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SHIP RECOGNITION ON THE SEA SURFACE USING

AERIAL IMAGES TAKEN BY UAV:

A Deep Learning Approach

ABSTRACT

Oceans are very important for mankind, because they are a very important source of

food, they have a very large impact on the global environmental equilibrium, and it is

over the oceans that most of the world commerce is done. Thus, maritime surveillance

and monitoring, in particular identifying the ships used, is of great importance to

oversee activities like fishing, marine transportation, navigation in general, illegal

border encroachment, and search and rescue operations. In this thesis, we used images

obtained with Unmanned Aerial Vehicles (UAVs) over the Atlantic Ocean to identify

what type of ship (if any) is present in a given location. Images generated from UAV

cameras suffer from camera motion, scale variability, variability in the sea surface and

sun glares. Extracting information from these images is challenging and is mostly done

by human operators, but advances in computer vision technology and development of

deep learning techniques in recent years have made it possible to do so automatically.

We used four of the state-of-art pretrained deep learning network models, namely

VGG16, Xception, ResNet and InceptionResNet trained on ImageNet dataset, modified

their original structure using transfer learning based fine tuning techniques and then

trained them on our dataset to create new models. We managed to achieve very high

accuracy (99.6 to 99.9% correct classifications) when classifying the ships that appear

on the images of our dataset. With such a high success rate (albeit at the cost of high

computing power), we can proceed to implement these algorithms on maritime patrol

UAVs, and thus improve Maritime Situational Awareness.
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1
Introduction

1.1 Contextual Background

The marine ecosystem has always been of interest to navigation agencies, countries

and environmental agencies for activities like traffic management and safe navigation,

border control, defense and national security, fisheries management, maritime spa-

tial planning, marine pollution, irregular migration and maintaining balanced marine

ecosystem (Hartemink, 2012), (Kanjir et al., 2018), (Liu et al., 2017a). Most human

activities occur on the sea surface: transportation is done using ships of various types

(Zheng et al., 2014); recreational activities will involve jet-skis, rubber boats, canoes,

buoys, ships, swimmers or human bodies floating on its surface (Hartemink, 2012); the

majority of fishery activities, that are prime source of food around the globe, is done

with different types of ships; gas and oil explorations are another potentially valued

economic activity that can be observed on the sea surface. Marine activities are con-

tinuously increasing with the advancement in marine exploration, transportation, and

thus induced economic benefits. However, such growing outreaches are reportedly

accompanied with illegal, potentially jeopardizing and ecosystem-unfriendly activi-

ties; haphazard fishing activities even in banned areas, oil spills on the sea surface,

illicit monitoring over the coastal waters of countries are among such activities. Ad-

ditionally, the maritime surface has even become the carrier of land-based debris like

plastics, metals, glasses that are transported to the marine environment through dif-

ferent acts like urban runoff, sewer overflow, industrial and littering activities (Ediang

and Ediang, 2013). This debris is considered among the agents of marine pollution

for putting real threats on health, biodiversity, and productivity of marine biota (Buhl-

Mortensen and Buhl-Mortensen, 2017). Such coastal engagements characterized by

both the beneficial and detrimental activities are driving the attention of the global

1



CHAPTER 1. INTRODUCTION

community. Various organizations like Group on Earth Observation (GEO), Inter-

national Maritime Organization (IMO), European Maritime Safety Agency (EMSA),

coastal bordered countries and academic institutions are closely monitoring, observ-

ing and implementing various systems for the betterment of the maritime environment.

Activities to understand maritime environment have been termed as Maritime Domain

Awareness (MDA) (Valavanidis and Vlachogianni, 2012), (Hartemink, 2012) or Mar-

itime Situational Awareness (MSA) for more localized picture. MDA and MSA require

heterogeneous information (Kanjir et al., 2018) and rely on object monitoring and

detection. The most dominant objects over the sea surface used either as the means of

carriers for transportation, fishing, surfing, rescue operation, monitoring or supervi-

sion are ships or vessels.

Ships are categorized in different types and classes based on the design, constructional

structure, and purpose of their usages. These classifications help in ship identification,

safety management, and maritime traffic control. Various classification societies are

established in different coastal regions and countries that issue classification certifi-

cate for the ships with the aim of maintaining maritime safety by setting the technical

standards and rules for designing, constructing and maintaining ships. International

Association of Classification Societies (IACS) formed as a non-profit membership or-

ganization of classification societies is among such actively engaged societies that is

technically supporting IMO in its maritime research and development and has even

set up compliance rules and standards for vessel classification design and construc-

tion along with its twelve of the member societies. Additionally, IMO has published

International Regulations for Preventing Collisions at Sea 1972 (COLREGs) that gov-

erns ships with common and consistent navigation rules internationally depending

upon their classes. Also, the European Code for Navigation and International Sailing

Federation is actively working for safe maritime navigation. So, maritime surveillance

that basically involves identifying ships on the sea surface, recognizing their classes,

monitoring and tracking them visually can be crucial in knowing the activities ships

are conducting and intentions of their usage thereby supporting better navigation,

controlling illegal activities and detecting oil spills (Gallego et al., 2018).

Environment monitoring and surveillance has been one of the potential applications

of remote sensing for the high resolution, qualitative data it provides through space-

borne and airborne sensors system (Li et al., 2018). The Landsat Satellites in 1977

followed by Synthetic Aperture RADAR (SAR) in 1978 through to the first SeaSat

Satellite are milestones in earth observation including marine surfaces. Based on the

globally followed regulations, different systems like Automatic Identification System

(AIS) for short-range operation, Long-Range Identification and Tracking (LRIT), Ves-

sel Monitoring System (VMS) are widely used automatic reporting systems for the

ships/vessels. But, not all ships and fishing vessels, especially those with less than

300 tons, are mandated for these systems and there have been cases reported of not

using or spoofing the reports to mask illegal activities (Kanjir et al., 2018). Besides,

2



1.1. CONTEXTUAL BACKGROUND

these systems are designed for a specific purpose like communication transmission or

monitoring only the fishing vessels. The weather independent features of SAR provid-

ing day-night cloud-free images from RADAR signals have been used widely for ship

monitoring and detection. But, it has limitations with low visit time and a smaller

number of operational SARs due to the high cost associated with it. Space deployed

satellites with higher (commercial) and lower (free) spatial resolutions are available

in abundance with wide area coverage over the coastal surface. However, weather

dependency and data capturing based on their rotational time and higher computa-

tional cost associated with the continuous observations constitute restrictions. The

improvements in sensor technology and unmanned aerial vehicles with sophisticated

hardware and battery offering longer performing capacity are making them alternative

solutions for the surveillance and data capturing tasks requiring low area coverage

with higher spatial resolution at an affordable cost. Nowadays, UAVs are widely used

in different fields like urban planning, natural disaster assessment, traffic manage-

ment, surveillance activities for security and safety around the globe, including all the

surfaces - airspace, land and marine environment (Li et al., 2018). The flexibility of

integrating need-based sensor systems like optical or thermal, on-demand usability

and the easy autonomous operation supporting emergency situations like search and

rescue are additionally supporting their use in the maritime environment.

The increasing use of aircraft and unmanned vehicle systems for monitoring sea sur-

faces have produced a huge amount of data and images with detailed information

about the earth surface. Monitoring these image data manually and extracting useful

information has become difficult using traditional handcrafted methods because of

the need for real-time or near real-time performances with high accuracy. Different

machine learning and deep learning techniques have been developed to ease automatic

feature extraction, object classification, recognition, and detection. Machine learning

techniques have involved shallow architectures with one layer for feature transfor-

mation and are effective for simple well-defined problems (Deng, 2012). But the

real-world applications like ship classification and recognition from optical images

having background features like light illuminance and waves require deeper struc-

ture capable of learning and extracting features properly with high accuracy. Deep

Learning has emerged as a solution in this context allowing multilayer hierarchical

architectures for feature learning, classification and pattern recognition. Convolu-

tional Neural Networks (CNNs) are one of the Deep Learning techniques renowned

for their outperforming image classification accuracy since the start of this decade, and

is continuously advancing with the availability of higher computational power and

graphical processing units (GPUs). But, requirements of larger datasets for training

in a sophisticated computing environment is still hindering its usability to capacitate

common individual researcher at ground level. The concept of transfer learning has

been materialized as an alternative to combat these challenges; it involves transferring

the learnings obtained by training the chosen network model on large datasets applied

3



CHAPTER 1. INTRODUCTION

for different usages to another application of similar nature with less dataset.

This thesis focuses on classification and recognition of ships contained in images gen-

erated from videos captured by UAVs using Deep Learning with Convolutional Neural

Network and transfer learning. The video datasets obtained from Seagull Project taken

over different areas of the Atlantic Ocean are the primary sources of image sequences.

1.2 Problem Statement and Motivation

Most of the research on marine ship monitoring involves extraction and classifica-

tion of image features using different shallow structure algorithms like Histogram

of Oriented Gradients, exemplar Support Vector Machine (Chua et al., 2014) eigen-

value analysis with principal component analysis (Pietkiewicz and Matuszewski, 2018).

These techniques are lacking the demanding accuracy and, even if achieved are at the

cost of performances and more workloads in terms of parameters. But, advancement

in computer vision technology and development of deep learning techniques, particu-

larly convolution neural networks (CNNs) has been offering remarkable performances

in the field of image recognition with strong feature learning ability, fewer model train-

ing parameters and high recognition accuracy (Kumar and Sherly, 2017), (Wang et al.,

2018). Among some researches done in a maritime environment using CNNs, most

are done either with SAR Data or satellite-based optical images (Tang et al., 2015) with

more focus on detection than the recognition. In case of classification also, these are

performing binary classification like Gallego et al., 2018 to identify if ship is present

or not. Very few researches are done using CNNs with UAS captured data; Moreover,

data used are normally taken in similar environmental conditions with the same sen-

sors. Even at these scenarios, the primary challenges for the videos and images taken

with UAS over the sea surface are characterized with scale variability, movements of

UAVs, wave crests and sun glare difficult to identify ships based on their size, shape

or textures (Ribeiro et al., 2017). So, the novelty of this thesis lies on exploring the

potentialities of deep learning that have been put forward with deep CNNs in image

classification and recognition scenarios to recognize the class of ship from images gen-

erated by the videos captured by different visible and infrared sensors deployed with

UAS over different areas of Atlantic Ocean in different time period.

1.3 Research Aim and Objectives

The aim of this thesis is to perform multi-classification of ships and their recognition

by training deep convolutional neural networks on the aerial images captured by UAS

over the sea surface using the concepts of transfer learning. To achieve this main aim,

specific objectives have been set as follows:

4



1.4. GENERAL METHODOLOGY

• Review existing state of art on the sea objects classification, recognition, deep

learning, CNNs and transfer learning.

• Choose suitable Deep CNN architecture and pre-trained weights, design and

implement algorithms using transfer learning techniques for multi-classification

of ships and their recognition.

• Performance evaluation and review of the proposed approach with the existing

approaches.

1.4 General Methodology

The schematic diagram 1.1 below provides an overview of the overall methodology

applied in this thesis. It basically involves reviewing existing works and determining

suitable deep learning methods for image recognition along with its parameters and

then using the identified methods with suitable modification to recognize ships present

in images with their respective classes. Lastly the model obtained from modification

will be evaluated using different approaches like precision-recall rate and confusion

matrix. Detail methodological description about the methods adopted can be found

at Chapter 4.

Figure 1.1: Methodological Overview

1.5 Contribution

This thesis will use deep learning to address the current gaps and challenges men-

tioned in section 1.2 for recognizing ships on the sea surface. The main contribution

of this thesis consists of:
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CHAPTER 1. INTRODUCTION

• Exploring the possibilities of using deep learning for recognizing ships on im-

ages generated from a non-static UAV mounted with camera having Visible and

Infrared sensors.

• Proving that the final model trained on the thesis dataset can be used as a product

to make predictions or to recognize ships present in images.

1.6 Thesis Organization

This thesis consists of seven chapters describing the entire activities carried out to

complete it. Chapter 1 entails foundation of thesis starting with the first section brief-

ing about contextual background on the need for ship monitoring and recognition

followed by the existing platforms and techniques used for this purpose. It further

highlights the need for classifying ships, existing methods, and techniques used for

classification and gives a short description of this thesis work; second subsection men-

tions about the underlying gaps in existing research on the ship classification and

recognition followed by the challenges this thesis has taken using the Seagull data;

it also mentions briefly about the proposed method of CNNs; the third subsection

states the main aim of this thesis along with the specific objectives set to achieve it;

subsection four gives an overview of the proposed methodology defined to achieve

the research aim and objectives formed through contextual background and problem

statement.

Chapter 2 consists of a literature review explained with the related work on the thesis

in the first part and afterward contains theoretical definition and description of the

terms, terminology, and methods used throughout the thesis.

Chapter 3 explains the detail information about dataset used in this thesis by describ-

ing the source of data and platform used for data collection. It further describes how

data has been compiled and prepared to suit the methodology requirement of this

thesis. It also describes resources used in this thesis including both the software and

hardware.

Chapter 4 puts forward the idea of the methodology proposed based on the literature

review with related work having the start of art performances to achieve the aims and

objectives set in Chapter 1. Its latter section describes in detail the chosen architecture

and its modification with suitable parameters and hyperparameters. It also describes

the designing of the algorithm developed for the thesis.

Chapter 5 showcases results and briefly mentions the results. It also evaluates the

accuracy obtained along with network performances, computational power and time

required for the model´s execution.

Chapter 6 discusses the significance of results. It further presents the comparison of

this thesis with the similar works done before and presents the differences between

these methods and distinction of proposed method with them.

6



1.6. THESIS ORGANIZATION

Chapter 7 explains the conclusion obtained from this thesis together with the limita-

tions and recommendations for future works.

The content afterward consists of Annexes I to supplement the contents described

shortly in the main chapters for page limitation.

7



C
h
a
p
t
e
r

2
LITERATURE REVIEW

This section consists of comprehensive review on existing state of art on the object

recognition techniques for sea surface based on the existing research and projects. The

first part starts with background on the importance of sea surface monitoring and,

objects detection followed by the platforms and tools used for these tasks. The sec-

ond part discusses the conventional approaches used for sea surface object detection

starting with the satellite images and then UAS images The third part presents about

deep learning techniques, particularly Convolutional Neural Networks and different

techniques used on CNNs for the better performances and accuracy used for the detec-

tion. The fourth and last part explains the theoretical definition and insights on deep

learning, CNNs, and other the technical terms used in the research.

2.1 Related Works

2.1.1 Sensors platform used for ship recognition

Different sensors have different features that determine their applications; spatial

resolution, update rate, range, coverage, persistence, latency, and cost are among

the major concern. The most widely used sensors in marine surveillance are optical,

infrared and radars deployed either on satellites, aircraft/UAS, ships or shores (Kanjir

et al., 2018). Radar is the typical technology for monitoring and detecting ships that

is in use since the 1990s; Synthetic Aperture Radar (SAR) is one of the most popular

and widely used maritime monitoring and detecting Radar techniques for its ability

to capture images independent of weather and daylights. It is even independent of

the distance to the observed object. However, SAR has the limitations of being highly

prone to intrinsic noise, low spatiotemporal coverage with limited number of satellites,

long revisit cycle because of a smaller number of SAR satellites, difficulty to detect
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2.1. RELATED WORKS

small objects (Liu et al., 2017a) and, recognition of false alarms leading to difficulties

in classification (Kanjir et al., 2018). Satellite-based sensors are popularly used for

the wide area accessibility, remote access, systematic monitoring of data continuously,

and availability of larger data collection (Kanjir et al., 2018) for time series analysis.

Landsat, SPOT, QuickBird, IKONOS, Google Earth are among the highly used satellite

sensors for maritime object recognition (Kanjir et al., 2018). The free availability

of Sentinel-1 and Sentinel-2 optical satellites being operated under European Space

Agency Earth Observation Missions1 has further increased the potential market of

optical satellites.

For the usability on demand basis like emergency search and rescue, advancements

in microelectronics (Bejiga et al., 2017), easily transportable, economically affordable

and improvements in sensors technology and battery system for the integration with

UAS system to achieve desired data resolutions for longer duration, applications of

UAV-based sensors have increased extensively in the recent decades. Development of

autonomous operating system offering many automatic facilities like flight take-off
and landing, aerial refueling and route planning with higher levels of accuracy (Al-

Kaff et al., 2018) have induced the concerned service providers and users to apply

UAVs as the mundane means for navigation and surveillance activities. Also, sea

surface monitoring and vessel detection from UAVs are increasing rapidly and so are

the research on these fields growing (Dolgopolov et al, 2017, (Xu et al., 2014). Johnston,

2019 has discussed that UAVs have been used significantly in studying marine wildlife

particularly for large marine creatures like whales, sea turtles, sharks.

2.1.2 Images used for sea object recognition

Hyperspectral sensors are the emerging remote sensing technology that uses imaging

spectrometer to extract spectral information of a spatial area but possesses low spatial

resolution when observed from orbit and involves complex processing. So, sea surface

object detection, even the ship is difficult to detect from these images though there

is less research done for its application in maritime (Kanjir et al., 2018), (Wang et al.,

2016). Thermal infrared sensors used normally for night time image capture obtain

emission from captured objects themselves unlike depending on solar illumination

(Kanjir et al., 2018) whereas if used during the day, objects are detected based on the

temperature differences between sea and surface objects (Wang et al., 2016). These sen-

sors have the limitation of low resolution when measured from satellites and, suffers

from atmospheric clouds and moisture when measured from the atmosphere. Optical

images observed in the visible spectrum are easily detectable by the human eye; photos

captured from a normal camera are also optical images. These images are consistent

and enriched with essential information for feature extraction (Kadyrov et al., 2013)

(Kanjir et al., 2018) including vessel detection and classification for economical price

1https://earth.esa.int/web/guest/missions/esa-eo-missions
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and simplicity in structure (Lan and Wan, 2009). Further, these images offer high

spatial and spectral resolution useful for detecting smaller objects (Pegler et al., 2007)

though are greatly affected by weather and sun reflection on the water (Kanjir et al.,

2018). There have been increasing trends in mounting video cameras and different

sensors with aircraft and UAS, even on buoys or on floating platforms as these offer

easy installation and maintenance (Kanjir et al., 2018); object detection in a such sys-

tem involves the analysis of the images taken separately or the image frames generated

from the videos and, are the data of interest for this research.

2.1.3 Sea Surface Object Recognition Approach

The object recognition process on sea surface involves mainly detecting the objects in

the images, often referred as feature extraction and distinguishing the extracted fea-

tures by discriminating them with water on the sea as non-water objects and assigning

the class of the object, referred as object classification (Nie et al., 2017). The contents

below initially present the traditional object recognition methods followed by modern

approach of deep learning for classification and recognition.

The most widely used and researched sea surface objects detection methods use SAR

images that involve the use of algorithms like constant false-alarm rate (CFAR) detector

with the combination of Gauss distribution, k-distribution, and Gamma distribution

or their individual uses (Liu et al., 2017a) for the feature extraction. Object detection

from optical images in the past involved traditional handcrafts methods involving

manual feature extraction from images based on shapes, textures and physical proper-

ties. The first research according to Kanjir et al., 2018 on ship detection was done by

McDonnell and Lewis, 1978 using the Landsat imagery; McDonnell and Lewis, 1978

inspected Landsat CTT printouts and put forward a threshold-based approach of de-

tecting the ships by using total pixel numbers occupied by the ships in the MSS band,

orientation of these pixels, their maximum and total pixel radiances values. Since then,

many research have been carried out for ship detection using different methods; Kanjir

et al., 2018 has reviewed 117 papers for optical satellite images, some of the methods

are mentioned below: 1993 used transform domain method with high/low pass fil-

ter on SPOT XS and Landsat TM images; ship detection based on shape and texture

were used with different considerations like local image statistics with spatiotemporal

features (Pegler et al., 2007), shape constraints (Wang et al., 2016), spatio-spectral

template enhanced with weighted Euclidean distance metric (Pegler et al., 2007), cu-

mulative projection curve with Mahalanobis distance (Hu and Wu, 2008), region based,

shape-prior segmentation, mathematical morphology (Zhu et al., 2010), local binary

patterns (Ji-yang et al., 2016), object-based image analysis (Li et al., 2016); this method

though is enriched with spectral information with good accuracy for object detection

suffers the issues of false alarm candidates. The threshold based method is used in dif-

ferent ways like histogram-based segmentation, canny edge and Fourier transform (Hu
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and Wu, 2008), (Li-xiaa et al., 2010) hierarchical clustering merging algorithm (Hong

et al., 2007), adaptive threshold segmentation ((Hu and Wu, 2008) component tree

image algorithm (Xu et al., 2011), (Zuo and Kuang, 2011), (Guo and Zhu, 2012) these

are suited mostly for the smooth sea surface. Salient based methods like multiscale

enhancement method (Li et al., 2016), hypercomplex frequency domain and phase

quaternion fourier transform (Li et al., 2016), histogram-based contrast method (Liu

et al., 2017b) are good for heterogeneous sea surfaces but may not be the good option

in presence of high clutter on the image as it can lead to false alarm. Other methods

like statistical though is quick result generative, it needs a good knowledge of the tools

being used; transform domain method is not the good choice for high heterogeneity;

anomaly detection methods are good for threshold and sea surface heterogeneity cases

but shows bad performances for the near coastal ships.

Other sea surface objects have also been detected and an airborne system like aircraft

or UAVs are normally integrated with electro-optical sensors having visible, infrared

or hyperspectral spectrum cameras to capture the videos or images. The similar ap-

proaches like that of optical satellite imagery and or with some developments and cus-

tomization have been used for recognition purposes. Also, earlier days of UAS object

detection were facilitated with computer vision techniques to some extent. Borghgraef

et al., 2010 discusses problems associated with background subtraction algorithm and

showed out performances by the algorithms like behavior subtraction and ViBe for

detecting floating objects, particularly free-floating mines on the sea surface. Zheng

et al., 2014 applied saliency detection method with Locally Adaptive Regression Ker-

nels using self-resemblance techniques. Shin et al., 2016 presents the objects detection

method that involves a coarse-to-fine resolution approach by customizing the stereo-

vision based techniques and top-view grid method. Ventura et al., 2018 used open

software-based structure-from-motion (sfm) techniques for orthomosaics followed by

multi-resolution segmentation algorithm and spectral difference segmentation algo-

rithm for Object-based-image-analysis (OBIA) in the commercial software for coastal

mapping and classification. Seymour et al., 2017 used threshold method with high

pass filter in ArcGIS model builder programming environment to detect seals in ther-

mal imagery from fixed-wing UAS; this model used preprocessed rectified images and

is suitable only for the images having single species. Leira et al., 2015 applied simple

edge detector techniques for detecting the marine objects from the thermal imaging

camera on a low-cost fixed-winged UAV and nearest neighbor classifier was applied

for classification considering object size, temperature, and overall structure. These

methods require a higher extent of human inputs and good computational skills and

platforms.

Developments in computer vision technology and machine learning algorithms have

increased the level of automaticity in object detection and classification with high per-

formances; methods like co-training model (Guo et al., 2015), random forest method

(Huang et al., 2015), sparse representation and Hough voting (Yokoya and Iwasaki,
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2015), rotation and scale invariant method (Lin et al., 2017), Line segment detector Yao

et al., 2016 have been used previously for these purposes (Kanjir et al., 2018). Prasad

et al., 2016 presents the challenges like presence of occlusion, orientation, scale, va-

riety of objects and their motion patterns along with the variations in weather and

illumination condition associated with the maritime image processing from videos

generated from cameras; they also discussed briefly the background object detection

using Gaussian mixture, Gaussian background model and self-balancing sensitivity

patterns analysis. Yu et al., 2015 proposed the context-driven Bayesian saliency model

for detecting small and dim objects on FLIR images having sea clutter. These methods

usually involve preprocessing tasks with the object features definition. Besides, these

machine learning techniques offer the non-linear feature transformations, only for a

single layer.

However, these methods including, hidden Markov models (HMMs), conditional ran-

dom fields (CRFs), maximum entropy (MaxEnt) models, support vector machines

(SVMs), logistic regression and kernel regression, usually referred as shallow structure

do not support multi-layers features. Also, these traditional machine learning tech-

niques require explicit object feature definition. But advancements in the deep learn-

ing fields, computer vision, and computational platforms have drastically changed the

conventional approach of image processing and analysis techniques. The winning im-

age classification approach of Krizhevsky et al., 2012 in ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) 2012 popularized the potentialities of deep CNNs

for image recognition, detection and particularly for classification (Rawat and Wang,

2017). Since then, lots of research has been carried out on CNNs with improvements

in various factors like network architectures, activation functions, optimization tech-

niques, supervision components and regularization mechanisms (Rawat and Wang,

2017).

However, very few of the research is focused on using CNNs for sea surface objects

detection; Tang et al., 2015 used compressed-domain framework, deep neural network

and extreme learning machine for detecting and classifying vessels from optical SPOT-

5 images; Zhang et al., 2015 proposed and discussed the usefulness of S-CNN method

developed by combining CNNs with saliency detection method, for ship proposals

detection with high recall and good accuracy compared to R-CNN method. Borji et

al., 2014 surveyed and discussed the existing methods and state-of-art performance

using Saliency object detection methods including classical models like localization,

region-based, and Segmentation models along with CNN based deep learning-based

models; CNNs based technique is not yet explored much with the multiple images and

multi-objects, and implementation for this method also lacks publicly available large

datasets.

Ren et al., 2017 introduced novel Region Proposal Network by merging it with Fast

R-CNN such that the former network component predicts the object bounds thereby

showing the proposed regions and the latter uses the proposed regions for detection. It
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is a nearly cost-free approach suitable for near real-time and improves the region pro-

posal quality. The method has been the fundamental base for winning entries of object

detection competition like COCO 2015, ILSVRC 2015. Nie et al., 2017 used transfer

learned Single Shot MultiBox Detector (SSD) on labeled satellite images through the

VGG model to detect ships; the paper shows the higher accuracy obtained by this

method than Faster R-CNN with less computational work involved in addressing the

multi-scale problems by using features map from multi-layers whereas, the Faster

R-CNN uses feature map only from the top layer causing the difficulties in small ship

detection by pooling and sampling.

Liu et al., 2017b used CNN method as the ship classifier on Google Earth Images and

obtained higher accuracy as compared to SVM and Neural Network. Turner et al.,

2016 using optical images for object detection and classification in navy application

introduced detection and classification technique called Spatially Related Detection

with Convolution Neural Networks to address the spatial configurations of inter-object

within images for effective region proposal technique to use with the existing CNNs

approach. It highlights the importance of spatial relations to improve accuracy; the

results though showed improved classification accuracy has not been able for the re-

markable improvements in object detection.

Faster R-CNN is not considered as an efficient method for the densely packed objects

detection in practical remote sensing activities (Deng et al., 2018). So, Deng et al.,

2018 proposed a new method to overcome this problem based on Residual Networks,

known as ResNets; it consists of two subnetworks within it for detecting the object

proposal and then its detection by adopting existing Faster R-CNN. With a further

continuation, Deng et al., 2018 has also proposed another CNN method that consists of

feature extractions using Concatenated ReLU and Inception Module followed by object

detection using two sub-networks, multi-scale object proposal network (MS-OPN) and

accurate object detection network (AODN) for handling multi-scales and multi-objects

respectively. Li et al., 2018 proposed state of art performance method as the regional

proposal network based deep CNN to detect inshore and offshore ships on multi-scales

using hierarchical selective filtering (HSF); this method is the modification of faster

R-CNN architecture that includes CNN for feature extraction, HSF layer to deal with

multi-scale deep features for ship detection region and ship detection respectively, and

has been named as HSF-Net.

Khellal et al., 2018 proposed a new approach, claimed as state-of-art performance on

CNN features learning and classification by introducing Extreme Learning Machine

(ELM) for ship detection from infrared images; ELM is discussed as the efficient ap-

proach to cope with the problems of back-propagation regarding slower speed and

requirement of many hyperparameters. This method considers fully connected layers

as a convolutional layer such that only the Convolutional layers are trained with no

need for any parameter for Pooling layers. Wang et al., 2018 used the combination

of CFAR and CNN methods on processing SAR images for automatic detection of
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ships and achieved higher accuracy and computational speed than the multi-threaded

and multilevel CFAR algorithm. Yang et al., 2018 proposed multiscale rotational re-

gion CNN consisting of Dense Feature Pyramid Network (DFPN), adaptive region

of interest Align, rotational bounding box regression, prow direction prediction and

rotational non-maximum suppression (R-NMS) to solve the issues of redundant ship

detection region, difficulties of dense ships and complexity of the application scenarios.

This end-to-end rotational-region-based detection method is also able for predicting

berthing and sailing direction of the ship. However, the method suffers from problems

of higher false alarms rate resulting in lower precision than the FNN and Faster RCNN

methods. Gallego et al., 2018 presented CNN based architecture combined with k-

Nearest Neighbour method for the ship classification on MASATI dataset resulting

in the state-of-art ship classification method. This method was applied on various

network models like VGG-16/19, ResNet, Inception V3 and Xception to detect and

classify different kinds of ship like cargo, oil, boat, cruiser; highest classification ac-

curacy was obtained with Xception model that even outperforms existing models and

methods. However, this method does not address the issues of multi-sensors.

2.1.4 Improvements in Deep learning

The volume of data is increasing every day and computer vision is broadening its ap-

plications with the easy availability of graphics for high computational efficiency in

cheaper price; even some of the cloud platform like Google Colab and Floydhub are

offering free use with some limitations, for researchers. The researchers are continu-

ously working on the improvements of existing algorithms along with the increasing

number of data sets and computational resources for higher performance. The ma-

chine learning algorithms used earlier have now been outperformed with the deep

learning techniques. Chua et al., 2014 compared three of the classical machine learn-

ing algorithms, Histogram of Oriented Gradient, Exemplar-SVM and Latent-SVM with

deformable Part Models considering their high performance achieved in Pascal VOC

Challenge; HOG is used to derive feature sets as a feature descriptor; exemplar SVM

focuses on specificity, not on generality and can involve high computational costs for

multiple models training, whereas latent SVM is the extension of the HOG model. The

last algorithm performed well among the others in Annapolis Harbor corpus datasets

used in the study. Yu et al., 2015 proposed a context-driven Bayesian saliency model

that takes into account the contextual information associated with locations and scales

of the objects and sea surface in FLIR images. This method is useful to cope up with

the scale variance and complicated background existing in the images because of sea

clutter and clouds. Leira et al., 2015 discussed on the UAV with machine vision system

equipped with thermal imaging camera for real-time object detection, classification,

and tracking of objects in the ocean surface. The applied automation involves edge

detector and nearest neighbor classifier for objects detection and classification. Li et al.,
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2017 proposed Segmentation Constrained Robust Principal Component Analysis (SC-

RPCA) for detecting the moving objects having bad weather and changing background

in the videos with better performances; this method uses Gaussian Max-Pooling in

order to differentiate the foreground objects from dynamic background scenes by es-

timating the stable-value for each pixel and Segmented Constraints RCPA ensures

temporal and spatial continuity into the images.

Audebert et al., 2017 uses the approach of segmenting object first using FCNN, then

detecting the object through regression on the bounding boxes and finally classifying

them using CNN; they applied this technique for individual vehicles classification.

Griffiths and Boehm, 2018 used the concepts of deep learning, especially CNNs for

the applications in applied engineering purposes using UAS aerial images; they used

three CNNs, two Faster RCNN models based on Resnet and Inception-Resnet and the

third is Focal Loss network architecture based on Retinanet, outperforming former

two of the network models for detecting the railway track. It does single-class object

detection only.

2.1.5 Network Architecture and their choices

Many network models have been developed from different convolutional neural net-

work architecture. Mostly they follow similar design principles with the input as con-

volutional layer followed by the layer for spatial dimensions downsampling along with

the increment in the number of feature maps. The early days´ network architectures

like LeNet-5 (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012) and VGG16 (Si-

monyan and Zisserman, 2014), referred as classical consists of stacked convolutional

layers whereas the modern architecture afterward possesses modifications offering

high learnings. The network models like AlexNet, GoogleNet, and Resnet are the

state-of-art performing models with a significant breakthrough for image classifica-

tion (Gallego et al., 2018). These architectures for their high performance have been

often adapted as the basis of either feature extractors or creating new network archi-

tecture for CNN induced research and computer vision tasks like image classification,

object detection, and image segmentation. Each network model has its own features

and characteristics. The LeNET-5 model introduced by Yann Lecun in 1998 as the

handwritten digit identification system for zip code recognition in postal service is

considered as the pioneering of famous CNNs used globally these days; it consisted of

60,000 parameters for training the features. However, the model suffered from fewer

applications at that moment because of higher computational performances it required.

But CNNs were again rebirthed by Krizhevsky et al., 2012´s AlexNet in 2012 after

winning above mentioned ImageNet competition; this model is deeper than LeNet-5

with 60 million parameters generated by 5 convolutional layers followed by 3 fully

connected layers; it further uses ReLu instead of Tanh and sigmoid functions used in

traditional neural network and introduced Dropout layers to reduce the problem of
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overfitting. Subsequent development has been occurring since then with the introduc-

tion of newer and modified network architecture favored by the every day advancing

computer vision hardware resources. VGG 16 introduced in 2014 by VGG group from

Oxford is the improved version of AlexNet with more deeper network architecture;

it replaced 11*11 and 5*5 kernel size filters with 3*3 kernel size thereby increasing

depth of the network and learning complex features. It uses Dropout and Max-pooling

techniques and ReLU activation functions. However, deeper networks were costly in

terms of higher computational power and time. So, Inception (GoogleNet) introduced

by Google researcher team in the same year came out with more modifications and

even won the 2014 ImageNet competition; it introduced inception module, reduced

the number of convolutional filters, offers use of the different size of convolutions and

bottleneck layer by reducing the computational power requirements. Inception even

uses global average pooling instead of the last fully connected layers to reduce the total

number of parameters but achieving higher accuracy in a short time with more wider

network architecture. ResNet came with another idea of having deep residual networks

by introducing residual blocks to learn feature maps adjustment more deeply; it solved

earlier networks issue with deeper networks causing accuracy saturation and rapid

degradation. This network architecture offered better accuracy and performances than

the previous architecture and even won the ILSVRC 2015 classification competition.

Xception is the refinement of Inception model with 36 convolutional layers offering

depthwise separable convolution operation and it achieves higher accuracy than In-

ception while using the same number of parameters.

More recently, DenseNet has been introduced with the idea of referencing feature

maps from the earlier stage of the network to all the subsequent layers resulting in a

higher performance with less complexity than ResNet; it reduces the number of pa-

rameters and reuses features. NasNetLarge is another network architecture offering

better performances. Also, these existing architectures are being revised and have

different versions like VGG 19, Inception V3, ResNet101, ResNet152 and many net-

work architectures like FractalNet, SqeezeNet, MobileNet have been developed rapidly.

Due to the availability/development of free datasets and higher computational power

with GPUs, there might have already been more latest network architecture available

publicly with better accuracy than described here. Applications - Keras Documentation
presents the list of pretrained models on ImageNet dataset available with Keras API ac-

cording to their accuracy. Computational accessibility and amount of training dataset

available play important roles for building a deep convolutional network and choos-

ing network architecture. Among the above-mentioned architecture, this research is

using both the classical and modern architecture to observe accuracy obtained on the

research dataset: it will use VGG16, ResNet, InceptionResNet, and Xception.
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2.1.6 Transfer Learning

CNNs for their excellence in performance for image recognition and classification have

been widely used for a large number of datasets but suffers from the problem of over-

fitting if it is used on the small datasets. Also, it requires high computational power

and large memory. It is merely possible for every researcher to find millions of datasets

and train it with the advance resources integrated with GPUs and a large number of

parameters demanding a long time. In such context, learnings from the pre-trained

network on large datasets are considered very useful and are termed as transfer learn-

ing. Unlike the traditional machine learning concept of having training and test data

from the same feature space and the data distribution (Pan and Yang, 2010), transfer

learning accepts the variations and, learnings are shared among different environment

for improving the generalization (Goodfellow et al., 2016), accuracy and performance.

Transfer learning is based on the concept of applying previously learned knowledge to

the different task of similar nature by using the original pre-trained network to update

weights on the new training dataset and to extract the features (Ali and Angelov, 2018).

It is a time-saving, computationally cost-effective computer vision approach that uses

already existed pre-trained models trained with larger benchmark dataset to solve

the similar types of problems but on different dataset and scenarios. Applications of

transfer learning have been increasing in recent years. Figure 2.1 shows its growing

use to elevate machine learning commercially. Razavian et al., 2014 suggested the use

of CNN extracted features as the primary input for visual recognition tasks based on

the outperforming accuracy he achieved from overfeat extracted features classified by

using linear SVM. Kim, 2014 achieved higher accuracy with state-of-the-art improve-

ment on sentence classification using pretrained vectors by extracting the features and

fine-tuning few hyperparameters. Shin et al., 2016 discussed the usefulness of transfer

learning and achievement of state of art performance on mediastinal LN detection by

using the ImageNet pre-trained models. Ali and Angelov, 2018 used the pre-trained

CNNs based on the AlexNet Structure to extract the features and then SVM to classify

the human faces for anomalous behavior detection.Pan and Yang, 2010 entails theo-

retical insights on transfer learning, its strategies and applications on the issues like

classification and clustering through a survey. Many organizations and researchers are

putting efforts on collecting and providing different datasets of images freely as an

initiative to encourage academicians, researchers, and data science communities for

promoting research on automated tasks that involve the machine and deep learning

to accelerate the ongoing developments in artificial intelligence. ImageNet, CIFAR,

MNIST, COCO, PASCAL VOC 2012 are among the popular datasets that are trained

with a large number of parameters identified through intense research on more than

thousands of different object classes with different network models like VGG16, Xcep-

tion, ResNet. Even many competitions are happening for object classifications, local-

ization and detection on these datasets every year resulting in the new or modification
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Figure 2.1: Drivers of Machine Learning success in industry2

of existing CNN networks with higher accuracy. The results from such competitions

like ILSVRC are also available free for further research and improvements. Many re-

searchers are using these network architecture, datasets, and pre-trained models for

their research. ImageNet3 is one of the most popular image database portals main-

tained by Stanford Vision Lab, Stanford University and Princeton University. It offers

free use of 14,197,122 images with human annotation available at the moment and

arranged according to WordNet hierarchy with the aim of providing well managed

easily searchable images to the researchers around the globe. The ImageNet Large

Scale Visual Recognition Challenge4 (ILSVRC) is the object detection and image clas-

sification competition happening every year since 2010 using the 1.2 million images

with 1000 categories of objects from ImageNet as the training data. Most of the CNN

network architecture mentioned previously with state of art performance are winners

of this challenge. Besides, corresponding models from these network architectures

trained on this ImageNet dataset and that achieved the highest possible accuracy dur-

ing the time of challenge have been made available for free use. These weights and

thus obtained trained models known as pre-trained models have been offered by dif-

ferent deep learning frameworks like tensorflow, keras, caffe, pytorch as the imagenet

weights and, are serving as the key basis of growing applications of transfer learning

these days (Kornblith et al., 2018). ImageNet dataset has received global acceptance

by the deep learning-related research community for image recognition tasks.

2.2 Theoretical Frameworks and Terminologies

This section briefly mentions the theoritical concept and definition of terminologies

used in the training process of a CNN model.

1. Artificial Intelligence, Machine Learning, and Deep Learning

Artificial Intelligence is considered as the human brain influenced intelligence

3http://www.image-net.org/
4http://image-net.org/challenges/LSVRC/2016/index
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learning mechanism that uses a computerized system based upon statistical and

computational techniques for extracting and learning the characteristics of an

object or system such that it can utilize these learnings or representations for

solving similar cognitive problems intelligibly like humans. John McCarthy, one

of the pioneers of AI has defined it as the science and engineering of making intelli-
gent machines that have ability to achieve goals like human do. The recent research

and inventions on automation like self-driving cars, internet search engines, and

speech recognition are rooted on the concept of AI.

Machine Learning is considered as the subset of Artificial Intelligence that is

powering AI system through data analysis by developing statistical models and

algorithm capable of analyzing data, identifying the existing patterns and mak-

ing decisions without repeatable human interventions and programs. With the

every day generated and increased big data in health, finances, marketing, satel-

lite images or/in cloud platforms, hand-crafted data manipulation has been

challenging; machine learning has evolved with high computational abilities to

support these challenges with automation by using various methods like super-

vised, unsupervised, active and reinforcement learning to learn the data and

make predictions.

Deep Learning is considered as the subset of Machine Learning that has the ca-

pability of learning data with more complexity by going more deeper as its name

suggests and is highly influenced by the animal nervous system. It consists of

multiple layers, usually referred as neural networks that are trained on datasets

to learn their features so that they can result in the output with higher accuracy;

training more data is considered as the main factor for increasing accuracy of

predictions.

2. Artificial Neural Networks, Convolution Neural Networks, and their func-

tioning

Artificial Neural Networks (ANN) are biological nervous system inspired neural

frameworks consisting of a large number of units called neurons interconnected

to each other for processing given inputs, learning their properties and making

decisions or predictions based on the learnings during the processing stage. A

simple ANN consists of an input layer, hidden layer, and output layer. Every

layer consists of neurons and all these neurons are fully connected to each of the

corresponding layers.

Convolutional Neural networks are hierarchical neural network system that

consists of neurons resembling human visual cortex to make connections be-

tween multiple layers, usually referred as convolutional and sampling layers

existing in the network. Basically, these are feed forward deep learning neural

network algorithm trained through back-propagation techniques and comprise

three main layers: input layer consisting of input data with defined size; it is

19



CHAPTER 2. LITERATURE REVIEW

followed by hidden layers consisting of many convolutional layers, activation

functions, pooling layers, fully connected layers, and final output layer (fully

connected) displaying the product of input layers processed and trained with

neural networks. CNNs are characterized by following features:

• There is spatial local connectivity between neurons of adjacent layers.

• They share weights among the architecture.

• They are shift/space invariant artificial neural network.

Convolutional layer: It is the core building block of a CNN that consists of filters

(often called kernels) performing convolution operation across the height and

width of the input feature in the initial network layers; mathematically, matrix

multiplication is carried out between the no. of filters and the input feature

size resulting in 2-dimensional feature map (or activation map). The number of

convolutional layers can vary from one to many based on the number of datasets,

feature complexities and computational capacity available. Present as hidden

layers, they are mainly responsible for extracting features such as edges, colors,

orientation of the input data and reducing the image size to ease the learning

process with no loss in data properties. The size of a filter sliding over the input

data is called stride. Pooling Layer: This layer is introduced to reduce spatial

dimensionality of the output from convolutional layer thereby favoring less com-

putational requirements and extracting highly dominant features of the input

data. This layer also helps to reduce overfitting. Based on the way of analysis,

there are two types of pooling layers: Average pooling: It averages the values

of pixels contained in images covered by each of the filters. It reduces noises

through dimensionality reduction. Max pooling: It results in the maximum

value of pixels contained in the images and covered by the filters. It suppresses

noise activation through positional invariance and dimensionality reduction. It

is considered a better option than the average pooling.

Output layer: This layer is the fully Connected Layer introduced at the end of a

CNN to learn non-linearity in features after the input images are learned from

convolutional layers. This layer as the name suggested is fully connected to every

neuron or activation maps in the previous layer. Flattening the images extracted

as 3-dimensional data into vector takes place before the output layer generates

the prediction. Based on the number of iterations applied, this flattening layer

undergoes feed forward and back propagation process to reduce the errors and

make predictions with high accuracy. This layer is also called the classification

or prediction layer. Convolution and pooling layers together serve as the feature

extractors, and the last fully connected layer functions as a classifier in a CNN.

3. Activation and Loss Functions:
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Activation functions are introduced in convolutional layers to produce non-

linear outputs without affecting receptive fields of the convolution layer. These

are also considered as the decision function of the neuron´s output. There are

different types of activation functions like ReLU, eLU, hyperbolic tangent, sig-

moid function; the most widely used is the ReLU for its performance efficiency.

Loss function is introduced in the final fully connected layer to determine the

discrepancy between the training and predicted output with true labels. Differ-

ent functions like Softmax, Sigmoid, Euclidean are used as loss function depend-

ing on the input-output nature feature dataset.

4. Parameters and Hyperparameters:

Parameters though often used interchangeably with hyperparameters, are specif-

ically considered as the variables that model updates during the backpropaga-

tion phase; weights and biases are the core parameters of a deep neural network.

Early in the training, bias is large, and variance is very small, whereas bias is

small, and variance is high later in the training. If training is too long, the net-

work will also have learned the noise specific to that dataset and is referred as

overtraining. The minimum total error occurs when the sum of the bias and

variance are minimal. Parameters are learned by the model during the training

time.

Hyperparameters are the variable’s settings that technically control the behav-

ior of a network model by determining its structure and the way that a model is

learned. Hyperparameters are set before the training and are trained on valida-

tion dataset before the optimization techniques; so, these are not learned from

the training dataset; Below are the examples of some influential hyperparame-

ters:

• Learning rate: It determines the way a model is trained; it quantifies the

learning progress of a model that can be used to optimize its capacity. It

specifically learns how quickly the gradient updates follow the gradient

direction.

• No. of hidden units: Hidden unit is the layer between the input and output

layer that determines the structure of a network model. It is important to

regulate the representation capacity of a model. Normally, more the number

of the layers, higher accuracy is obtained but it can suffer from overfitting

by even learning noises of the layers if no proper regularization techniques

are applied. Whereas, underfitting can happen with a smaller number of

hidden units.

• Number of epochs: It is the number of times the whole training data is

shown to the network while training.

21



CHAPTER 2. LITERATURE REVIEW

• Batch size: It is the number of patterns shown to the network before the

weights are updated; it optimizes the training of a network by defining how

many patterns to read at a time and keep in memory.

Hyperparameters optimization: Optimization is a way of achieving best perfor-

mance on training data by making an adjustment in the model. Hyperparameters

selection is the fundamental task to achieve high performance of a model. There

is no hard and fast rule for its exact determination, but various manual selec-

tion methods and automatic deep learning algorithms like Grid Search, Random

Search, and Bayesian optimization, ease the process of certain hyperparameters

definition based on different criteria like cost function, memory requirement,

nature of the training data and possible reduction in the test errors.

5. Regularization It is a process of avoiding overfitting in a deep CNN by introduc-

ing additional parameters. Popular regularization techniques include Dropout,

DropConnect and Weight Decay and common method of using them for reduc-

ing overfitting includes reducing the network´s size by reducing the number of

learnable parameters thereby decreasing its memorizing capacity. Another tech-

nique is adding weight regularization by making the network´s weights small

and regularly distributed through the addition of cost to the loss function; it

includes weight decay with L1 and L2.

• L1 regularization includes the addition of cost proportional to the absolute

value of the weight coefficient, whereas L2 regularization includes the addi-

tion of cost proportional to the square of the weight coefficients value. L2

regularization is also called weight decay.

• Dropout: It is a regularization technique to increase the generalizing power

of a network model by avoiding overfitting and results in the increment

of validation accuracy. It is more suitable on larger networks with higher

chances of learning independent representations. As its name suggests, it

drops out the number of output features from the layer during training.

6. Other useful terminologies:

Batch Normalization is the layer added to normalize activations of the input

features before passing it to the next layer such that it helps in reducing the num-

ber of epochs for training network, prevents overfitting and stabilizes training

process.

Overfitting: It is the condition of learning to memorize the features on training

data perfectly such that it performs properly on training data but executes bad

performances on test data.

Classification is defined as a supervised learning process having predefined

classes of data fed as an input training data to result in the same classes as out-

put on the untrained test data.

22



2.2. THEORETICAL FRAMEWORKS AND TERMINOLOGIES

Learning Process: Training data is fed into the network through input neural

network layers, passes through different hidden layers and output comes from

the final fully connected layers in the same ways as the input supervised data;

the result is compared among the trained and predicted data with discrepancy

between them referred as errors. The network tries to reduce this error by chang-

ing weights of neurons in every iteration through back propagation mechanism

and this process is called stochastic gradient descent (SGD). The parameter that

determines the changes in weights is Learning rate. Training is the process of

learning features of data through decision function.

7. Transfer Learning It involves the transfer of previously used models from which

the new model can initiate a learning process on the new dataset based on the

already learned features or patterns achieved from another dataset for other

issues. Mathematically, Pan and Yang, 2010 has defined it as :

Given a source domain DS and learning task TS, a target domain DT and learning
task TT, transfer learning aims to help improve the learning of the target predictive
function fT(·) in DT using the knowledge in DS and TS, where DS , DT or TS , TT.
The transfer in this process can involve either the instant transfer of weights, or

the transfer of feature properties, or the parameters used in extracting or training

a model or the transfer of relational knowledge among two different data sources

(Pan and Yang, 2010). In deep learning, transfer learning can be applied through

feature extraction or fine tuning techniques as described below:

a) Pretrained model as a feature extractor

This strategy involves the use of pretrained model by removing the last

fully-connected layer of the source data to extract features of the new data.

Then, a classifier, either as a new fully connected CNN or machine learning

classifier like linear Support Vector Machine or kNN can be added and

trained on the extracted feature data as shown in Figure 2.2.

Figure 2.2: Transfer Learning Techniques as a feature extractor5
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b) Fine-tuning the pretrained models

This strategy in addition to previous strategy involves either training all the

layers and fine-tuning them by backpropagation or freezing some earlier

layers and, fine-tuning together with back propagation on the rest of the

layers (Yosinski et al., 2014). So, freezing layers involve no backpropagation

updates, whereas fine-tuning the layers updates backpropagation. Nor-

mally, freezing is carried out to avoid overfitting by fixing weights on the

initial layers as these involve more general features observation like shapes,

edge and corners of the images. Also, learning rates (LR) can be varied dur-

ing freezing and fine-tuning. Figure 2.3 shows a pictorial representation of

finetuning a pre-trained model.

Figure 2.3: Transfer Learning Technique: Frozen and fine tuned layers, Source6

The essence of applying transfer learning can be described in terms of amount

of data available and similarity or differences in the nature of that data. If a

target data is similar to the previously used data, but is small, TL in CNNs can

act as a feature extractor and linear classifiers can be used for final classification;

if there is the availability of large amount of target data having high similarity

with source data, the new network models can leverage the concept of fine tuning

the entire network. Whereas, higher differences in data structure between the

source and target data along with the availability of less data can use the concept

of freezing initial layers and training the later layers; in case of large amount

of data with high differences, weights from the previously trained models can

be used to start training the new model (in accordance with 7). The learnings

from one model can be used to bolster the learnings from another model thereby

7“Stanford University CS231n: Convolutional Neural Networks for Visual Recognition”
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compensating the lack of data, weights or parameters for improving the accuracy

and model´s performances.
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3
DESCRIPTION OF DATA AND RESOURCES

USED

This chapter consists of description about data source in its first section followed by

a detail explanation on how data are prepared for this research in the second section.

The third section presents a brief overview on the resources, including hardware and

software used for the experimental set up of this research. The final section explores

these data statistically and visually.

3.1 Data Description

The research uses “multi-camera multi-spectrum” airborne image sequences from

Seagull Dataset1 provided by the Seagull Project aimed for the research on maritime

monitoring and surveillance. This dataset is maintained by Ricardo Ribeiro under

VisLab-Computer and Robot Vision Laboratory of Instituto Superior Tecnico, Lisbon.

The fixed-wing UAV named “Alfa Extended”, mounted with cameras having electro-

optical sensors operating in the visible spectrum, particularly LWIR camera receiving

visible spectrum radiation and NIR, and a hyperspectral camera sensitive to radiation

in the NIR and visible spectrum with the resolution of 1024*768 pixels, was used to

capture videos over the Atlantic Ocean. It has a gas engine with 3.5 meters of wingspan

and 25 kg of take-off weight; the payload carrying capacity is 10kg with the continuous

flight of 8 hours. It was designed and operated by the Portuguese Air Force Research

Center(Ribeiro et al., 2017).

The dataset is available in video format and consists of objects like cargo ships, smaller

boats, sailing yachts, life rafts, dinghies, and hydrocarbon slick (fish oil spills, often

1http://vislab.isr.ist.utl.pt/seagull-dataset/
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called simulating pollutants in the sea). Table 3.1 shows the status of raw data used in

this study from the original dataset:

No. of
Video

Type of
Camera
Sensor

Camera
Model

Location

15
Visible and
Infra Red

GoPro, Jai
and Gobi

Portimao and
Santa Cruz

Table 3.1: Data Description

3.2 Data Preparation

The data available in the form of video is first converted into image sequences using

open source video editing software called FFmpeg with its default parameter of 25

for frame rate and the image size of 640*360 (Width = 640, height = 360). Since

the research aims in recognizing the category of ship present in the images, all these

videos were explored manually to identify the different types of ships available in

them. All the images were divided into five categories based on the type of ship they

contained; for the small boat, the number of images present were large and patrol

boat though is a type of small boat was distinguishable from other small boats. So,

patrol boat is categorized as new class to avoid data monopoly to the possible extent.

Out of 15 videos, only one video contained Cargo, Dinghies were present in 3 videos,

Patrol boat were present in 8 videos and small boat were present in 4 videos. While

generating images from videos, there were the image sequences containing not a single

ships and are categorized are the class with no ship. Since no of videos containing

different classes of ships were varying, so is the number of images are differing in all

the classes. The images with patrol boat and without any ship are present in large

number compared to rest of the classes resulting in irregular distribution. Table 3.2

shows number of images available in each class and the definition considered during

visual identification of each class by the expert.

In total, there are 33, 714 images consisting of ships and 13, 995 images without

ships. The entire classified data is then divided into three datasets required for the

process of training the dataset, validating it to optimize the accuracy and finally for

testing the data to see if the final network model is correctly classifying the images and

recognizing the object properly; test data are further divided into two subcategories:

one for evaluation that requires similar supervised data arrangement, and another is

the prediction dataset with no classes for the random prediction/recognition purpose.

All images were randomly chosen for each of the dataset and data distribution is shown

in Table 3.3.
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S.No.
Name of

Class
Number of

Images
Definition

1 Cargo 1276
Class of images with ships

that are more than 90 m long

2 Dinghies 806
Class of images with very

small (less than 10m and no
cabin) boats

3 Small Boat 4345
Class of images with ships
that are less than 90m long

4 Patrol Boat 27287
Class of images with navy

patrol boats that are
approximately 27 m long

5 No Ship 13995
Class of images without any

ship
Total 47709

Table 3.2: Data Preparation with image classes

S.No. Data type Ratio (of each class on the entire dataset)

1 Training 60

2 Validation 10

3
Test dataset:
Evaluation on classified data 10
Prediction on random image 20

Total 100

Table 3.3: Data Preparation with image classes

3.3 Resources Used

The research is carried out using open source software and packages. The mostly used

platform are highlighted here.

Python is an object-oriented, interactive and open-source high-level programming

language that consists of modules, classes, libraries and interfaces for easy program-

ming in different operating systems with dynamic typing. The project uses Python 3.6

version installed in Anaconda environment.

Tensorflow is a Google Brain team created open-source library offering high computa-

tional tasks like machine learning and deep learning through usages of computational

platforms like CPUs, GPUs, and TPUs. It uses Python as a front-end API. The research

uses Tensorflow 1.12 version for the project.

Keras is a user-friendly, high-level python written API that supports easy and faster

deep learning neural networks with minimum coding. It is developed by François

Chollet from Google and run on the top of Tensorflow, Microsoft Cognitive Toolkit
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(CNTK) and Theano. It offers a complete framework for successfully building and

running a neural network model. The research is using Keras 2.2.4 version.

Within these main frameworks and programming platforms, other modules, libraries,

and packages supported by python were used for image visualization, developing deep

CNN networks and plots. These include numpy, pandas, scikit-learn, opencv, and mat-

plotlib. In terms of hardware, the research uses NVIDIA GTX 1080 GPU with 11 GB

of RAM capacity on a server setting with linux operating system.

3.4 Data Exploration

The prepared dataset is then explored through a bar diagram 3.1 to see the presence of

images in each category and is then visualized to see the quality of images. It is clearly

Figure 3.1: Data Distribution for Training, Validation and Testing Purpose

observed that in each of the classes, the highest possession is for patrol boat and lowest

possession is for Dinghies.

Likewise, further visual exploration was done on the images to see their quality. Images

contain many variations even within a class based on the video from which they were

generated.Figure 3.2 displays variability present in some of the images used for study.
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Figure 3.2: Data Exploration: images with varying background environments
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4
METHODOLOGICAL DESCRIPTION

The first section of this chapter describes the methods proposed for this thesis work

and overall conceptual mechanism. The second section consists of the modification

of chosen architectures and proposes new architectures along with fine-tuning and

hyperparameters setting. The third section is related to the implementation aspects of

the methodology that describes algorithm designs for visualizing output of the models

designed, and presented with customization to train on the thesis dataset.

4.1 Proposed Methodology

Based on literature reviews done on the existing techniques and state of art perfor-

mances demonstrated by machine learning and deep learning technique for image

recognition, this method proposes the use of deep CNNs for identifying and classi-

fying ships in the thesis dataset. Training the thesis data on a completely new archi-

tecture within the available timeframe and resources may not be a good option to

achieve higher accuracy as the number of available images are not sufficient enough

with irregular quantity of images present in different classes of ship and the challenges

associated with their varying background environments. So, this study proposes the

use of freely available state-of-art outperforming architectures, namely VGG16, Xcep-

tion, ResNet50 and InceptionResNetV3. Also, this thesis puts forward the idea of

using transfer learning techniques on the previously trained network models to cope

with the quantitative issues of images and to harness the beneficial aspects in terms

of parameters and weights sharing while using less computational time and resources.

Multi-classification with 5 classes of ships will be carried out on the models pre-trained

on ImageNet dataset using above mentioned architecture using transfer learning strate-

gies and hyperparameters optimization. The entire process of building a model and
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recognizing the class of ship involves model construction, training, evaluation and

prediction that is proposed to initialize by following the three steps mentioned below

to be executed using high-level programming of keras with tensorflow at the backend

in Anaconda-python environment.

• Selecting the pre-trained models

• Design and modification of network architecture

• Optimization and regularization with Hyperparameters

1. Selecting pre-trained models Four pre-trained models, all showing state of art

performances during their release are chosen considering their network accuracy, per-

formances and associated network complexity at the time of release; they are VGG16,

Xception, ResNet50 and InceptionResNetV2. VGG 16 though is a relatively shallow

architecture than others was the deeper CNN network when it was developed and

offers simple network complexity with higher accuracy. Xception has been released as

the improved model architecture of different versions of Inception models and hence

represents their advancement. ResNet50 introduced the concept of residual networks

offering more deeper CNNs and InceptionResNetV3 is the integration of concept from

both the inception and ResNet as its name suggests. All the chosen network models

are pre-trained on ImageNet dataset and are available with keras API. The ImageNet

dataset has remarkable number of images containing different types of ships that are

available in its database through different names like ship, boat, vessels, cargo. Table

4.1 shows accuracy obtained on the chosen models generated by training on ImageNet

dataset.

Model Top-1 Accuracy Top-5 Accuracy No. of Parameter Size

Xception 79 94.5 22910480 88 MB
VGG16 71.3 90.1 138357544 528MB
ResNet50 74.9 92.1 25636712 98MB
InceptionResNetV2 80.3 95.3 55873736 215MB

Table 4.1: Accuracy of the models chosen in the study when trained on ImageNet
dataset (Accuracy is expressed in terms of %correction) (Source: Chollet, 2015)

2. Design and modification of chosen network architecture

Both the transfer learning techniques of using CNNs as feature extractor followed by

a classifier and fine-tuning with their previously described strategies will be used for

all the pre-trained models on the new target data of this research.

3. Optimization and regularization with hyperparameters

It involves changing the parameters of optimization and regularization techniques

that best suit conditions of the above strategies. Hyperparameters are changed simul-

taneously while applying step 2 and the models are trained with different values. The

32



4.2. METHODOLOGICAL DESIGN AND IMPLEMENTATION

hyperparameters strengthening the model and fitting it without under and overfitting

with the highest accuracy possible will be chosen through heat and trial method.

The resulting models will be the modifications of existing pre-trained models suiting

the new classification and recognition scenarios of the research dataset. All the models

will be compared based on the classifiers chosen, layers frozen and trained along with

the layers complexity, parameters used for training the dataset, hyperparameters used

and time required for training the target data sets. Additionally, their performances

will be compared in terms of training, validation and evaluation accuracy. The model

showing best performances on all these criteria will be recommended as the final

model for prediction on the unseen datasets under similar environment.

4.2 Methodological Design and Implementation

4.2.1 Data Preprocessing and Augmentation

Since the method aims to use deep learning techniques, particularly deep convolu-

tional networks that are supposed to learn features of the supplied images by ex-

tracting their properties and using them for future prediction, this study is applying

less preprocessing possible to provide real world scenarios associated with the image

datasets; preprocessing techniques applied to all the data includes: rescaling the im-

ages in the range of 0-1 to ease image processing system for feature attraction with

the small range variation prepared by multiplying with the factor of 1/255 and image

resizing as different deep CNNs described below demand different input size. Both

of these steps are performed within deep learning environment by avoiding any work

outside of it.

4.2.2 Modification and design of pre-trained Network model Architecture

The last fully-connected layers are removed from the network architecture model;

since the research dataset consists of only 5 categories, the last dense layer will have

5 classes instead of 1000 classes from default ImageNet dataset. The classification

work is then carried out by using FCNNs dense layer having softmax classifiers after

applying necessary modifications or directly after extracting the features.

The next way of modifying and developing models is through fine-tuning techniques:

some of the earlier layers on the network are frozen for the generic properties they

learn, and rest of the layers responsible for extracting target data specific high level

features are trained on the dataset. The numbers of layers frozen for different layers are

varying as different networks have different layers and structures:heat and trial method

is used by observing the accuracy while changing the numbers for frozen layers. Below

is the description on proposed techniques adopted for each of the network models

with modifications in their architecture.
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• The VGG16 pre-trained on ImageNet dataset in default settings consists of 5

blocks with 13 convolutional layers and the last classification layer consisting

of a flattening layer, two fully-connected layers followed by the final prediction

layer. The first two blocks have 2 convolutional layers and the rest have 3 con-

volutional layers in each of them; all the blocks contain MaxPooling layer at

their end. The modification and design of new model is done in different ways,

either by freezing all the layers except last four layers or freezing all the layers

and adding different dense layers to experiment the modified models with dif-

ferent hyperparameters, activation function and regularization techniques while

training on the research dataset. Section I.1 of ANNEX I shows the overview of

proposed changes and original setting of VGG 16 structure with its parameters.

• The original ResNet 50 pre-trained on ImageNet dataset consists of 5 blocks and 2

top layers together making 176 layers in total; each of the block has 3 deep layers

with different CNN layers, activation layers and batch normalization layer. The

topmost layer consists of a GlobalAverage Pooling layer and a fully-connected

layer with 1000 classes. Alteration in its architecture mostly will include training

of layers above 163 and freezing all the earlier layers; different hyperparameters

optimised and regularized with different values will be applied for achieving

acceptable accuracy. It has a complex structure and accepts input images of size

299*299.

• Xception consists of 14 blocks and 3 top layers that makes a total of 133 layers in

the default settings of pre-trained Xception model on ImageNet data set. Each

of the block consists of different CNN layers followed by batch normalization

and activation function. The topmost layers include an activation layer, average

pooling layer and the final prediction layer. The new architecture modified

from the original will include frozen layers prior to 126 and the rest are trained

together with different hyperparameters. It accepts input image of size 299*299.

• InceptionResNetV2 has 781 layers constituted in 20 concatenated blocks and 2

top layer in its default settings pre-trained on ImageNet data set. Each of the

block consists of different CNN layers followed by batch normalization, activa-

tion function, concatenated and lambda layers. The topmost layers include an

activation layer, Global average pooling layer and the final prediction layer. The

new architecture modified from the original will include the frozen layers prior

to 777 and rest of the layers will be trained with new settings. It accepts input

image of size 299*299.

Table 4.2 shows the overview of modification applied in the pre-trained models. The

original structure, blocks and associated parameters of ResNet50, InterceptionRes-

NetV2 and Xception are provided at the github1 link considering the long and complex
1https://github.com/Laxmi15/Ship-Detection.git
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structure of these models and limitation with this report format.

Changes in Layers Type of Pooling layer Activation Function pre-trained model Frozen layers (all the layers before:)

Addition of a dense layer (1024)
and a Dropout layer Global Average

and
Global Max

ReLU and
ELU

Xception All, 126 and 129

Addition of 2 layers (1024) and
two Dropout layers

VGG16 All, 3, 4 and 5

Addition of 2 layers (1024 and 512)
and two Dropout layers

ResNet All, 163 and 166

Addition of 3 layers (2 layers of 1024 and the
third layer of 512 and two Dropout layers

InceptionResNetV2 All and 777

Table 4.2: Modification strategies applied in the layers of existing network models

4.2.3 Optimization and Regularization with Hyperparameters

The main hyperparameters proposed to train the models to achieve better perfor-

mances of the deep CNNs model through model optimization and regularization are

listed in the Table 4.3 with corresponding values. Based on the literature reviews

on different optimization and regularisation techniques for hyperparameters, major

influential variables, namely learning rates, pooling layers, activation functions, batch

size, regularisers, batch normalization and dropout are experimented with different

experimental set ups. Dropout is tested with the usually considered standard value of

0.5 (Srivastava et al., 2014) and no of epochs is kept 20 based on the available hard-

ware resources with the provision of early stopping if the validation accuracy is not

increasing for certain no of epochs.

Variables Values

Learning rates 1e-4/5 and 2e-4/5,
Pooling Layer GlobalMax and Global Average
Activation ELU and ReLU
Batch Size 8, 16 and 32
Regularizers L1 and L2

Table 4.3: Optimization and Regularization with Hyperparameters

4.2.4 Algorithm Design

Four main algorithms are designed for four of the chosen pre-trained models following

their network architecture in two ways: Sequential and functional API. VGG16, being

comparatively shallow and simple structure, is trained using Sequential and rest of the

network models are trained using functional API. These algorithms are compiled and

programmed following the freely available resources available at Keras website2 to

suit the research scenario. Other algorithms are only the variations in number of layers

and hyperparameters mentioned in Table 4.2 and Table 4.3. All the algorithms used in

2https://keras.io/
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this research are made available at github link 3 and one sample algorithm is attached

at the ANNEX III. Here is the brief description on the overall working mechanism of

VGG16 algorithm mentioned at the Annex III. The basic python modules for handling

data, plotting figures, using Keras applications and related libraries were imported

initially. These include numpy, pandas, sklearn, Keras modules for pre-trained models

and related applications. To address variations associated with the data mentioned

in the Data Preparation Section, data was prepared with manual inspection to ensure

proper distribution of data in all the dataset and no data split task was done while

feeding the data. Instead, an image data generator class was used to load images

from concerned directories as a real-time data feeding; it has different parameters that

can be applied for both the preprocessing and augmentation techniques as per the

necessity of research data. Data augmentation is applied since the research dataset

consists of fewer images in the classes like cargo and dinghies. This technique changes

the pattern of images based on parameters used for providing variability in the images

and transforms them such that each image is trained only once. So, augmentation is

only applied to the training data through data generator and helps in generalising

the model properly. However, augmentation demands more computational resources

and time so experiments have been done with and without augmentation to see if

they are influencing in the validation accuracy. For each of the generator, target size

is defined based upon the input size requirement of the network architecture to be

used. Batch size is assigned normally as the power of two depending upon the capacity

of RAM. The Class mode is binary for two classes and categorical for multi-classes.

Shuffle is applied only to training dataset to arrange the images randomly such that

no image is read twice.The algorithm is similar for all the models till data preparation

and importing of the models pre-trained on ImageNet dataset but differs on the way

the models are modified afterwards. autorefann:annex1 shows the import for VGG 16

but other architecture like inceptionv3, resnet50 can be imported in the similar way

by calling respective model´s name. The top fully-connected layer is removed from

the network model to replace it with our classifier as the default in Imagenet contains

1000 classes whereas research dataset contain only 5 classes. Input shape is the size

of images and it’s RGB channels. The model summary can be displayed; it helps in

deciding the layer that are to be trained and the layers that are to be frozen by observing

their positions and associated parameters in the network´s architecture. If the layers

are frozen, the weights will be fixed and will not be updated while adding new layers,

models and training in every epoch. Normally, initial layers are frozen as they extract

generic features like edge, geometry and latter layers are trained as these specifically

extract high level features. Then the model can be created. As mentioned before,

different approaches are applied for VGG16 and other models. There is no specific

rule for how many layers are needed though more layers are considered to have higher

3https://github.com/Laxmi15/Ship-Detection.git
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accuracy. Batch Normalization can be added usually after non-linearity to prevent

internal covariate shift. Dropout and activation functions as described before can be

changed. ReLU and eLU are experimented with the models proposed here. Except for

creating the models, other processes are similar again with the Sequential VGG16 and

functional API for other models. After this, the model is ready for compilation with

various hyperparameters, loss function, optimizers, and learning rates. The metrics

held accuracy and loss of the model.

The network is ready for training on the thesis dataset. As a good practice for not

wasting computational resources if the validation accuracy is not improving after 10

epochs, checkpoints and early stopping can be set such that it would save model with

the best accuracy. This strategy was exercised while training the thesis data. The loss

and accuracy between training and validation data can be visualized through plots

and overfitting can be checked. Depending upon the performances, we conducted

various tests with different hyperparameters and the best fitting values were used for

the final model. The saved model can be loaded later for evaluation and prediction

on the test data. Keras also offers real-time testing without saving the model if it is

not required for the future. Saving the entire model requires high storage depending

upon the parameters settings and dataset trained; Validation data is used to optimize

the model. Since it is already used in training the model, using the same data again for

the evaluation will yield a good result as the model has already learned the features.

So, completely new data should be used for evaluating the model´s accuracy. The

evaluated test data can be predicted further with their respected class of ships using

predict_generator, wrongly classified errors can be calculated and each of them can be

viewed along with the prediction probability. Also, the randomly chosen test data with

no classification can be predicted using the trained model and predict_generator. The

code at the autorefann:annex1is used to identify such a randomly arranged test data

with no classes in it and saved in csv format. Even individual images can be recognized

using the trained model. Similarly, confusion matrix can be created to know true-false

positives and accuracy-loss comparison along with the computation of precision, recall

and f1-score. Individual codes for the final model created using each of the network

architecture pre-trained on ImageNet and trained on thesis dataset are shared through

gitbub link.
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5
RESULTS AND PERFORMANCE

EVALUATION

This chapter is the visualization of what has been proposed, designed and programmed

in Chapter 4. It´s first section consists of the output of methodological process as-

sociated with generating the modified models and their performances with different

hyperparameters settings. The second section consists of evaluation expressed in terms

of validation and evaluation accuracy, performance metrics and visual inspection.

5.1 Visualization of Data Augmentation Technique

Data augmentation techniques is applied with the rotation of 2 degree, width and

height shift range of 0.2 with nearest interpolation, and horizontal flip. Figure 5.1

shows the output obtained with these parameters on the images used during the model

training.

5.2 Modification and design of pre-trained Network model

Architecture

Modification in the layers and trainable parameters:

Different models used in the thesis consists of different number of layers available in

their architecture based on which this thesis has performed experiments for freezing

and training the layers. The modification in the original architecture of all the mod-

els involves the addition of different layers like dense (convolutional) layers, pooling

layers, activation, layers, batch normalization layers and the final dense layer with soft-

max classfiers having 5 classes for the classification of thesis dataset with the modified
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5.2. MODIFICATION AND DESIGN OF PRE-TRAINED NETWORK MODEL

ARCHITECTURE

Figure 5.1: Images obtained with Data Augmentation Techniques

models. However, it has been observed that only the changes in convolutional layers

and batch normalization are responsible for determining the number of trainable pa-

rameters to be used for training the models on the thesis dataset and the trainable

parameters obtained for the modified models are either equal or greater than the orig-

inal parameters. Table 5.1 provides the list of some of the representative models and

their trainable parameters used in the thesis.

Model Layers
Addition of a dense
layer (1024) and
a Dropout layer

Addition of 2 layers
(1024) and two
Dropout layers

Addition of 2 layers
(1024 and 512) and
two Dropout layers

Addition of 3 layers
(2 layers of 1024 and
the third layer of 512
and two Dropout
layers

Xception Layer 22,910,253 23,959,853 23,432,493 24,482,093
VGG16 40,405,824 41,455,424 40,930,624 41,980,224
ResNet50 25,637,893 26,687,493 26,160,133 27,209,733
InceptionResNetV2 55,855,205 56,904,805 56,377,445 57,427,045

Table 5.1: Changes in the number of layers and corresponding number of parameters

Also, the number of layers frozen or trained does not influence the parameter determi-

nation. However it is important for the network´s training and validation accuracy as

the frozen layers do not participate in backpropagation and weight updates, whereas

all other trained layers are sharing the errors among them. Model´s performance is
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CHAPTER 5. RESULTS AND PERFORMANCE EVALUATION

also varying with the variation in number of frozen layers. In Xception model, adding

3 layers, each followed by pooling layers though was increasing the trainable param-

eters and all the layers before 126 were frozen, the model´s accuracy for training

and testing was better with the layers frozen before 129; different experiments were

done by changing the hyperparameters; layers when all frozen and the addition of

a dense layer with 512 filter size followed by the dropout layer of 0.5 and the final

classifying dense softmax layers of 5 classes performed with the highest accuracy (Fig-

ure 5.2). Similar trends were observed for ResNet50 when freezed with 163, 167 and

all the layers in the base models were freezed with the addition of same layers like

Xception. The InceptionResNetV2 experimented with two case: freezing all the layers

and freezing layers before 777 showed the alike trend with Xception and RexNet50.

In case of VGG16, performances were using both the techniques: freezing all layers

except four of its last layers and training only the top layers added later by freezing all

other VGG 16 layers, both showed high performance; the latter experimental setup fol-

lows the similar composition of layers like ResNet50, Xception and InceptionResNet.

The graphical visualization of training and validation accuracy is available at ANNEX

II. In terms of Pooling layers, all the models were trained with and without global

average and global max pooling layers. Results can be observed at ANNEX II. The

model without pooling layers were performing badly and both the global average and

max pooling increased the model´s accuracy remarkably. However, clear distinction

was observed between Global Average and Global Max pooling; global max pooling

performed better for the similar hyperparameters and layers settings than the global

average pooling for all the models.

Modification in layers and hyperparameters:

Hyperparameters as specified in 5.1 were highly responsible for the robust models

with better performances but not with all the variables, values and environmental

settings. Learning rate when applied with the value of 1e-04 though was bridging

the overfitted gap between training and validation accuracy to some extent, it was

not acceptable when used with the globalmax pooling followed by a dense layer of

1024, dropout layer of 0.5 and final dense-layered-softmax classifier as observed by

the model´s performance in terms of evaluation and prediction on new data set. Com-

paratively, LR with the value of 2e-04 performed better with higher accuracy than the

one observed with LR of 1e-04. However, the best accuracy observed with the model

was obtained by using LR of 1e-05 with different settings. The ELU and ReLU were

also experimented in different models but RelU performed better than ELU in both

the cases of layers frozen at 126 and 129 for Xception model. The dropout values used

as 0.5 when tested with the models always performed better; without dropout values,

models though had higher training accuracy suffered overfitting to the large extent fol-

lowed by bad evaluation. Epoch was set at 20 with early stopping patience level of 10

if the validation accuracy was no more increasing. Very few of the models as shown in
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the Figure II completed whole 20 epochs; most of the layers started stopping at earlier

epochs like 12, 13, 15, 16, 17, 18 and 19. L1 and L2 regularization were tested under

the same environmental settings with the value of 0.001; L2 regularisation performed

better than L1.

Batch size is experimented with the values of 1, 8, 16 and 32 and it is highly depen-

dent on the computational capacity of hardware resources; so different batch sizes

were used for different datasets considering its usefulness; since the training process

needs to learn from the features with large datasets, experiments were done with 32

and 16 for the corresponding batch sizes of 16 and 8 in validation dataset respectively,

whereas the test dataset was tested with batch size of 1 as it is not to be learnt by

the model. Under the similar hyperparameters and layers experimented, the former

setting described here with 32, 16 and 1 produced overfitting in the models as shown

in Annex I and performed poor during prediction whereas the latter settings of 16, 8

and 1 formed highest performance in all the models with highest evaluation accuracy

too. However, epoch per image sample was 749 when using 32 batch and it´s 1789

while using 32 batch size as it is the ratio of number of images and batch size used

while creating the dataset. The training and validation accuracy graphs are provided

at the section II for all the methods with different parameters described here. Among

all the four models discussed here with different settings, the best performance setting

shown by all of them are listed below:

S.
No.

Method Layers Composition
No of trainable
parameters

Time for
model (sec)

1 InceptionResNetV2 base model+Global
Max Pooling Layer
+Dense Layer of
512 with ReLU
+Dense Layer
with Softmax

55,065,701 21346.77
2 ResNet 24,586,245 9454.87
3 VGG16 14,840,133 6182.21
4 Xception 21,858,605 15475.59

Table 5.2: Models and their structure

5.3 Performance evaluation and comparison

The best performing models from all the network architecture used in this thesis have

very competitive and high training-validation accuracy as observed in Figure 5.2. To

evaluate if the models are performing well, all of them were then tested with the

unseen test dataset having same number of classes. Figure 5.4 shows the matrices of

all the models and their corresponding evaluation accuracy are shown in the Table 5.3.

High accuracy obtained during the model training was well justified with the evalu-

ation accuracy and predicting errors obtained for each of the model. Also, precision
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Figure 5.2: Training and Validation Accuracy of the chosen models
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Figure 5.3: Training and Validation Loss of the chosen models
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S.No. Method
No. of
Epoch

Batch Size
Evaluation
Accuracy

No of
errors

1 InceptionResNetV2 20 16 on Training
and 8 on
Validation
Dataset

99.769 11
2 ResNet 18 99.900 0
3 VGG16 20 99.660 17
4 Xception 20 99.937 3

Table 5.3: Comparison of Evaluation accuracy between different methods

(a) (b)

(c) (d)

Figure 5.4: Confusion Matrix of (a)Xception, (b)VGG16, (c) ResNet50 and
(d)InterceptionResNetV2

and recall calculated on the test data were 1.00 for all the final models. Since the

models were showing full precision rate, the randomly prepared test dataset with no

classes on it was used for further testing the model performance through recognition

of the class of ship in its images; all those prediction were manually inspected and the

model was consistent with its accuracy and predicted the ship classes correctly. The

algorithm also allows visualization of wrongly classified images and can also be used

to recognize the new class of ship present in an image as below:
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(a) (b)

Figure 5.5: Visualizing images with the ship classes using modified (a) Wrongly
classified image and (b) Ship Recognition on new image
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6
RESULTS DISCUSSION AND

COMPARISON

This chapter consists of analysis and discussion on the output obtained in Chapter 5

and then compares the outputs with similar works done in other research.

6.1 Result Discussion

The results show that all the models have low training and higher validation accuracy

at the beginning as depicted in the Figure 5.2 and and exactly opposite trend for loss

as observed in 5.3. This could be because of bad image quality caused by the presence

of noises like sun glares, tides and waves available in the original research dataset. It

is observed that learnings and the predicting capability of the model are highly influ-

enced by the hyperparameters. Among different variables experimented, it is observed

that the learning rate should be small in the beginning of model training. The ReLU ac-

tivation function performs better than ELU and dropout is very useful in reducing the

overfitting between training and validation data. Among L1 and L2 regularisation, L2

performed better than L1 but in case of this research, model performed well without

using regularisation techniques as well. Applying Batch normalization shows robust-

ness to some extent by slight reduction in the computational time but also caused drop

in training and validation accuracy. In terms of modification in layers, changes in

convolutional layers are responsible for determining model’s parameter. Globalmax

pooling performs better than the global average pooling.

In terms of pretrained models used, VGG16 when trained on last four models by

freezing rest of the models, though possessed high training and validation accuracy

performs badly by predicting 147 images with wrong classes as shown by the Figure ??.

Other models showed both the validation and prediction accuracy less while freezing
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some of the layers. The model offering highest accuracy was by freezing all the original

layers and addition of new layers. VGG16 though has fewer convolutional layers and

less network complexity, it´s performance was competitive with other models and

required less time for model training; however, the figure 5.2 and 5.3 shows some

irregularities in accuracy/loss plots that might results in poor model performances

and also represents that model is not learning consistently.

InceptionResNetV2 with the highest number of parameters required longer training

duration compared to all other models but its learning is gradually improving as the

epoch number increases. Xception model shows similar accuracy-loss trends in the

starting and ending but has irrgelarity during epoch 13-14. ResNet50 shows early

fitting with a minor discrepancy at epoch 6 followed by acceptable fitting afterwards. .

Also, it required lesser training time than Xception and InceptionResNetV2 but more

than the VGG 16 required. In terms of evaluation performances, all the models have

very competitive accuracy with slight differences in the number of errors on the classes

of ships predicted by them. The precision and recall of 1.00 was obtained. The con-

fusion matrices at Figure 5.4 shows that Xception recognized 3 of the ships wrongly,

VGG16 recognized 17 ships wrongly ResNet50 recognised all the ships correctly and

InceptionResNet recognised 11 ships wrongly. Considering the slightly higher training

time consumed by the model than VGG16 but lesser than other models, the effective

model´s performances with both the validation and test dataset, ResNet50 is preferred

as the robust model than others for the ship recognition tasks carried out in this re-

search.

The results show that pretrained are useful to address the problems of less resources

for the tasks like image recognition. It is not necessary that having higher number of

parameters and more number of layers performs best than the model with less parame-

ters. Also, it shows that hyperparameters with proper optimisation and regularization

can help in improving the model´s performance greatly. All the models achieved their

best accuracy when following the experimental setup with final configuration men-

tioned at Table 5.2; the performances shown by all the models are very high. These

models were configured with different settings and evaluated with both the supervised

classes of data and random classes of data but the performance remains high every

time. The major change with these models variables leading to highest accuracy was

depicted clearly by the variation in batch size; models were having less accuracy and

suffering overfitting problems when the training batch size was 32 but the accuracy

was increased to the full capacity when the same settings were changed only reducing

training batch size to 16. Batch size referred in the study is functioning as mini-batch

in the model and represents the number of updates while training the model. It follows

the concept of Stochastic gradient descent and smaller the minimatch is, more is the

updates in the model´s weights. So, more updates mights have resulted in obtaining

the better weights that ultimately caused rise in accuracy. It´s lower value consumes
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more time for model training and increases the number of epoch per images thereby in-

creasing epoch duration such that the model can backpropagate frequently to reduce

the errors. Another possible reason could be the presence of closely related image

sequences causing much similarity between the training, validation and evaluation

dataset though random selection was done while preparing the data and additional

evaluation was done as the ship recognition task on radomly distributed images with

no class in them. Also, the models involve image augmentation tehnique which might

have increased variability in the images thereby increasing the model´s performances

with the different background environments present in the images.

6.2 Comparison with existing works

Further exploration was done with the existing works involving similar techniques for

ship recognition to compare their similarities, differences and performances. Earlier

works on Seagull dataset include Cruz and Bernardino, 2016’s research for boat de-

tection using CNN-pretrained models on ImageNet; they used sliding window and

salient candidate regions for detection and CNNs architecture for classifying the object

detected as class boat and not boat, particularly using AlexNet and GoogleNet. The

comparison done in terms of recall and precision shows 99.4% precision for the recall

of 50%; their research also obtained higher precision of near 100 percentage for object

detection. No research on the multi-classification of a boat on this dataset has been

available until this research has been conducted. However, some research on ship clas-

sification using pretrained network models on different datasets are found. Gallego

et al., 2018 used transfer learning appraoch: VGG16/19, ResNet, Inception V3 and

Xception for extracting feature with CNN and then performed classification with kNN;

with Inception, they obtained 99% accuracy on ship classification by outperforming

the earlier achieved 79% with traditional methods. Instead of existing top layers, they

used Global Average Pooling, Fully-connected Layers with ReLU and Dropout value

of 0.2 with the output size of 2048 and 1256 with softmax layer for classification; ac-

curacy using softmax classifier was 98.02 and kNN resulted in 99.05% of accuracy.

They evaluated the developed method to classify ships on MWPUVHR-10 data and

outperformed the accuracy obtained with existing state-of-art methods. Compared to

this method, we used Global Max Pooling, dropout value of 0.5 and learning rate of

1e-05 thereby obtaining the accuracy greater than 99%.

Leclerc et al., 2018 used Inception and ResNet architecture on Maritime Vessel dataset

to classify ships for target tracking; they replaced the last FC layers and changed the

number of layers, value of L2 regularisation and learning rates together with the fixed

mini batch size of 128, momentum of 0.9 and 300 epochs. The highest accuracy of

78.73% was obtained with InceptionV3 using L2 value of 0.0005. Our method though

experimented with L2 value of 0.002, the final models obtained remarkable accuracy

without using L2.
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Miličević et al., 2018 used transfer learning technique with VGG19, InceptionV3, Xcep-

tion and ResNet50 on limited dataset on MARVEL dataset for ship classification with

data augmentation: parameters they generated consists of the epoch value of 200, lr

rate of 0.00001 with RMSProp optimizer and mini-batch size of 64 generated through

Grid Search method. Though their training accuracy was greater than 99%, overfit pre-

vailed in the model limited the validation accuracy of 76% with VGG19 as the highest

among the methods used. This study used Grid Search, which by nature is popular for

producing highest accuracy regardless of how the model will perform later. Our study

used heat and trial method instead of existing grid search and random method to avoid

such performances, and also to understand the influence of each hyperparameter in

the models.

If we look at the structure of these models, these are trained for more number of epochs

with higher mini-batch size and larger output size. Though the models can not be

compared with each other as they differ in their training dataset, our models consist of

comparatively less complexity and high accuracy than other models trained on each of

their own dataset. Existing research works show that accuracy can be drastically high

using transfer learning approaches with the deep learning techniques. Our models

can be further evaluated with different datasets like as Gallego et al., 2018 did with

the MWPUVHR-10 dataset to ensure its practical usability in other environment. Also,

existing machine learning techniques like SVM or kNN can be applied as classifiers

to compare the accuracy on similar dataset with different approaches. However time

constraints together with available computing resources to perform these tasks at the

moment are main challenges since this research is a student work carried out for the

dissertation of master degree with fixed deadline. Though the study attempted for the

additional binary classification to evaluate further and to train models without using

pre-trained models, it was limited with the extra storage capacity required with this

dataset on the server and so was the computational requirement.
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7
CONCLUSION AND FUTURE WORKS

The presence of AI has been vividly seen these days in many real-world applications,

because its accuracy has imporved greatly. This is due to many developments, namely

the use of deep learning techniques like Convolutional Neural Networks, that have

outperformed most other techniques in the field of image classification, recognition,

and detection. This thesis presents a review of existing deep CNN models used widely

these days for image-classification and recognition with particular focus on the mar-

itime environment. We then used deep CNNs for multi classification of ships and for

recognizing their presence in the images generated from videos having varied environ-

mental conditions and captured using different sensors mounted on UAVs at different

time periods. The images used came from videos of Seagull dataset. We used four

models namely, Xception, VGG16, ResNet50 and InceptionResNetV2 trained on the

ImageNet dataset used by the ILSVRC Competition. Instead of training all models

from scratch with our data, we used the techniques of transfer learning either freezing

all layers (without training with our data) or freezing some layers and training the

other with our data. Based on the model´s performance with validation and test data,

ResNet 50 has been preferred as the best model although there are only minor differ-

ences in the accuracy among all the models. The results of this thesis show that deep

learning techniques like CNNs offer good results in maritime applications for ship

recognition and classification irrespective of variability on the sea surface and images

captured on it by UAVs . So, different environments, platforms, scales or resolutions

associated with UAVs can be learned by the CNN models for prediction if the data are

properly prepared to train the models with the right parameters. Likewise, transfer

learning can help in sharing the learnings of one scenario to another of similar nature

and can reduce the time and resources needed to build a completely new model. The

integration of deep learning and transfer learning are of great use for developing small
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scale models like the output of this thesis. The thesis output generated as the model

can not only be used on the past images to have the idea of how ships were used pre-

viously but can also be used to monitor ships in the future to learn their pattern and

movement behaviors. So, these techniques can be helpful in achieving the essence of

maritime monitoring and surveillance for monitoring ships in safe navigation, prevent-

ing illegal activities, maintaining border security, safeguarding marine environmental

and biological ecosystem from illegal fishing, oil spills, and pollution.

This thesis although limited by time and resource availability has opened the possi-

bility for future research in advancing new applications for the maritime sector in

different ways:

• This thesis consists of only classification and recognition of images with respec-

tive classes of ships. It does not localize the presence of the ship in an image.

Future work can include bounding box detection, or it would be interesting

to do mask segmentation of features present in the images as the recent CNN

technique called Mask RCNN has been introduced as the outperforming object

detection network model.

• Also, the image is trained as if a single ship is present though there are some of

the images with two ships of different classes. So, future work should incorporate

the presence of multi-label classification.

• Also, this thesis work can be further extended for the real-time image classifica-

tion aboard UAVs.

• The field of deep learning is changing so rapidly that the used frameworks like

tensorflow, Keras, and associated packages are having frequent updates and

refinement to offer less complexity in terms of programming algorithms and

greater computational efficiency too. So, keeping the work updated with ongoing

rapid developments in technology is another challenge to all the research works

like this on deep learning discipline.
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ANNEX: Modification in Model

Architecture

I.1 Modification Strategy of VGG16

Figure I.1: VGG16 Modification Strategy
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II
ANNEX 2: Accuracy-Validation

Comparison with Hyperparameters

II.1 Training and Validation Accuracy with Xception Model
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Figure II.1: Accuracy and Loss obtained on Xception model while experimenting with
different hyperparameters: (a) with L1 regularization of value 0.01, (b) L2

regularization of value o.o1, (c) with batch normalization layer and (d), (e) and (f) are
the corresponding losses.
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ANNEX II. ANNEX 2: ACCURACY-VALIDATION COMPARISON WITH

HYPERPARAMETERS

II.2 Training and Validation Accuracy with

InceptionResNetV2 Model
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Figure II.2: Accuracy and Loss obtained on InceptionResNetV2 model while
experimenting with different hyperparameters: (a) freezing all layers before 777 and
learning rate of 2e-04 (b) freezing all layers before 779 and learning rate of 2e-04, (c)
represents the loss corresponding to (a) and (d) represents the loss corresponding to

(b)

II.3 Training and Validation Accuracy with ResNet50 Model
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II .3. TRAINING AND VALIDATION ACCURACY WITH RESNET50 MODEL
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Figure II.3: Accuracy and Loss obtained on ResNetV50 model while experimenting
with different hyperparameters: (a) freezing all layers before 163 along with two

dense layers of 1024 and 512 followed by dropout layers(b) its corresponding loss, (c)
its confusion matrix, (d)freezing all layers and adding a dense layer of 1024 followed
by dropout layers before the softmax classifier, (e) its corresponding loss and (f) its

confusion matrix
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ANNEX: Algorithm developed to run the

model

III.1 Algorithm used for ship classification and recognition

1 \label{fig:coding}

2

3 #This code is prepared to classify and recognize ship s on the

4 #UAV generated images

5 #Importing the basic libraries and modules

6 from __future__ import print_function

7 import numpy as np

8 import matplotlib.pyplot as plt

9 from sklearn.metrics import confusion_matrix

10 from keras.preprocessing.image import ImageDataGenerator , load_img

11 from keras.callbacks import ModelCheckpoint, EarlyStopping, CSVLogger

12 from keras.applications import VGG16

13 from keras.models import Model

14 from keras.layers.normalization import BatchNormalization

15 from keras import models

16 from keras import layers

17 from keras.layers import Dense, Flatten

18 from keras import optimizers

19 import pandas as pd

20 import time

21

22 start_time = time.time() #Recording the time starts here

23 #Defining the variables by assigning their path to the directories

24

25 train_dir = ’/Thesis_Dataset/Train’

26 validation_dir = ’/Thesis_Dataset/validate’

27 test_dir = ’/Thesis_Dataset/Test’
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III .1. ALGORITHM USED FOR SHIP CLASSIFICATION AND RECOGNITION

28 eval_dir = ’/hesis_Dataset/test_evaluation’

29

30 image_size = 224

31

32 #Load the VGG model, remember to assign false on top layers to remove it and

33 #avoid the original 1000 classes of ImageNet to modify on our classes (i.e.5)

34 vgg_conv = VGG16(weights=’imagenet’, include_top=False, input_shape=

35 (image_size, image_size, 3))

36 vgg_conv.summary()

37

38 # Freeze/Unfreeze the layers

39 # Freeze the layers: No specific rule (More as heat and trial)

40 #but early layers are normally freezed (like edges,)

41 #whereas latter layers normally extract the specific \\properties of dataset.

42 #for layer in vgg_conv.layers[:]: # No layers are freezed in this case

43 # layer.trainable = True

44

45 # Check the trainable status of the individual layers

46 #for layer in vgg_conv.layers:

47 # print(layer, layer.trainable)

48

49 # Create the model

50 model = models.Sequential()

51 # Add the vgg convolutional base model

52 model.add(vgg_conv)

53 # Add new layers

54 #Dropout value can be changed or removed

55 #BatchNormalization can be added; it is considered good for robustness

56 model.add(layers.Flatten())

57 model.add(layers.Dense(512, activation=’relu’))

58 #model.add(BatchNormalization())

59 model.add(layers.Dropout(0.5))

60 #model.add(layers.Dense(512, activation=’relu’))

61 #model.add(layers.Dropout(0.5))

62 model.add(layers.Dense(5, activation=’softmax’))

63 #Add a layer where input is the output of the second last layer

64 #x = vgg_conv.output

65 #x = Flatten()(x)

66 #predictions = Dense(5, activation=’softmax’)(x)

67 #model = Model(inputs=vgg_conv.input, outputs=predictions)

68 #model.summary()

69

70 #Data augmentation done here, these values can be changed.

71 train_datagen = ImageDataGenerator(rescale=1./255)

72 """

73 rotation_range=2,

74 width_shift_range=0.2,

75 height_shift_range=0.2,

76 horizontal_flip=True,

77 fill_mode=’nearest’)
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78 """

79 test_datagen = ImageDataGenerator(rescale=1./255)

80

81 # Change the batchsize according to your system RAM

82 train_batchsize = 32

83 val_batchsize = 16

84 eval_batchsize=1

85 # Data Generator for Training data

86 train_generator = train_datagen.flow_from_directory(

87 train_dir,

88 target_size=(image_size, image_size),

89 batch_size=train_batchsize,

90 class_mode=’categorical’,

91 shuffle=True)

92

93 # Data Generator for Validation data

94 validation_generator = test_datagen.flow_from_directory(

95 validation_dir,

96 target_size=(image_size, image_size),

97 batch_size=val_batchsize,

98 class_mode=’categorical’,

99 shuffle=False)

100 # Compile the model

101 ##Activation Functions like ReLU, Tanh, LeakyReLU are available

102 model.compile(loss=’categorical_crossentropy’,

103 optimizer=optimizers.Adam(lr=1e-4),

104 metrics=[’acc’])

105 # This is to save the model according to the conditions and

106 #stops if validation accuracy is not improving as per the assigned condition

107 checkpoint = ModelCheckpoint("VGglast.h5", monitor=’val_acc’,

108 verbose=1, save_best_only=True, save_weights_only=False, mode=’auto’,

109 period=1)

110 early = EarlyStopping(monitor=’val_acc’, min_delta=0, patience=10,

111 verbose=1, mode=’auto’)

112 csv_logger = CSVLogger("vgglast.csv", append=True)

113 # Train the Model

114 history = model.fit_generator(

115 train_generator,

116 steps_per_epoch=train_generator.samples//train_generator.batch_size ,

117 epochs=20 ,

118 validation_data=validation_generator ,

119 validation_steps=validation_generator.samples//

120 validation_generator.batch_size,

121 callbacks = [checkpoint, early, csv_logger])

122

123 # Save the Model

124 #model.save(’last_elu4lyr_frze.h5’)

125 import pickle

126 with open(’vgglast’, ’wb’) as handle: # saving the history of the model

127 pickle.dump(history.history, handle)
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128 print("%f�seconds" % (time.time() - start_time))

129 #from keras.utils import plot_model

130 #plot_model(model, to_file=’model.png’)

131 # Plot the accuracy and loss curves

132 acc = history.history[’acc’]

133 val_acc = history.history[’val_acc’]

134 loss = history.history[’loss’]

135 val_loss = history.history[’val_loss’]

136

137 epochs = range(len(acc))

138

139 plt.plot(epochs, acc, ’b’, label=’Training�acc’)
140 plt.plot(epochs, val_acc, ’r’, label=’Validation�acc’)
141 plt.title(’Training�and�validation�accuracy’)
142 plt.legend()

143 plt.savefig(’vgglast_acc.png’)

144 plt.figure()

145

146 plt.plot(epochs, loss, ’b’, label=’Training�loss’)
147 plt.plot(epochs, val_loss, ’r’, label=’Validation�loss’)
148 plt.title(’Training�and�validation�loss’)
149 plt.legend()

150 plt.savefig(’vgglast_loss.png’)

151 plt.show()

152 #plt.savefig(["plot2.png"])

153 #Code below is to predict the validation accuracy and

154 #then to obtain the confusion matrix. Depending upon accuracy on the

155 #dataset we need we should use the related dataset generator.

156 # Below is the prediction for validation data, we can switch it for

157 # test dataset

158 # as well by copying the code from lines created below for test generator)

159 #and changing the validation_generator with test_generator

160

161 #At first, evaluating the validation data! Should it be test data??

162 start_time = time.time()

163 evaluation_generator = test_datagen.flow_from_directory(

164 eval_dir,

165 target_size=(image_size, image_size),

166 batch_size=eval_batchsize,

167 class_mode=’categorical’,

168 shuffle=False)

169

170 scores = model.evaluate_generator(evaluation_generator , steps = 596)

171 print(’Loss:’, scores[0])

172 print(’Accuracy:’, scores[1])

173

174 print("%f�seconds" % (time.time() - start_time))

175

176 start_time = time.time()

177
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178 #For predicting accuracy

179 # Get the filenames from the generator

180 fnames = evaluation_generator.filenames

181

182 # Get the ground truth from generator

183 ground_truth = evaluation_generator.classes

184

185 # Get the label to class mapping from the generator

186 label2index = evaluation_generator.class_indices

187

188 # Getting the mapping from class index to class label

189 idx2label = dict((v,k) for k,v in label2index.items())

190

191 # Get the predictions from the model using the generator

192 predictions = model.predict_generator(evaluation_generator ,

193 steps=evaluation_generator.samples/

194 evaluation_generator.batch_size,verbose=1)

195 pred_class = np.argmax(predictions,axis=1)

196

197 errors = np.where(pred_class != ground_truth)[0]

198 print("No�of�errors�=�{}/{}".format(len(errors),eval_generator.samples))
199 """

200 #�Show�the�errors
201 for�i�in�range(len(errors)):
202 pred_class�=�np.argmax(predictions[errors[i]])
203 pred_label�=�idx2label[pred_class]
204

205 title�=�’Original�label:{},�Prediction�:{},�confidence�:�{:.3f}’.format(
206 fnames[errors[i]].split(’/’)[0],

207 pred_label,

208 predictions[errors[i]][pred_class])

209

210 original�=�load_img(’{}/{}’.format(validation_dir,fnames[errors[i]]))
211 plt.figure(figsize=[7,7])

212 plt.axis(’off’)

213 plt.title(title)

214 plt.imshow(original)

215 plt.show()

216 """

217 print("%f�seconds" % (time.time() - start_time))

218

219 #To save the prediction in excel sheet but since I am directly predicting

220 #here Confusion matrix, it was not saved, may be useful in server to save it.

221 import sklearn.metrics as metrics

222 #pred_class = np.argmax(prob, axis=1)

223 target_names = [’cargo’, ’no_ship’, ’ship_dinghies’,

224 ’small_boat’, ’small_boat_patrol’]

225 report = metrics.classification_report(ground_truth,

226 pred_class, target_names=target_names)

227 print(report)
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228

229 import itertools

230 #cm = confusion_matrix(idx2label, predictions )

231 def plot_confusion_matrix(cm, classes,

232 normalize=False,

233 title=’Confusion�matrix’,
234 cmap=plt.cm.Blues):

235 if normalize:

236 cm = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]

237 print("Normalized�confusion�matrix")
238 else:

239 print(’Confusion�matrix,�without�normalization’)
240

241 #print(cm)

242

243 plt.imshow(cm, interpolation=’nearest’, cmap=cmap)

244 plt.title(title)

245 plt.colorbar()

246 tick_marks = np.arange(len(classes))

247 plt.xticks(tick_marks, classes, rotation=45)

248 plt.yticks(tick_marks, classes)

249

250 fmt = ’.2f’ if normalize else ’d’

251 thresh = cm.max() / 5.

252 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

253 plt.text(j, i, format(cm[i, j], fmt),

254 horizontalalignment="center",

255 color="white" if cm[i, j] > thresh else "black")

256

257 plt.ylabel(’True�label’)
258 plt.xlabel(’Predicted�label’)
259 plt.tight_layout()

260

261

262 # Compute confusion matrix

263 cnf_matrix = confusion_matrix(ground_truth, pred_class)

264 np.set_printoptions(precision=2)

265 # Plot normalized confusion matrix

266 plt.figure()

267 plot_confusion_matrix(cnf_matrix, classes=target_names, normalize=False,

268 title=’Confusion�matrix’)
269

270 plt.show()

271 plt.savefig(’vgglast.png’)

272

273 print("%f�seconds" % (time.time() - start_time))

274

275

276

277 start_time = time.time()
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278 #To evaluate accuracy of the model with the test data

279 test_generator = test_datagen.flow_from_directory(

280 test_dir,

281 target_size=(image_size, image_size),

282 batch_size=1,

283 class_mode=None,

284 shuffle=False)

285

286

287 test_generator.reset()

288 #Predicting for the test data

289

290 pred=model.predict_generator(test_generator, steps=

291 test_generator.samples//test_generator.batch_size )

292

293 predicted_class_indices=np.argmax(pred, axis=1)

294 labels = (train_generator.class_indices)

295 labels=dict((v,k) for k,v in labels.items())

296 predictions = [labels[k] for k in predicted_class_indices]

297

298 filenames=test_generator.filenames

299 results=pd.DataFrame({"Filename":filenames,

300 "Predictions":predictions})

301 results.to_csv("VGglast.csv", index=True)

302

303 print("%f�seconds" % (time.time() - start_time))

68



Laxmi Thapa

SHIP RECOGNITION ON THE SEA SURFACE
USING AERIAL IMAGES TAKEN BY UAV:

A Deep Learning Approach



SHIP RECOGNITION ON THE SEA SURFACE USING AERIAL IMAGES TAKEN BY UAV: 

20
19 A Deep Learning Approach

Laxmi Thapa




	Index Of Figures
	Index Of Tables
	Acronyms
	Introduction
	Contextual Background
	Problem Statement and Motivation
	Research Aim and Objectives
	General Methodology
	Contribution
	Thesis Organization

	LITERATURE REVIEW
	Related Works
	Sensors platform used for ship recognition
	Images used for sea object recognition
	Sea Surface Object Recognition Approach
	Improvements in Deep learning
	Network Architecture and their choices
	Transfer Learning

	Theoretical Frameworks and Terminologies

	DESCRIPTION OF DATA AND RESOURCES USED
	Data Description
	Data Preparation
	Resources Used
	Data Exploration

	METHODOLOGICAL DESCRIPTION
	Proposed Methodology
	Methodological Design and Implementation
	Data Preprocessing and Augmentation
	Modification and design of pre-trained Network model Architecture
	Optimization and Regularization with Hyperparameters
	Algorithm Design


	RESULTS AND PERFORMANCE EVALUATION
	Visualization of Data Augmentation Technique
	Modification and design of pre-trained Network model Architecture
	Performance evaluation and comparison

	RESULTS DISCUSSION AND COMPARISON
	Result Discussion
	Comparison with existing works

	CONCLUSION AND FUTURE WORKS
	Bibliographic References
	ANNEX: Modification in Model Architecture
	Modification Strategy of VGG16

	ANNEX 2: Accuracy-Validation Comparison with Hyperparameters
	Training and Validation Accuracy with Xception Model
	Training and Validation Accuracy with InceptionResNetV2 Model
	Training and Validation Accuracy with ResNet50 Model
	ANNEX: Algorithm developed to run the model
	Algorithm used for ship classification and recognition






