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THE USE OF REMOTELY SENSED DATA FOR FOREST 

BIOMASS MONITORING 

A case of forest sites in North-Eastern Armenia 

 

ABSTRACT 

 

In recent years there has been an increasing interest in the use of synthetic aperture 

radar (SAR) data and geospatial technologies for environmental monitoring․ 

Particularly, forest biomass evaluation was of high importance, as forests have a 

crucial role in global carbon emission. Within this study we evaluate the use of 

Sentinel 1 C-band multitemporal SAR data with combination of Alos Palsar L-band 

SAR and Sentinel 2 multispectral remote sensing (RS) data for mapping forest 

aboveground biomass (AGB) of dry subtropical forests in mountainous areas. Field 

observation from National Forest Inventory was used as a ground truth data. As the 

SAR data suffers greatly by the complex topography, a simple approach of aspect and 

slope information as forestry ancillary data was implemented directly in the regression 

model for the first time to mitigate the topography effect on radar backscattering 

value․ Dense time-series analysis allowed us to overcome the SAR saturation by the 

forest phenology and select the optimal C-band scene. Image texture measures of 

SAR data has been strongly related to the biomass distribution and has robustly 

contributed to the prediction․ Multilinear Stepwise Regression allowed to select and 

evaluate the most relevant variables for AGB. The prediction model combining RS 

with ancillary data explained the 62 % of variance with root-mean-square error of 

56.6 t ha¯¹. The study also reveals that C-band SAR data on forest biomass prediction 

is limited due to their short wavelength. Further, the mountainous condition is a major 

constraint for AGB estimation. Additionally, this research demonstrates a positive 

outcome in forest AGB prediction with freely accessible RS data. 
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INTRODUCTION 

 

1.1  Theoretical Framework 

Forests cover around 30% of the land surface (Zhang et al., 2018) and have the 

highest capability for carbon segregation and storing capacity compared to any other 

terrestrial ecosystem (about 80% of terrestrial biosphere carbon storage) (Chen et al., 

2018). Thus they are of paramount importance in mitigation of global climate change 

(Zhang et al., 2018). Forest ecosystems are identified by the Inter-Governmental 

Panel on Climate Change through the Kyoto Protocol, as one of the main so-called 

“brakes” against the global climate change problems (Gibbs et al., 2007, Timothy et 

al., 2016). Once the forest is cut or degraded, the stored carbon is discharged onto the 

atmosphere in a form of carbon dioxide (CO2) (Gibbs et al., 2007). Hence, the 

estimation of forest carbon stock is needed for reducing the uncertainty in the global 

carbon budget, also, for forest management and planning and biodiversity 

conservation purposes (Laurin et al., 2016).  

Nowadays, in terms of global ecological crisis and forest degradation caused for 

carbon stock reduction all over the world, UN-REDD+ (Reducing Emissions from 

Deforestation and forest Degradation) assumes for participant developing countries to 

have a carbon monitoring system (Kachamba et al., 2016). Forest aboveground 

biomass (AGB), its amount and spatial distributions are the central components for 

evaluating forest carbon budgets (Soenen et al., 2010). Therefore, the quantification, 

mapping and monitoring of forest AGB, which consist of tree and shrub aggregated 

Net Primary Productivity, has become a broad topic in international climate change 

conferences (Timothy et al., 2016, Kumar, 2015).   

Until now, the best results for AGB estimation are captured through national forest 

inventories (NFIs) using experimental site establishment and destructive forest cut or 

tree allometric equations and statistical methods (Soenen et al., 2010). Then, this data 

is subsequently being used to estimate country level biomass and carbon stock 

estimates. However, these conventional methods are challenging to enhance and 

upscale over large areas as they are limited to where inventory data are measured, are 

spatially incomplete and commonly sparse. Also, another drawback of these methods 

is the limited frequency of field data collection campaigns and existing information 
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are often outdated, as they are usually done one time only, thus, they are not reliable 

source for future carbon budget reporting. A detailed forest inventory takes a 

substantial amount of time, leads to significant costs, and does not permit a synoptic 

view of the distribution of biomass across a forest landscape (Goetz & Dubayah, 

2011; Kachamba et al., 2016; Santoro & Cartus, 2018). 

Nonetheless, many developing countries, including Armenia, do not have exhaustive 

NFIs. Armenia is currently in the ongoing stage of implementing the REDD+ pilot 

mechanism in north-eastern (NE) forests of the country and NFI is one of the 

activities that is being covered already. The REDD+ concept is to provide financial 

encouragement to help the developing countries voluntarily act against the 

deforestation rate and consequently decrease the carbon emission and keep it in 

balance.  Those countries that can succeed with emission reduction can then sell their 

carbon credits in the international carbon market. The aim of the abovementioned 

projects is to stimulate global emission reduction and to contribute the conservation of 

biodiversity and protect other ecosystems (Gibbs et al., 2007).  

A promising approach aimed at lessening labor and operational costs, at the same time 

improving the reliability of estimated biomass gained by field sampling process, 

combines data from ground-based forest inventories and remotely sensed data. Last 

development of remote sensing technologies and successive methodological 

innovations enable researchers for rapid assessment of appropriate data on a large area 

at a lower cost (Kachamba 2016). In these terms it becomes more important to explore 

and develop prediction models using satellite imagery to contribute to the estimation 

of aboveground biomass. 

Remotely sensed data for forest monitoring applications are divided into three primary 

sources and systems: optical imagery (both satellite and aerial), Airborne Laser 

Scanning (ALS), and RADAR (e.g., synthetic aperture radar (SAR)). All of them have 

been widely applied for forestry purposes in majority of the countries with different 

successes rates depending on the data type, forest structure, geographic features of the 

implied area and on other factors. Optical sensors were mainly applied for horizontal 

forest structure generation and for the AGB assessment through field sampling, based 

on their spectral signatures (reflectance and vegetation indices). The advantages of 

optical sensing can be the global cover, frequency of repetitiveness and cost 

suitability. The limitations of optical sensors are the poor penetration capability for 
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clouds and forest canopies, also, they are affected by data saturation. Most used 

optical platforms are IKONOS, Quickbird, Worldview, ZY-3, SPOT, Sentinel, 

Landsat (Chen et al., 2018; Gibbs et al., 2007; Kachamba et al., 2016). 

The SAR systems show capabilities of improving the accuracy of forest AGB 

acquisition as the ability of canopies penetration is much higher than the one in 

optical, thus, SAR imagery can give information on vertical structure and volumetric 

features of the forest. In addition, SAR data are not affected by weather and light 

conditions. However, the radar scanning has limitations such as signal saturation in 

complex structured forests and the poor ability of forest type distinguishing (Gibbs et 

al., 2007). The most used sensors for forest ABG retrieval are Palsar, Palsar 2, 

Sentinel 1, TerraSAR-X (Berninger et al., 2018; Chen et al., 2018; Laurin et al., 

2018). 

Thus, SAR becomes one of the most useful tools to gain vertical structure and 

volumetric features of the forest (Laurin 2018). Sentinel 1 C-band SAR multitemporal 

images, that are available since 2014 and have high temporal recurrence and fine 

spatial resolution, have become very useful tool for forest AGB estimation and forest 

monitoring in the last few years (Joshi et al., 2016). Literature review shows many 

cases of forest biomass estimation based on Sentinel 1 data. In addition, better results 

are recorded when different SAR data (L-band and C-band) is conducted with optical 

data (Laurin et al., 2016). Establishing the balance between the proper use of natural 

resources and current environmental legislation is one of the functions that the 

environmental institutions play with obvious increase of the complexity degree, citing 

the need for automation of analysis processes that help the decision-making, in order 

to utilize the available resources in a more efficient manner. 

 

1.2  Statement of the Problem 

The forest degradation is an ongoing problem in Armenia and it suffers mostly by 

illegal and not well-controlled forest logging and over-grazing. In general, the forest 

borders are not shrinking and the forest cover area does not transform significantly 

(Nayemberyan forest enterprise increased the area of 296 ha after the last forest 

boundary update) (FMP-Noyemberyan, 2018). Even thoughthe quality of the forests 

and the amount of biomass in forests change substantially (Sayadyan et al., 2018).  
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Notably, a massive deforestation occurred from 1990-1997 during the energetic 

crises, when the fuelwood was the primary mean of house heating for the majority of 

the households, especially, in the settlements close to the forest. Nowadays, the felling 

process is decreased and stabilized, but still forest monitoring center has proven that 

95% of logging is no coincide with the FMPs. Also, some estimations show that 

around  630,000 m³ of wood is still illegally felled in Armenia annually (UNDP-GEF, 

2015). The forest cover in Armenia is highly fragmented and the biggest part 

(approximately 62%) with the most valuable forests are located in the NE of Armenia, 

namely in the Lori and Tavush provinces (territorial admin called “marz”.). Those 

provinces are very poor (poverty rate: 38.6% and 27.7% respectively) and the 

population is still highly dependent on the forest supply and, subsequently, the 

pressure on the forest still remains significantly high (FMP-Nayemberyan, 2018; 

UNDP-GEF, 2015). 

The economic reasons, accompanied by other factors such as the lack of the 

professionalism of the authorities, inadequate planning, the lack of interest of the local 

population in forest management and conservation, the lack of financial recourses for 

respective bodies are seen as the main driver factors of deforestation (to organize 

better forest management, conservation and monitoring). These reasons lead to 

unsustainable forest management with an output of deforestation and forest 

degradation, lots of valuable biodiversity and carbon sequestration potential reduction 

(Sayadyan et al., 2018; UNDP-GEF, 2015).   

Currently, the Armenian government together with UNDP and GEF and with a 

support of other donor organizations are implementing sustainable forest management 

plan by aligning those with REDD+ and GEF objectives in the NE forests of 

Armenia. According to this project, one of the key conditions of the forest 

management is the effective and accurate estimation and monitoring over the forest 

resources, particularly, forest biomass, which has the main carbon dioxide absorption 

capacity (Moreno-Sanchez et al., 2007, UNDP-GEF, 2015). 

So far, the use  of earth observation derived datasets for forest inventory and 

monitoring in Armenia is not fully implemented. In the scope of the abovementioned 

project there were Geographic Information Systems and remote sensing methods 

implemented but as tools for accurate forest demarcation. There were no studies found 

about the usage of remotely sensed data in forest biomass estimation and forest 
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resource monitoring in Armenia. Although, the use of multisource remote sensing 

data for forest biomass and carbon stockis are discussed in several studies. The 

overwhelming majority of those studies were conducted for tropical, subtropical and 

boreal forests, which contain the most part of the global forest cover. Even if the NFI 

project in Armenia is being implemented as a cost effective NFI, assuming that the 

field sampling net is low intensity and sampling plot size is decreased in area, the 

project is still costly and not sensible to use later on for forest monitoring and data 

updating purposes (Haywood et al., 2018). 

Thus, this research is aimed at implementing remote sensing methods for forest 

monitoring, especially if the integration of RS data can substitute field observations.  

 

1.3  Aims and Objectives 
The aim of this study lies in suitability analysis of C-band and L-band SAR and HR 

optical imagery for AGB estimation and the integration with ancillary data in dry 

subtropical mixed forests in the mountainous regions.  

 

• To study the sensitivity of C-band and L-band backscatter data to forests 

biomass. 

• To study the dependence of C-band SAR data on the forest phenology. 

• To apply multisource satellite data combination for forest biomass monitoring. 

To fulfill the aims and specific objectives, the following research questions need to be 

answered: 

• Can multisource remotely sensed data be integrated in optimizing the forest 

monitoring? 

• Is Sentinel 1 C-band backscatter dependent on forest seasonality? Are the dense 

time series able to handle the backscatter saturation problem? 

• Are the image texture measures relevant to forest biomass. 

• Is it possible to robustly derive remote sensing estimation of AGB using 

regression models? 
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1.4  Outline 

 

The structure of the dissertation is as follows: Chapter 2 presents the review of 

existing literature on the topic of this research. Chapter 3 describes the conditions 

and specification of the study area and the data used within this study. Chapter 4 

discusses the approaches and methodology, also describes the data pre-processing 

steps in very details. Chapter 5 presents and discusses the results for forest/non-forest 

classification and for regression analysis, also remarks the limitations and future 

possible researches. Section Conclusion sums up the results of this research and 

evaluates its contributions. 
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LITERATURE REVIEW 

 

2.1  Introduction for Aboveground Forest Biomass  

Before starting the analysis of remotely sensed data for forest aboveground biomass 

estimation, it is essential to understand the concept of forest AGB, the traditional 

techniques and methods of estimation, which gives better understanding and vision of 

the parameters and conditions should be considered before applying remote sensing 

methods.  

Aboveground live biomass includes the living biomass of trees, shrubs and herbs 

above the soil including stem, stump, branches, bark, leaves (UNDP-GEF 00091048, 

2015), and represents the largest pool of carbon stock (Gibbs et al., 2007). AGB is 

widely used for correlations and estimations of carbon storage in some of the other 

pools such as root biomass and consequently the carbon stocks (approximately 20 % 

of AGB (Gibbs et al., 2007)) and dead wood or litter carbon pool (appr. 10-20 % in 

natural forests (UNDP-GEF 00091048, 2015)). Thus, the forest AGB estimation is an 

essential step in quantifying the carbon stocks in the forests. 

There are several methods developed for AGB estimation with different demands and 

level of accuracy. The most accurate and straightforward method to quantify the forest 

biomass is establishing sampling sites on the field and harvesting all the trees, drying 

them (in particular, for carbon stock estimation) and weighting the biomass (Gibbs et 

al., 2007). This method is very expensive and has destructive affection on the 

experimental site. It is precise for that one location only, and impractical in other 

regions for country level analysis (Chen et al., 2018). 

Such methods cannot be applied across the landscape. Consequently, many 

investments were put  into development of models that are able to “scale up” the field 

measurement results over larger areas. Gibbs did sum up in glance the main methods 

used for forest AGB estimation with their advantages and limitations (Table 1) 

(Gibbs et al., 2007). 
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Method Benefits Limitations Uncertainty 

Biome 

averages 

• Immediately available could 

increase accuracy • Data 

refinements could increase 

accuracy • Globally consistent 

• Fairly generalized • Data 

sources not properly sampled to 

describe large areas 
High 

Forest 

inventory 

• Generic relationships readily 

available • Low-tech method 

widely understood • Can be 

relatively expensive as field-

labor is largest cost 

• Generic relationships widely 

understood • Low-tech method 

inexpensive as • Can be relatively 

field-labor is largest cost 

Low 

Optical 

remote 

sensors 

• Satellite data routinely 

available at global scale • 

Globally consistent 

• Limited ability to develop good 

models for tropical • Spectral 

indices saturate at relatively low 

carbon stocks • Can be technically 

demanding 

High 

Radar 

remote 

sensors 

• Satellite data are not always 

free •New systems launched 

are expected to provide 

improved data • accurate for 

young or sparse forest 

• Less accurate in mature forests 

because signal saturates also 

increases errors • Mountainous 

terrain also increases errors • Can 

be expensive  

Medium 

Table 1. Benefits and limitations of available methods to estimate national-level forest carbon 

stocks (data source: Gibbs et al., 2007) 

Bouvet and Gibbs are dividing biome-average method into two main steps (Bouvet et 

al., 2018; Gibbs et al., 2007). First, data gathering is being done through NFIs. Until 

now the best results are gained by field calculations using experimental plots, 

harvesting and actual forest volume estimation (Kachamba et al., 2016). In second 

step allometric models are applied to calculate average biomass for a sampling plot 

located within a certain stratum. Later, national level of carbon stock can be predicted 

by applying the average biomass and carbon density values (de Badts, 2002) over the 

region for the same forest strata (Bouvet et al., 2018; Kachamba et al., 2016). Unlike 

the high level of uncertainty compared to the forest harvesting method, this method 

can be immediately available and provide information about AGB on a wide scale 

landscape. 

Ground-based forest inventory focused on field campaigns and forest inventory 

measurements for estimation of forest AGB. Measurements include diameter at breast 

height (DBH), average tree height and tree type, and through which forest biomass is 

being calculated using allometric relationships (Chave et al., 2005; Gibbs et al., 2007). 

Only DBH is describing AGB with 95 % accuracy (Chave et al., 2005). Zhang offers 

to collect data about the vegetation type and soil type as well (Zhang et al., 2018). As 

the AGB consist of stem, bark, branches and leaves or needles depending on the forest 
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type, he assumes to organize field data acquisition differently for coniferous and 

deciduous forests and exclude leave biomass for winter calculations in deciduous 

forests (Clerici et al., 2016).   

For field data collection there are several approaches for sampling points selection. 

Systematic and random sampling designs are the most used ones. Systematic 

sampling uses? regular grid for plot location selection, and the random selection is 

applied to randomly allocated sampling points. Both of the approaches are not 

considering forest type stratification and forest distribution. This, both schemes can 

under- or over-sample as far as the patterns in nature have naturally clumpy and 

random distribution is less likely (Gibbs et al., 2007). 

One of the uncertainties of AGB estimation by converting tree measurements data is 

the lack of standard method. Literature review shows different approaches by 

different authors for AGB estimation even for the same type of forests (Chave et al., 

2005; Clerici et al., 2016; Gibbs et al., 2007). Gibbs presents a complete overview of 

forest AGB estimations by different authors for the same countries, and as the article 

points out, for Shri-Lanka the AGB estimation by different methods can alter in the 

range of 138–509 Mg/m2. The uncertainty occurs when shifting from one forest type 

to another. In tropical forests 1 ha forest area can contain 300 different tree species. 

This means that one cannot use species-specific regression model, which is common 

to apply while working with temperate or boreal forests. In such conditions better 

results are achieved by mixed-species regression model (Chave et al., 2005).  

Amongst existing number of statistical methods for AGB acquisition based on 

sampled allometric measurements, Chaves suggests “biome-diameter-height 

regression” and “biome-diameter regression” models for their simplicity and wide 

application (Chave et al., 2005). Biome-diameter-height regression includes 

information about tree height (H), diameter (D), and wood specific gravity (ρ) 

(Dawakin’s regression model):  

ln(𝐴𝐺𝐵) = α + ln(D²Hρ)                 (1) 

Both for the regression and the rest are applied using linear models. 

Field sampling data does not always include the tree height information. In this case 

Chaves assumes relationship between logarithm of height, In(H), and the logarithm of 

diameter, In(D). A polynomial relationship between log. height and log. diameter 
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gives a reasonable generalization of the power-low model. Hence, the model will have 

following equation:  

ln(𝐴𝐺𝐵) = a + b*ln(D²Hρ) + c*ln(D²) + d*ln(D³)+ β*3ln(ρ)      (2) 

 The power-low is parametrized as c=d=0 (Chave et al., 2005).   

All those conventional models are accurate for the location of sampling site but are 

difficult to extend over large area and are being done not more than once for certain 

area because of paramount resource demand. Instead, remotely sensed data provides 

useful for AGB estimation data for the whole globe and with temporal resolution, but 

cannot measure the biomass directly, thus require ground-truth data (Gibbs et al., 

2007; Kumar et al., 2015). Another important advantage of remote sensing is the 

ability to easily collect data on the places where ground access is limited.  

Optical remote sensing data from different sensors (see chapter 1.1) have been 

implemented (tried) for forest AGB indirect estimation via statistical relationship 

between field measured data and satellite-observed vegetation indices (Fassnacht et 

al., 2014). As the optical sensor records the information reflected from the forest 

canopy and is dependent on the leaf structure, pigmentation and moisture and have 

week penetration possibilities, thus the uncertainty is high, especially, in dense 

tropical forests with big amount of biomass (Chen et al., 2018; Joshi et al., 2016; 

Treuhaft et al., 2017). In the contrary, comparatively low uncertainty and higher 

correlation between sensor-data and field-data are recorded in boreal forests where the 

hierarchical structure is absent in the forests and individual trees can be fixed on the 

photos (Gibbs et al., 2007; Kachamba et al., 2016). Clerici affirms that very high-

resolution (VHR) optical imagery improves the AGB estimations in forests (Clerici et 

al., 2016) using ratio vegetation index (RVI), normalized vegetation index (NDVI), 

transformed vegetation index (TVI), while the Vegetation Index Number (VIN) 

recorded the worst performing. Kumar offers a use of hyperspectral sensor data, 

particularly underlying the importance of mid-infrared (MIR) reflectance as the best 

describer for forest biomass. He states that MIR has advantages over visible and near-

infrared (NIR) reflectance (L. Kumar et al., 2015). Signal saturation in the forests is 

the main constrain for optical remote sensing for AGB estimation and almost all the 

reviewed articles detected to be suffering with this issue.   
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With the launch of different SAR sensors with freely distributed data, there is 

increasing interest in the use of these observations for forest AGB estimation.  This 

interest started in 2000s when TerraSAR-X, Alos, Palsar L-band were launched, and 

become more popular, when in 2014 first Sentinel 1 C-band data became freely 

available. For instance, the majority of the studies for SAR in AGB estimations were 

published in the last 3-5 years (Berenguer et al., 2018; Berninger et al., 2018; Clerici 

et al., 2016; Joshi et al., 2016; Kumar et al., 2015; Navarro et al., 2016; Reiche et al., 

2018; Santi et al., 2017; Santoro & Cartus, 2018; Vafaei et al., 2018; Yu & Saatchi, 

2016).  

Generally, the most regularly used methods for forest AGB estimation using SAR 

data can be classified into several groups. The simplest and subsequently the most 

used method is the measuring backscattering coefficient from Polarimetric SAR 

(PolSAR) to reveal the roughness of the surface. This is called 2D PolSAR method 

(Zhang et al., 2018). As it was mentioned before, the best results are obtained with 

cross-polarization dual polarization which is more sensitive to the forest AGB. Most 

of them applied logarithm of biomass and used the backscattering coefficient for 

forest biomass prediction (Laurin et al., 2018; Zhang et al., 2018). This method still 

has some limitations such as saturation, which depends on the wavelength and the 

incidence angel (Joshi et al., 2016). The capabilities, advantages and drawbacks of 

SAR backscatter data in forest AGB estimation, will be discussed in details in the next 

subchapters  

Interferometric SAR (InSAR) or Polarimetric InSAR (PolInSAR) by using 

interferometric phase or coherence tomography of InSAR are able to record the 

elevation of the ground and the top of the forest, and thus, they can derive the forest 

height which then can be transformed into forest biomass by allometric equation 

models. This model is promising and has more potential, and it can reduce the 

saturation in some extant (Chen et al., 2018). A number of studies show improved 

AGB estimation results by using InSAR data (Huang, Ziniti, Torbick, & Ducey, 2018; 

Santoro & Cartus, 2018; Zhang et al., 2018). 

There are also other methods for AGB estimation through Laser scanning and LiDAR 

scanning (Joshi et al., 2016), which are not fitting in the scopes of this research, 

therefore they will not be discussed in details. 
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2.2  SAR and Optical remote sensing data for AGB estimation 

SAR are active microwave radars operating in between 1 centimeter and several 

meters of electromagnetic spectrum. A part of the impulse energy from radar, once 

meeting the Earth’s surface, it is being scattered back towards the sensor. This is what 

the Radar records and measures. Depending on the surface type and structure, 

different amount of energy is scattered back and thus, different parameters of the 

surface are recorded on the image. The image intensities depend on the backscattered 

signal characteristics such as wavelength, incidence angle, signal polarization, scan 

direction, in addition to such parameters as surface roughness, moisture, dielectric 

properties, geometric shape, orientation (Pohl C., 2017). The frequency, incidence 

angle, polarization and scan direction are properties of system and the dielectric 

characteristics, orientation, surface roughness and the moisture are target properties 

(Periasamy et al., 2018). Those are the parameters that are influencing on the 

backscattered signal and thus, describing the surface objects, they are core for radar 

image processing.  

SAR images for the same area vary as the system parameters change. For instance, the 

penetration capability of the signal is dependent on the wavelength: The longer 

wavelength the larger objects they penetrate. According to the rule of thumb the 

penetration length is the half of the wavelength. According to the same rule, higher 

the backscatter intensity the rougher the surface that is being imaged (CRISP 2001, 

n.d.).  

Radar Band  Wavelength (cm)  Frequency (GHz) 

X  2.5–3.75  8–12 

C  3.75–7.5  4–8 

S  11.11–7.69  2.7–3.9 

L  15–30  1–2 

P 100 0.3 

Table 2. Common radar bands used in Remote Sensing (data source: Pohl. 2017) 

Depending on the used wavelength, SAR sensors are divided into several bands 

(namely: K, X, S, C, L, P, VHF) (Timothy et al., 2016). Table 2 describes the 

wavelength and appropriate frequencies for the SAR bands most commonly used for 

land cover surveys.  

L and P- band (15-100 cm together) have privileges over C-band (3.75-7.5 cm) in 

terms of forest vertical values description. C-band can penetrate only leaves and 
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needles and small branches, while L and P-bands provide stronger backscatter form 

trunk and large branches (Figure 1) (Joshi et al., 2016). This leads to a different result 

when calculating forest AGB trough above-mentioned SAR bands. According to the 

reviewed literature L-band analysis records higher correlation with ground data 

compared with the C-band (Bouvet et al., 2018; Laurin et al., 2016, 2018; Mermoz et 

al., 2015; Yu & Saatchi, 2016).  

 

 

 

Figure 1. Vegetation penetration capabilities of X, C and L radar bands (data source: Pohl. 

2017) 

Polarimetric SAR sensors are capable to transmit and detect the vertical (V) and 

horizontal (H) components of the backscattered radiation (Pohl C., 2017). Hence, 

there are four possible polarization configurations: co-polarization- HH, VV, cross-

polarization- HV, VH, and their combinations (Aulard-Macler M., R. Barstow, 2011). 

Polarimetric SAR backscattered energy is directly depending on the physical 

properties of the vegetation elements and influences on backscattering mechanism 

(Pohl C., 2017). The rough surface significantly depolarizes the signal in a greater 

magnitude while smoother surface depolarizes the signal at the lower magnitude. 

Thus, degree of polarization can provide valuable structural information about the 

forests (Periasamy, 2018). Laurin and Santoro in their articles affirm that cross-

polarization has priorities over co-polarized backscatter in forest biomass information 

retrieval (Laurin et al., 2018; Santoro & Cartus, 2018). A number of studies point out 

the VH backscatter from Sentinel 1 C-band and HV backscatter form Alos Palsar and 

Alos2 Palsar2 L-band SAR to have more reliable correlation with AGB data over the 

co-polarization and other polarization configurations (Huang et al., 2018; Laurin et 

al., 2016) 

Literature review shows several attempts of image texture characteristics 

implementation for biomass estimation using optical imagery back in the past (Eckert, 



 

14 

 

2012). In the more resent literature review by Santoro & Cartus (2018) the 

investigation of texture characteristics and polarization decompositions of SAR 

imagery are bringing smaller retrieval errors in forest AGB estimation compared to 

only backscatter values. Papers published by Berninger, Thapa and Huang depict 

improved correlations between image texture (namely, homogeneity, contrast, 

entropy, volume scattering) and the field data from allometric calculations (Berninger 

et al., 2018; Huang et al., 2018; Thapa et al., 2016). In case of SAR data, the texture is 

a measure of the spatial homogeneity of the backscattering and describes the 

properties of surface, such as smoothness, regularity and tonal variation, and so, 

should enclose information about forest structure (Santoro & Cartus, 2018). Chen et 

al. also show that Sentinel 1 image textures are the most relative and important 

predictors for AGB estimation compared to the original backscattering data (Chen et 

al., 2018). This review shows that the implementation of texture methods for forest 

biomass retrieval are understudied yet and seem to have high potential in improving 

the estimation accuracy. 

 

2.2.1  Combination of Multisource Data for AGB Monitoring 

Combination of SAR and optical data is being intensively implemented mostly in the 

last couple of years and shows high potential to improve the forest biomass prediction 

accuracy (Joshi et al., 2016; Kumar et al, 2016; Laurin et al., 2018). Joshi et al 2016, 

in his review of existing literature finds that different SAR data with conjunction of 

optical data have comparatively higher accuracy than SAR and optical data alone 

(Joshi et al., 2016). 

Besides the prediction accuracy improvement, combination of globally available 

optical sensors such as Landsat 8, Sentinel-2, and SAR sensors like Palsar-2 and 

Sentinel-1 with high temporal resolution, is becoming a very important tool in a way 

that ensures operational and continuous global forest cover monitoring in consistent 

and robust manner (Reiche et al., 2016). Joshi et al. (2016) and Reiche et al. (2106) 

assume that operating on different physical principles, hence, the SAR and optical 

sensors provide synergistic information on the forest properties. As we already saw, 

the first is dependent on the size, orientation and dielectric properties, density, while 

the second is dependent on the leaf structure, moisture and pigmentation. This lets 

them consider that combination of those different satellite imagery should be 
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promising approach for increasing the accuracy of AGB estimation in forests (Joshi et 

al., 2016; Reiche et al., 2016). There is growing focus on this approach and the 

majority of the researches reviewed are from 2018 (Chen et al., 2018; Kumar et al., 

2016; Laurin et al., 2018; Periasamy, 2018; Vafaei et al., 2018). The most often used 

optical sensor is Sentinel-2 because of the high resolution, free availability and the 

global cover with high frequency revisit cycle. Laurin et al. in their paper (2018) 

showed that combination of Sentinel-1 and Sentinel-2 strongly improved the forest 

AGB estimation in Mediterranean shrublands (around 14% with respect to the sensors 

separately). As an input to the prediction model all the bands form Sentinel 2 as 

different variables were used. Chen et al. (2018) generated number of vegetation 

indices and biophysical variables as input variables to the prediction models. The 

results show that the vegetation biophysical variables are outstanding compared to the 

other Sentinel-2 products while combining with Sentinel-1 products (Chen et al., 

2018). 

Laurin et al (2018) and Chen et al (2018) highlight that combination of multi-source 

satellite imagery improves the saturation level for forest AGB estimation. Laurin et al 

in their research (2018) got up to 400 tones/ha accurate estimation combining Sentinel 

1,2 and Palsar 2 satellite imagery.  Zhang assumes that interferometric phase and 

coherence methods have potential to overcome the saturation in some extends (Zhang 

et al., 2018). 

 

2.2.2  SAR Drawbacks 

There are number of challenges while analyzing and interpreting SAR images for land 

applications and particularly for forestry. Three main drawbacks of SAR data can be 

separated that severely affect the measurement accuracy, namely, speckle noise, the 

bias on the backscatter value because of the mountain relief and saturation of 

electromagnetic signal.  

Speckle noises: The major problems are the speckle noises on SAR images that might 

cause for poor classification (Joshi et al., 2016). Unlike the optical remote sensing, 

radar scanning is coherent interaction of the signal with the surface objects. As the 

result of coherent summation of the signal scattered form, the ground scatterers has 

random distribution within each pixel and is called speckle noise (CRISP 2001, n.d.).  
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To reduce speckle noise in the image multi-looking processing property is 

implemented. This method helps in smoothening and noise reduction on the image, 

nevertheless it compromises the resolution of output. The more looks, the lower the 

resolution (Aulard-Macler et al., 2011; Bruniquel & Lopes, 2010). The number of 

looks is rarely more than 3 or 4 for satellite data (Grandi, et al., 2004). Several 

approaches such as multi-look summation, single-look complex summation, multi-

look intensity summation and other methods developed by Lee, Boxcar, Bruniquel 

and others are available in toolbox (“Broxcar”, “Lee”, “Refined Lee”, “Lee sigma” 

etc.) in the free software of SNAP 6.0.5 developed by European Space Agency (ESA).  

Mountainous terrain: Another limitation of SAR is the sensitivity of backscatter to 

the mountainous terrain. Due to the side-looking mode, the backscattering from 

elevated objects leads to foreshortening, layover and shadows on the image intensity 

when they are projected to ground-range images (Pohl C., 2017). Geometry effects on 

the image radiometry, causes extensive distortions on the SAR imagery and, thus, 

reduces the forest biomass estimation accuracy on mountainous areas. DEM data is 

needed to reconstruct image geometry and perform geometric correction (Tian et al., 

2014). The overwhelming majority of studies complete geometric correction using 

Shuttle Radar Topography Mission (SRTM) 30 m resolution DEM by NASA. 

Berninger in his study excludes slopes higher than 10 degrees to avoid from possible 

uncertainties on the SAR image (Berninger et al., 2018).   

Saturation: A general limitation of forest biomass estimation by both optical and 

SAR imagery is the saturation of the signal depending on different condition. Those 

conditions are referring both the system for scanning and target properties of the 

object being scanned. The reason is forest density, therefore, the amount of biomass, 

used scanning wavelength and the moisture in the soil. Optical scanning, having weak 

canopy penetration capacity, contains information of forest mainly on horizontal 

direction, thus gets easily saturated in dense forests with close canopy (Vafaei et al., 

2018; Zhang et al., 2018). SAR method has proven to be less sensitive to the forest 

density and get saturated at a higher level of biomass (Sinha et al., 2015). Depending 

on the used signal wavelength, different SAR imagery has shown different saturation 

level. The longer the wavelength, the stronger penetration power, thus, less saturation 

problems (Chen et al., 2018). Huang et al (2018), Vafaei et al (2018), Sinha et al 
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(2015) and other authors prove that C-band SAR backscatter gets saturated faster than 

L-band.  

For the C-band Pariasamy (2018) notes 60-70 t ha¯¹ saturation level. Berninger et al 

2018 report result of 150-200 tones/ha saturation level for L-band backscatter. In 

addition to this, he claims that by using image texture characteristics it is possible to 

increase the result until 250 tones/ha. And Sinha in his review found saturation at 100-

150 tones/ha for L-band. Huang et al (2018) state that saturation level also depends on 

forest state, type, as well as ground surface type and weather conditions.  

 

2.2.3  SAR Dense Time-Series Analysis 

As the literature review shown, the L-band SAR has stronger abilities for forest AGB 

compared to C-band, however, not many sources are freely available for L-band SAR 

data. The launch of Alos1 Palsar 1 by Japanese JAXA project is providing L-band 

images since 2007 and has huge investment in forest AGB monitoring. Alos2 Palsar2 

launched in 2014 continues the same thematic focus and gives higher resolution 

images. Still, the temporal frequency of available L-band images is not sufficient for 

forest phenology monitoring (Palsar1 products are available one image per year, and 

Palsar2 images are just several scenes per year, even though, the last ones are not 

freely available) and thus, available literature for L-band time series studies for forest 

AGB have focus on forest change detection in long time period (Reiche et al., 2017). 

Berninger et al. (2018) uses 3 scenes from 2007 to 2016, Bouvet et al. (2018) use 4 

scenes only from 2007 to 2010 from Palsar1 sensor). The launch of the open access 

NASA ISRO SAR (NISAR) Mission planned in a few years will continue growing of 

L-band SAR data availability (Huang et al., 2018). 

The launch of C-band Sentinel-1a in April of 2014 by ESA in the frames of 

Copernicus mission in contribution to Free Big Data movement in remote sensing 

data has extremely expend the SAR data availability and potential for forest 

monitoring and particularly for AGB analysis (Torres et al., 2017). After launching of 

Sentinel-1b in April of 2016, which works together with Sentinel-1a it the same orbit, 

it became possible to gain C-band SAR images with 6-day repeat cycle on equatorial 

zone (revisit frequency is higher in higher latitudes) (ESAa, 2019). Thus, Sentinel-1 

has dramatically improved spatial resolution, revisit time and coverage around the 
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globe in respect to its predecessors Envisat SAR and ERS 1,2 SAR amongst C-band 

SARs (Potin et al., 2016). The Level-1 products are getting available in 24 hours after 

scanning. Thereby, Sentinel-1 became a powerful tool for near real-time 

environmental analysis and change detections. 

Despite the short time in the orbit, Sentinel-1 dense time-series have been already 

extensively applied in many fields and have proven to be significantly useful in 

agriculture and crop monitoring (Ghazaryan et al., 2018; Whelen & Siqueira, 2018), 

land cover classification (Balzter et al., 2015; Skakun et al., 2015), soil moisture 

estimation (Liu et al., 2017) and in many other thematic areas. For forestry there are 

several applications developed over the last decades through the information based on 

SAR time series. The main applications refer to ABG estimations, clear-cut detection, 

forest phenology and forest condition analysis. Dostalova and Rüetschi base on the 

statement that SAR backscatter is sensitive to forest seasonal cycles such as leaf-on or 

leaf-off conditions, successfully could implement Sentinel-1 C-band multitemporal 

time-series for forest type (coniferous-deciduous) deliniation for central end north 

Europe and in Northern Dakota in the US (Dostálová et al., 2018; Rüetschi et al., 

2018). Based on the backscatter variation depending on the forest conditions, forest 

type and moisture, Laurin have used Sentinel-1 dense time series to find the best 

season and the best scenes of C-band images having stronger backscatter correlation 

with forest AGB (Laurin et al., 2018). He found backscatter form coniferous forests to 

be more stable during the year and higher correlated to the AGB value. Nevertheless, 

Huang et al. (2018) clarify that the forest AGB values derived only from C-band SAR 

imagery are not robust for forest operational monitoring.  

Multitemporal SAR data is specifically useful for coherent speckle noise filtering. For 

this purpose, the Multi-temporal filtering methods are investigated. Besides the 

speckle filtering, Laurin et al. (2018) state that SAR time series analysis for the whole 

year can mitigate the saturation effect in the forest. 

 

2.3  Forest AGB prediction models: Model diagnostics 

The actual path of AGB analysis consist of many decision points, and the way of 

selection can generate uncertainty in the output result. This, one of the most important 

decisions for the AGB estimation analysis is the proper prediction model selection 
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(Dungan, 2002). Chen et al (2018) define the forest biomass prediction as a mapping 

process for an estimation of biomass values at the location without observation based 

on the points values at nearby observations and/or considering other factors at the site 

using various methods. Those methods he divides into two main categories: 

parametric (various statistical regression methods) and non-parametric (machine 

learning algorithms). In case of parametric models, it is easy to interpret and calculate 

the expression relating the dependent and independent variables, even though there is 

no simple global linear relationship between remote sensing data and forest AGB as 

far as there are many factors affecting it (Chen et al., 2018). It was also reproted that 

the majority of researches still use parametric models for biomass prediction. Two of 

the most often used methods are stepwise regression and multivariate linear 

regression. To handle high biomass variability and saturations of remote sensing 

imagery, Berninger at el. (2018) assumes multivariate linear regression to be superior 

to other models. Santoro & Cartus (2018) find, that if the aim of estimation is to 

deliver a biomass estimation that will be used as a layer for another purposes, then 

non-parametric models are quite performing. Instead, if the focus is to develop an 

algorithm that is robust to changeable environmental conditions, then the privileges 

should be given to linear models.  

Non-parametric models include machine learning methods (e.g. k-nearest neighbor 

(KNN), artificial neural network (ANN), Support vector regression (SVR). Random 

forest (RF)) has shown better capability to identify the complex relationships between 

forest AGB and remotely sensed data (Chen et al., 2018; Englhart, Keuck, & Siegert, 

2012). Because the field NFIs are not easy to organize and big datasets usually are not 

widely available, non-parametric methods show better prediction (Chen et al., 2018; 

Vafaei et al., 2018). The same studies prove that amongst the ML methods SVR 

shows the best results, even though, the difference between various ML prediction 

methods were not insignificant. Nevertheless, it has been assumed that non-parametric 

models, even if they reach to a better result, not always lead to better predictions for 

new datasets. This is because complex models can increase the risk for overfitting, i.e. 

explaining small datasets through large number of variables which can be partially 

redundant and lead to unreliable prediction (Fassnacht et al., 2014).  

To detect the uncertainty level and evaluate the model performance by most of the 

authors were purposed the coefficient of determination (r²) and root-mean-squared 
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error (RMSE). Less often mean absolute error (MAE) (Vafaei et al., 2018) was 

implemented together with the abovementioned metrics. Bouvet et al (2018) used 

Monte-Carlo cross-validation to validate the model’s predictive accuracy. To avoid 

from multi co-linearity among the input variables Chen et al (2018) and Berninger et 

al (2018) use variance inflation factors (VIFs) in their regression analysis to exclude 

variables that are highly correlated. For regression model diagnostics Laurin has used 

leave-one-out (LOO) cross-validation approach (Laurin et al., 2018).  

The result of the literature review declares the parametric regression prediction 

models to be the preferable and commonly used ones compared with the non-

parametric ones. Despite the diversity of forest AGB models, not many studies focus 

on comparison of parametric and non-parametric models. A systematic comparison is 

quite urgent but also rare in the literature (Chen et al., 2018).  

Following the extensive literature review we select Multilinear Stepwise Regression 

parametric model for our study to evaluate the multisource input variables and to 

predict forest AGB through that data. 
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DATA  AND STUDY AREA 

 

3.1  Introduction to the Study Area 

The study area is the NE forests of Armenia, more specifically, Noyemberyan forest 

enterprise, where the UNDP-GEF program is piloting by implementing NFI methods 

for forest carbon stock calculations for the first time in Armenia (Haywood et al., 

2018). The first steps of field data collection are partially covered and the raw data is 

available, which was the main stimuli for study area choice.  

Armenia has a territory of 29,800 km² and is described with complex topography and 

great range of altitudinal variation (lowest point has 375 m elevation from sea level, 

and the highest pick is 4095 m, average altitude is 1850 m) (Haywood et al., 2018). 

The country is located in dry subtropical climatic zone, but because of mountainous 

relief, the landscapes are vertical distribution and roughly divided into 4 main types: 

deserts and semi- deserts, mountain steppes, forests, thin forests and shrubs, and sub 

alpine meadows (UNDP-GEF, 2015).  

Being located in between a junction of 4 main floristic regions (Old-Mediterranean, 

Near-east Asian, Iran-Turanian and Caucasian) (Moreno-Sanchez et al., 2007) 

Armenia is a home for a variety of (110 tree and 152 shrub) species. Currently, being 

included in Caucasian and Iran-Turanian biodiversity hotspots, the country presents a 

habitat for many endemic vegetation species. Based on the density of high vascular 

plants, the country is ranked among the first-place countries in the world with about 

107 species per 1000 km² (Moreno-Sanchez et al., 2007; UNDP-GEF 00091048, 

2015).  

In Armenia, the forest cover extend is estimated to be over 332,000 ha (Rio+20, 

2012), and ~62% out of that is located in the NE Armenia. The forest type in the north 

east are subtropical (61%) and temperate (39%) (MONGABAY, 2019) and are 

described as broadleaf deciduous mixed forests. Dominant tree species are oak 

(Quercus spp.), beech (Fagus orientalis), hornbeam (Carpinus betulus) and oriental 

hornbeam (Carpinus orientalis) (Moreno-Sanchez et al., 2007). The NE forests are 

located in two provinces (Tavush and Lori) and consist of 10 forest enterprises and 

“Dilijan” National Park occupying over 253,000 ha area, in which 215,000 ha is forest 
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covered (UNDP-GEF, 2015). Annual precipitation is 500-540 mm and the climate is 

described with warm and dry summers and temperate winters (FMP, 2018). 

 

Figure 2. Location of the study area. a) Location of the Tavush province, b) forest 

enterprises in Tavush province, c) "Noyemberyan" forest enterprise 

This research focuses on the forest sites located in Tavush province (Artsvaberd, 

Ijevan, Sevqar, Noyemberyan and “Dilijan” National Park), The main focus is 

Noyemberyan forest enterprise for several reasons:  

• The pilot project for national forest carbon inventory has been implemented in 

Noyemberyan forest enterprise and can be as a ground base for evaluation of 

results, 

• The field sampling density is much higher in Noyemberyan forest enterprise (55 

sampling points out of 115), 

• Some of remote sensing data has huge distortions over the other forest sites which 

practically makes those data not useful for forest monitoring on the whole area, 

• All the forests in the NE Armenia have very similar characteristics in terms of 

forest type, structure, amount of biomass, terrain conditions, and so, we do not put 
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uncertainty while using the field sampling data from one site for model training 

and applying on the other one. 

For statistical analysis and model training information was collected from all the 5 

forest sights but the project’s main focus area is considered the forests of 

Noyemberyan. Therefore, all the objectives and hypothesis are applied and the final 

maps and evaluation are done for Noyemberyan forests only.  

The forests in Noyemberyan enterprise is 29334 ha and is located in between 600-

1850 MASL altitudes and the distribution is as following: <800m – 4.2%, 801-1200-

47.9%, 1201-1600-37.8%, 1601> - 10.1%. Forest structure, quality and dominant 

species vary based on the altitude - spread low density in the low altitudes to high 

density in the middle. The topography is highly fragmented and remarkable with steep 

slopes and aspect composition variations. This strongly affects the forest distribution. 

There are more forests located on the north slopes (58.6%) than on the south slopes 

(41.4%) (FMP, 2018). 

 

3.2  Introduction to Data 

3.2.1  Field Data 

Field data are gained from the UNDP-GEF ongoing project. The initial number of 

plots were 115, out of which 55 were from Noyemberyan enterprise collected in 2017, 

and the rest are from the other forest sites of Tavush province collected in the 

beginning of 2018. The field sampling plots’ locations are chosen based on a 

systematic sampling plot design (Figure 3).  

Strata No of samples  

Beech 18 

Hornbeam 22 

Oak 18 

Pine 12 

Other 19 

Disturbed 26 

Total 115 

Table 3. Field sampling data per strata 
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Figure 3. Field sampling plots distribution 

There was also used a forest stratification map to ensure that the sampling plots 

include all the forest types (Table 3). Fixed size of 0,1 ha circular plots were 

established with 17.84 m radius (depending on the slope degree it might change in 

order to ensure a 0,1 ha plot size when projected on a plane). All the large trees (>8 

cm in diameter) are assessed for the following properties: species, DBHOB, tree 

status, decay class, crown class and many other parameters, that are not relevant to 

this study, thus will not be reported.  

 

3.2.2  Sentinel 1 Data 

For this study Sentinel 1A and Sentinel 1B C-band SAR data from Copernicus project 

of ESA was used. The data is interferometric wide swath (IW) scanning mode, with 
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250 km swath width. We used Level-1 Ground Range Detected (GRD) product which 

is already Multi-looked (one look in range and five in azimuth), Geocoded and it is 

available with 10x10m pixel spacing both in Copernicus Open Access Hub¹, (the 

online system of the ESA), and in Google Earth Engine JavaScript API² (GEE).  Both 

satellites orbit in near polar, sun-synchronized orbit at 693 km altitude and in the same 

orbital plane (Torres et al., 2017). Sentinel 1 C-band SAR has 5.405 GHz frequency 

(corresponding to a wavelength of ~5.6 cm) and provides images in two polarization 

modes: VV co-polarization and VH cross-polarization. 

The incidence angle is between ~31 and ~46 degrees. The resolution was set to 10 m. 

Each image contains 3 bands: two for backscattering intensity (VV, VH) and one for 

incidence angle. Because of heterogeneity in the parameters of available images there 

is a need to filter to down the data for a homogeneous subset. In order to have the 

same incidence angle for all the images the same relative orbit number 152 was 

selected. There were 72 scenes acquired for the whole year of 2017 (30 from Sentinel 

1A, 42 from Sentinel 1B), 6 images per month in average.  

For Sentinel 1 data available in GEE platform the backscattering coefficient from 

natural values of sigma naught (σ◦) is converted into dB values. 

σ◦ = 10⁎log
10

𝐷𝑁                                                                                       (3) 

Where the DN is the digital number of the natural values.  

(σ0 (dB) = 10*log
10

(absolute (σ0))). 

 

3.2.3  Sentinel 2 Data 

The Sentinel 2 imagery was obtained from 2 satellites: Sentinel 2A and Sentinel 2B. 

Data is available free of charge in Copernicus Open Access Hub and GEE platform. 

Sentinel 2 data are characterized by13 spectral bands with 10-m, 20-m, and 60-m 

spatial resolution and a radiometric resolution of 12 bit. Two form of data are 

available: Level 1C (L1C)– top-of-atmospheric reflectance product, and Level 2A 

(L2A) – bottom-of-atmospheric reflectance product.  

All the acquired images are from 2017: June and July (16 L1C products with cloud 

cover less than 15%), September (8 L1C products with cloud cover less than 25%) 

and October (2 L1C products with cloud cover less than 10%). Only 10m and 20m 
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resolution bands were used of the analysis: B2 (490nm), B3 (560nm), B4 (665nm), 

and B8 (842nm) 10m spatial resolution bands, B5 (705 nm), B11 (1610nm), and B12 

(2190nm) 20 m spatial resolution bands (ESA, 2018).  

 

3.2.4  Alos Palsar Data 

Global Palsar-2/ Palsar L-band SAR data were accessed at a 25 m scale in GEE 

platform. The dataset is generated by applying Japanese Aerospace Exploration 

Agency’s (JAXA) processing and analysis technique to a lot of images obtained with 

Japanese (Palsar and Palsar-2) radars on Advanced Land Observing Satellite (ALOS 

and ALOS-2) satellites/carriers (JAXA, 2018).  

Palsar/ Palsar-2 images are L-band SAR (~23.5 cm wavelength) and the images are 

acquired in Fine Beam Dual polarization (FBD, 70 km swath width) mode: HH- 

horizontal transmit, horizontal receive, HV- horizontal transmit, vertical receive. The 

incidence angle is between 28.6 degree and 32.9 degree (CEOS, 2016; JAXA, 2018). 

The temporal interval of the images contained by the mosaic is generally 1 year, and 

no information is available about the scanning date for a particular area. According to 

the tutorial of Global 25 m Palsar product, the images are selected taking into 

consideration the weather information, in order to avoid radar backscattering 

saturation effect caused by the moisture (JAXA, 2018).  

Ortho-rectification and topographic corrections on the SAR data are applied using 

90m SRTM DEM, which is not preferable for this research, as out study area is highly 

fragmented and this can cause for important information lose. 

Backscattering data are stored in digital number (DN) of unsigned 16 bit. These 

values can be converted to gamma naught (γ◦) natural values in decibel unit (dB) by 

the following equation: 

γ◦ = 10⁎log10(𝐷𝑁²) − 𝐶𝐹  (dB)                                                                           (4) 

Where CF is the calibration factor and for product of Palsar/ Palsar-2 is measured to 

be ~83.0 dB. 
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3.2.5  Forestry Ancillary Data 

The forestry ancillary data used in the scopes of this research are the forest type 

information from forest stratification map, and the topographic parameters of the 

sampling plots, namely, the aspect and the slope information. Though this information 

is available from the forest inventory data, we used the necessary equivalent 

information retrieved from DEM. The SRTM DEM which was gained from U.S. 

Geological Survey portal (USGS, September, 2018) free of charge. DEM data is low 

spatial resolution (30 m).  
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APPROACHES, METHODOLOGY, DATA 

PREPARATION 
 

4.1  Approach and General Methodology 

Different pixel-based methods were used in order to answer the research questions 

and achieve the objectives. The pixel size is chosen 30m quadrat to be equal to the 

SRTM DEM product, which was used for terrain corrections. Also, certain 

circumstances were considered: the minimum mapping unit (MMU) is 0,09ha, which 

is competitive with the area of field sampling plots (0,1 ha), and after applying a 

scaling factor of 0,9 on the field ABG estimation, we replaced the circular sampling 

plots with squared pixels. Projection system for the whole project was selected WGS-

84 38N local for the study area projection. All the rasters were aligned in order to 

match the pixels for raster analysis.  

Field data was carefully examined as certain conditions should have been ensured 

before using SAR data for regression analysis. Even if a part of the field sampling 

data were from the beginning of 2018, we kept using the remotely sensed data from 

2017. As the annual growth of wood for the forests in Armenia is estimated as 1.4 

m³/ha (Rio+20, 2012), which we consider to be not significant for this study. 

Literature review shows, that working with SAR data demands deeper understanding 

of the physics behind it and more careful pre-processing and processing of the data, 

which is crucial for improving the quality and retrieving the relevant information from 

SAR backscattering. Implementation of some typical processing steps, such as 

radiometric correction and speckle filtering are required even if we are working with 

images form the same sensor but with different time stamps (Navarro et al., 2016). 

Even more, within the scope of this study we combined data from different sensors, 

which assumes more pre-processing steps such as identical backscattering naught 

retrieval.  

As the study area is suffering from complex and highly segmented topography and 

taking into consideration the fact that in such case even the radiometric terrain 

correction is not sufficient for mitigating the bias and the gain on the SAR 

backscattering data caused by high topographic variation (Pohl C., 2017), we 

implemented ancillary topographic information of the sampling sites directly into 
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regression model. Simple removal of the steep slopes and masking of the 

foreshortening and shadows on the SAR data is not possible, as those areas are 

occupying the most part of the study area.  

Besides the tree covered areas, forest sites include also non-forested forest lands 

(meadows, pastures, herbs and forest disturbance areas) are sometimes significantly 

big and can mislead the forest biomass estimation. For the FNF map generation in 

purpose of precise delineation of forests, Sentinel 2 imagery and Random Forest (RF) 

classification method was used. This non-parametric classifier was selected since it 

does not require any statistical analysis of input variable and can handle with 

multicollinearity effect. 

Recent Studies show successful implementation of Haralic texture analysis (GLCM 

matrices) for biomass prediction, when different parameters of the local variance of 

the pixel values is calculated (Chen et al., 2018; Huang et al.,, 2018). Image texture 

analysis technique was also applied by choosing the more relevant texture parameters.  

For the biomass prediction and AGB mapping backward Stepwise Multiple Linear 

Regression (SWR) model was used to automate the best explanatory variable 

selection. Even if the studied state some better results for non-parametric models over 

the parametric ones for biomass prediction, the use of SWR allows us to evaluate and 

compare each of the input variables (i.e. the input data and the environmental 

conditions), which is one of the main focus areas for this research. Variables with 

parameters of p-value < 0.05 and VIF > 5 were excluded form regression model 

(Berninger et al., 2018; Laurin et al., 2018). 

The Figure 4 provides the flowchart of the overall methodology (The complete flow 

chart for the methodology see in APPENDIX B). The flow chard is designed 

following way: raw input data (gray), information of unprocessed data (blue), data 

pre-processing and processing steps (white), processed-ready for analysis data 

(green), classification and regression analysis (brown). Red dashed boxes are 

indicating the main sub-processes which will be discussed in a detailed manner in the 

next chapters. Those sub-processes are: 

• Field data calculation 

• Sentinel 1 data pre-processing 

• PALSAR data pre-processing 
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• GLCM texture analysis 

• Sentinel 2 data pre-processing 

• Ancillary data pre-processing 

• Forest/Non-Forest classification 

The regression analysis, model diagnostics and evaluation are discussed in the 

Chapter 5. 

 

 

Figure 4. Flow chart of general methodology 
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4.2  Tools 

The tools used for the data pre-processing and processing are presented in the Table 

3.  The focus is on the open software and free of charge cloud environment. Satellite 

image pre-processing and processing is mostly carried out in the Google Earth Engine 

cloud-based environment by using JavaScript API. 

 

Process Tools 

S1 pre-processing 

GEE JavaScript 

API 

Palsar mosaic pre-processing 

S2 vegetation indices calculations 

Hansen Global forest map implementation 

FNF classification with RF 

Classification accuracy assessment 

GLCM texture analysis 

S2 L1C to L2A processing SNAP, Sentinel 

Toolbox, 

Sen2Cor plugin 
S2 vegetation indices calculations 

Regression analysis 

R Cross-validation and model diagnostics 

AGB mapping on the study area 

Projection transformation 

QGIS 
Raster re-scaling and aligning  

Field sampling data processing 

Shape to raster conversions 

Map designing 
ArcGIS Desktop 

Aspect and Slope processing 

Field data calculations MS Office Excel 
 

  

Table 4. Tools and related processing 

GEE is cloud based geospatial processing platform and provides huge computational 

power, which made possible the processing of enormous amount of satellite imagery 

and conduct dense time-series analysis. GEE is an environment for planetary-scale 

environmental data analysis and contains the archives of many publicly available 

remote sensing imagery (Gorelick et al., 2017). 
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4.3  Field Data Calculation 

As it was mentioned in Chapter 3.2.1 forest inventory raw data was initially available 

from 115 sampling plots done by forest systematic sample plot design. The field data 

calculation steps are presented in Figure 5: 

 

Figure 5. Flow chart of field data pre-processing steps 

 

Amongst different vegetation parameters measured during the inventory, for 

aboveground biomass calculation we used DBHOB parameter of the trees and 

simplified allometric equations offered by manual for the GEF’s pilot project. The 

species specific allometric models are available for each of the main tree species and 

one general equation for the rest of species. Those allometric equations are developed 

for the tree species common for the region (Shahrokhzadeh et al., 2015) and are 

presented in Table 5. 

Tree species Allometric equations No of eq. 

Beech 

 

(5) 

Oak 

 

(6) 

Hornbeam 

 

(7) 

Pine 

 

(5) 

Other 

 

(5) 

   

Table 5. AGB allometric equations for dominant tree species 

In the equations D stands for diameter at breast height over back (DBHOB) of the 

large trees in cm. Those equations are established for aboveground living biomass 

calculation. As the data explorations showed, the amount of standing dead trees are 

very few per plot, also, from the perspective of SAR scanning, that circumstance 

doesn’t practically affect on the SAR backscattering generation, thus, we used those 

formulas also for calculation of dead standing tree biomass.    

𝐴𝐺𝐵𝐿𝑖𝑣𝑒 = 0.353 ∗ 𝐷2.191 

𝐴𝐺𝐵𝐿𝑖𝑣𝑒 = 0.0743 ∗ 𝐷2.012 

𝐴𝐺𝐵𝐿𝑖𝑣𝑒 = 4.046 ∗ 𝐷1.1599 

𝐴𝐺𝐵𝐿𝑖𝑣𝑒 = 0.353 ∗ 𝐷2.191 

𝐴𝐺𝐵𝐿𝑖𝑣𝑒 = 0.353 ∗ 𝐷2.191 
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Once the AGB is calculated for each plot, a scaling factor of 10 was applied to 

calculate the amount of biomass per ha (AGB_Live*10). 3298 large trees were 

measured and 1701 t AGB was calculated from all the sampling plots. The maximum 

of 680 t ha¯¹ biomass was observed and the average standing biomass in the study 

area is 148 t ha¯¹. 

SAR data records realistic backscattering data over the homogeneous forests. Not 

homogeneous distribution of forests can mislead in backscattering values (Huang et 

al., 2018; Laurin et al., 2018). Hence, two steps data cleaning was done to detect the 

sampling points with not homogenously forested areas. First, a minimum threshold of 

2 t/plot on the biomass was established assuming, that less than that amount will not 

have homogeneous tree cover. This way 22 samples were removed from the 

beginning (17 out of this 22 had no large tree biomass at all).  

For the second step we use the technique of buffering implemented by Huanag et al. 

(2018) and Laurin et al. (2018). The logic behind making buffers around the sampling 

plots is that after converting the point shapefiles (centers of sampling plots) into 

raster, in most cases the points do not match with the center of squared pixels of 

raster. This is due to the systematic sampling grid size, which was different from the 

grid size of our raster (30x30). Therefore, the pixels are randomly allocated towards 

the centers of the sampling plots. Couple of tries to align the raster with the points 

gave different dispositions of pixels. Thus, we assume that a pixel representing the 

sampling point can gain the satellite image value from the surrounding of the 

sampling plots by unpredictable way (Figure 6). To ensure that the backscattering 

intensity represents the real field sampling AGB value and does not mislead the 

backscattering statistics because of non-homogeneity in the forest cover, we created 

buffer of 42m (the maximum distance the pixel can be situated). The purpose was to 

audit the similar forest structure and similar reflectance for the adjacent sites of each 

plot. Visual checkup of forest homogeneity within the buffer areas was complete 

using ESRI basemap imagery and Google Earth high resolution imagery. All the 

inaccurate sampling points were excluded from further calculations (Figure 6). This 

way more than 11 samples were removed.  
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Figure 6. Field sampling points with AGB. Green polygon shows the sampling design, red 

polygon is the buffer zone, pixels represent field sampling plots as a raster, numbers show the 

amount of biomass for the sampling plot in kgs 

 

4.4  Sentinel 1 Pre-processing 

As it was indicated in the SAR data description in the general methodology (Chapter 

4.1), depending on the purpose of use, SAR data should be pre-processed, in order to 

retrieve the needed information. In particular, besides the typical corrections 

suggested for SAR data, in this study gamma naught was used (gamma-zero, γ ͦ), 

which is terrain-corrected with the ellipsoid model and does not depend on the 

incidence angle (Small, 2011). This pre-processing step is of high importance for this 

study, as the study area is notable for its complex topography. The detailed steps of 

pre-processing are presented in Figure 7. 
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Figure 7. Flow chart of Sentinel 1 pre-processing steps 

Sentinel C-band data analysis were carried out in GEE cloud environment, where the 

GRD data is available with some pre-processing steps being applied. Those 

corrections are: orbit update, radiometrically corrected to sigma naught (σ ͦ), natural 

value conversion to dB using equation (1), geometric terrain correction (Range 

Doppler Correction) offered by Sentinel Toolbox od ESA using SRTM DEM (GEE 

API documentation, 2019).  

In order to fulfil the further pre-processing steps, we created and applied automated 

Sentinel 1 time-series processing chain. First of all, the values from dB were 

converted back to their natural values. To retrieve the gamma-naught, we used 

formula (6): 

𝛾0 =
𝜎0

cos 𝜙
                                                                                              (8) 

where ϕ is the incidence angle (Small, 2011). 

12 stacks for the whole year were composed using the scenes within each month. 

Refined Lee speckle filter was applied on each stack for multitemporal speckle 

filtering in order to reduce the speckle  noise (Yommy et al., 2015). For this 7x7 

kernel size was set up. Afterwards, the monthly stacks were averaged with the statistic 

mean value and normalized to dB. In the end, all the monthly stacks were stacked into 

one image with 12 bands and upsampled to 30x30m pixel spacing.  

All the above-mentioned steps were done for VV and VH polarization individually.  

For the VV polarization images -25 dB of minimum threshold was setup, and VH 

polarization there was -30 dB threshold setup to avoid form extreme abnormal 

backscattering values. This was done after careful observation of backscattering on 

forested and non-forested areas (Shimada et al., 2014). In total, 24 images were 
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generated, which were used as input variables in the regression analysis. The codes 

for all the above-mentioned pre-processing steps are available in GEE API and can be 

found in the Appendix A.  

 

4.5  Palsar Pre-processing 

Preprocessing of Alos Palsar product does not assume many steps since many of the 

systematic attributes are missing from the data. The conversion of DN to dB is done 

by applying the equation (2). The speckle filtering and extreme pixel value masking is 

done in the same way as was implemented foe Sentinel 1 C-band imagery (Figure 8).  

For the Palsar product we had 2 images (HH and HV) stacked into one as two 

different bands. Images were resampled to 30m spatial resolution. 

 

Figure 8. Flow chart of Sentinel 1 pre-processing steps 

While pre-processing Palsar data, systematic errors were discovered on the imagery 

expressed in a very high pixel value. Those inaccuracies cover large and continuous 

spaces on the study area. Particularly, because those errors were out of Noyemberyan 

enterprise area, it made possible for Palsar data still to be used for the final AGB 

mapping.  

For the Palsar mosaic for non-forest areas a noise threshold of −34 dB was set up 

following the tutorial for global forest map product (Shimada et al., 2014). All the 

pre-processing steps are carried out in GEE and can be found in the Appendix A.  

4.6  Sentinel 2 Pre-processing 

Sentinel 2 (S2) data were pre-processed in order to get NDVI, NDMI, RVI vegetation 

indices for regression analysis and for FNF classification (Figure 9).  
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Figure 9. Flow chart of Sentinel 1 pre-processing steps 

 

 As was described in Chapter 3.2.3 S2 imagery is already available as L1C product. 

To pre-process S2 data from August into L2A bottom-of atmospheric reflectance 

product Sen2Cor plugin from Sentinel Toolbox was used (implemented in SNAP 

software)․ Afterwards, the images were mosaiced and vegetation indices NDVI and 

RVI (equations 7 and 9) were calculated again using SNAP software.  

The rest of the images were pre-processed in GEE cloud environment without 

applying bottom-of-atmospheric correction. The images were cloud masked, the 

bands B2, B3, B4, B8, B5, B11 and B12 were kept, the rest was dropped out from the 

future processing. All the scenes from June-July were reduced with the mean value, 

then NDMI index was calculated (8).  

NDVI = (NIR − R) (NIR + R)⁄                    (9) 

NDMI = (NIR − SWIR) (NIR + SWIR)⁄                  (10) 

RVI = NIR R⁄                                   (11) 

S2 data from September was pre-processed for FNF classification. Cloud masked data 

was stacked and reduced with the mean value of the pixel, NDVI was calculated and 

added to the stack as another input variable for the classification analysis.  

In the end, all the scenes were upsampled to 30m pixel size to align with the rest of 

the rasters for further analysis.  

 

4.7  Ancillary Data Pre-processing 

The aspect and slope forest ancillary data were generated from SRTM 30m spatial 

resolution DEM. For these 4 scenes of DEM from 2014 (updated in 2015) was used 

(Figure 10).  
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Because the aspect data is categorical, we combined it into 8 segments, each group 

consisting of 45 degrees of aspect. Completely flat areas consist 0.8% of the total are, 

so we disregarded that and included in the 1th segment. The numbering is designed 

stepwise. Afterwards, we implemented one-hot-encoding technique to transform the 

categorical variable into 8 different input variables with numerical values using R (R 

Core Team, 2018). Thus, we made it possible for this information to be used in linear 

regression analysis as an input variable. “Encoding” package was used for this. 

 

Figure 10. DEM, Aspect and Slope maps of the study area 

 

4.8  GLCM texture analysis 

Image textural features, developed by Haralic et al. (1973), measure the spatial 

homogeneity of the backscattering and contain information about forest structure. 

Several studies have proven that GLCM texture from SAR can be better describing 

the biomass distribution than SAR backscattering itself (Chapter 2.2). GLCM 

analysis were applied only on the SAR imagery with a selective approach (Figure 

11), aiming to decrease the number of input variables for the regression analysis. 
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Figure 11. Flow chart of GLCM texture analysis steps 

In order to determine the more relevant SAR variables, the regression model was run 

with the input variables of S1 (22 variable from time-series stacks for each VV and 

VH polarization), Palsar (2 variable for HH and HV polarization), Vegetation indices 

(3 variable – NDVI, NDMI, RVI) and ancillary data (3 variable - tree species type, 

aspect, slope). More important variables were selected based on their correlation 

significance according to the stepwise linear regression test (SWR). In the first 

iteration the more significant SAR variable (Palsar HV) was selected, then 14 texture 

measures were calculated for Palsar HV in GEE (Angular Second Moment, 

Contrast, Homogeneity, Correlation, Variance, Sum average, Sum variance, 

Entropy, Sum entropy, Difference entropy, Energy, Difference variance, 

Difference entropy, Maximum correlation). Those masseurs as input variables were 

added to the same variables for another iteration of regression.  

This time the best texture measures with highest correlation with the biomass were 

determined again based on the variable significance from SWR test. Those measures 

are Variance, Entropy, Correlation, Sum of average (Table 6). 

GLCM texture analysis were carried with GEE cloud environment. For these analysis 

SAR data in gamma naught (converted to natural values) are used. To have the real 

statistics of the image pixels, texture measures are calculated on the images before 

applying a speckle filter. 4x4 window size was setup for the calculations. 
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GLCM 

texture 
Formula Description No of eq. 

Variance 

 

Measures the dispersion (with regard 

to the mean) of the gray level 

distribution 
(12) 

 

Entropy 

 

 

Measures the degree of disorder 

among pixels in the image; it is 

(approximately) inversely correlated 

with uniformity; images with a larger 

number of gray levels have larger 

entropy 

(13) 

Correlation 

 Measures the linear dependency of gray 

levels on those of neighboring pixels; it 

provides a measure similar to 

autocorrelation methods 

(14) 

Sum average  

 

 

Measures the mean of the gray level sum 

distribution of the image 
(15) 

Table 6. Formulas for GLCM texture measures. Formulas for GLCM texture measures. For 

all the equations, p(i, j) is the (i, j)-th entry of the normalized gray-level co-occurrence matrix, 

that means, p(i, j) = P(i, j) / ∑ P(i, j)𝑖𝑗 , where P(i, j) is the (i, j)-th entry of the computed 

GLCM; 𝑁𝑔 is the total number of gray levels on the image; and 𝜇𝑥, 𝜇𝑦 and 𝜎𝑥,d𝜎𝑦  stand for 

the Mean and Standard Deviation of the row and column sums of the GLCM, respectively 

(data source: Haralic et al., 1973). 

 

 

 

 

 

 

 

 

 

 

 

 

∑ ∑ (𝑖 − 𝜇)2
𝑁𝑔

𝑗=1
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1
 

− ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1
log 𝑝[(𝑖, 𝑗)]

𝑁𝑔

𝑖=1
 

∑ ∑
𝑖𝑗𝑝(𝑖, 𝑗) −  𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

∑ 𝑖𝑝𝑥+𝑦 − (𝑖)
2𝑁𝑔

𝑖=2
 



 

41 

 

DATA PROCESSING․ FOREST BIOMASS MONITORING 

 

5.1  Forest/Non-Forest classification 

Before starting the forest monitoring and biomass calculations, it’s significant to 

distinguish the main concepts regarding forest definition, which will bring better 

insight into the field data we have, and on the extents of the span that should be 

explored within this research. As the forestry field information is provided by each 

forest enterprise (biggest forest site units), it is worth to define the forest enterprise for 

this case. According to the Forest Code of Armenia: 

Forest enterprise – a production unit with the aim of sustainable forest management.  

As the forest enterprise is forest-economic unit, it consists of forested and non-

forested lands. According to the same Code: 

Forest Lands - forested lands and lands allocated or envisaged for flora and fauna 

protection, nature protection as well as non-forested lands allocated or envisaged for 

the running of forest economy. 

On the other hand, recent studies show that the non-homogeneous forested areas can 

cause for SAR backscattering value distortion on the image. To avoid from this kind 

of uncertainties, we offer to delineate the boundaries for forests only, inside the forest 

enterprises and consider those areas as the limit of the extents for this study. 

According to the same forest Code: 

Forest - interconnected and interacting integrity of biological diversity dominated by 

tree-bush vegetation and of components of natural environment on forest lands or 

other lands allocated for afforestation with the minimal area of 0,1 ha, minimal width 

of 10 m and with tree crowns covering at least 30% of the area, as well as non-

forested areas of previously forested forest lands (Forest Code, 2005). 

Thus, within the scope of this research we closely aligned the forest definition to the 

one of Forest Code Armenia, meaning, that the forests are defined as lands of more 

than 0.09 ha with the tree canopy cover of more than 30%. For this purpose, Hansen 

forest cover product for 2000 was adopted, as well as forest/non-forest (FNF) binary 

classification was performed using S2 product and Random Forest classifier (Figure 

12). 
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Figure 12.  Flow chart for forest/non-forest classification steps 

This FNF classification with a new data was necessary due to the literature indicating 

the scales of illegal felling (Chapter 1.3) and the Global Forest Watch online 

platform (Global Forest Watch), affirming that there are significant disturbance spots 

in the forests and there is a need for updating the Hansen map after 17 years. On the 

other hand, attempts to adjust Hansen Global map with simple threshold for forest 

non-forest delineation failed for tհis study area. 

The training and testing datasets were generated and a binary classification was 

carried out in GEE cloud environment using JavaScript API and was performed in 

two steps. First, forest canopy cover threshold of 30% was setup using Hansen global 

forest cover map, as each pixel on this map represents the canopy cover percentage. 

This way we defined forest and non-forest areas for the year of 2000. That was 

particularly done for training dataset generation. For that purpose, “stratifiedSample” 

tool was used to generate randomly distributed points within a grid with a scale of 

30m. 200 hundred points were generated this way: 100 points within the forest area 

and 100 points within the non-forest area.  

Validation confusion matrix 

 
 

Prediction 
 

 
n =200 Positive Negative Total 

A
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u
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TP = 97 FP = 3 100 

N
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a
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v
e 

FN = 4 TN = 96 100 

 Total 101 99 193 

Table 7. Validation confusion matrix for forest non-forest classification 
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In the second step Random Forest classifier with 300 trees was trained using the S2 

data from 2017 and the training dataset. FNF classification was driven and the 

fallowing accuracy parameters were assessed again in GEE environment (Tables 7 ).   

The RF performance on binary classification shows high sensitivity: 0.96 (proportion 

of actual positives that are correctly identified as such) and specificity: 0.97 

(proportion of actual negatives that are correctly identified as such) using S2 data. 

Thus, the overall accuracy of classification is 0.965 and we use this classification 

result as a base map for our research to delineate only forested areas. Kappa statistics 

of the classification was 0.93. As the result, 86% (25184.4 ha) within the study area 

was classified as forest and 14% (4149.6 ha) was classified as non-forest (Figure 13). 

Majority voting filter was applied on the output raster map once. 

 

 

Figure 13. Map of FNF binary classification. Non-forested site examples on the snapshots on 

the right (green line shows the classified forest border, red line shows the forest enterprise 

border). 
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5.2  Results of Regression analysis 

The regression analysis was conducted using AGB data (adjusted by scaling factor for 

0.09 ha MMU) as a dependent variable and the rest of the inputs as independent 

variables (predictors). The sequence of the steps are following the general flow chart 

in the section of methodology (Chapter 4.1). Different combination of predictor 

variables were calculated and the regression model has been evaluated for 

multicollinearity in predictors (VIF test), normality (Shapiro-Wilk normality test) and 

autocorrelation (correlogram) in residuals for each time.  

Regression analysis were carried out with R programming language and “Akaike 

criterion” function, which stands for multilinear stepwise regression. For the 

regression analysis total of 60 input variables were used (Table 8).  

Source 
Number of 

variables 
  Explanation Variable Total  

Sentinel 1 12   VV monthly stack - 2017  

32 
 12   VH monthly stack - 2017 

 4 GLCM  VV10 (Corr, Ent, Var, Savg)  

  4 VH12 (Corr, Ent, Var, Savg)  

Sentinel 2 3   NDVI, NDMI, RVI 3 

Alos Palsar  2   HH, HV - 2017 

10  4 GLCM  HH (Corr, Ent, Var, Savg)  

  4 HV (Corr, Ent, Var, Savg)  

Ancillary data   

Aspect 8  
aspect categories  

15 Slope 1  
slope values 

Forest type 6   dominant tree type 

Total amount of variables   60 

Table 8. Input variables for regression analysis 

Initially, only 24 observations from S1 time series (VV and VH) were used for 

regression analysis in order to select the best scenes from S1 with higher importance 

in AGB prediction. This was done for two main purposes: First, to evaluate the 

preference of using S1 dense time series instead of choosing one scene for forest AGB 

calculations and second, to decrease the number of input variables for GLCM texture 

analysis for the further use. This was particularly important for keeping the number of 

input variables as less as possible, as the training dataset (field data) was not large.  
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From the perspective of the phytoclimatic seasonality in the forest in our study area, 

the correlation between field AGB and Sentinel 1 C-band stack time series were 

explored first using Pearson’s correlation coefficient (Figure 14). This shows the 

correlation to be almost always higher for VH cross-polarization compared with VV 

co-polarization. Nevertheless, for both polarization modes it is lower than 0.5, and 

gets to its maximum for the stack averages of October and December (both for VH 

backscatter). The assumption is that C-band backscattering better represents the forest 

biomass during the leaves-off season, and when the soil is not frozen. 

 

Figure 14. Pearson’s correlation coefficient calculated between Sentinel 1 stack time series 

and AGB from the 79 plots and for each of the time series. 

The regression analysis were repeated using the forest type information as a 

categorical variable. The results showed that among the S1 time series only the stacks 

of VH polarization from October and December are passing the minimum limit of p-

value < 0.05. Also, both HH and HV polarization mosaics from Palsar were chosen by 

regression model to be important predictors for AGB. The forest type information was 

never selected as important, therefore was dropped from later analysis. Hence, we 

deduce that SAR backscattering is not sensitive to the tree type.  

Those two stacks form S1 and HH, HV Palsar mosaics were chosen for GLCM 

texture measures and for further regression analysis. The GLCM analysis were done 

as it is described in the Chapter 4.8. Further, during this regression analysis, 2 

samples with extreme biomass values for the study are (680 t ℎ𝑎−1 and 500 t ℎ𝑎−1), 

as well as 1 sample with unusual extreme pixel values on Palsar scenes were excluded 

from the further analysis, as they were causing major uncertainty in the prediction. As 

follows, 79 field sampling points were considered for the final regression analysis.  
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5.2.1  Model Comparison and Predictor Evaluation  

Since the objective of this study is to evaluate the different origin data for forest AGB 

prediction, 4 regression models were proposed with different predictor combinations 

(Table 10). In this section we compared prediction models with a focus of detecting 

relative difference in the prediction accuracy. For this purpose, multiple linear 

regression analysis was carried out with different predictor fusion aiming to 

determine the best models using different type of data in different combinations. 

Accordingly, 4 models with the following combinations were developed: Model 1 – 

only SAR data, Model 2 – SAR+optical data, Model 3 – SAR+ancillary data, Model 

4 – SAR+optical+ancillary data. 

As many of the parameters are generated from varying decompositions of the same 

data or the same source, several of these metrics are expected to be highly correlated 

(Appendix B). High correlation amongst the predictors causes for model overfitting 

and biased R² value. Therefore, with the threshold of variance inflation factor 

maximum of 5 was set up. Adjusted R² is calculated. Further, Leave-One-Out cross-

validation is carried out and R² as well as RMSE are calculated. As the RMSE 

represents the relative error for 0,09 ha area (MMU), later the absolute RMSE was 

calculated for the hectare and is provided in the Table 9. 

Linear Model 1 consisting of S1 C-band and Palsar L-band SAR data and the GLCM 

texture analysis of those data yielded low prediction results: Adjusted R² equal to 

0.46, LOO validation test gave R² equal to 0.38 and RMSE equal to 70 t per hectare. 

The best predictor variables were Palsar HH and HV polarization form the initial 

imagery, and the rest of the variables were different texture measures: Sum of 

Average (SAVG) GLCM for S1 stack of October, SAVG for Palsar HV. It is worth to 

mention, that none of the Sentinel initial images appeared in any of the models as 

important predictors.  

Model 2 combined all the inputs from Model 1 and the 3 vegetation indices (NDVI, 

NDMI, RVI) from S2. Determination coefficient for LOO R² decreases insignificantly 

to 3.3 and the RMSE increases to 72.8 t ha¯¹. The stepwise process discarded many of 

the variables that were important for the Model 1 and reduces the dimension of the 

predictors. Palsar HH and HV stay as the most important predictors together with 

Entropy measure of October stack from S1 data. NDVI variable was better suited for 
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AGB prediction amongst the vegetation indices with the less significance for the 

model.  

Model 

(sources)  
Predictors VIF (<5) 

p-value<0.05 

(significance) 

Adj. 

R² 

  LOO 

R²  

 relative 

RMSE  
(t/0,09 ha) 

     

RMSE 

(t/ha)    

Model 1 

Palsar HH 2.26764 1.68E-05 *** 

0.46 0.38 6.3 70 

Palsar HV 2.211967 1.18E-05 *** 

S1 VH 10 savg 1.913548 6.34E-05 *** 

SAR S1 VH 12 corr 1.744905 0.03294 * 

S1 VH 10 ent 2.79781 0.03224 * 

Palsar HH ent 1.703185 0.00836 ** 

Palsar HV savg 2.345768 2.16E-05 *** 

Palsar HH corr 1.483653 0.04045 * 

         

Model 2  
Palsar HH 2.703908 3.24E-06 *** 

0.41 0.33 65.6 72.8 

Palsar HV 2.21506 0.00045 *** 

  SAR+ 

Optical 
NDVI 1.104523 0.022439 * 

S1 VH 10 ent 1.134397 0.000457 *** 

Palsar HH savg 2.323204 0.020287 * 

         

Model 3 
Aspect (4,6,7) 1.21354 5.00E-07 *** 

0.65 0.6 50 57.7 

Slope 1.283596 7.15E-07 *** 

  SAR+ 

Ancillary 
Palsar HV 2.930844 9.66E-06 *** 

Palsar HH 2.438455 0.002232 *** 

Palsar HV savg 1.721521 3.65E-10 *** 

S1 VH 10 ent 2.126821 9.23E-05 *** 

         

Model 4 
Aspect (4,6,7) 1.216558 0.000842 *** 

0.68 0.62 4.9 56.6 

Slope 1.290634 1.90E-07 *** 

 SAR+  

Optical+ 

Ancillary 

Palsar HV 2.933416 4.20E-06 *** 

Palsar HH 2.459693 0.000854 *** 

Palsar HV savg 1.122131 0.000503 *** 

S1 VH 10 ent 1.736985 4.22E-10 *** 

NDVI 1.122131 0.019642 * 

 Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05   

Table 9. Evaluation of statistics of regression analysis for each model 

The prediction accuracy changes enormously when the forest ancillary data (namely, 

aspect, slope and the forest type) were added to the previous data. Model 3 in table 9 

shows the overview of the statistics of regression analysis with all the inputs without 

data from optical sensor, and the Model 4 combines also the optical data. The LOO-

validation R² for the Model 3 increases up to 0.6 and RMSE decreases to 57.7 t ha¯¹. 

For the Model 4 the prediction improves very slightly with the implementation of 
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optical data: R² = 0.62 and RMSE = 56.6 t ha¯¹. The only vegetation index selected by 

regression model as an important predictor is NDVI index for October. As in the 

previous models Palsar initial data with both polarizations was very significant 

predictor, as well as Sum Average texture measure of the Palsar HV polarization and 

the Entropy measure of the S1 stack for October.  

 

Figure 15. Linear regression of estimated above-ground biomass and reference above-ground 

biomass for 4 models (regression line in black, x = y line in red). Coefficient of determination 

R² and RMSE are presenting the results of LOO cross-validation 

Backward stepwise regression for both Model 3 and 4 found very strong correlation 

between observed AGB data, SAR imagery and the topography data indicating that 

aspect and slope parameters appear in the models always as very important predictors. 

Aspect 4, 6 and 7 amongst the aspect categories were always in the list of most 

important predictors together with slope information. The methodology for 

implementation of ancillary data in order to establish better relationships between 
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satellite data and the forest stand characteristics in the mountainous areas brought 

huge impact on the AGB prediction meaning that the LOO-validation R² increased to 

0.62 and the RMSE proportionally decreased to 56.6 t ha¯¹. 

It should be noted, that the significance of the predictors is certainly not between 

different models. For instance, Palsar HV polarization was the most significant for the 

models 1,2 and 4, but not for the model 3.  

Scatterplot of forest AGB estimation versus the reference AGB (Fig. 15) displays 

similar distribution for the models 1 and 2 meaning that in both cases biomass is 

significantly overpredicted for small and close to average biomass, for the large 

biomass the models are underpredicting. Substantially improved prediction depict 

scatterplots for model 3 and 4. In both cases small biomass values tend to be slightly 

overpredicted and the larger ones are slightly underpredicted. 

 

5.2.2  Model Comparison on Site Level 

Due to the lack of further in-situ data on biomass for the study area we discuss the 

models in the site-level, i.e. we focus on comparing the relative biomass instead of 

ability to evaluate the exact biomass. As a final product of this research we used 

trained models for Forest AGB mapping over the study area. For selection of the final 

models for comparison and AGB map evaluation we took into consideration the 

model developed with the preliminary SAR data (model 1) and best final model with 

all the variables included (model 4). The figure 16 presents the final AGB maps of 

those models, where we can see significant difference in both predicted biomass 

amount and the proportions of the biomass distribution. Model 1 as it shows the 

statistical analysis, predicted higher biomass with the mean values of 162 t ha¯¹ for the 

whole area, while the mean of biomass for the model 4 is 140 t ha¯¹ (calculated mean 

value for standing biomass is 167 t ha¯¹ from 79 sampling pints).  
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Figure 16. Forest AGB prediction maps for the study area with Model 1 and Model  

Ancillary data were found to be useful for biomass prediction due to the fact, that it 

compensates the gain of SAR backscattering caused by the azimuthal terrain slope 

(model 4). In Contrast, the model 1 without ancillary data does overestimate the 

biomass because of the increased VH value, and visual interpretation shows notable 

repetition of topography over the whole study area. In all the complex topographic 

regions we can observe high biomass value altering respectively with the local 

variation of the slope and aspect. The Figure 17 shows such example from a close 

view. 

This means, that the use of SAR data and, especially, Sentinel 1 C-band SAR data in 

mountainous areas are very problematic. However, as the radar is sensitive to the 

dielectric characters and the moisture conditions of the target, S1 time series analysis 

were able to detect the most suitable month for biomass mapping and contribute to 

this study. 
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Figure 17. Snapshot of a study area with highlighted topographic effect on the AGB 

prediction. From left to right: topographic corrected Sentinel1 data stack of October, ESRI 

HR basemap, slope map from SRTM DEM, AGB prediction map with Model 1 (R² = 0.38, 

RMSE = 70 t ha¯¹) and Model 4 (R² = 0.62, RMSE = 56.6 t ha¯¹) 

Figure 18 shows the number of samples of reference AFB data in contrast of the 

predicted data by different models, when the sampling points are grouped in three 

different ranges based on AGB amount: first group includes the points with biomass 

less than 100 t ha¯¹, second group combines the points with biomass between 100 and 

200 t ha¯¹ and the third group has the points bigger than 200 t ha¯¹. The distribution 

of frequency of the prediction ranges depicts the main discrepancies between models 

as well as those difference from the reference data. The histogram of model 1 is 

affected by smaller frequency of first range in respect of second range, which is 

proportionally wider. The frequency for the biggest range (biomass > 200 t ha¯¹) 

shows similar number of prediction and reference samples. The histogram of model 4 
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displays higher frequency for both small and middle ranges in respect to the reference 

much lower frequency for the range of  >200 t ha¯¹. 

 

 

Figure 18. Measured and predicted above-ground biomass for the models 1 and 4. Frequency 

refers to the number of observations per range. 

 

5.3  Discussion  

The results consider MLR analysis using SAR backscattering combined with texture 

measures and optical data is useful for forest biomass modeling and has been widely 

excepted and extensively used in the last years. Although, those data have significant 

constrains over the mountainous areas and are recorded by many authors (Chen et al., 

2018; Laurin et al., 2018; Vafaei et al., 2018), in this study we followed the advises of 

Chen et al, 2018, and Zhang et al., 2018, to implement forest ancillary data in the 

prediction model, which greatly improved the biomass prediction for the mountainous 

forests. Multiple linear stepwise regression model was selected for deeper 

understanding and better evaluation of multiple input variables and their role in the 

biomass prediction. Research showed that Sentinel 1 SAR dense time-series are useful 

not only for speckle reduction, but also multi-temporal analysis proved that the 

seasonal and forest phenological behavior greatly influence on the backscattering 

value. The correlation between SAR data and biomass value changes according to the 

seasonality as well as for different polarizations (Fig.14). The time period of late fall 

and the early winter is preferred for SAR analysis as the leaves are off and the ground 

is not frozen, so the shortwave C-band signal from the branches is more evident. 

Although, this regression analysis of time-series allowed to select the most relevant 
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month, the correlation of S1 data with biomass is still too low to be used for forest 

operational monitoring. Similar result and assumption is indicated in the work of 

Huang et al. (R² = 0.28) (Huang et al., 2018) and Berenguer (R² = 0.40) (Berenguer et 

al., 2018).  

The prediction accuracy obtained only with C-band was low and there is need for 

integration of Palsar L-band data. This improved the model accuracy by increasing the 

adjusted R² to 0.46. Still the model was not stabile and the LOO validation drops R² to 

0.38. This result is significantly lower compared with other studies’ results which are 

using C and L-band radar data combination. Those two factors can explain this 

difference: First, they use the commercial Palsar L-band quad polarization data, which 

is greatly higher in resolution (fine resolution product - 8.7mx5.3m pixel spacing) and 

incidence angle is available, which allows to apply all the preferred pre-processing 

steps. Second, those articles make threshold either on SAR data to detect and exclude 

areas with foreshortening and layover (Laurin et al., 2018) or on the slope value, to 

exclude steep slopes to avoid from the same effect (Berninger et al., 2018). 

For both SAR data cross-polarization backscattering there is higher correlation with 

biomass compared to co-polarization. For S1 it was always VH polarization selected 

by SWR model to be more important predictor. For Palsar data, even if both HH and 

HV polarizations were important in the predictions, HV cross-polarized 

backscattering was mostly superior over the HH co-polarization, although both of 

them were selected by the regression model as very important predictors and were not 

causing multicollinearity effect in the prediction. This result is observed in all the 

related papers.  

This research is in agreement with the results of Berninger et al. and Chen et al. which 

show that the SAR image textures measures are significantly correlated to the AGB 

information and can strongly improve the prediction model parameters (Berninger et 

al., 2018; Chen et al., 2018). Within this study entropy and sum of average measures 

for S1 stack of October and correlation measure for S1 stack of December appeared to 

be more relative to the AGB than the initial backscatter intensity itself. For the Palsar 

data sum of average of HV and correlation and entropy measures were selected for 

different models as important predictors. Besides the high correlation between texture 

measures and AGB, the contribution of GLCM analysis to such researches is the fact, 

that the different measures from the same data are not highly correlated and can be 
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combined in the same model for regression analysis. Similarly, Huang uses 5 different 

measures form the same source for training the best model (Huang et al., 2018).  

The correlation of optical data to forest AGB was very weak and only NDVI amongst 

the tested vegetation indices was selected by SWR with low importance. The 

insignificant contribution of optical data in the AGB prediction can be explained with 

the fact, that the average biomass for the forests of this study area was measured 148 

ha¯¹ while the observed saturation level for optical data in AGB prediction in the 

literature alters around 50 – 70 t ha¯¹ biomass (Zhang et al., 2018). Although some 

other studies depict higher correlation between NDMI index and the biomass 

(literature review by Joshi et al., 2016), this analysis showed no similar results. It is 

possible that for NDMI calculation more humid season is preferred, while there was 

no cloudless image for the study area from March and June.  

The use of ancillary data together with all the remotely sensed data brought a great 

impact on the regression model accuracy improving R² up to 0.62. This is the best 

result achieved within this research and is very important, as one of the hypotheses 

and the main innovation offered by this paper was the assumption that the gain or bias 

of the SAR backscattering value in mountainous areas cannot be corrected by the 

radiometric terrain correction methods, it might be mitigated by the prediction model 

when the forestry ancillary data on the sampling site is given. Amongst the ancillary 

data the slope and aspect information were always in a higher correlation with the 

biomass while combined with SAR data. Forest type information did not improve the 

biomass prediction in contrast of other studies (Laurin et al., 2018), which found it an 

important component for the prediction model. Even if the implementation of 

ancillary data greatly improves the prediction model performance as well as the visual 

observation of the product maps depict improvement in biomass distribution, more 

field data is needed to check the reliability of those models for implementing the radar 

remotely sensed data in carbon stock monitoring activities in mountainous forests. 

Backward stepwise multiple linear regression technique considerably automated the 

best variable selection as well as isolated the multicollinearity effect. For instance, 

VIF test applied after SWR test did not detect multicollinearity in the variables.  

Nevertheless, not all the studies use the same methods and measures for model 

diagnostics, which makes the result evaluation and comparison quite problematic. For 
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instance, many papers use only adjusted coefficient of determination (R²) of 

regression models for the evaluation (Chen et al., 2018; Eckert, 2012; Huang et al., 

2018), which is a results  without model cross-validation, so we cannot directly 

compare our result with the ones from those works.  

The saturation level for SAR backscattering as a general limitation, was hard to define 

as the backscattering value is suffering by the topography and cannot serve for such 

calibration. However, from the model 1 which uses SAR data only, we can observe 

level of 150-160 t ha¯¹, after which the prediction line indicates mostly 

underprediction. This result is similar to the one from Berninger, 2018, even though 

he claims saturation level for L-band with texture measures are possible to improve up 

to 250 t ha¯¹.  The saturation level research can be explored in a more accurate way 

once more sampling data is available, which can make possible to separate only flat 

areas not affected by shadowing or foreshortening and do analysis without applying 

topographic information, even though diagram (Fig. 18) shows higher uncertainty for 

the low biomass prediction. This is likely because the measured trees are only the 

ones larger than 8 cm DBHOB, therefore smaller trees available in the sampling plots 

can have significant impact on the Sentinel 1 C-band (3.75–7.5 cm wavelength) 

backscattering causing for AGB overestimation which makes this range (<100 t ha¯¹) 

the most influential. This trend of overestimation for samples with smaller biomass 

value is observed in all the similar researches (Berenguer et al., 2018; Berninger, et 

al., 2018; Huang et al., 2018; Laurin et al., 2018). 

Even if very few of the reviewed papers perform new delineation of forest boundary, 

the importance of FNF classification performed within the frames of this paperwork is 

proven with two main points:  

• FNF update shows significant (13%) non-forested areas within the forest 

enterprise, which should be taken into consideration while estimating the carbon 

stock for more realistic carbon budget evaluation. 

• As the Hansen map is a global model, the FNF delineation based on that map 

was not adjustable for the study area. Therefore, the field sampling plots design 

generated based on the Hansen map can mislead the efficiency of the field work. 

As the result showed, 26 sampling plots out of 115 were located outside of the 

newly updated forest boundaries. 
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Thus, we conclude that the biomass data calculated by statistical methods using the 

allometric equations can be significantly affected by the reasons mentioned above. As 

this paper was aiming to imitate the forest carbon monitoring activities, and 

particularly, forest AGB measurements, we are planning to compare our results with 

the one from traditional NFI once it becomes available. 

The final biomass map has 30 m spatial resolution, which is the first map having 

synoptic view on the spatial distribution of the biomass in NE forest of Armenia, yet 

with a comparable accuracy. The developed model is applicable for similar forests 

where in situ data is available. Another very important achievement is that this fine 

resolution map containing the proportional distribution of biomass can lead to more 

correct carbon estimation when used as source for carbon-related models. Therefore 

this study can facilitate the GEF/UNDP-REDD+ activities in NE forests in Armenia 

to achieve their objectives in better accuracy, as well as help to make forest carbon 

stock measurements and monitoring cost-effective. In order to calculate the carbon 

stock for the study area, the modeled forest stand biomass was reduced by a factor of 

0.47 (UNDP-GEF 00091048, 2015). For the model 1 measured carbon stock in the 

study area was 4.1 Gt, and for the model 4 it was 3.5 Gt (Fig. 16). This data is yet to 

be compared with NFI results once it is available.   

 

5.4 Limitations and Recommendations for Future Research 

One of the major limitations for this study was the lack of flat areas that could be 

analysed separately from those areas with complex topography in order to be able to 

calibrate the true value of SAR backscattering for the forests in the study area. The 

next obstacle was the lack of sampling points. As seen in number of studies, the 

outcomes of such research are strongly dependant on the sampling data quantity and 

quality․ As for the future, it is planned to collect total of 315 samples for this study 

area within the GEF-UNDP project. This amount of data itself is significantly bigger 

for model training and can make it possible to develop more sustainable prediction 

models and carry out research only on the relatively flat areas.  

This study, on the other hand, made it obvious that complex topography puts high 

uncertainty on the study in the way, that forest structure and distribution changes 

quickly on very short distances, which is not desirable for SAR data. This is because it 
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is not very clear if the pixel on the SAR scene is fitting with the field sampling plot 

very well. Thus, the backscattering value can be presenting not the real biomass 

information of the sampling plot.  

GLCM texture measures can be stronger or weaker correlated to forest biomass 

depending on the selected window size for the operation (Eckert, 2012). As for this 

research only one window size was adopted (4x4 kernel size), thus, we assume 

GLCM analysis to be not exhaustive and we consider potential possibility to improve 

prediction accuracy by adopting different window sizes for texture measures. On the 

other hand, texture analysis should be tested on the raw L-band radar data in order to 

keep the true speckle distribution and backscattering value statistics.  

When field data becomes available, this methodology of biomass prediction can be 

applied per specific group of biomasses. We assume to have better correlation 

between SAR backscattering value and the biomass of under 150-160 t ha¯¹ where the 

saturation level is observed.  

As the relevance of the SAR data and its combination with other source data are well 

explored and the best input variables for forest AGB prediction are described, we 

propose application of non-parametric regressors for generating more accurate 

biomass map, as the review of the latest studies reveal their priority over parametric 

regressors (Chapter 2.3).  
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CONCLUSION 

Overall, this study shows the usefulness of SAR backscattering data on forest biomass 

mapping, which allows to have spatially explicit AGB distribution within the forest 

site. In this research, we propose a method based on the combination of multisource 

remotely sensed data, image texture measures and forest ancillary information for 

forest AGB estimation on the mountainous areas. For this purpose, only freely 

available data sources were used. The results infer the importance of multitemporal C-

band data to avoid from backscattering saturation from moisture, also for 

multitemporal speckle filtering. However, there is a need of integration C-band with 

L-band data to reduce the uncertainty in the prediction. This study also showed that 

the GLCM texture characteristics of SAR data were the most relevant predictors for 

explaining the observed variability of AGB in the study area. The relationships 

between SAR data and stand characteristics, however, can be negatively influenced in 

areas of high topographic variation and make the AGB modelling truly problematic. 

The aspect and slope ancillary data was able to mitigate the topography effect on SAR 

data and ensured improved regression analysis with accuracy of R² = 0.62 and RMSE 

= 56.6 t ha¯¹.  

The output of this research will be provided to GEF/UNDP project in NE forests of 

Republic of Armenia and it can have an input in achieving their objectives, as well as 

supporting forest monitoring and carbon stock regulations. The achieved results need 

to be validated with more sophisticated ground-truth data in order to be implemented 

as cost-effective surrogate for NFI activities. This AGB estimation approach is 

adaptable and allows modeling of biomass in other mountainous forests with similar 

conditions.   

Further, it is worth noting that working with SAR data demands prior knowledge and 

deep understanding of pre-processing steps and the physics behind them. It should 

also be said, that this study was carried out with freely available remotely sensed data, 

and more preferred commercial data availability can significantly increase the model 

performance accuracy.  
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APPENDIX A – LINKS TO THE CODES 

 

Link address to FNF classification code in GEE API platform: 

https://code.earthengine.google.com/8e7a4e2076a6c772727eae5b57e3ef53 

Link address to Sentinel 1 pre-processing code in GEE API platform:  

https://code.earthengine.google.com/2fa5e2ce872819e3941e6bb2e0717979 

Link address to Alos Palsar pre-processing code in GEE API platform:  

https://code.earthengine.google.com/1c642faaff184c442a723f7b33d5ac26  

Link address to vegetation indices calculations code in GEE API platform:  

https://code.earthengine.google.com/442c6d44b45b51b7fc9704852246fc27  

Link address to regression analysis code in Git-Hub. Codes are in R programming 

language: 

https://github.com/armkhudinyan/SWR_analysis  

 

 

APPENDIX B -    FLOW CHART FOR OVERALL METHODOLOGY
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APPENDIX C – CORRELATION MATRIX  

 

 
Correlation matrix of the final input variables for regression analysis 
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