its relationship with climate parameters to help local 

authorities in programmatic malaria activities for the prevention and 

eradication of the disease. 

4.2. Methods 

4.2.1. Study area and population  

 

Chimoio is a municipality in Manica Province in the centre of 

Mozambique, located at -19° 6' 59 S, 33° 28' 59 E. The current population 

projection by the “Instituto Nacional de Estatística” (National Statistics 

Institute) is 324,816, being 50.4% males and 49.6% females. The population 

percentage by category is: age 0 (3%), 1 – 4 (13%), 5 – 14 (28%), 15 – 44 

(48%), 45 – 59 (6%) and over sixty (2%) (INE, 2016). Chimoio is divided into 

33 residential areas known as “Bairros” or neighbourhoods with an area of 

174 Km2 (Map. 9). 
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4.2.2. Study subjects 

 

 Death cases and monthly malaria mortality data were extracted from 

the Chimoio civil registration books from 2010 to 2014. Data entered in the 

books come from death certificates produced by qualified health personnel. 

The variables extracted were sex, month of death, cause of death, age, place 

of death, time of death, and the origin of the deceased. Population data were 

extracted from the population projection data by the “Instituto Nacional de 

Estatística” of Mozambique (Buescher, 2008). 

Map 7: Chimoio map 
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 For malaria cases, data reported elsewhere were used (WHO, 

2013b). Monthly climate data from 2010 to 2014 were obtained from the 

Chimoio Regional Weather Station and comprised of the following 

parameters: mean, maximum and minimum temperature (oC), relative 

humidity (%), precipitation (millimetres) and evaporation (millimetres). The 

evaporation data had three missing data which were imputed using nearest 

data as donors. 

4.2.3. Data analysis 

 

The malaria crude mortality rate was calculated per malaria year by 

age-specific, gender and residential area (Bairro). Malaria crude mortality rate 

(MCMR) was calculated dividing the number of deaths-per year of residents 

by the total population for the same geographic area and multiplied by 

100,000: 

MCMR=
Number of deaths−per year 

Total population for the same geographic 
× 100,000 

Age-specific malaria mortality rate was calculated dividing the number 

of deaths-per age per year of residents by the total age population and 

multiplied by 100,000 (Kumar et al., 2014). The ages (categories) used were: 

0 (infants), 1 – 4 (Children), 5 -14 (adolescents, 15 – 44 (young adults), 45 – 

59 adults and over sixty (elderly). 

Chi-square for a proportion of gender and age-specific category was 

performed and Phi, Cramer’s V test was used for statistical significance. 

Analysis of Variance (ANOVA) was used to test difference between years 

and months using the following model: 

Yij = μ + i + ij   (1) 

Intervention analysis with the specification 𝑧𝑡 =
𝛿0

1−𝑤𝐵
𝑃𝑡 , where |𝑤| < 1 , 𝐵 

stands for the traditional time series backshift operator, 𝐵𝑧𝑡 = 𝑧𝑡−1, and 𝑃𝑡 

denotes a pulse function such that 𝑃𝑡 = 0, 𝑡 < 𝑡0 or , 𝑡 > 𝑡0 and 𝑃𝑡 = 1, 𝑡 = 𝑡0, 
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where 𝑡0 is the moment of intervention (Jere & Moyo, 2016) was used. All 

tests were performed using R 3.3.2, SPSS, IBM version 20 and Biosat 5.0. 

Spatial maps for year variation were produced using ArcGIS version 10.1.  

4.3. Results 

4.3.1. Deaths, malaria cases and malaria mortality trends in 

Chimoio  

 

During the period, 18,508 cases of all death causes occurred, yearly 

average of 3,702 (SD=137). Malaria cases were 286,583. A total of 944 

malaria death cases were registered, 729 of them among Chimoio residents 

(77.2 % %). A time series plot indicates that malaria is increasing annually 

(Fig. 18).  

 

Figure 18: Monthly mortality trend in Chimoio between 2010 and 2014 

Year 2014 recorded the highest number of deaths 159, and the 

average death cases per year was 146 (SD=38). From 2010 to 2014, the 

average malaria crude mortality rate (MCMR) was 51 per 100,000 (Table 7). 
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 Table 6: Malaria Crude mortality rate from 2010 to 2014 in Chimoio 

Year 2010 2011 2012 2013 2014 
Averag
e SD** 

Population  
267,45

6 
276,46

8 
285,71

6 
295,18

9 
304,87

3 
285,94

0 
14,79

4 

Malaria cases 41,925 47,107 52,463 60,381 84,707 57,317 
16,76

5 

All cause death 3,676 3,893 3,509 3,706 3,724 3,702 137 

Malaria death 111 111 201 147 159 146 38 

Mortality rate 
(per100,000) 1,374 1,408 1,228 1,255 1,221 1,298 78.1 

Incidence (%) 15.7 17 18.4 20.5 27.8 20 5 

MCMR* 41.5 40.1 70.3 49.7 52.1 51.0 12.1 

*MCMR = Malaria crude mortality rate  **SD = Standard deviation 

4.3.2. Malaria mortality by gender and place of death 

 

The average mortality in malaria by sex was 44.9% for females and 

55.1% for males. There is no difference, (χ2 = 0.415, df = 1, P = 0.615), 

between malaria mortality in females and males in Chimoio. The deaths from 

malaria registered in Chimoio indicated that 77% of deaths occurred at public 

hospital, 22% at residence and 1% at private clinics. 

4.3.3. Malaria death by age and age-specific 

 

Fig. 19 presents the malaria death by age. Fig. 19a presents age of 

death and Fig. 19b, malaria age-specific death.  
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Figure 19: Malaria death by age. a Present age of death and b age-
specific death 



 

78 

 The range of age of death was from 0 to 96 years, the average age of 

death was 25.9 years old (SE=0.79). The first quartile (25%) of malaria deaths 

occurs at age of 2 and the third quartile of malaria deaths at age of 43. Out of 

all Chimoio residents’ registered cases, 9 % were of age, 0, 25.3 % were of 1 

to 4 years old, 7.6 % were of 5 – 14 years old, 34.8 % were of 15 – 44 old, 

12.2 % were of 45 – 59 years old and 11.1 % for the elderly. There is a 

difference (χ2 = 15.65, df = 1, P < 0.001) between age categories in malaria 

mortality in Chimoio.  

4.3.4. Malaria death per year and month 

 

Fig. 20 presents mortality trend in Chimoio per month and year. Year 

2012 presented the highest number of malaria deaths, 210 (SD=6.3) and year 

2011 the lowest number of cases, 140 (SD=11). There is a difference (F(4, 59) 

= 7.91, P = 0.0001) in malaria mortality in Chimoio, between years. January 

presented the highest malaria average death, 26 (SD=6.3), while August 

presented the lowest average cases of death 9 (SD=3.5). There is a 

difference (F(11, 59) = 8.12, P = 0.0001) in malaria mortality between months.  
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Figure 20: Malaria mortality trend in Chimoio per month and year 

 

4.3.5. Malaria mortality per time of death 

 

Fig. 21 presents the malaria mortality by time of day. The highest 

proportion of malaria mortality was recorded in the evening, at 8:00 PM with 

6.3% of the cases, and the lowest time of death was recorded during the day 

at 12:00 and 2:00 PM with 3% respectively. There is no difference (p > 0.05) 

between hours of death by malaria in Chimoio (G = 3.6754, df = 23, P = 

0.001).  
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Figure 21: Malaria mortality by time of day 

 

4.3.6. Geographic malaria mortality variation in Chimoio 

 

Map.10 presents the crude malaria mortality rate per residential area. 

Out of 33 neighbourhoods, six bairros (18%) presented low CMMR, eleven 

(33%) presented moderate CMMR, ten (30%) high and six (18%) very high 

CMMR per 100,000. The urban neighbourhoods (low population density, 

Bairros 1, 2, 3) and rural neighbourhoods, with lack of accessibility (Hombwa, 

Chissui, Circulo Mudzigandzi, and Chianga) presented a lower malaria crude 

mortality rate (0 to 27) per 100,000. Most the neighbourhoods present a 

moderate malaria crude mortality rate, 27 to 55 per 100,000 and, rural 

neighbourhoods with good accessibility present the highest malaria crude 

mortality rate, over 85 per 100,000. 
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4.3.7. The relationship between death by malaria mortality and 

climate 

 

Fig. 22 shows monthly malaria deaths (left y axis) and malaria cases 

counts (right y axis) between 2010 and 2014. As expected, deaths peak 

between January and March, the period of malaria outbreaks. Previous work 

has that shown climate factors, such as temperature, precipitation and 

relative humidity, are determinant to malaria outbreaks, and consequently to 

the number of deaths caused by malaria. Indeed, malaria transmission occurs 

throughout the year with peaks between January and March.  

Map 8: Crude malaria mortality rate per residential area in Chimoio 
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Figure 22: Times series of malaria deaths (solid black line, left y axis) and 

malaria cases (solid red line, right y axis) between 2010 and 2014. 

Fig. 23 exhibits the temporal relationship between malaria death 

counts and those climatic factors. Temporal behaviour of deaths and its close 

relationship with climatic factors suggests the changes in the location might 

be properly modelled by intervention analysis as described by Jere and Moyo 

(2016) Indeed, Fig. 24 shows the level of malaria deaths reaches a peak 

every January. The level of deaths decays then to previous levels at a 

decreasing rate. Following Box and Tiao (1975), the specification 𝑧𝑡 =
𝛿0

1−𝑤𝐵
𝑃𝑡 

where |𝑤| < 1, 𝐵  stands for the traditional time series backshift operator, 

𝐵𝑧𝑡 = 𝑧𝑡−1, and 𝑃𝑡 denotes a pulse function such that 𝑃𝑡 = 0, 𝑡 < 𝑡0 or , 𝑡 > 𝑡0 

and 𝑃𝑡 = 1, 𝑡 = 𝑡0, where 𝑡0 is the moment of intervention (in this case the 

abrupt increase of malaria cases during malaria outbreaks every January 

illustrates an intervention with an abrupt temporary effect 𝛿0 that gradually 

decays at rate 𝑤 with a return back to original or pre-intervention level. 
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A seasonal ARMA model, ARMA (2,0) (1,0)12 fits these data, but it is 

not able to capture the sudden change occurring during malaria outbreaks, 

despite the three statistically significant parameters. Introducing the 

intervention effect described above where 𝑃𝑡 = 1, 𝑡 = 𝐽𝑎𝑛𝑢𝑎𝑟𝑦, 𝑃𝑡 =

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 allows for an improvement in the fit of death peaks. In particular, 

the seasonal ARMA model with intervention reduces root mean square error 

by almost 25%. (Figure 24). 

 

4.4. Discussion and conclusions 

 

Figure 25. The civil registration covers all registered malaria mortality 

cases from hospitals and from private residences. In this study, 78% of 

malaria deaths occurred in hospitals and the 22% at private residences. A 

previous study in Chimoio reported that in all-cause deaths, 86.1% of the 

deaths took place in hospitals and 11.7% at private residences (Ferrão et al., 

Figure 23: Times series of malaria deaths (solid black line, left y axis) and maximum, 

minimum and mean temperatures, relative humidity, precipitation and evapotranspiration 

(solid red line, right y axis) between 2010 and 2014. 
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 2016). Malaria deaths at private residences is two times greater than in all-

cause of death in Chimoio. These disparities can probably be because 

malaria patients delay the treatment of the disease resulting in fatalities.  

 

Trend analysis indicates that in Chimoio, cases of deaths, and malaria 

deaths are increasing over the years, contrary to reports in Kwazulu Natal 

Ngomane and de Jager (2012), Malawi Kazembe, Kleinschmidt, and Sharp 

(2006), and Tanzania Selemani et al. (2016) that reported decreasing cases 

in malaria mortality. The malaria crude mortality rate per 100,000 was 51 per 

100,000, higher than the national Mozambique figure of 42.75 for 2014 

(Norheim et al., 2015). In terms of malaria mortality by gender, there was no 

difference between malaria deaths in females and males. Similar results were 

reported previously by (Kocurkova, 2000).  

The results disagree with the findings in Kwazulu Natal and Sudan 

that reported higher mortality from malaria in males than in females Ngomane 

and de Jager (2012) and (WHO, 2007). There is evidence that suggests that 

given equal exposure, adult men and women are equally vulnerable to 

malaria except for pregnant women (WHO, 2007). In this study, 25% of 

malaria deaths occur at the age of 2, and 75% of malaria deaths at the age 

Figure 24: Month plot of malaria deaths. Solid broken line represents malaria deaths level 
and solid horizontal lines represent monthly means 
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43. The results are in concordance with a report on all causes of death carried 

out in Chimoio (Ferrão et al., 2016). 

Age category 0 comprises 3% of the Chimoio population and recorded 

9% of malaria deaths while, age category 1 - 4 comprises 13% of the Chimoio 

population, and recorded 25% of malaria deaths. This can be due to the lack 

of immunity in the first years of life. Similar results were reported in another 

seven African countries and Bangladesh Kazembe, Kleinschmidt, and Sharp 

(2006); Abdalla (2005), Streatfield et al. (2014); Kesteman et al. (2014); Otte 

im Kampe, Müller, Sie, and Becher (2015) and Deressa, Fantahun, and Ali 

(2007). From the age of 45 onwards the proportion of deaths by malaria and, 

all-cause mortality is almost the same. 

Malaria mortally was significantly different between month and years. 

Similar results of seasonality were reported in Ethiopia and Burkina Faso 

Kazembe, Kleinschmidt, and Sharp (2006) and Deressa et al. (2007) and 

were related to climatic conditions. January, February and March presented 

the highest percentage of mortality from malaria decreasing thereafter. This 

peak period occurs two months after the rainy season onset.  

There was no difference in times of death from malaria in Chimoio, 

and this result clearly contradicts a previous report on all-cause mortality in 

Chimoio, that indicates that peak mortality occurs between 3:00 to 4:00 AM 

(Ferrão et al., 2016). This result suggests that malaria deaths can occur at 

any time contrary, to other deaths that were found to peak from 3:00 to 4:00 

AM in Chimoio. 

The centre of town (low density) presents a low malaria crude mortality 

rate, 0 to 27 per 100,000 and the rural “Bairros” a very high crude mortality 

rate, over 80 per 100,000. This can be due to the fact that the centre has 

better health facilities and infrastructures which means the residents are 

better-off than in rural areas. Some rural neighbourhoods present low malaria 

mortality rates. This can be attributed to the fact those areas have poor 

accessibility and the residents carry out their burials without Civil Registration. 
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 The onset of rain occurs in mid-November. This indicates that malaria 

occurrence has a strong association with rainfall six to eight weeks before, 

coinciding, with the malaria cycle’s three components: (i) the growth of the 

Anopheles female mosquito from egg to adult to parasite transmission; (ii) the 

development of the Plasmodium parasites (gametocyte to sporozoites) that 

are able to infect humans; and (iii) the incubation period in the human host 

from infection to malaria symptoms (Streatfield et al., 2014). Thus, malaria 

occurrence peaks can be expected 45 to 60 days after the onset of rain. 

Similar results were also found in Mozambique (World Health Ranking, 2016) 

and South Africa (Ngomane & de Jager, 2012). Increased precipitation can 

provide more breeding sites for mosquitoes, however excess rain can also 

destroy breeding sites (Sewe et al., 2015). 

ARMA (2,0)(1,0)12 fitted the data well although it was not able to 

capture the sudden change occurring during malaria outbreaks. Introducing 

the intervention effect allowed for a better fit of death peaks and the seasonal 

ARMA model with intervention reduced root mean square error by almost 

25%. Other studies reported ARIMA (2,1,1) in Zambia, ARIMA (1,0,0) in 

Burundi (Gomez-Elipe et al., 2007), and India (Kumar et al., 2014) with 

comparable results.  

Besides the possibility that the malaria mortality was under-reported, 

especially in the rural areas, another limitation of this study is that it did not 

take into consideration malaria intervention factors such as bed net 

distribution and improvement of health coverage. Despite the limitations, one 

great strength of the study is that this is the first specific study in malaria 

mortality using civil registration data in Chimoio. More data from other 

additional data from other parts of the country are needed to generalize the 

results to the national level.  

Malaria mortality is increasing in Chimoio and strong and appropriate 

actions are needed to counteract the malaria deaths scenario in Chimoio. 

There is no difference in the malaria mortality rate between males and 

females. Children between 1 – 4 years old are 13% of Chimoio population, 
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but represent 25% of malaria mortalities. The last 3 months of the rainy 

season (January, February and March) present more malaria mortality cases 

than the dry season. Urban “Bairros” in the centre of town have lower malaria 

crude mortality rate than the rural “Bairros”. More studies should be carried 

out for malaria eradication in the municipality. 

  

Figure 25: Times series of malaria deaths (solid black line) and fitted values of seasonal 

ARMA(2,0)(1,0)12 without (solid blue line) and with (solid red line) intervention effect. 
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 5. Mapping and modelling malaria risk areas using climate, socio-

demographic and clinic variables in Chimoio, Mozambique (*) 

(*) To a large extend, this chapter corresponds to “Mapping and modelling malaria risk 

areas using climate, socio-demographic and clinic variables in Chimoio, Mozambique” 

submitted for publication in International Journal of Disaster Risk Reduction, in 2017. 

 

Abstract  

Background 

Malaria disease continues to be one a major public health concern in 

Africa. Around 3.2 billion persons are still at risk to contract malaria in the 

World and, in 2015. Approximately 80% of deaths caused by malaria are 

concentrated in only 15 countries, mostly in Africa. These high-burden 

countries have achieved lower than average reduction in malaria incidence 

and mortality and Mozambique is among them. Malaria eradication is 

therefore, one of Mozambique’s main priorities. Few studies on malaria were 

carried in Chimoio and there is no malaria map risk of the area. This map is 

important in order to identify areas at risk for Public Precision Health 

approach. By using GIS-based spatial modelling techniques, the research 

goal of this article is to map and model malaria risk areas, using climate, 

socio-demographic and clinic variables in Chimoio, Mozambique. 

Methods 

A 30m*30m Land sat image, ArcGis 10.2 and, BioclimData were used. 

A conceptual model for spatial problems was employed to create the final risk 

Map. The risks factors used were: mean temperature, precipitation, altitude, 

slope, distance to water bodies, distance to roads, NDVI, land use and land 

cover, malaria prevalence and, population density. Layers were created in a 

raster dataset. For the class values comparison between layers, numeric 

values to classes within numeric each map layers were assigned. Ranks were 

performed to the input dataset with different weights according to their 

suitability. The combination of the reclassified outputs of the data was carried 

out. Chimoio presents 96% with moderate risk and 4% with high-risk areas. 
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The map depicts that the central and south-west “Bairros” namely Centro 

Hipico, Trangapsso, Bairro 5 and 1o de Maio have a high-risk, while the rest 

of the “Bairros” having a moderate risk of malaria. All the Chimoio population 

is at risk to contract malaria Precise estimation of malaria risk has important 

implications in Precision Public Health, and the planning of effective control 

measures such as right time and place to spray for vector combat, distribution 

of bed nets and other control measures.  

5.1. Research objective 

 

By using spatial modelling techniques with GIS, the research goal is to 

map and model malaria risk areas, using socio-demographic, climate, and 

clinical variables in Chimoio, Mozambique. 

5.2. Materials and Methods 

5.2.1. Study area 

 

Chimoio is a municipality located in Manica Province in the central 

region of Mozambique (-19o6´59S, 33o28´59E). The population of Chimoio is 

presently estimated to be 324816 (INE, 2016). The area is 174 km² at an 

altitude that varies between 513 and 786 meters.  

The Chimoio climate has a warm temperature with dry winters from 

April to July, hot and dry summer from August to October and, hot and humid 

summer from November to April.  

In terms of Mozambique agro-ecological zones Chimoio lies in the 

region 4, midland areas of the central region (IIAM, 2012).The major 

economic activities are: agriculture production, livestock, general trading, 

metallurgical industry, food industry, tourism, telecommunication, banking 

and insurances and energy supply (Governo de Manica, 2012). 

5.2.2.  Material 
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 30m*30m Landsat image. 

ArcGis 10.2.  

Bioclimatic (1950 to 2000) (WorldClim). 

5.2.3. Methods 

 

Figure 26 presents the schematic representation of data flow and 

analysis for malaria risk map for Chimoio.  

 

Figure 26: schematic representation of data flow and analysis for 
malaria risk map for Chimoio 

The conceptual model to solve spatial problems was used to create 

the Chimoio Map risk (ArcMap, 2016b).  
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The process involved the following steps: 

 

State the 

Problem 

Problem 

breaking 

down 

Analytical 

hierarchical 

process 

Analysis 

performing 

Result 

verification. 

Step 1. In this stage the problem was stated and was: 

 

Step 2. Problem breaking down  

Table 7 presents the malaria factors, their weight, classification and 

the rationale for the classification adapted from literature from Zimbabwe, 

Tanzania and Latin America (Chikodzi (2013); Fuller, Troy, and Beier (2014); 

Mulefutu (2016); Alimi, Fuller, Herrera, Herrera, and Qinone (2016). 

For this stage the input data set or malaria risk factors were the 

following: average temperature (Tmean), precipitation (PP), altitude (Alt), 

slope (SLP), distance to water body (DTWB), distance to road (DTR), 

Normalised Difference Index (NDVI), land use and land cover (LULC), malaria 

prevalence (Mal prev) and population density (pop dens).  

Average temperature (Tmean) 

Long-term minimum and maximum temperature was extracted from 

the Bioclim (WorldClim) and the average temperature calculated. In this study 

average temperature below 22°C were classified as low risk for malaria 

transmission, while those from 22°C-28°C were classified as high-risk for 

malaria transmission and temperatures above 32°C were classified as of 

moderate risk.  

Precipitation (Prec)  

Precipitation data were extracted from the Bioclim Data. In the study, 

areas that received the precipitation less than 450 millimetres were classified 

as low risk, those that received a precipitation between 450 to 700 millimetres 

Step 1 Step 2 Step 3 Step 4 Step 5

Mapping malaria risk for Chimoio 
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 were classified as a moderate risk, and the ones over 700 millimetres were 

classified as having high-risk.  
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Table 7: Classification, weighing and rationale of malaria risk factors 

Factor  Weight Class influence Rationale 

Tmean 0.224 < 22oC Low Bellow 22oC sporogony is not completed 

  > 28 oC Moderate Over 28oC sporogony is affected 

  22 - 28oC High 22 - 28oC ideal for incubation  

Precipit 0.208 <450 mm Low < 450 mm is arid and mosquitoes will 
have  

  450 – 700 mm Moderate difficulties to survive > 700 mm is wet 
and .  

  > 1000 mm Low inappropriate for mosquitoes breeding 

Altitude 0.123 < 200 m High < 200 m low land and high risk of vector 

  200 – 500 m Moderate proliferation, 200 to 500 m upland 

  >500 m Low >1000 m highlands and low risk of 
mosquitoes survival 

Slope 0.082 0 – 5o High Appropriate conditions for water 
stagnation  

  5 – 15o Moderate  

  >15o Low >15o inappropriate for water stagnation 

LULC 0.082 crop, grass and water bodies High Suitable for mosquitoes proliferation 

  shrubs and mosaic  vegetation Moderate  

  forest, bare,  urban Low Not suitable for mosquitoes breeding 

DTWB 0.123 < 500 m High The mosquito fly range is 1500 m. 

  500 – 1500 m Moderate Less than 500 m from WTBD  

  >1500m Low the risk of malaria is high 

DTR 0.038 < 2.5 Km Lowe < 2.5 km walking distance to clinic 

  2.5 – 5 Km Moderate 2.5 to 5 km clinic can be reached by 
bicycle 

  > 5 Km High < 5 Km interventions are difficult 

Pop 
dens 

0.051 < 6000 pers/Km2 Low High populated area have higher risk  

  6000 – 9000pers/m2 Moderate since mosquitoes have abundant  

  >9000 pers/km2 High blood meal close by. 

Malar 
prev 

0.051 < 14% Low High prevalence areas have higher  

  14 – 21% Moderate risk since mosquitoes  do not have 

  > 21% High to travel long for blood meal 

NDVI 0.047 -0.2777 – 0 Low  

  0 – 0.255 Moderate  

  0.255 – 1 High High NDVI is related to high malaria risk 

 

Altitude (Alt) 

A digital elevation model at 30*30 m resolution was used to estimate 

the altitude. Areas below 200 m (lowlands) were classified as being the 

highest risks for malaria occurrence, areas between 201 to 500 metres 
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 (uplands) were classified as having moderate risk and over 500 m (midlands) 

were classified as having the least risk of malaria exposure.  

Slope (SLP) 

The slope was derived from the 30m*30m digital elevation model, 

obtained from the spatial analysis tool from ArcGis. In the study, areas of from 

0 to 5 degrees were classified as being high-risk, those from 5 to 15 degrees 

were classified as of moderate risk, while those over 15 degrees were 

classified as having the lowest risk.  

Land cover and Land-use (LCLU)  

Land-use and land cover data were retrieved from the most recent 

(April 2016) the 30m*30m Landsat satellite image (GIS Geography, 2016). 

The image was reclassified into different LULC classes. Areas with crops, 

grass and water bodies were classified as having the high-risk of malaria. 

Areas such as shrubs and mosaic cover vegetation were classified has 

having a moderate risk of malaria, while the areas with forest, bare, and urban 

settlements were classified as having the lowest risk of malaria.  

Distance from Roads (DTR) 

Euclidean distance to nearest road was calculated using ArcGIS, 

classifying a 2016, 30m*30m Landsat image. Distances of places from the 

road were then calculated using the measuring distance function in ArcGIS 

software. In the study, places over 5 km from the roads were classified to be 

at highest risks to malaria, those between 2.6 km and 5 km from roads were 

classified to be of moderate risk and those less than 2.5 km from the roads 

were classified as having the lowest risk of malaria infection. 

Distance to Water Bodies (DTWB)  

Distance to the nearest water body were calculated with ArcGIS, 

classifying a 2016, 30m*30m Landsat image for water and undefined. 

Distance from water bodies were then calculated using the measurement 

distance function in ArcGIS software. In this study, areas with less than 500 

metres from a water source were classified as being an high-risk area, those 

between 501 to 1500 metres were classified as moderate risk areas while 
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those above 1500 metres from water bodies were classified as being of low 

risk to malaria.  

Population density (pop dens) 

Data on population density were calculated from the National census 

population projections for 2014. In the study places over 9000 people/ km2 

were classified to be at highest risks to malaria, those between 6001 to 9000 

people/ km2, were classified to be of moderate risk, and those less than 6000 

person/ km2 were classified to be as low risk of malaria infections.  

Malaria Prevalence (Mal prev) 

Malaria cases diagnosed by health personnel as described elsewhere 

Ferrão et al. (2016) were used. In the study over 21% prevalence were 

classified as being the highest malaria risk areas, between 14 and 21% were 

classified as being of moderate malaria risk and, less than 14% were 

classified as having the lowest risk of malaria occurrence. 

Normalized Difference Vegetation Index (NDVI) 

The NDVI was extracted from a Landsat image. The NDVI map has 

been grouped into three principal categories: -0.288 to 0, and classified as 

moderate risk, 0 to 0.255 classified as moderate risk and 0.255 to 0.986 

classified as high risk was classified as being of high malaria risk (Ray, 2012). 

Step 3: Analytical hierarchical process (AHP)  

The analytical hierarchical process is a method that uses hierarchical 

structures to represent a problem and makes judgments based on expert 

panels to derive priority scales (Saaty, 2008). In this step, the input datasets 

were explored to understand their content and attributes within and between 

data sets are more important for solving the stated problem and searching for 

trends in the dataset (Ray, 2012). 

To obtain the weights for each individual factor for the map the following 

step was as follows:  

a)  Formulation of a pair-wise comparison matrix for each of the input 

variables.  

b) Establishment of the relative weights of each input variable.  
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 c) Checking for consistency in the pairing process (Chikodzi, 2013). 

a) The fundamental scale to help in, the weighting process was used to 

develop the pair-wise comparison matrix (Table 8). 

 

Table 8: Fundamental scale for pair-wise comparison matrix 

Extremely less important  1/9 

  1/8 

Very strong less important 1/7 

   1/6 

Strongly less important  1/5 

  1/4 

Moderately less important  1/3 

   1/2 

Equal importance 1     

  2     

Moderately more important 3     

  4     

Strongly more important 5     

  6     

Very strong more important 7     

  8     

Extremely more important 9  

b) Establishment of the relative weights of each input variable 

Indeed the malaria risk factors don’t have the weight and role in the 

modelling of the final malaria risk map. Therefore, in order to designate the 

importance of each variable, they were weighted using a pair-wise 

comparison method from the AHP template worksheet (Bernard, 2012). 

c) Checking for consistency 

After computing the pair-wise matrix and, to measure if the derived 

matrix was derived at an acceptable level, a consistency test was calculated. 

For this study, a consistency index less than 10% was considered good 

enough. (Chikodzi, 2013). A result above 10%, the matrix was revised until 

the indication of an acceptable level of acceptance. (Saaty, 2008).  



 

97 

Step 4: Performing analysis  

The spatial analysis depicted in Figure 27 was performed.  

-

 

Figure 27: spatial analysis fluxogram  

Layers for Tmean, PP, Alt, SLP, DTWB, DTR, NDVI, LULC, malaria 

prevalence (%) and population density (person/km2) were created in a 
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 raster dataset. To compare the values of the classes between layers, 

numeric values to classes within each map layer was assigned from 1 to 3 

being low, moderate and high-risk respectively. The reclassification was 

carried out and all measures had the same numeric scale giving them the 

same level of importance.  

For the suitability model, reclassified outputs of Tmean, PP, Alt, SLP, 

DTWB, DTR, NDVI, LULC, Mal prev, Pop dens were combined. The final 

suitability map was produced by combining all the maps together. Weights 

were assigned at the same time as combining the suitability maps (ArcMap, 

2016a) 

Step 5: Verifying the result  

After the result of the spatial analysis the correctness of the findings 

were discussed with experts and places visited. 

5.3. Results 

 

Table 9 shows the 10 x 10 comparison matrix of malaria risk factors 

used in the study and a value of 1 for example, means that factors under 

comparison have the same weight, and they affect the malaria occurrence 

equally. A value of five would mean the factor in the column is five times 

more important in the malaria risk occurrence than the comparison in the 

row. 
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Table 9: 10 x 10 Comparison Matrix of Risk Factors used in the study 

  Tmean Prec Alt Slope LULC DTWB DTR Pop den Prev NDVI 

Tmean 1.00 1.00 3.00 4.00 4.00 2.00 6.00 4.00 4.00 4.00 

Prec 1.00 1.00 3.00 4.00 3.00 1.00 7.00 4.00 4.00 4.00 

Alt 0.33 0.33 1.00 3.00 3.00 1.00 4.00 2.00 2.00 3.00 

Slope 0.25 0.25 0.33 1.00 1.00 2.00 1.00 3.00 1.00 1.00 

LULC 0.25 0.33 0.33 1.00 1.00 2.00 2.00 5.00 1.00 1.00 

DTWB 0.50 1.00 1.00 0.50 0.50 1.00 3.00 4.00 4.00 2.00 

DTR 0.17 0.25 0.25 1.00 0.50 0.33 1.00 1.00 1.00 2.00 

Pop den 0.25 0.50 0.50 0.33 0.20 0.25 1.00 1.00 2.00 4.00 

Prev 0.25 0.50 0.50 1.00 1.00 0.25 1.00 0.50 1.00 2.00 

NDVI 0.25 0.25 0.33 1.00 1.00 0.50 0.50 0.25 0.50 1.00 

 

The weights of each factor used for the spatial model to produce the 

malaria risk map are presented in table 8. Tmean (22.4%) and 

precipitation (20.8%) presented the highest weights followed by DTWB 

(12.3%) and altitude (10.4%), LULC (8.2%), slope (7.3%), pop dens and 

malar prev (5.1%), NDVI (4.7%) and DTR (3.8%). The consistency index 

for the pair-wise matrix was 9%.  

The special model to produce the malaria risk map formula was: 

[(Tmin*0.224) + (precipitation*0.208) + (altitude*0.104) + (slope*0.073) + 

LULC*0.082) + (DTWB*0.123) + (DTR*0.038) + (Pop dens*0.051) + (Mal 

prev*0.051) + (NDVI*0.047)] 

Map 9 presents the malaria prevalence, slope, temperature, NDVI and 

LU/LC. In terms of malaria prevalence, Chimoio presents 42% of the area 

with low risk, 17 % with moderate risk and, 41% with high-risk areas. It is 

possible to see that the prevalence risk of malaria varies spatially in the 

Chimoio Municipality. For slope, Chimoio presents 2% of the area with 

low risk, 52 % with moderate risk and 46% with high-risk areas. For 

average temperature, Chimoio presents 100% of moderate risk areas.  
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 For NDVI Chimoio presents 5% of the area with low risk, 12% with 

moderate risk and 88% with high-risk areas. For LU/LC Chimoio presents 

39% of the area with low risk, 4% with moderate risk and 43% with high-

risk areas. 

 

 

 

Map 9: Malaria risk for malaria occurrence. a) Prevalence b) Slope c) 
Temperature d) NDVI e) LULC 

Source: (Ferrão et al., 2016) 

Map 10 presents the precipitation, altitude, distance to a water body 

(DTWB), distance to road (DTR), and population density (person/km2). 

For precipitation, Chimoio presents 100% moderate risk areas. For 

altitude, Chimoio presents 34% with moderate risk and, 66% with high-
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risk areas. For DTWD, Chimoio presents 44% of the area with low risk, 

40 % with moderate risk and, 16% with high-risk areas.  

For DTR, Chimoio presents 40% of the area with low risk, 43% with 

moderate risk and 17% with high-risk areas. For population density, 

Chimoio presents 92% of the area with low risk, 5% with moderate risk 

and 3% with high-risk areas. 

 

 

Map 10: Malaria risk for malaria occurrence. a) DTWB, b) Altitude, c) 
Population density, d) Distance to road, e) Precipitation 

Source: (Ferrão et al., 2016) 

Map 11 presents the Chimoio map risk for malaria after the 

consolidation of the weighted malaria risk factors used in the present 

study. Chimoio presents 0% of the area with low risk, 96% with moderate 

risk and 4% with high-risk areas. The Map depicts that the central and 
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 south-west “Bairros” namely Centro Hipico, Trangapsso, Bairro 5 and 1o 

de Maio while the rest of the “Bairros” have a moderate risk of malaria. 

 

Map 11: Chimoio malaria risk map 
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5.4. Discussion 

 

In this study it was determined that climatic factors mean temperature 

and precipitation presented the highest weights followed by DTWB, 12.3% 

and altitude 10.4% and the other climatic factors presented the least weights. 

The results are similar to other studies in Mozambique and the World Fuller 

et al. (2014) (Chikodzi (2013); Fuller et al. (2014) (Hagenlocher & Castro, 

2015) Mulefutu (2016) except in Kenya Alimi et al. (2016). 

The Mozambique risk Map produced by other authors are similar with 

the findings of this study Fitfortravel (2016); Traveller start (2016); MARA 

(2015); Abellana et al. (2008). 

The malaria risk map produced by the study differs in many ways with 

other available models. The area is small (174 km2) and it used ten risk factor 

variables. It also uses high, sharp and fine spatial and temporal resolutions of 

risk factors and includes climate variable data that impacts in the factors that 

affect the mosquito proliferation. It also includes human-induced variables 

such as distance from roads and LCLU changes and, clinical data. The model 

is reasonably scaled to present variance in malaria risk at micro-scale level.  

A relatively small number of studies have included ten risk factor 

variables in geostatistical models for malaria risk mapping. Similarly, this 

approach can also be applied for modelling and prediction of other 

environment driven diseases.  

5.5. Conclusion 

 

The weights used in this map are consistent with several studies and the 

map is reliable. The entire population of Chimoio his at a risk to contract 

malaria and, 96 % have a moderate risk and 4 % high-risk. Trees in the 

Chimoio streets and households are probably resting areas for mosquitoes.  

Precise estimation of malaria risk has important implications in Precision 

Public Health, and the planning of effective control measures such as the right 

time and place to spray for vector combat the right time to prune the trees 
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 from the trees and homesteads, distribution of bed nets, correct site to build 

a water body, the correct time and place for drainage and other relevant 

activities for malaria control and eradication.  

The study demonstrated the importance of the possible use of GIS and 

remote sensing in predicting, mapping and modelling the malaria risk in 

Chimoio municipality. More studies should be carried out such as bed net 

usage, the relationship between household presence of trees and malaria and 

others.  
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6. Discussion of Results and Conclusions  

  

The focus of this study was the socio demographic characterization of 

malaria patients and modelling malaria and mortality trends for Precision 

Public Health and the major evidences are:  

 Malaria is increasing in Mozambique particularly in Manica Province 

and Chimoio Municipality and annual average incidence of malaria was 20.5 

%. The evidence agrees with data from the Ministry of Health that claims that 

the first quarter of 2017 Mozambique registered over two million cases of 

malaria against 1,873,303 cases in the same period of 2016. This tendency 

contradicts with the decreasing tendency in the neighbouring countries such 

as Malawi Kazembe, Kleinschmidt, and Sharp (2006) and South Africa 

(Ngomane & de Jager, 2012). Swaziland almost eradicated malaria in 2016 

(Moonasar et al., 2016). Mozambique faces challenges to combat malaria 

such as inadequate health infrastructures affecting the distribution and 

availability of treatment, limited funds for indoor residual spraying due to 

financial crises, limited use and logistical capacity in the distribution of bed-

nets and their misuse, scarcity of human resources for health impairing the 

quality of health care provided at health facilities (WHO, 2015b).  

 Malaria occurrence and malaria mortality varies over time. Malaria 

transmission occurs throughout the year with peaks between weeks 1 to 12. 

The onset of rain occurs in mid-November. This indicates that malaria 

occurrence has a strong association with rainfall six to eight weeks before, 

coinciding, with the malaria cycle three components: (i) the growth of the 

Anopheles female mosquito from egg to adult to parasite transmission; (ii) the 

development of the Plasmodium parasites (gametocyte to sporozoites) that 

are able to infect humans; and (iii) the incubation period in the human host 

from infection to malaria symptoms (CDC, 2014b), (Crutcher & Hoffman, 

1996). Thus, malaria occurrence peak can be expected 45 to 60 days after 

the onset of rain. Similar results were also found in Mozambique (Zacarias & 

Andersson, 2010) and South Africa (Ngomane & de Jager, 2012). Increased 
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 precipitation can provide more breeding sites for mosquitoes, but excess rain 

can also destroy breeding sites (Bai et al., 2013).  

 Malaria occurrence and mortality varies in space, rural areas and 

suburbs presents more malaria and malaria mortality cases than the urban 

areas. The results are in concordance with (IDS, 2013); (Arroz, 2016) that 

reported that the prevalence of malaria in Maputo City is 2 % while in 

Zambezia Province it is 55 %. The non-climatic malaria determinates such as 

poverty increase, poor sanitation, crowdedness, lack of access to health care, 

low education, type of house construction, and living conditions also plays a 

role although minute. Other studies report the same pattern of findings (WHO, 

2015a). 

 In terms of gender, there is no overall difference (p > 0.05) between 

women (51%), and men (49%), between adult women (52%) and adult men 

(48%), or female children (50.3%) and male children (49.7%). This evidence 

contradict most research Norheim et al. (2015) and Abdalla (2005), the 

chances of getting malaria are the same (gender equality) in Chimoio. This 

can be explained by the high malaria incidence in the area, which puts the 

entire population at risk. 

 There was a difference between children under 5, (48%) and 

population over five (52%). Children under five comprise 17% of the 

population of Chimoio but accounted for 48% of the malaria cases, almost 

three times more. This disproportion is also reported by other authors (Ferrão 

et al., 2016). This is probably due to the fact that children under five years of 

age have little immunity to the malaria parasite.  

In terms of malaria cases related to population density, there was a 

medium positive correlation r = 0.407 between the population density and 

malaria incidence and the R2 value indicates 0.165, which implies that 16.5% 

of malaria cases are attributed to population density. The extremes of both 

low and high population density modify malaria transmission and have 
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profound consequences for estimates of Chimoio´s Mozambique public 

health burden.  

The ARIMA model developed in this study, ARIMA (2,1,0) (2,1,1)52, 

attempted to provide an easy technique to predict the expected number of 

malaria cases per week based on past observed cases. 

Cross-correlation analysis showed that mean temperature, and 

precipitation presented significantly lagged correlations with malaria cases. A 

regression model of a differenced (lag1 and lag 12) Box-Cox transformation 

( = -0.5) of malaria cases on lag 1, 2 and 3 of weekly malaria cases and lag 

6 and 7 of weekly mean temperature and lag 12 of precipitation was found as 

the best prediction model for weekly malaria cases.  

The ARIMA model was also used for malaria forecasting in South 

Africa (Ngomane & de Jager, 2012), Zambia (Jere & Moyo, 2016), Burundi 

(Gomez-Elipe et al., 2007) and India (Kumar et al., 2014) with comparable 

results. 

Temperature affects the development of malaria; the parasite does not 

develop below 18 C and over 40 °C (Otte im Kampe et al., 2015) and 

(Deressa et al., 2007). The highest proportion of vectors surviving the 

incubation period is observed at temperatures between 28–32 °C (Gomez-

Elipe et al., 2007). In this study, the average maximum temperature recorded 

was 26.8 °C ranging between 22.3–31°C suggesting that Chimoio is an ideal 

location for malaria breeding. In this study, the mean temperature was found 

to be a significant predictor for malaria occurrence, similar to studies carried 

out in South Africa (Ngomane & de Jager, 2012) and Burundi (Gomez-Elipe 

et al., 2007). 

Relative humidity (RH) also plays a role in malaria episodes, and 

mosquitoes become more active when humidity rises. If the average monthly 

relative humidity is below 60%, it is believed that the life of the mosquito is so 

short that very little or no malaria transmission is possible (Yamana & Eltahir, 

2013). Relative humidity in this study was 72.1% and only four weeks of the 

year presented RH less than 60% implying that humidity does not restrict 
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 malaria occurrence in Chimoio. Similar results were also reported in a study 

in Ghana (Krefis et al., 2011). 

Wind speed was found to be a significant influence in malaria 

occurrence in Nigeria (Omonijo et al., 2011). In this study, the wind speed 

was not found to be a significant predictor for malaria occurrence in Chimoio. 

Visibility was not found to be a significant predictor for malaria occurrence 

consistent in studies in Nigeria (Omonijo et al., 2011) and South Africa 

(Ngomane & de Jager, 2012). Most Anopheles mosquitoes are crepuscular 

(active at dusk or dawn) or nocturnal (active at night) (CDC, 2014b). 

The R-square in this study was 0.725 implying that 72.5% of the 

variance in malaria occurrence can be explained by variance in the predictive 

variables. In Burundi, 82% was reported (Gomez-Elipe et al., 2007). The 

results are higher than a study in Nigeria that found 66% and lower than the 

(Global Fund, 2015) that indicated that 90% of malaria cases are related to 

environmental factors.  

The malaria crude mortality rate per 100,000 is 51 per 100,000 in 

Chimoio, higher than the national Mozambique figure of 42.75 for 2014 

(Norheim et al., 2015). In terms of malaria mortality by gender, there was no 

difference between malaria deaths in females and males. Similar results were 

reported previously by (WHO, 2007). The results disagree with the findings in 

Kwazulu Natal and Sudan that reported higher mortality from malaria in males 

than in females (Ngomane & de Jager, 2012).  

Malaria mortality increase contrary to claims of the Ministry of health 

of decreasing tendencies. This could result from the fact that the Ministry of 

Health bases their results only on data from clinics while this study gathered 

data from the Civil Registration which includes data from clinics and deaths 

occurring at private houses. There is evidence that suggests that given equal 

exposure, adult men and women are equally vulnerable to malaria except for 

pregnant women (Ngomane & de Jager, 2012).  
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Twenty five percent of malaria deaths occur at the age of 2, and 75% 

of malaria deaths at the age 43. Age category 0 comprises 3% of the Chimoio 

population and recorded 9% of malaria deaths while, age category 1 - 4 

comprises 13% of the Chimoio population, and recorded 25% of malaria 

deaths. This can be due to the lack of immunity in the first years of life. Similar 

results were reported in another seven African countries and Bangladesh 

(Kazembe, Kleinschmidt, & Sharp, 2006), (Abdalla, 2005); (Streatfield et al., 

2014); (Kesteman et al., 2014) and (Deressa et al., 2007). From the age of 

45 onwards the proportion of deaths by malaria and all-cause mortality is 

almost the same.  

Malaria mortally was significantly different between month and years. 

Similar results of seasonality were reported in Burkina Faso and Ethiopia 

(Kazembe, Kleinschmidt, & Sharp, 2006) and were related to climatic 

conditions. January, February and March presented the highest percentage 

of mortality from malaria, decreasing thereafter. This peak period occurs two 

months after the rainy season onset.  

There was no difference in times of death from malaria in Chimoio, 

and this result clearly contradicts a previous report on all-cause mortality in 

Chimoio, that indicates that peak mortality occurs between 3:00 to 4:00 AM. 

This result suggests that malaria deaths can occur at any time, contrary to 

other deaths that were found to peak from 3:00 to 4:00 AM in Chimoio. 

The centre of town (low density) presents a low malaria crude mortality 

rate, 0 to 27 per 100,000 and the rural “Bairros” a very high crude mortality 

rate, over 80 per 100,000. This can be due to the fact that the centre has 

better health facilities and infrastructures which means the residents are 

better-off than in rural areas. Some rural neighbourhoods present low malaria 

mortality rates. This can be attributed to the fact those areas have poor 

accessibility and the residents carry out their burials without Civil Registration. 

ARIMA (2,0)(1,0)12 fitted the data well although it was not able to 

capture the sudden changes occurring during malaria outbreaks. Introducing 
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 the intervention effect allowed for a better fit of death peaks and the seasonal 

ARIMA model with intervention reduced root mean square error by almost 

25%. Other studies reported ARIMA (2,1,1) in Zambia, ARIMA (1,0,0) in 

Burundi [Gomes-Filipe], and India [Kumar] with comparable results.  

Studies in Africa reported modelling malaria mortality using Sarima in 

(Dan Dan & Udoka, 2013), in Malawi (Kazembe, Kleinschmidt, Holtz, & Sharp, 

2006) using the multiple spatial logistic regression model, in Tanzania 

(Rumisha, Smith, Abdulla, Masanja, & Vounatsou, 2014) using Bayesian and 

geostatistical models to assess the relationship between malaria transmission 

and mortality. No studies exist from Mozambique, and in particular for 

Chimoio. Time series intervention analysis was used in Criminal cases in 

Virginia, USA (Vujić, Commandeur, & Koopman, 2016) and in Australia in a 

heroin distribution case (Gilmour et al., 2006) with results similar to this study.  

Conclusions from the study are: 

 Chimoio malaria occurrence and mortality presents a spatial (Map 11) 

and temporal pattern (Table 1). Malaria cases and malaria mortality 

have been increasing over the years, especially in suburbs. There is 

no gender difference in malaria cases. Children under 5 years of age 

are three times more prone to get malaria than the rest of the 

population. Sixteen percent of visits to the health centres are from 

malaria patients. The rural areas of the municipality have more 

malaria cases, followed by suburbs, and urban areas have fewer 

malaria cases. (Map. 11). 

 The Chimoio climate seems ideal for malaria occurrence. A seasonal 

pattern was observed in malaria occurrence in Chimoio with peaks 

during weeks 1 to 12 (January to March). Since the lag effect between 

climatic events and malaria occurrence is important for malaria cases 

prediction, this can be used for designing Precision Public Health 

measures.  
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 There is no difference in the malaria mortality rate between males and 

females. Children between 1 – 4 years old are 13% of Chimoio 

population, but represent 25% of malaria mortalities. The last 3 

months of the rainy season (January, February and March) present 

more malaria mortality cases than the dry season. Urban “Bairros” in 

the centre of town have lower malaria crude mortality rate than the 

rural “Bairros”. More studies should be carried out for malaria 

eradication in the municipality. 

 The use of an Intervention time series approach for modelling malaria 

mortality is suggested, owing to its flexibility and interpretation. 

 The practicality of the statistical modelling method was validated to 

detect the lagged relationship between malaria cases and mortality. 

Based on the results, mortality can be predicted two months in 

advance. This information can lead to Precision Public Health 

strategies to prevent malaria fatalities in Chimoio.  

 Based on the factors that affect malaria, from week 30 to week 40 

Chimoio appears to have a low malaria risk. Map 11 indicates the 

spatial risk of malaria in Chimoio and no area of the Municipality 

presents a low risk, 96 % of the area presents a moderate risk and 4 

% a high risk of malaria occurrence thus, the entire Chimoio 

populations is at risk to contract malaria. 

 The assumption that factors other than climate remained constant 

over the period, is a limitation of the present model that makes it 

difficult to generalize the results to other regions. Another limitation of 

this study is that it did not take into consideration malaria intervention 

factors such as bed net distribution and improvement of health 

coverage. Despite the limitations, one great strength of the study is 

that this is the first specific study in this field in Chimoio.  

 Malaria mortality is increasing in Chimoio and strong and appropriate 

actions are needed to counteract the malaria deaths scenario in 
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 Chimoio. More data from other parts of the country are needed to 

generalize the results to the national level.  

 Precision Public Health strategies that target malaria weekly 

according to the positive cases, and temporal and spatial distribution 

can be formulated to combat and eradicate malaria in Chimoio 

Municipality. Studies on weather and climate factors affecting malaria, 

bed net usage, and others should be undertaken. 

 This model are robust and, can predict the expected number of 

malaria cases and mortality at least two month in advance, and timely 

prevention and control measures can be effectively planned in 

Chimoio, such as the elimination of vector breeding places, correct 

time and place to spray insecticides, and awareness campaigns 

weeks before the malaria peak season. This can lead to a reduction 

in malaria cases, by knowing the best moment for spraying, saving 

time and cost of insecticide application and preventive programmes, 

and guiding smart environmental care.  

 Prospective and multidisciplinary research involving researchers from 

different fields is welcomed to improve the knowledge of the effect of 

climatic factors and other factors in malaria cases. The model can also 

be applied to analyse the spread of other infectious diseases and in 

optimising management efforts. 
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