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Introduction

The measurement of the solar neutrino flux of Beryllium (νBe7) with Borexino experi-

ment, represents another and important tile in what that, for several decades, has been

the big puzzle of the solar neutrino physics. Together the previous results from Kam-

LAND experiment, namely the measurement of the ν flux from nuclear reactors, we ob-

tained finally a univocal solution for the parameters of the flavour oscillation theory in

which is involved the flavour of electronic neutrinos: ∆m2
12 and tan2 θ12. These param-

eters are part of the mixing matrix for the flavours of Mikheyev-Smirnov-Wolfenstein

theory (MSW). In additional, from Daya Bay experiment, recently, has been published

also the measurement of the parameter θ13 of MSW mixing matrix which for several

time presented a big indetermination.

The combination of these results, together with those from atmospheric-neutrinos (νµ

and ντ), allowed us to reach a good measurement of all main parameters of the mixing

matrix, necessary to obtain the real flux emitted in the solar core from nuclear reactions.

Unfortunately the high precision reached is not enough yet to perform a discrimination

between the fluxes produced from high (HZ�) and low (LZ�) metallicity of the solar

models. Effectively the most expected measurement, able to discriminates between two

kinds of metallicity, concerns the neutrino fluxes produced from nuclear reactions in the

CNO cycle, with a endpoint energy at 1.5 MeV. The expected flux difference produced

in the two models is about of 30-35%. Actually, the unique experiment able to perform

a measurement at these energies is Borexino. Unfortunately at these energies there are

also the 210Bi decay spectrum that, in the first three years of data taking, was subject

to some not negligible variations. These background fluctuations prevented, until now,

an accurate measurement.

iv



Chapter 0. Introduction

In the last two years it was done a long purification campaign, reducing considerably

all the main background components. This big result suggests that, in the next future,

Borexino could perform a much more accurate estimation of CNO flux. The cur-

rent estimation are not able to discriminate between two expected rates (R
LZ�
CNO = 3.5

cpd/100ton for the low metallicity and R
HZ�
CNO = 5.0 cpd/100ton for the high metal-

licity). The new challenges for the neutrino research, are related to the definition of

neutrino mass hierarchy and to the Majorana’s neutrino identification by mean of neu-

trinoless double beta decay (ν02β) and, at the same time, to find out the existence or

not of sterile neutrino and the measurement of CP angle in the MSW mixing matrix.

These new frontiers of physics require much more accurate measurements by means of

new and huge detectors of the tens of kilotons class that are going to be build.

In this thesis it has been done a not trivial analysis, mainly for the critical features of

the dataset: the measurement of the seasonal variation of the νBe7 solar neutrino, due

to the Earth revolution around the Sun. The latter represent the proof that what has

been observed with Borexino is effectively a flux of particles coming from the Sun.

The seasonal modulation, indeed, is due to elliptical shape of the terrestrial orbit in

which the eccentricity is equal to ε = 0.0167.

Effectively this measurement was hard to perform because of the very weak signal to

noise ratio and because of the not complete background stability that featured the first

3 years of the data taking. This instability and the small amplitude of the expected

signal (a variation of about 7% with respect to total flux and versus the 14% of statisti-

cal fluctuations), pushed myself to look for new methods to perform the signal analysis

in order to extract the seasonal modulation informations hidden in the Borexino data.

The “traditional” methods for the spectral analysis as FFT (Fast Fourier Transform,

Lomb-Scargle or wavelet analysis, etc.) being based on Fourier transform, cannot be

applied on non-stationary and non-periodical functions, as in the cases of any noisy

signals in which signal-to-noise ratio SNR is � 1.

Forcing these algorithms to operate on data or functions with these features, they gen-

erate an overestimation of the real spectral component (signal harmonics) and then also

the energy associated to the signal.
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Chapter 0. Introduction

For more than one decade, in the Research Centers of Adaptive Data (RCADA-NASA)

it has been developed a first algorithm able to decompose a non linear and stationary

signal in its oscillating modes by N. Huang (1998): “The Empirical Mode Decompo-

sition” (EMD). During these years the algorithms has been improved and extended to

the so called “Ensemble Empirical Mode Decomposition” (EEMD) that we adopted and

optimized for this kind of measurement. This innovative technique removed almost

completely the statistical fluctuations allowing us to extract the expected signal, even if

quietly covered by the statistical noise.

In the second part of the thesis I used the last Borexino results, in which I gave a

substantial contribution to the software development for the spectral analysis and to

implement an innovative algorithm for locating the inner vessel shape ( “ Dynamic

Vessel Shape” – DVS), to perform a study on the impact of Borexino results in the non

standard interaction field (NSI), supposed for the weak interactions with the standard

matter.

In the first chapter I will introduce the neutrino physics and the principles for the

flavour oscillation theory in the vacuum and in the matter. Therefore I will describe

the standard solar model features and the main nuclear processes that generate the

energy necessary to sustain the solar structure along with the neutrino fluxes that we

observe on the Earth. In the second chapter I will discuss the main features of Borexino

experiment and the data selection done in order to optimize the dataset for the analysis.

In the third chapter I will introduce the software and mathematical tools for the EEMD

based on Huang-Hilbert transform (HHT) in order to extract spectral information of

the from the data. In the fourth chapter I will show the data analysis, together with all

simulations done, in order to tune the best values of parameters used for applying the

new method. In the fifth chapter I will introduce the non standard interaction (NSI) for

the neutrino and relative modification of the MSW Hamiltonian. I will describe also

the simulation of neutrino propagation in the sun and in the Earth matter, in order to

study the effects of the non standard interactions during the neutrino propagation in a

medium. I will discuss also the characteristics of the main solar neutrino experiments

and the global fit, in order to study the results obtained with the NSI by means of the
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simulations of neutrino propagation performed in the “Istituto de F̀ısica Corpuscolar”

fo Valencia (Spain) with Dr. Carlos Peña Garay as advisor.
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Chapter 1

Neutrino Physics

The neutrino ν ( and antineutrino ν) is a lepton type particle described by Standard

Model (SM) as a massless particle. Its definition is due to the fact that, in all observed

interactions, the right-hand (left-hand) chirality component was never observed. There-

fore the SM cannot builds a mass term with the usual Yukawa mechanism as for all

other particles. Nevertheless the massless neutrinos are in strong contrast with all

observational evidences obtained in the last 60th years. The existence of effects as the

solar neutrino disappearance, namely the flavour oscillation of the neutrinos, could be

explained only with the existence of the neutrino mass.

The neutrino mass issue is, maybe, one of the main problems of the particle physics

today. To solve this inconsistency of the Standard Model, it has been developed sev-

eral theoretical models in which the neutrino was handled as either Dirac or Majorana

particle or as both (seesaw models).

All these new models introduced to explain the nature of the neutrino masses may

introduce new non standard interactions that, if reals, could be detected by means of

modern neutrino detectors. We will discuss these non-standard interaction in the last

chapter.

1



Chapter 1. Neutrino Physics

1.1 Neutrino Mass

1.1.1 General assumptions

In the Standard Model (SM) the neutrino particle νl (and its antiparticle νl) are defined

as neutral fermions massless with spin S = 1
2
. These kind of particles can interact only

by means of weak interactions. Along with charged leptons l∓L , they are part of a isospin

doublet ψL (left) that is invariant under transformations of type SU(2)L × U(1)Y :

ψL =

 νe

e−


L

;

 νµ

µ−


L

;

 ντ

τ−


L

ψR = e−R ; µ−R ; τ−R

(1.1)

The right-handed component, ψR in the chiral representation, is composed only by

charged massive leptons l∓R.

Experimentally we observed that in the weak interaction of neutrinos only the left

component is involved, namely only νl chiral component, whereas the right component

is never observed in any kind of interaction. For this reason we define νR as sterile

neutrinos. They are not included among the particles described by SM.

The absence of right component for the neutrino does not enable the SM to have a

Lagrangian term that could be associate to the neutrino masses. Moreover there are

not strong reasons to put in the theory both neutrino masses and its right-handed

component, except for giving a better symmetry between quarks and leptons families.

For these reasons the neutrino field in the SM is described as a Weyl spinor defined by:

iγµ∂µνL = 0 (1.2)

that describe the massless fermion fields.

The first experiments to perform a measurement of neutrino fluxes coming from the

Sun showed a flux amounting to one third with respect to what predicted by the Stan-

dard Solar Model (SSM) [86]. This was the first evidence of so called solar neutrino

problem.

These results create problems to the goodness of Standard Solar Model (SSM) and

2



Chapter 1. Neutrino Physics

the physical assumptions to calculate it. But the SSM capacity to reproduce the ob-

served data and the improvement in the measurements of the cross sections for nuclear

reactions, persuaded all to introduce a new theory to describe the disappearance of

neutrinos and the flavor oscillation.

This theory is based on an idea due to Pontecorvo (1957) [97] in analogy with the

regeneration of neutral K mesons [96].

The new theory needs of a mass term for neutrinos in the Lagrangian equation and

a matrix to perform the flavors mixing. These two new elements can be introduced

easily, but we need also of a theory that can explain the origin of them and mainly why,

unlike quarks for which the masses mu and md are of the same order of magnitude, in

the case of mν their values are so small with respect to the charged lepton.

1.1.2 Neutrino Masses and Seesaw models

In order to provide a mass to neutrino field, we can use the usual Yukawa mechanism

by writing the interaction term of neutrino field with the vacuum Higgs field. But to

write this term we must introduce a right-hand term for the neutrino field.

To describe the right–handed chiral component of the neutrino field, we can use the

Dirac formalism in which we assume the existence of a new particle: the neutrino sterile

(νs). The Dirac formalism is the standard way to provide the mass to a particle field,

but is not able to explain why the neutrino mass mν � ml.

The other class of models are based on formalism introduced by Majorana, in which we

can build the chiral right–handed component of neutrino field using charge conjugation

as follow:

νR ≡ νCL = CνLT . (1.3)

Following the Majorana formalism we can write a mass term for left-handed neutrinos:

LMmass = −1

2
mν νL

C νL +H.c. (1.4)

where H.c. means the Hermitian conjugate of Lagrangian term and

νL
C = −νTLC† (1.5)

3



Chapter 1. Neutrino Physics

This term, unfortunately, is not invariant under SU(2)L×U(1)Y transformation, then

it is forbidden by the symmetry of Standard Model. A possible theoretical solution for

this problem could be obtained through the so called “seesaw” model, in which the

Lagrangian of neutrino field contains both terms of Yukawa interaction to provide a

mass to Dirac field, and the term of Majorana mass for both components of the chiral

representation, that are νL and νR.

The advantage of this representation is that, apart from giving a mass to neutrinos, it

provides also a possible explanation for the huge difference between the mass of charge

leptons and neutrinos [107].

Assuming the existence of the right–handed chiral component νR, in the ”seesaw“

mechanism, we can write simultaneously both mass terms for Dirac’s neutrino:

L D = −mDνR νL + H.c., (1.6)

and two mass terms for the Majorana’s neutrino for both chiral components νL and

νR:

L L =
1

2
mL ν

T
L C†νL + H.c. L R =

1

2
mR ν

T
R C†νR + H.c.. (1.7)

At last we obtain a Lagrangian term for both formalisms:

L D+M = L D + L L + L R =

L D+M =
1

2
NT
L C†M NL + H.c. (1.8)

in which

NL =

 νL

νCR

 =

 νL

C νTL

 (1.9)

represents the neutrino doublet in the new chiral representation. The mass matrix M

is defined as:

M =

 ml mD

mD mR

 . (1.10)

In this representation, with a suitable change of phase for the chiral states, we can rule

out the degree of freedom related to this phase, assuming both mR and mD real and

positive and mL complex. But in this way the eigenvalues of the mass for the chiral

4
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fields are not well defined, therefore we perform a diagonalization of the mass matrix

M in Eq.1.10, by means of the unitary transformation:

NL = Û nL (1.11)

where

nL =

 ν1L

ν2L

 (1.12)

is the column vector of the chiral field left of the neutrino mass eigenstates. The unitary

matrix operator Û reads:

ÛT M Û =

 m1 0

0 m2

 (1.13)

in which mk ≥ 0.

Using the transform Eq.1.11, the Dirac-Majorana term of matrix can be written as:

L D+M =
1

2

∑
k=1,2

mk ν
T
kLC† νkL + H.c. = −1

2

∑
k=1,2

mkνk νk (1.14)

in which νk is defined as:

νk = νkL + νCkL = νkL + C νTkL. (1.15)

This kind of formalism implies that the massive neutrinos are Majorana neutrinos.

Among all possible choices, a very interesting one for the masses ML, MR and MD is:

mD � mR; mL = 0. (1.16)

From the general case, with this selection we obtain that the terms of diagonal mass

matrix are:

ÛT M Û = diag(m1;m2)

where m1 and m2 are defined as:

m1 '
m2
D

mR

, m2 ' mR (1.17)

then the weight of m2 is equal to mR, that is the heavier component of the right–handed

neutrino mass (“sterile”):

ν2L ' νCR . (1.18)

5
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For ν1, to which it corresponds the eigenvalue m1, is the lighter eigenstate which

corresponds to the left–handed eigenstate of neutrino mass:

ν1L ' −iνL. (1.19)

The idea to set mL = 0 is natural because the mass terms for the Majorana left–handed

component are not allowed by SM symmetry being invariant under SU(2)L × U(1)Y

symmetry transformation.

So far it has not been possible to establish what does it determine the mR and mD mass

values, maybe they are related to the energy scales of GUT or to the super-symmetry

breaking. However we are yet in the theoretical speculations and there are not any

experimental validations. We can note, anyway, that if the neutrinos are Majorana

neutrinos, we should be able to observe the double neutrinoless beta decay (0ν2β) [9].

1.2 Neutrino Oscillation

We start discussing the neutrino oscillation with two flavours in vacuum and in matter.

In the case of propagation in matter, we consider only the case with slow varying den-

sity (Solar case). Afterwards, we will extend the same calculation to oscillation with

three flavours and we will discuss also a modification of Mikheyev Smirnov Wolfenstein

(MSW) theory, to perform a study on the effects of the matter potential.

1.2.1 Oscillation in the vacuum

The flavour state of neutrino |νl〉 (l = e, µ, τ) is a superposition of mass states |νi〉

(i = 1, 2, 3)

|νl〉 =
∑3

i=1 Û
∗
il|νi〉 neutrino

|νl〉 =
∑3

i=1 Ûil|νi〉 antineutrino
(1.20)

along, respectively, the eigenvalues of mass mi (m1 < m2 < m3) are oscillated. The

matrix Ûil and Û∗il are called mixing matrix and complex conjugate respectively. In the

case of solar neutrinos, they are produced from β decay and electron capture, then only

6



Chapter 1. Neutrino Physics

with the electronic flavour. The oscillation process allows the mixing mainly between

νe and νµ. Only in negligible part they becomes ντ . For this reason we can limit

our discussion only to two flavours by treating the µ and τ flavour just as only one.

Without losing the generality in a second step we can extend our discussion to three

flavours. In the case of two flavours we can write the mixing matrix as:

Û = cos θÎ + i sin θσ̂2 =

 cos θ 0

0 cos θ

+ i

 0 −i sin θ

i sin θ 0


where σ̂2 is the second Pauli’s matrix, then we obtain:

Û =

 cos θ sin θ

− sin θ cos θ

 . (1.21)

In our treatment we assume a mass hierarchy such that the lighter neutrino mass is

the m1. Therefore this has to be the predominant eigenvalue in the case of electron

flavour. The same has to be in the case of m2 mass eigenvalue for muon flavour νµ

and m3 for ντ . Following the Pontecorvo’s theory [77], the difference between the mass

eigenvalues, introduces in the equation of the motion a phase term that generate the

mixing during the propagation in the vacuum.

The time evolution of a neutrino with a given flavour follow the Schrödineg equation:

i
d

dt
|νl(t)〉 = Ĥ|νl(t)〉. (1.22)

The solution of this equation it’s like:

|νl(t)〉 = e−iĤt|νl(0)〉 (1.23)

where the Ĥ it’s the Hamiltonian of system defined as:

Ĥ =

∫
d3xH(x) = −

∫
d3xL(x) (1.24)

where H(x) and L(x) are the Hamiltonian and Lagrangian densities of system. The

solar neutrinos are ultra-relativistic due to the very small mass with respect to their

emission energy. Using the natural unites (h = c = 1), we can write:

Ei =
√
p2
i +m2

i ' pi

(
1 +

m2
i

2p2
i

)
= pi +

m2
i

2pi
. (1.25)

7



Chapter 1. Neutrino Physics

where Ei and pi are the energy and momentum of eigenvalue νi.

Using the ultra-relativistic limit, we can put Ei ' pi obtaining:

Ei = pi +
m2
i

2Ei
. (1.26)

We can calculate the magnitude of probability that an initial state |νl〉, after a time t,

coincides with another state |νl′〉 by means of scalar product:

Al→l′ = 〈νl′ |νl(t)〉 = Ûl′ie
−iĤtÛ∗li. (1.27)

Therefore we can define the vacuum Hamiltonian as:

H0
l→l′ = Ûl′ie

−iĤtÛ∗li = Ûl′i

(
pi +

m2
i

2E

)
Û∗li =

= piUl′iÛ
∗
li + Ûl′i

m2
i

2E
Û∗li =

= piδli + Ûl′i
m2
i

2E
Û∗li (1.28)

where E is the measured energy of neutrino.

We can also divide this Hamiltonian in two terms:

Ĥ = e−i(Ĥ0+Ĥeff )t = e−ipte−iĤeff t. (1.29)

The momentum of neutrino, when emitted by a nuclear reaction, is fixed. Therefore

the term e−ipt represents a global phase that could be ruled out by means of re-phasing,

without changing the term that introduces the oscillation.

In the vacuum the flavour oscillation comes from the effective HamiltonianHeff , defined

as:

Heff = H1 = Ûl′i
m2
i

2E
Û∗li. (1.30)

In two flavours case we define the Hamiltonian as:

H1 =
1

2E

 cos θ sin θ

− sin θ cos θ

 m2
1 0

0 m2
2

 cos θ − sin θ

sin θ cos θ

 . (1.31)

performing the following substitution:
m2

1 =
m2

1 +m2
2

2
− m2

1 −m2
2

2
= −∆m2

2

m2
2 =

m2
1 +m2

2

2
+
m2

1 −m2
2

2
=

∆m2

2

(1.32)
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we can obtain a more compact formulation for the effective Hamiltonian:

Heff =
∆m2

4E

 − cos 2θ sin 2θ

sin 2θ cos 2θ

 (1.33)

Hence we can write the transition amplitude in the new mass eigenstate basis:

Al→l′ = 〈νl′ |νl(t)〉 =

= Û∗l′ie
−i(H0+Heff ) t Ûli ' −iU∗l′i

(
p+

m2
i

4p

)
t Ûli '

' p δll′ +
∆m2

4p

 − cos 2θ sin 2θ

sin 2θ cos 2θ

 . (1.34)

In the case of two neutrinos, we can define the flavour state as:

|νl〉 = cos θ|ν1〉+ sin θ|ν2〉

|νl′〉 = cos θ|ν2〉 − sin θ|ν1〉;

(1.35)

Performing the time evolution of the mass eigenstate:

|νi(t)〉 = e−iEit|νi(0)〉, (1.36)

we obtain the time evolution of transition amplitude:

Al→l′ = 〈νl′ |νl(t)〉 = sin θ cos θ
(
−〈ν2|ν2〉e−iE2t + 〈ν1|ν1〉e−iE1t

)
=

= i sin 2θ sin

(
E2 − E1

2
t

)
. (1.37)

Then the oscillation probability is defined as the square module of transition amplitude

Al→l′ :

Pνl→νl′ = |〈νl′|νl(t)〉|2 = sin2 2θ sin2

(
E2 − E1

2
t

)
. (1.38)

Since we are in the ultra-relativistic regime, the oscillation probability depends only on

the difference between the energies Ei of two mass eigenstate |νi〉. We can also rewrite

this phase term in terms of differences of mass ∆m2 of two eigenstates as follows:

E2 − E1 =
m2

2 −m2
1

2E
, (1.39)

9
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where

Ei ' E +
m2
i

2E
, (1.40)

then we can write the probability as:

Pl→l′ = sin2 2θ sin2

(
∆m2L

4E

)
(probability of disappearance ) (1.41)

Pl→l = 1− sin2 2θ sin2

(
∆m2L

4E

)
(probability of survival of flavour) (1.42)

in which we have substituted L = ct.

From the equations 1.41 and 1.42, we can define also the typical oscillation length for

a neutrino:

Losc =
4πE

∆m2
. (1.43)

Therefore, from these relations, we can observe that oscillations in the vacuum depend

only on the mass differences of their eigenstates. Furthermore it exists a degeneracy

on the angle, because the sin2(2θ) is symmetric with respect to:θ and π/2− θ.

Finally this degeneracy is solved by choosing ν1 or ν2 as lighter mass eigenstates pre-

dominant to generate the electronic flavour νe.

In this treatment we assumed only the propagation in vacuum, but also in this case

we can find a solution for solar neutrinos (so-called VAC solution). The values for the

mixing parameters are very far from the Large Mixing Angle solution (LMA) found

with the results of KamLAND experiment [87].

As we will see in the next section, when the neutrino passes through the matter with

a non homogeneous electronic density, as in the case of the Solar interiors, a resonant

effect take place for the effective Hamiltonian term, that increase the oscillation effects

increasing also the suppression factor for the electronic neutrinos with respect to vac-

uum case.

10
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Figure 1.1: Comparison of survival probability as a function of energy with and without matter
effect (MSW theory) by assuming ∆m2 = 5.0780× 10−5 eV 2 and sin2(2θ) = 0.7526.

1.2.2 Oscillation in matter: Solar case

The ordinary matter is composed only by electron leptons, the unique channel with

which the neutrino can perform an interaction is the weak channel. In the ordinary

matter, the neutrinos νµ and ντ , in order to conserve the leptonic number, can interact

only by means of the neutral boson Z0 (through the neutral current, NC) whereas the

electron neutrino can interacts also by means of the charged bosons W+ and W− (or

charged current, CC).

The Lagrangian for the three flavours is composed, as well as the kinetic term, also by

two weak interaction terms with fermion present in matter (e, p(uud) and n(udd)):

Leff = LKin + LW± + LZ0 . (1.44)

Since that the neutrino energies are of the order of MeV, Eν �MW± (80 GeV) < MZ0

(91 GeV), we can approximate of the weak interaction constant with the Fermi constant

11
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GF . Therefore the elastic scattering for the charged current (CC) is described from

Lagrangian:

LW±(x) = −GF√
2

[
νe(x)γµ

(
1− γ5

)
e(x)

] [
eγµ

(
1− γ5

)
νe(x)

]
(1.45)

that, by applying the Fierz identity, becomes:

LW±(x) = −GF√
2

[
νe(x)γµ

(
1− γ5

)
νe(x)

] [
eγµ

(
1− γ5

)
e(x)

]
. (1.46)

In this way we separated the electron and neutrino contributions. From Eq.1.46 we can

calculate the expectation value of the interaction Hamiltonian of neutrinos with the

background electron in the medium, assuming that they are stationary with respect to

the incoming neutrinos:

〈νe(x), e(pe, s)|ĤW±|νe(x), e(pe, s)〉 =
GF√

2

[
〈νe|νe(x)γµ

(
1− γ5

)
νe(x)|νe〉

]
×

×
∫

d3pe f(Ee, T )
1

2

∑
s=±1

[〈e−(pe, s)|e(x)γµ(1− γ5)e(x)|e−(pe, s)〉], (1.47)

in which the electron state |e−(pe, s)〉 is defined by:

|e−(pe, s)〉 =
1

2EeV
as†e (pe)|0〉. (1.48)

The function f(Ee, T ) is the statistical distribution of the electron energy Ee, that

depends on the background temperature T . This function is normalized such that:∫
d3pef(Ee, T ) = ρeV, (1.49)

where ρe is the electron density in the medium and V is the Volume. Then ρeV is the

total number of electrons.

By performing the average on the helicity in the Eq.1.47 and integrating over d3pe, we

obtain the effective Hamiltonian for the charged current:

Ĥeff (x) = 2Eνe VCC [νe(x)γ0(1− γ5)νe(x)] (1.50)

where

VCC =
√

2GFρe. (1.51)
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W

νe e−

e− νe

Z

νe,νµ,ντ νe,νµ,ντ

e−,p,n e−,p,n

Figure 1.2: The Feynman diagrams of the coherent forward elastic scattering processes that
generate the CC potential VCC through W± exchange and the NC potential VNC through
Z0 exchange.

In the integral present in Eq.1.47, the electronic term is composed by a vectorial part

eγµe and a axial part eγµγ
5e (V − A). The vectorial part determines the current in

the medium that vanishes in average. The axial term vanishes because there are not

present resultant magnetic fields able to polarize the medium. Therefore the only term

present is the electronic density Je = (ρe(x), ~Je) ≡ ρe(x).

The interaction for the neutral current (NC) is given by the equation:

H NC
eff =

GF√
2

∑
l=e,µ,τ

[
νl(x)γµ(1− γ5)νl(x)

] ∑
F=p,n,e

[
F(x)γµ(gFV − gFAγ5)F(x))

]
(1.52)

in which F represents all fermions present in ordinary matter, that are the protons

p(uud), the electrons e and the neutrons n(udd). The potential of matter is generated

by the interaction of all flavours with the fermions F :

V FNC =
√

2GFρFg
F
V (F = e, p, n). (1.53)

Since the matter is neutral in average, the number of electron is equal to the protons

number, therefore the respective contributions cancel out each other:

geV = −1

2
+ 2 sin2 θW elettroni (1.54)

gpV = 2guV + gdV =
1

2
− 2 sin2 θW protoni p = uud. (1.55)
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The only contribution remaining is the one provided by neutrons:

gnV = guV + 2gdV = −1

2
neutroni n = udd. (1.56)

Therefore the term of the matter potential for neutral current is:

VNC = −1

2

√
2GFρn. (1.57)

This potential, unlike the one provided by charged currents, is in common to all three

flavours of neutrinos, therefore originates a global phase term that does not modify

the flavour oscillation term. It can be ruled out making a simply change of the global

phase that does not change the Hamiltonian. The time evolution of a neutrino with

a given flavour νl (l = e, µ, τ) and with momentum ~p, is described by the following

Hamiltonian:

Ĥ = Ĥ0 + ĤI = Ĥeff + ĤI (1.58)

where Ĥeff is the vacuum term of Eq.1.33, for which the mass states |νi〉 (i = 1, 2, 3) are

eigenstates (Ĥeff |νi〉 = Ei|νi〉 and Ei =
√
~p2
i +m2

i ) and ĤI is the matter interaction

term:

ĤI |νl〉 = Vl|νl〉 (1.59)

in which Vl is matter potential defined as sum of the charged and neutral current

contributions:

Vl = VCCδle + VNC =
√

2GF (ρeδle −
1

2
ρn) (δle = 0 se l 6= e). (1.60)

In the case of two flavours, we can write the effective Hamiltonian through the matter

as:

Ĥmatter
eff = Ĥeff + 2EV̂CC(x) =

=
∆m2

2

 − cos 2θ sin 2θ

sin 2θ cos 2θ

+

 2
√

2EGFρe(x) 0

0 0

 (1.61)

where it has been added, in the Eq.1.33, also the charged current interaction term

due to the electron neutrinos interaction with the matter electrons. Therefore we can

rewrite the matter potential VCC as:

V̂CC(x) =

 √2GFρe(x) 0

0 0

 =
√

2GFρe(x)

 1 0

0 0

 =
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=
√

2GFρe(x)

 1
2

0

0 1
2

+

 1
2

0

0 −1
2

 (1.62)

The first term in the Eq.1.62 becomes a simply global phase that we can eliminate,

obtaining the diagonal term called Wolfenstein term:

V̂CC(x) =
1

2

 √2GFρe(x) 0

0 −
√

2GFρe(x)

 , (1.63)

from which we obtain the final Hamiltonian of neutrino field in matter with electron

density ρe(x):

Ĥmatter
eff =

∆m2

2

 − cos 2θ sin 2θ

sin 2θ cos 2θ

+
1

2

 2
√

2EGFρe(x) 0

0 −2
√

2EGFρe(x)

 .

(1.64)

To obtain a more compact form we can use the following definitions:
∆m2

m cos 2θm =
∆m2

4E
cos 2θ −

√
2GFρe(x)

∆m2
m sin 2θm =

∆m2

4E
sin 2θ

(1.65)

therefore we obtain:

Ĥmatter
eff =

∆m2
m

2

 − cos 2θm sin 2θm

sin 2θm cos 2θm

 . (1.66)

From the Eq.1.65 we can obtain the equation for ∆m2
m and tan2 2θm:

∆m2
m =

1

4E

√
∆m2 sin2 2θ − (∆m2 cos 2θ − VCC(x))2 (1.67)

tan 2θm =
sin 2θ

cos 2θ − VCC(x)
4E

∆m2

(1.68)

In order to study the time evolution of neutrino field in matter, we assume that the

initial flavour state of neutrino is the electron neutrino (l = e). We can neglect the

common phases because they do not interfere with the terms that produce the oscilla-

tion.

The Schröedinger equation for the neutrino in matter is:

i
d

dt

 νe

νµ

 =
∆m2

m

4E

 − cos θm sin θm

sin θm cos θm

 νe

νµ

 . (1.69)
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Let us perform the following transformation: νe

νµ

 = Ûm

 ν1

ν2

 (1.70)

where the unitary matrix

Ûm =

 cos θm sin θm

− sin θm cos θm

 (1.71)

is the effective mixing matrix in matter. Therefore we obtain a new time evolution

equation in the mass eigenstate ν1 and ν2:

i
d

dt

 ν1

ν2

 =
1

4E

 −∆m2
m −4Eidθm

dt

4Eidθm
dt

∆m2
m

 ν1

ν2

 . (1.72)

The off-diagonal terms, proportional to dθm/dt, are due to the derivative

d

dt

 νe

νµ

 =
dÛm
dt

 ν1

ν2

+ Ûm
d

dt

 ν1

ν2

 .

If the matter density is constant then dθm/dt = 0. Therefore the evolution of the

effective masses of neutrinos in matter are decoupled providing the following transition

probability:

Pνe→νµ = sin2 2θm sin2

(
∆m2

mx

4E

)
(1.73)

that has the same structure of the vacuum case in Eq.1.41. If the matter density is not

constant, as in the solar case that has an exponential trend as a function of the radius

ρe(x) ∝ e−αr/R� , the off diagonal terms does not vanishes, but their values are:

dθm
dt

=
1

2

2E sin 2θm
∆m2

m

dVCC(x)

dx
(x = t natural units). (1.74)

The effect of the off diagonal term in Eq.1.72 is to generate a transition, that is a

mixing, between the mass eigenstates in matter ν1 and ν2.

This transition is negligible if the off-diagonal terms are much more smaller than the

differences between the diagonal terms. We can also introduce an “adiabatic” param-

eter γ in order to quantify the amount of this transition:

γ =
∆m2

m

4E|dθm/dt|
. (1.75)
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For the sake of simplicity in the calculation it is more advantageous to rewrite the

adiabatic parameter in term of the vacuum parameters, that are ∆m2 and sin 2θ0 as

shown in [54]. Therefore we have:

γ =
∆m2 sin2 2θ0

2Eν cos 2θ0|∇ ln ρe(x)|res
(1.76)

where |∇ ln ρe(x)|res is the logarithmic derivative of the electronic density evaluated in

the point where the resonance occurs. In the case of the Sun this derivative is equal to

|∇ ln ρe(x)|res ' 1/R� being ρe(r) ' 254 NA e
(−10.54 r/R�) (where NA is the Avogadro

number).

If γ � 1 along all neutrino trajectory, the transition between the mass eigenstates is

negligible, therefore the evolution is called adiabatic. In the Sun the time evolution of

Figure 1.3: Trend of mass eigenstates with the electron density of the matter in the two
flavours case with the Large Mixing Angle solution. The black dashed line is the point where
the resonance occurs for a fixed energy of initial neutrino (in this case Eν = 5MeV of solar
case).

the neutrino states is adiabatic because of γ > 104, therefore the transition between

the mass eigenstates cannot occur as shown in Fig.1.3.

A more general formulation for the survival probability was provided by Parke 1986
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[55] for a neutrino in a non homogeneous medium:

Pνe→νe =
1

2
+

(
1

2
− Pc

)
cos 2θ0 cos 2θm (1.77)

where, from Eq.1.65 we obtain:

cos 2θm =
∆m2 cos 2θ0 − 2EVCC

∆m2
m

(1.78)

while Pc defines the probability that, in the resonant point, it occurs the transition

between the mass eigenstates ν1 � ν2:

Pc =
e−(πγ/2)F − e−(πγ/2)(F/ sin2 θ0)

1− e−(πγ/2)(F/ sin2 θ0)
. (1.79)

F depends on the density profile of the matter. In solar case the matter density varies

as an exponential, therefore:

F = 1− tan2 θ0. (1.80)

The adiabatic parameter in the Sun has a very large value as showed above, therefore

from Eq.1.79, Pc = 0. This means that the neutrino states produced in a given mass

eigenstate νi (i = 1, 2, 3) at begining, will exit the solar surface in the same eigenstate

(Fig.1.3).

We have an adiabatic evolution in the Sun because of the low energy of neutrinos.

Particular cases take place in the supernova or neutron star, in which the matter

density is very large with respect to the solar case.

The matter term depend from the matter density through the neutrino travel. In the

solar core the matter density is ρe(x) ' 150g ·cm−3 (VCC � ∆m2
0 cos 2θ0) while it takes

much more smaller values close to the solar surface, where the densities are similar to

the vacuum value (∆m2
0 cos 2θ0 > 2EVCC). The resonance occurs in the Sun when the

following identity is satisfied:

2EVCC = ∆m2
0 cos 2θ0. (1.81)

The crossing of the neutrinos through the resonance point is fundamental to explain

the disappearence of solar neutrinos observed on the Earth. Starting from Eq.1.68, if

the relation 2EVCC = ∆m2
0 cos 2θ0 is verified, we have that:

tan 2θm →∞ and θm = 45◦,
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that is the mixing between the flavour states is maximized independently from the real

value of the mixing angle in vacuum θ0.

The resonance depends obviously also on the neutrino energy, in particular for neutrino

energies smaller that Eν < 2MeV , the mixing angle is equal to the vacuum θm = θ0.

Therefore the survival probability is:

Pνe→νe = 1− 1

2
sin2 2θ0. (1.82)

For Eν ≥ 2MeV the survival probability becomes:

Pνe→νe =
1

2
+

1

2
cos 2θ0 cos 2θm. (1.83)

In the case of high energy for the solar neutrino (Eν � 2MeV ) as for the 8B and hep

neutrino (Eν ' 15MeV ), the survival probability becomes:

Pνe→νe ' sin2 θ0 (1.84)

as shown in Fig.1.1.

1.2.3 Earth Regeneration

The Earth flavour regeneration is an effect due to the density of the Earth internal

structure. During the day time the solar neutrino crosses only the atmosphere and

a tiny layer of the crust, therefore these effect are completely negligible. But during

the night time, starting from the sunset, the interaction of the neutrino flavour states

with the matter electron density are not negligible. The Earth density reaches about

13 g/cm3 that is close to a tenth of solar core density. Therefore the effect on flavour

neutrino state are observable for neutrino energies greater than 1 MeV, as already con-

firmed by Borexino experiment in which no Day/Night asymmetry in the Beryllium

neutrino flux has been observed [18]. The survival probability for solar electron neu-

trino is given in Eq.1.77. In general for three flavour case, assuming that Pc = 0 for

solar/earth cases, the survival probability is:

PD
ee = cos4 θ13

(
1

2
+

1

2
· cos θ12 · cos θ�

)
+ sin4 θ13 (1.85)
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where θ� = θm is evaluated in the resonance point inside the solar core. During the

night time the neutrino flux passes across the earth interior and some of the previously

oscillated neutrinos come back with electron flavour, increasing the number of electron

neutrinos observed in the experiments. In general we can write the total survival

probability in the Sun+Earth (�+⊕) system as:

P�+⊕
ee = P�e1 · P⊕1e + P�e2 · P⊕2e (1.86)

Starting from day time probability PD
ee , we have for the night time total probability:

PN
ee = PD

ee − cos 2θ� cos2 θ13〈freg〉zenit (1.87)

where 〈freg〉zenit represents the average regeneration effect of the earth given by:

freg = P⊕2e − sin2 θ12 cos2 θ13 (1.88)

where P2e is the transition probability of the second mass eigenstate to νe in the earth

[50, 51].

1.3 Standard Solar Model and Neutrino Sources

1.3.1 The Standard Solar Model

The Sun is a star in the main sequence with a mass of M� = 1.9984 × 1033 g with a

age of t� = 4.57 Gyr, therefore the large part of energy produced by nuclear reaction

is due to Hydrogen burning in the central core. The internal structure is characterized

by a radiative central region (about 97% of the total mass), in which there is a slow

diffusion of chemical elements and the radiative gradient of temperature is dominant.

The more external layers of the solar structure, about 3% of the total mass, is occupied

by the convective envelop where the convective beehives mix continuously the stellar

plasma homogenizing the distribution of the chemical elements.

The solar model describes the time evolution of a star with one solar mass M = 1M�

for a time interval equal to t� by reproducing the measured values of the main physical

quantities:
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– Solar Radius R� = (6.95508± 0.0003)× 1010 cm;

– Solar Luminosity L� = (3.844± 0.015)× 1033 erg s−1;

– Metallicity (Z/X)� of the chemical set used to define the solar model to reproduce

the actual values of solar photosphere.

These quantities are obtained by solving a system of differential equations [82] for the

pressure, radius, luminosity and temperature plus another one for the chemical evo-

lution depending also on the time. The thermodynamic conditions of the plasma are

described by the equation of state (EOS) [31, 32, 33]. Another important parameter in

the solar model is the mixing length α, that is the distance in which a single cell of the

solar structure lose its identity and its physical features of pressure and temperature.

Varying the initial metallicity Zi and initial Helium composition Yi, along with the

value of the mixing length α, the model tries to reproduce the actual physical features

of the Sun by minimizing each observable with a precision of ∆Xi/X
exp
i ' 10−4. The

information about the chemical abundances present in the Sun comes mainly from two

very different sources: the photosphere spectral analysis and the analysis of chemical

abundances of the chondrite meteorites of type CI [83].

Both kinds of analysis present advantages and disadvantages. The spectroscopic anal-

ysis of solar photosphere gives information about several elements, but the abundances

are photosphere model depending, namely the way with which we reproduce the ab-

sorption line present in the spectrum. The analysis of chondrite does not provide a

complete information about the lighter elements as H, He, C, N, O, and Ne, because

their are volatile and therefore the meteorites are depleted of.

As results of this model we have the initial distribution of chemical elements in the

pre-sequence state of the Sun Xi, Yi, Zi (very important in order to study the chemical

environment in which the solar structure is born and also chemical evolution of this

galaxy region), the depth of the convective envelope, measured also by means of he-

lioseismological data, the density distribution of the proton, neutron and electrons in

the solar structure, along with the temperature distribution and finally, related to tem-

perature and chemical distributions the neutrino production distribution and relative
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Source BPS08(GS) BPS08(AGS) Difference

pp 5.97(1± 0.006) 6.04(1± 0.005) 1.2%

pep 1.41(1± 0.011) 1.45(1± 0.010) 2.8%

hep 7.90(1± 0.15) 8.22(1± 0.15) 4.1%

7Be 5.07(1± 0.06) 4.55(1± 0.06) 10%

8B 5.94((1± 0.11) 4.72(1± 0.11) 21%

13N 2.88(1± 0.15) 1.89(1 +0.14
−0.13) 34%

15O 2.15(1 +0.17
−0.16) 1.34(1 +0.16

−0.15) 31%

17F 5.82(1 +0.19
−0.17) 3.25(1 +0.16

−0.15) 44%

Cl 8.46+0.87
−0.88 6.86+0.69

−0.70

Ga 127.9+8.1
−8.2 120.5+6.9

−7.1

Table 1.1: Predicted solar neutrino fluxes from solar models. The table presents the predicted
fluxes, in units of 1010(pp), 109( 7Be), 108(pep, 13N,15 O), 106( 8B,17 F), and 103(hep) cm−2s−1.
Columns 2 and 3 show BPS08 for high and low metalicities; and column 4 the flux differences
between the models.

rates.

1.3.2 Solar Neutrino Sources

Looking at Tab.1.1 we observe the effect of different chemical composition on neutrino

fluxes generated in the Sun by nuclear reactions. A different chemical composition of

solar structure means a different metallicity and then a different temperature in solar

core.

These have effects also on nuclear reaction rates and on densities of the solar core.

This is called also the solar metallicity problem in which only by means of neutrino

fluxes measurement we can find a solution. The solar metallicity determine only a

small variation in the solar neutrino fluxes about 10% in the φBe7ν case. But the

sum of the uncertainties of physical input in the solar model plus the uncertainties

in solar neutrino detectors do not permit us to distinguish between two solar models
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with different metallicity defined in GS98 [83] and AGS05 [84]. An update of the

Oxygen abundances is done in AGSS09 [85] in which we have better agreement with

helioseismological data with respect to AGS05 but without important changes in the

values of solar neutrino fluxes shown in Tab.1.1.

Only the CNO neutrinos have important changes in the flux with a difference of about

30-35% between two models.

Presently the only experiment potentially able to perform the measurement of the

CNO flux is Borexino. The stars in hydrogen burning phase (H − burning) as the Sun

releases the nuclear energy by means of fusion of 4 hydrogen nuclei in one of Helium.

In the solar case this process is done mainly by means of the so called pp-chain that

produces about the 99% of the total energy and only for the 1% by mean of the bi-cycle

of the CNO. The pp-chain starts with the reaction

p+ p→2 H + e+νe (1a) (BR ∼ 99.75%) (1.89)

in which is produced the so called νpp with a very small energy (Epp ≤ 0.42MeV ) but

with most intense flux (φpp ∼ 1010 cm−2 s−1), about the 98% of total flux. Together

this reaction, with a smaller branching ratio (BR ∼ 0.25%), there is also the electron

capture by two protons:

p+ p+ e− →2 H + νe (1b) (1.90)

in this case the neutrino is monochromatic with a energy Epep=1.442 MeV with a flux

of φpep ∼ 108 cm−2 s−1.

The Deuterium 2H (or D) produced in these reaction react in a very fast way with

another proton by producing the helium 3He:

2H + p→3 He+ γ (2) (1.91)

From the following reactions done by the Helium it originates the four channels of the

pp-chain, that is the pp− I:

3He+3 He→4 He+ 2p (3) (BR ∼ 86%) (1.92)

the remaining 14% is done by means of the reaction:

3He+4 He→7 Be+ γ (4) (1.93)
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from which it descends the pp− II channel:

7Be+ e− →7 Li+ νe (5) (1.94)

done by the 98.89% of Beryllium produced and that generates also the neutrino νBe7

observed in Borexino with a flux of the order φBe7 ∼ 109 cm−2 s−1 and a monochromatic

energy of EBe7 = 0.862 MeV. About 10% of the neutrinos produced by this reaction

is emitted at lower energy (EBe7∗ = 0.386 MeV) due to a meta-stable state of the 7Li

nucleus.

A small part of the remaining Beryllium makes a reaction with the protons producing

the pp− III channel:

7Be+ p→8 B + γ (6) (BR ∼ 0.11%) (1.95)

The 8B produced in this reaction is not stable and then it decaies by means of β+

channel producing the νB8 neutrino (φB8 ∼ 106 cm−2 s−1) with a maximum energy of

EB6 ≤ 16 MeV.

8B →8 Be+ e+ + νe (7) (1.96)

The last channel of the pp-chain is a very rare reaction with a BR∼ 2 × 10−5% with

the highest emitted energy Ehep ≤ 18.55 MeV:

3He+ p→4 He+ e+ + νe (8). (1.97)

The neutrino flux for this reaction is very low about φhep ∼ 103 cm−2 s−1 The total

energy produced in the pp-chain is equal to the difference between the four proton

masses and the final nucleus of Helium (4He) produced at the end of the process. Part

of this energy is lost by means of the kinetic energy of the neutrinos.

In solar core it is present also a quantity of the Carbon, Nitrogen and Oxygen that

produces also the 4He by means of the CNO cycle. Also this cycle gets four nuclei of

hydrogen and transforms it in the final 4He nucleus by means of the proton capture.

During this cycle they are produced three neutrino spectra that, after the νBe7 are

the most intense fluxes of neutrinos. In Tab.1.2 we summarize the main reactions and

relative maximum energy for each neutrino spectrum.
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Reazioni CNO cycle Label Energia ν
(MeV )

12C + p→ 13N + γ
13N → 13C + e+ + νe N13 ≤ 1.2MeV

13C + p→ 14N + γ
14N + p→ 15O + γ

15O → 15N + e+ + νe O15 ≤ 1.732MeV
15N + p→ 12C + α
15N + p→ 16O + γ
16O + p→ 17F + γ

17F → 17O + e+ + νe F17 ≤ 1.732MeV
17O + p→ 14N + α

Table 1.2: Scheme of the nuclear reaction of the CNO bi-cycle with relative end-points of
spectral energies.

The CNO fluxes are much more sensitive to the metallicity variation also because

the efficiency of these reaction are highly sensitive to temperature variation in the solar

core.
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Figure 1.4: pp-chain reactions.

Figure 1.5: Bi-cycle CN-NO reactions.
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Figure 1.6: Total neutrino spectra generated in the solar core by nuclear reactions.
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Borexino Experiment

2.1 Introduction

The particular conditions of low background radioactivity and the innovative technique

adopted to detect the neutrino-electron elastic scattering events, based on mineral

liquid scintillator, make Borexino the only experiment able to detect in real time the

solar neutrinos at low energy. The threshold energy of detector is posed to Ethr >

250keV , because of the presence of 14C background of beta events present in the liquid

scintillator.

The Borexino detector [16] is composed by a set of concentric shells of increasing radio-

purity with, in the center, the inner scintillating core, as shown in Fig.2.2. The liquid

scintillator is a mixture of pseudocumene (PC,1, 2, 4 − trimethylbenzene) and PPO

(2, 5 − diphenyloxazole, a fluorescent dye) at a concentration of 1.5 g/l [20]. The

scintillator mass (278-ton) is contained in a 125 µm thick spherical nylon Inner Vessel

(IV) [19] with 4.25 m radius surrounded by 2212 photo-multipliers (PMTs). A second

5.5 m radius nylon Outer Vessel (OV) surrounds the IV, acting as a barrier against

radon and other background contaminations originating from outside. The region

between the IV and the OV contains a passive shield composed of PC and 5.0 g/l

(later reduced to 3.0 g/l) of DMP (dimethylphthalate), a material that quenches the

residual scintillation of PC, so that the scintillation signals arising in this region are

suppressed and, the only signals present, are those coming from the center of the IV
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Figure 2.1: Internal structure of Borexino detector.

[22]. A 6.85 m radius the Stainless Steel Sphere (SSS) encloses the central part of

the detector and serves also as a support structure for the 2212 8” PMTs (ETL 9351)

PMTs.

The region between the OV and the SSS is filled with the same inert buffer fluid (PC

plus DMP) which is layered between the IV and the OV. Finally, the entire detector

is contained in a tank (9 m radius, 16.9 m height) filled by ultrapure water. The

total liquid passive shielding of the central volume from external radiation (such as

that originating from the rock) is thus 5.5 m of water equivalent (m.w.e). The water

tank serves also as an active veto (Outer Detector OD) allowing the detection of the

Čerenkov light induced by muons crossing the detector. For this purpose 208 PMTs

are installed on the external side of the SSS [13].

2.2 Neutrino induced events

The solar neutrino particles are detected by means of elastic scattering with the elec-

trons of the liquid scintillator. The incoming neutrino, in the scattering process lost
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part of initial energy Eν , that is transfered to the electrons and, by mean of recoil, pro-

duce the isotropic scintillation light signal. Therefore we lose any spatial information

about the initial direction of neutrinos. The endpoints of neutrino spectra are given

by:

Tmaxe =
Eν

1 +
2mec

2

2Eν

(2.1)

where Eν is the initial neutrino energy. In the case of 7Be neutrino (Eν = 0.862MeV )

and for the pep (Eν = 1.44 MeV ) the endpoints of recoil spectra are at Tmaxe is

0.665 MeV and 1.22 MeV respectively. The cross section of this reaction is provided

by standard electroweak theory. At high energies (for 8B and hep neutrino) we have to

take into account of the radiative corrections that reduce the probability of interaction

of about 4% [58], instead at lower energies these corrections are negligible. Borexino

can detect neutrinos of all flavors, but νe have a larger cross section than νµ and ντ ,

because νe interact through both charged and neutral current interactions, while the

other one interact only via the neutral current. The ratio of the cross sections is about

σx/σe = 0.27 for pp neutrinos, σx/σe = 0.21 for 7Be neutrinos and σx/σe = 0.15 for

neutrinos with energy higher that 5.5 MeV.

R = Ne

∫
dE ′

dφα
dE ′ν

[σe(Pee + (1− Pee)σx] (2.2)

where Ne is the number of target electrons and dφα/dE is the differential energy spec-

trum of solar neutrinos να.

2.3 Background events

The Borexino experiment is located in the Hall C of the underground laboratory where

the radioactivity of the rocks is much more lower with respect to other underground

laboratory sites. The shielding provided by Monte Aquila with 1400 m of rocks (∼ 3300

m.w.e. – meters of water equivalent) reduce the muon flux of a factor of 106 times (∼

4000 m−2 d−1) identified by means of muon veto of outer detector (OD) [23]. Since the

very rare neutrino events are practically indistinguishable from other ionizing events
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Solar ν GS98 Flux AGSS09 Flux e− recoil Rate Main
1010[cm−2s−1] 1010[cm−2s−1] end point background

[ MeV] [cpd/100 tons]

pp 5.98 (1±0.006) 6.03 (1±0.006) 0.26 133 14C
7Be 5.00 (1± 0.07) 4.56 (1± 0.07) 0.665 47.3 ± 3.4 85Kr, 210Bi
pep 1.44 (1± 0.012) 1.47 (1± 0.012) 1.22 2.0 ± 0.4 11C, 210Bi

CNO 5.24 (1± 0.84) 3.76 (1± 0.60) 1.52 5.4 ± 0.8 (3.80.6
−0.5) 11C, 210Bi

8B 5.58 (1± 0.14) 4.59 (1± 0.14) 17.72 0.49 ± 0.05 208Tl, ext γ

Table 2.1: The solar neutrino flux, the expected neutrino interaction rate in Borexino and the
main isotopes producing background. We report the fluxes of neutrinos calculated with the
High Metallicity Solar Model (GS98SSM) and the ones obtained with the Low Metallicity
model (AGSS09). The rate calculations are based on the high metallicity SSM using the
MSW–LMA oscillation parameters from [10]. For the CNO neutrinos the interaction rate
obtained with the low metallicity SSM is also reported. The last column lists the most
relevant background component in the same energy region of recoil energy spectrum.
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Figure 2.2: Solar neutrino spectrum.

produced by natural radioactivity at the same energy (250-800 keV), extremely high

radiopurity standards must be met by the experiment. The main residual contaminates

present in the fiducial volume have a maximum spectral energy lower than (Te < 2.6

MeV). In several case we can eliminate their contribution by mean of identification of

the events (fast coincidence or random events) but also because generated by muons
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that traveling across the detector (i.e. 11C events). Another way to identify the α-like

events by β-like events (in which are present also the neutrino events) is through the

pulse shape of the signal event. To perform all these identifications and selection has

been developed a system of 15 Standard Cuts via software able to make a filtering of

data with which to perform the analysis.

In Fig.2.3 is visible an example of spectral background population present in the Borex-

ino spectrum and a typical effect of software filtering for the 11C. In this case the re-

duction has been done of 98% [92]. The main components observable in the spectrum

are:

14C

The 14C is produced in upper atmosphere layers by interaction of cosmogenetic neu-

trons with nitrogen. It has a half-life of 5730 years hence it is continuously generated

by cosmic ray flux. The beta emission has an endpoint at Eβ = 156keV . To reduce

its contamination the liquid scintillator of Borexino is produced only with petroleum

extracted from deeper underground sites, reducing in this way of a factor ∼ 10−18 g/g

the contamination compared to the usual values [94]. Even with the large reduction

in contamination, 14C is by far the largest background in Borexino and it determines

the lowenergy threshold of the detector. The 14C rate is roughly 40 counts per second

(cps) /100 tons ( 75 000 times higher than the expected 7Be signal rate), though a

hardware trigger threshold at 50 keV reduces the trigger rate to roughly 29 cps in the

IV.

238U and 222Rn

The 238U is a primordial radioactive isotope with a half life of 4.5 billion years. It

is the most common isotope of uranium, with a natural abundance of 99.3%. The

concentration of contaminants of the 238U chain in secular equilibrium can be measured

by identifying the fast decay sequence 214Bi – 214Po:

214Bi→ 214Po + e− + ν̄e (2.3)
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Figure 2.3: List of background components present in the Borexino spectrum after the
Standard cuts. In the upper figure the 11C spectrum (magenta) is reduced by means of
three fold coincidences [24, 92]. In both the figures have been subtracted the monoenergetic
peak of 210Po (α-particle) by mean of statistical subtraction.

214Po→ 210Pb + α, (2.4)

with τ = 237 µs, Q of the 214B–decay equal to 3.272 MeV and α energy of 7.686 MeV

that offers a delayed coincidence tag. However, these two isotopes are 222Rn daughters

and the hypothesis of secular equilibrium is often invalid due to radon diffusion through

surfaces or the possible contamination of the scintillator with radon coming from air.

The 238U concentration in the scintillator has been inferred from the asymptotic 214Bi –
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Figure 2.4: 214Bi – 214Po events during the whole data taking. The peak are present in
coincidence of some operations within the detector as refilling or calibration campaigns in
which have been inserted some tools from the external clean rooms. The radon present in
the air had increased for few days the contaminations of Radon.

214Po rate in the FV in absence of operations. The mean event rate in the FV in

the period from May 2007 to May 2010 is (1.72 ± 0.06) cpd/100 tons while the mean

asymptotic rate during periods far from any detector operation is (0.57 ± 0.05) cpd/100

tons. This last number has been used to evaluate the intrinsic 238U contamination of

the scintillator assuming secular equilibrium in the radioactive chain. The resulting

contamination of (5.3 ± 0.5) × 10−18 g/g. This is 20 times lower than the target

design of Borexino. Figure 2.4 shows the 214Bi – 214Po rate versus time in the whole

scintillator volume.

11C

The 11C is the dominant cosmogenic background in Borexino and the biggest challenge

for the measurement of pep and CNO neutrinos. About 95% of this nuclide is produced

by cosmogenic muons through a reaction resulting in the emission of free neutrons:

µ+ 12C → µ+ 11C + n· (2.5)
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Consequently, 11C decays with a mean life τ = 29.4 min via positron emission:

11C → 11B + e+ + νe· (2.6)

The total energy released in the detector is between 1.02 and 1.98 MeV (β+ with

Q–value of 0.96 MeV plus 2 × 0.511 MeV γ–rays from e+ annihilation) and lies in

the energy region of interest for the detection of electron recoils from pep neutrinos.

In the Borexino scintillator, neutrons (produced also together with 11C, see Eq. 2.5)

are captured with a mean lifetime of (254.5 ± 1.8) µs [13]) on Hydrogen, producing

characteristic 2.22 MeV γ rays. The muon flux in the underground laboratory is

about 1.2 µm−2h−1 that produce (30 ± 5) cpd/100ton. This element is produced

continuously by spallation of 12C by mean of cosmic muons, therefore is not possible

perform a filtering operations to reduce its contribution into the spectrum. Instead,

a very powerful method is by means of software tagging veto on 11C events, by using

the time and spatial coincidence of reaction chains described in Eqs.2.5, 2.6 after the

muon event.

Within the detector are produce also several light radioactive elements from muon

transition, their residual counts after a temporal cut of 300 ms, summarized in Tab.2.2,

are negligible with respect to other backgrounds.

210Pb

210Pb is a β–emitter in the 238U decay chain. Due to its long half–life (22 years) and

tendency to adsorb on to surfaces, it is often found out of the secular equilibrium with

the 222Rn section of the chain above it. While 210Pb itself is not a problem, since its

end–point (Q–value = 63.5 keV) is well below the energy region of interest for solar

neutrinos, its daughters, 210Bi and 210Po, are a major source of background in Borexino.

210Bi

210Bi is a β emitting daughter of 210Pb with 5 days half–life. Its spectrum (Q–value

= 1.16 MeV) spans through the energy range of interest for both 7Be and pep – CNO

solar neutrinos and it does not exhibit any specific signature (except its spectral shape)

35



Chapter 2. Borexino Experiment

Isotope Q–value (Eγ) Residual rate rate at 1.44 MeV

[MeV] [cpd/100tons] [cpd/100tons/MeV]

n 2.22 < 0.005 0

12B 13.4 (7.1± 0.2)× 10−5 (2.49± 0.07)× 10−6

8He 10.6 0.004± 0.002 (2.6± 1.2)× 10−4

9C 16.5 0.020± 0.006 (1.6± 0.5)× 10−3

9Li 13.6 0.022± 0.002 (1.4± 0.1)× 10−3

8B 18.0 0.21± 0.05 0.017± 0.004

6He 3.5 0.31± 0.04 0.15± 0.02

8Li 16.0 0.31± 0.05 0.011± 0.002

11Be 11.5 0.034± 0.006 (3.2± 0.5)× 10−3

10C 3.6 0.54± 0.04 0

7Be 0.48 0.36± 0.05 0

Table 2.2: Expected rates of cosmogenic backgrounds considering the 300 ms cut per-
formed after every muon.

that would help its identification. The 210Bi is measured only through the spectral fit.

At the start of data taking, following the initial filling of the detector, the 210Bi rate

obtained through the spectral fit was (10± 6) cpd/100 tons. However, over time, the

210Bi contamination has been steadily increasing and at the start of May 2010 the rate

was '75 cpd/100 tons. The reason for this increase is not currently fully understood

but it seems correlated with operations performed on the detector and the possible

convective motion due to temperature variation that picked up from nylon surface this

element putting in the center of detector.

The Empirical Mode Decomposition introduced in the next sections, seems to be able

to extract the time function (also called “trend”) that describe the time variation of

this background (see Figs.2.5 a and b).
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Figure 2.5: In figure a we observe the 210Bi trend observed in the so called Be7 shoulder
energy window (145-380 npe). The same trend have been observed in the so called Bismuth
valley energy region (390-450 npe) populated mainly from 210Bi events.

210Po

210Po is a mono–energetic 5.3 MeV α emitter (138 days half–life) but the strong ion-

ization quenching of the scintillator brings its spectrum in the 7Be energy region. It

is produced in at final steps of Radon chain as daughter of 210Bi but its concentration

is much more larger than the 210Bi maybe because of contamination in the pipes of

storage plants. The contamination from the plant is visible each time some operation

are done on the liquid scintillator as shown in the time variation of the count rates in

Fig.2.6. The pulse shape of α-decay emitted from this element is more larger than the

usual β-event. This offers a way to distinguish with a certain approximation by means

of pulse shape discrimination defining a new parameter called Gatti’s parameter that

we will discuss later in the next section. By mean of this parameter has been possible

to follow the spatial distribution of alpha events during the three year of data taking,

observing a slow mixing effect, related to convective motions, that could explain also

some fluctuation in the data for the seasonal analysis.
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Figure 2.6: Time variation of 210Po count rates during 5 years of data taking. Are well
visible the strong increases of count rates during the refilling or water extraction operations
performed between 2009-2011 and also the exponential shape of the decay.

85Kr

The isotope 85Kr is a β–emitter with 0.687 MeV end–point (99.57% branching ratio)

and 10.7 years half–life. Its spectral shape is very similar to the 7Be recoil spectrum and

it is one of the most important backgrounds in the 7Be analysis. It is present in air at

the average concentration of ∼1 Bq/m3 thus even extremely small air exposures during

the filling operations could give rise to a significant contamination in the scintillator.

With the small branching ratio of 0.43%, 85Kr decays into the meta–stable 85mRb

emitting a β particle with maximum kinetic energy of 173 keV. The 85mRb then decays

to the ground state 85Rb by emitting a 514 keV γ ray with 1.46 µs half–life. This fast

β – γ sequence is the signature used to obtain a measure of the 85Kr concentration

independent from the one resulting from the spectral fit. Performing a measurements

by mean of identification of 85Kr decay coincidence [108], we observe 29.9 net events

in 750 days and in a FV of 156.2 tons (R < 3.5 m) correspond to a 85Kr contamination

of (30.4 ± 5.3 (stat) ± 1.5 (syst)) cpd/100 tons where the systematic error is mostly

coming from the FV definition and the efficiency of 85Kr–β energy cut.
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232Th

232Th is a primordial isotope with a half-life of 14 billion years and a abundance of

100%. The main decays branches of the 232Th include 6 α and 4 β decays. The

fast decays sequence 212Bi→212Po + e− + ν̄e,
212Po→208Pb + α (τ= 433 ns) allows to

estimate the 220Rn (thoron) content of the scintillator and, as before, to infer the 232Th

contamination. The 212Bi is a β emitter with Q=2.252 MeV and the α of 212Po decay

has 8.955 MeV energy. The 212Bi−212 Po events are selected within gates having two

clusters surviving the muon cut and reconstructed with a distance of 1 m and a time

delay between 400 ns and 1732 µs (four times the lifetime of the decay). The 400 ns

value ensures that the efficiency of the clustering algorithm is 100 % at the energies of

interest.

The energy region of the first candidate is selected to be ¡ 2.4 MeV and that of the

second one is required to be in the range 0.9-1.3 MeV. The cut efficiency is 34%. The

mean counting rate of the events reconstructed within a sphere of 3.3 m radius during

periods far from any detector operation (611 days of lifetime) is (0.13± 0.03) cpd/100

tons and it corresponds to a scintillator 232Th contamination of (3.8 ± 0.8) · 10−18g/g

at equilibrium.

2.4 Scintillator Properties

The Organic liquid scintillator used as sensitive material in Borexino detector has a

benzene ring structure. The real target for the neutrinos are the electrons of this liquid

scintillator that, if hit by a neutrino or emitted by mean of a β-decay, it travels in the

liquid scintillator exciting the valence electrons of the orbitals π and σ of the benzene

rings. The scintillation light emission is due to the transition from the excited level to

the ground state of the π electrons. The de-excitation of the σ electrons occurring by

means of thermal process.

The excited electrons can lead to single or triplet states. The singlets states have a 1

eV as separation in energy, instead the vibrational state around 0.15 eV. When excited

the state fall back in lower states (for example from the singlet state S12 → S10) with
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Figure 2.8: Example of a data acquisition
gate with two separated clusters.

a time scale of 1–10 ns by so called fluorescence process that is the main scintillation

process.

The triplet states have longer time scale by mean of phosphorescence process with

time scale of the 1–10 ms, but the wavelengths of photons emitted are longer than

the fluorescence emissions, therefore are not relevant in the scintillation process. Some

time two triplet states can recombine in two singlet states performing the florescence

process, also called delayed florescence that is the responsible of the larger pulse shape

of α-like events.

In order to shift the wavelength of photons at lower values (higher frequency), in which

the PMTs have the maximum of the sensitivity, together with the pseudocumene, PC

(1,2,4-trimethylbenzene, C6 H3 (CH3)3), has been added the PPO (2,5-diphenyloxazole,

C15 H11NO) with a concentration of 1.5 g/l. With this concentration the PPO increase

the light emission of a factor of 20 time, with respect to the PC. This correspond to a

light yield equivalent of 500 photoelectrons at 1 MeV, with a energy resolution of 5%

at 1MeV.

40



Chapter 2. Borexino Experiment

2.4.1 Quenching Effects

In order to define a relation between the energy deposited by the charged particles and

the light emitted by the molecules, we have to take into account all possible processes

with which the molecules can dissipate their exciting energy, in which the light emission

is just one of several ways. For example the non radiative recombination processes are

function of ionized molecules, therefore they occur much more often for those particles

with a large value for dE/dx. These are called “quenching effects” and are responsible

for the reduction of the deposited energy down to the energy one actually observes.

For α particles in Borexino, the observed number of photons is approximately less than

10% of that expected from an equal energy β. To describe the non linear processes, to

convert the deposited energies in emitted light, Borexino use the Birks parametrization

[6, 7], in which the light emission per unit length, depend on energy loss by means of

two parameters in according with the semi-empirical relation:

dL

dx
=

Ly
dE

dx

1 + kB
dE

dx

(2.7)

where Ly is the light yield or absolute scintillation efficiency that is defined as the frac-

tion of incident energy converted to the photons. kB · dE
dx

is the density of the ionized

molecules along the track and k is the fraction of these that undergo in quenching ef-

fects. The kB parameter is called Birks parameter and is treated as a single parameter

characteristic of the liquid scintillator used and must empirically determined, but is

the same for different type of particle [8]. In Borexino, the scintillator light yield is

of the order of 10000 photons/MeV. The values estimated for kB in Borexino internal

note ranging from kB ' 0.015cm/MeV in the laboratory test to kB ' 0.010cm/MeV

in CTF1 data.

1Counting Test Facility (CTF) was the first prototype of Borexino experiment. Now in the same

water tank it is going to build a new DarkSide50 experiment for Dark Matter Search
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2.5 Acquisition System and Event Reconstruction

2.5.1 Electronics and Data Acquisition System

What Borexino observe is the light emitted from each event occurred inside the Inner

Vessel and the arrival time of the photons to each PMT (photomultiplier or photo-

tube). Every PMTs are AC coupled2 to an electronic chain realized by an analog

front–end followed by a digital circuit. The Borexino trigger fires when a minimum

number of PMTs are hit at least one photo-electron within a time window of 100 ns.

Typically, K was set in the range 25 to 30 in the data runs considered, corresponding

approximately to an energy threshold ranging between 50 and 60 keV. In case of trigger,

the time and the charge of each hit detected in a time gate of predefined length are

acquired and stored. Initially, in the first months of operation, the gate length was

7.2 µs and later was enlarged to 16 µs. The dead time between two consecutive gates

is 1.2 µs. The hit time is measured by a Time to Digital Converter (TDC) with about

0.5 ns resolution which is smaller than the intrinsic 1 ns time jitter of the PMTs. A

dedicated sub-ns 394 nm pulsed laser system is used to equalize the time response of all

the PMTs [17] via a set of optical fibers that reach every PMT. The typical accuracy

of the time equalization is better than 0.5 ns and the time calibration procedure is

performed at least once a week. A similar system based on a set of LEDs is employed

for the outer detector. The dark noise rate is typically 400 - 500 kHz originating

on average 15 hits in the 16 µs acquisition gate (see Fig. 2.9.a). A proper software

(called clustering algorithm) recognizes within the gate the group of hits belonging to

a single scintillation event (here called clustered hits). The cluster duration is 1.5 µs.

Fast radioactive decays or random coincident events detected in a single trigger gate

are separated by the clustering algorithm. Delayed coincidences separated by more

than the gate width (16 (7.2) µs) are detected in two separate events. Figure 2.10.b

shows an event with two clusters. A dedicated trigger was developed for cosmogenic

neutron detection. After each muon passing and triggering both the OD and the ID,

a 1.6 ms wide acquisition gate is opened, regardless of the neutron presence. This

2Both signal and High Voltage of power supply travel on the same cable
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Figure 2.9: Mean darknoise rate per
PMT in counts per second as a function
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Figure 2.10: Example of a data acquisi-
tion gate with two separated clusters.

length is sufficient since it corresponds to more than six times the neutron capture

time. Neutrons are searched for as clusters in this dedicated long trigger as well as

clusters within the muon gate itself. The dead–time between the muon and neutron

trigger is (150 ± 50) ns. More details about the neutron detection can be found in [13].

2.5.2 Energy Reconstruction

Borexino works mainly in the single photoelectron regime, therefore each PMT detects

mostly a single or just a few hits in a single event. We define four energy estimators

called Np, Nh, Npe, and Nd
pe. The Np variable is the number of the PMTs detecting

at least one hit, while the Nh is the total number of detected hits taking into account

the channel dead time already discussed above. They are computed starting from the

measured values Nmeas
p and Nmeas

h

Nmeas
p =

N ′∑
j=1

pj (2.8)

Nmeas
h =

N ′∑
j=1

hj (2.9)

where pj can only be 0 or 1 while hj can assume the values 0 or 1, 2,...n if the photo-

multiplier j detects 1, 2,...n hits and N ′ is the number of correctly working channels.

N ′ is smaller than the total number of installed PMTs because of temporary electronics
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problems and due to the PMT failures. N ′ is evaluated at nearly event–by–event basis

based on the laser calibration events acquired during the run. The Np and Nh vari-

ables are then obtained after normalizing the measured values to Ntot = 2000 working

channels through the relations:

Np =
Ntot

N ′(t)
Nmeas
p = feq(t)N

meas
p (2.10)

Nh =
Ntot

N ′(t)
Nmeas
h = feq(t)N

meas
h (2.11)

in which the time dependent equalization function feq(t) is defined as feq(t) = Ntot
N ′(t)

. The

third energy variable, Npe, is the total number of photoelectrons (pe) collected within

the clustered hits. First, the mean position of the single photoelectron for each channel

is determined as described in the next section. When an event occurs, the total charge

output from each PMT is integrated for 80 ns and digitized. The estimated number

of photoelectrons (ratio of the integrated total charge to single photoelectron mean) is

then summed over all the channels to get Nmeas
pe and then the normalization to Ntot

working channels is performed:

Nmeas
pe =

N ′′∑
j=1

CADC
j

CPeak
j

(2.12)

Npe =
Ntot

N ′′(t)
Nmeas
pe = ceq(t)N

meas
pe (2.13)

where CADC
j is the ADC channel corresponding to the measured charge of the PMT j

and CPeak
j is the ADC channel corresponding to the single photoelectron peak of the

same PMT; N ′′ is the number of channels with valid charge data. We note that the

number of channels with working ADC’s and charge readout is normally fewer than

N ′ by a few tens of channels; ceq(t) is a time dependent charge equalization function

defined within Eq. 2.13.

An additional variable similar to Npe but calculated subtracting the total number of

hits due to dark noise during the signal duration is also used: it is an estimate of the

true number of photoelectrons produced during each event. We call this variable Nd
pe

and it is defined as:

Nd
pe = ceq(t)

(
N ′′∑
j=1

CADC
j

CPeak
j

− d

)
(2.14)
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Figure 2.11: The number N ′ (black) and N ′′ (red) of available channels for the compu-

tation of Nh(Np) and Npe energy estimators, respectively, as a function of time starting

from May 16th, 2007 (day0).

We note that for the purposes of noise reduction, we also define an additional variable

Npe−avg which only differs from Npe in which the sum is carried over all usable channels

N ′ for which a correct charge measurement is not required. For those channels that

do not have a working ADC or charge readout, the charge is estimated as the average

charge of all other (valid) hits in a 15 ns window around the hit. Figure 2.11 shows

N ′ and N ′′ as a function of time during the data taking. The different estimators are

not independent and the precise relation between them and the true energy deposit

inside the scintillator is one of the key elements determining the accuracy of the solar

neutrino measurement in Borexino. Note that in the energy region of interest in this

paper the two estimators Np and Nh are very similar.

2.5.3 Position reconstruction

The position reconstruction algorithm uses the photon time arrive at the first PMT

(rj, t
j
1) where ~rj is the position vector of the jth PMT which detected its proper first

hit at the time tj1 (note that each hit PMT can detect more than one photoelectron

45



Chapter 2. Borexino Experiment

Time [ns]
0 2 4 6 8 10 12 14 16 180

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 2.12: Emission probability density
functions for scintillation photons for increas-
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Figure 2.13: Resolution (σ) of the recon-
structed x (red), y (black), and z (blue) coor-
dinates as a function of energy (in number of
photoelectrons). This was obtained for cali-
bration source events located in the center of
the detector.

during the same event).

The algorithm subtracts from each measured time tj1 a position dependent time–

of–flight T jflight

T jflight(~r0, ~rj) =| ~r0 − ~rj |
neff
c

(2.15)

and then it maximizes the likelihood

LE(~r0, t0 | (~rj, tj1)) = −
Nhits∑
j=1

log

[
pdfq

(
|~r0 − ~rj|
c/neff

− (tj + t0)

)]
(2.16)

providing the position ~r0 and time t0 of the event. The quantity neff is called effective

refraction index and it is used to define an effective velocity of the photons. It is a

single parameter that globally takes into account the fact that photons with different

wavelengths travel with different group velocity and that photons do not go straight

from the emission to the detection points but they can be scattered or reflected. The

value neff = 1.68 was determined using the calibration data [93]. Note that neff is

larger than the actual index of refraction of pseudocumene measured at 600 nm to be

nPC = 1.50. The pdfq in the likelihood is the probability density function that the

scintillator emits a photon at a time between t and t + dt for a given total number of

detected photoelectrons. LE depends on the energy of the event as Fig. 2.12 shows. The
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Figure 2.14: Difference of the reconstructed (214Po) and nominal (CCD) coordinates

x (top), y (center) and z (bottom) for the radon source data.

data collected during the calibration campaign has allowed to map in a capillary way the

performance of the position reconstruction code as a function of energy and position.

In particular, the position reconstruction resolution (σ~r0) has been studied for different

energies and positions. As an example, Fig. 2.13 shows the dependency of σ~r0 on energy

for events in the center: the resolution for coordinates x and y ranges from 15 cm

at lower energies ('150 photoelectrons corresponding to approximately 300 keV) to

9 cm at higher energies ('500 photoelectrons corresponding to approximately 1 MeV).

The z coordinate is reconstructed with a slightly worse resolution as expected since

the phototube coverage in z has a larger granularity. The nominal and reconstructed
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source position have been compared for all the collected calibration data. The nominal

position of the source is obtained independently by a system of 7 CCD cameras mounted

on the Stainless Steel Sphere. Figure 2.14 shows, as an example, the difference between

the mean value of the reconstructed coordinate x, y, and z and the corresponding

nominal value for events due to 214Po alphas from the Rn chain. The coordinates x

and y are well reconstructed: the sigma of the distribution is ∼ 0.8 cm with tails which

extend at maximum to 3 cm (note that the contribution of the uncertainty on the CCD

position contributes is not disentangled). The z–coordinate shows instead a systematic

shift of ∼3 cm downwards with respect to the nominal position. The origin of this shift

is unclear: it is not related to the algorithm itself, since the reconstruction of Monte

Carlo simulated data doesn’t show the same effect. It could be due to a small variation

of the index of refraction as a function of z due to the gradient in temperature (and

therefore in density) of the scintillator. In any case, the contribution of this shift to

the systematics of the fiducial volume determination is negligible (less than 0.2 % )

2.5.4 Inner Vessel Shape Reconstruction

In the 7Be neutrino analysis we used a rigid fiducial volume (FV) defined by means

of events position reconstruction in the Cartesian coordinates where the zero point

of axises are posed in the center of detector. To select the events inside the fiducial

volume was done a simply selection on event position defining a radius r = 3.21 m and

performing two cuts at z = ±1.67 m. This method defines a rigid fiducial volume in

the center of detector shown in Fig.2.15 with dashed blue line. Unfortunately, after

the leak occurred on the April of 2008, the shape of IV has not been constant in time,

losing its original spherical shape. The maximum deformation is present in dataset

taken between January and March 2009, when it was stabilized with several refilling

operations using new PC (Pseudocumene) and purifying the buffer [16].

In the neutrino 7Be analysis this problem was not much important because the di-

mension of FV was more than 1 meter far from the vessel surface (rFV = 3.021m and

rIV = 4.25m), then also in the case of maximum deformation of the vessel (40 cm with

respect to the initial position) the effects were negligible.
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Figure 2.15: Fiducial volumes and shape of inner vessel. The dashed blue line is the
Standard FV selected for the Be7 neutrino analysis, the dashed green line is the last FV
selected for the Seasonal analysis.

In order to define a new bigger Fiducial Volume (FV), as request to increase the statis-

tics in case of Seasonal Variation Analysis (SVA) of ν
7Be or in the case of geo-neutrinos

flux measurement, we will have to define a new algorithm to locate the surface of inner

vessel (IV) in Borexino experiment for each weekly data set (named DST).

To identify the position of IV, we can use the background events of Bismuth ( 210Bi)

present in large quantity on nylon of inner vessel.

We select a window energy in which are present mainly the Bismuth events, also called

“Be7-valley”, between 390 − 450 npe in m4charge noavg or, as in the case of vari-

able used for the data selection m4s.laben hitdist npe aver corrected, between

290− 350 npe.

In Fig.2.16 we show the time evolution of counts in different energy window candidates

to identify the vessel profile. Although in order to define the shape of vessel the energy

window of external background (peak energy E 208T l = 2.6 MeV) is the best one, there
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Figure 2.16: Time evolution of different energy windows with radius cut to r = 4
m and energy variable m4s.laben hitdist npe aver corrected. Comparing the
counts rate of the low energy windows (from 14C to 210Bi-valley) with the difference
between the volume of top and bottom half of total volume, we observe a strong
correlation. This effect shows the real contribute to the distortion of data is provided
by vessel shape deformations.

is in a little number of events; also summing the data of three DSTs as we are doing

in this method.

Another potentially useful energy window, could be the so-called “14C-valley” between

two peaks of 14C and 210Po. Once given the high number of data we could identify the

vessel shape even run by run. The problem, in this case, is that the spatial resolution
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Figure 2.18: Radial distribution for 210Bi
events in energy range between 290 − 350 npe.
It is possible to see as the Bismuth defines very
well the contour of vessel that is shifted toward
the top side of the nominal position.

is too low to obtain information about the vessel profile, as showed in Fig.2.17.

Finally, the range of energy in which it is possible to see the vessel profile with a good

spatial resolution, it is the Bismuth valley.

Summing the data of three DSTs, we obtain the profile showed in Fig.2.18.
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(a) m4s.laben cluster npe noavg (b) m4s.laben hitdist npe aver corrected

Figure 2.19: In the figure a) we show the difference between Top (Blue line) and Bottom (Red line)

region of detector using the charge variable of 7Be. We can observe that there is a shift in Light Yield

between Top and Bottom region. In Figure b) we can see the same data, but in “hitdist” variable. In

this case the shift is negligible or absent.

In order to select the data, before to do a selection in energy, we performed these

preliminary cuts:

– m4s.laben recon valid == 1;

– m4s.muon num events< 25;

– 3.4m > r > 7.0m;

– therefore the energy selection:

290npe <m4s.laben hitdist npe aver corrected< 350npe (Bismuth valley).

The choice of the energy variable m4s.laben hitdist npe aver corrected it is due

to its response stability between Top and Bottom side of detector.

At the end of the cuts, we plot the data on a 2D histogram with the radial position

of each event given by r =
√
x2
i + y2

i + z2
i vs. the angle between the “z-axis” and the

“radius” θ = arccos(z/r) as it is showed in Fig.2.20.

The 3D-histogram shows the morphology of data distribution (figs.2.20.b and 2.20.d).

From these two kinds of distributions we can start to make a fit of data, using a two-

dimensional function Rshape(θ).
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(b) 3D-View

Leak case with maximum of luminosity of leak
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(c) 2D-View
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Figure 2.20: In the figure a) and b) we show the 2-dimensional and 3-dimensional histograms with
the events surviving to the cuts that draw the contour of the nylon vessel in the standard case.
At radius larger than 4.7 m we are in the buffer region where the scintillation it is quenched by
dimethylphthalate (DMP) with a concentration of about 2g/l. In figure c) and d) we show the same
histograms in the case of maximum deformation of vessel where is present also the leak at its maximum
luminosity. This blob of events is due to the leak of liquid scintillator in the buffer region and could
be represented by a two-dimensional Gaussian function.

In a general slice R(θi) of this distribution, we have that the event profile crosses

the nylon of the vessel like a Gaussian distribution showed in fig.2.21.a Because of

the leakage at top side of detector (θ ∼ 0◦) we observe two possible situations: the

scintillating counts rate in the buffer region are dominants with respect to the 210Bi on

the nylon vessel (fig.2.21.b), or the two peaks are well separate (fig.2.21.c). Therefore
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(b) Double Gaussian Function with overlapping
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(c) Double Gaussian Function separate

Figure 2.21: These are two general sections at the angle θi (a) and at angle θ < 30◦ (b) of distribution
of events fitted by Gaussian function.

to locate the profile of vessel, we have to use a 2-dimensional function and then we

have to add another Gaussian to reproduce the leak distribution.

Finally, in order to define a vessel profile, we used a Fourier-like expansion in which we

set the boundary conditions:

Rshape(0) = Rshape(π) = 4.25m. (2.17)

This constraint it is very important, because the positions of two end-points of the

vessel are two well known points.
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The function used to perform the fit is the following:

Rshape(r, θ) = N0(θ) exp

[
(r − µ(θ))2

σ2(θ)

]
+

2∑
i=1

Gi(r, θ) (2.18)

where r and θ are positions of each event on histogram plane, N0(θ) is normalization

factor defined as a 3th-degree polynomial on θ, Gi(r, θ) are two bi-dimensional Gaussian

functions3, σ(θ) it is a linear function on θ:

σ(θ) = σ0 + σ01 · θ (2.19)

where σ01 it’s very small (∼ 10−4 m).

Finally the function µ(θ) is defined as:

µ(θ) = R0 + A1 cos

(
θ

2

)
+B1 sin

(
θ

2

)
+

5∑
n=2

(
an cos

(
n
θ

2

)
+ bn sin

(
n
θ

2

))
(2.20)

where R0 = 4.25m, A1 and B1 are defined as:

A1 = −a2 − a3 − a4 − a5 and B1 = a2 − a4 + b3 − b5. (2.21)

in which an and bn are the coefficients of the Fourier series.

In Fig.2.22 we show the results of the fit with this function. In the case where the leak

is not present the two-dimensional Gaussian functions was switched off by using only

the first term of eq.2.18.

In order to perform the fit, we defined a χ2
Tot function as follow:

χ2
Tot = χ2 +

(πR0 − LIV )2

σ2
R

(2.22)

where the second term in the right-hand side of the equation is a penalty term that

take into account the inextensibility of the vessel balloon. The LIV is the length of

balloon profile of Inner Vessel, defined as:

LIV =

∫ π

0

dθ

√(
dR(θ)

dθ

)2

+R2(θ). (2.23)

3two of these functions are necessary only in case of dst 2009 Jan 25 where is present a double

peak.
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Normal case without leak
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(a) 2D-View
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(b) 3D-View

Leak case with maximum of luminosity of leak
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(c) 2D-View
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Figure 2.22: Results of the fit for standard case (Figure a) and with the presence of leak
spot. The red region present in figures a) and c) are the 2D function that describes the
different distributions of data. The blue line is the Fourier-like function that describes the
real profile of IV. Also in presence of the blob, due to leakage in the top side of the detector,
the profile of the nylon vessel is well described by blue line.

2.5.5 Fiducial Volume Selection

In the previous paragraph we defined a method to locate the nylon vessel depending

on the weekly dataset. To define a fiducial volume we have to perform a cut starting

from the vessel profile, choosing a fixed distance from it.

We define this distance from IV as the radius of a circle tangent just in a one point to
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IV profile. By moving the circle on this profile, we can use the coordinates of the center

of small circle (r0, φ) to determine the position of a new surface in polar coordinates

that describes the new Fiducial Volume region.

The circle equation in polar coordinates is written as:

C(θ, r0, φ) =
1

2

(√
2
√

2R2 − r2
0 (1− cos(2(θ − φ))) + 2r0cos(θ − φ)

)
(2.24)

where R is the radius of circle, namely the distance from vessel, r0 is the coordinate

of the center of the circle and φ is the angle where we want to find the solution of the

following system by varying the angle θ. In order to find the tangent circle to the vessel

profile, we have to impose the following two condition for a given angle φ:
C(φ) = µ(φ),

dC(φ)

dφ
=
µ(φ)

dφ
,

(2.25)

where µ(θ) is the inner vessel profile described by Fourier-like expansion.

The issues arise when we have to evaluate the solutions of the system (θ, r0) at the

endpoints of vessel, in which θ = 0 or θ = π. Beyond these two points our function is

not defined and could take casual value (Red Line in Fig.2.23) for θ < 0 and θ > π.

For this reason we cannot find any solution. To avoid this problem, we extrapolated

the straight lines tangent to the vessel function in θ = 0 and in θ = π (Magenta Line in

Fig.2.23). Therefore we can use the “Rolling Circle Method” in order to determine the

points for the new surface of Fiducial Volume (asterisk and Green Line in Fig.2.23).

In this case we divide θ angle in 6 degree steps, therefore for each step we take the

central value and we find the zeros of the system between the circle and the vessel.

At the end we interpolate these point, obtaining the fiducial volume. In addition, if

necessary, we can perform also a Zcut by switching on this option in the code. In

This way we can reproduce the standard fiducial Volume (Zcut = ±1.67 m) and also

new kind of cuts to exclude the end-cups of the inner vessel, in order to maximize the

volumes. For these reasons we summed to the RFV (θ) function also another function

that describes an horizontal cut at Zcut-quota, but is possible to select also different

shapes instead of a straight line as show in Fig.2.24 To define the final shape function
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Figure 2.23: Final result of three steps method to determine new fiducial volume, fixing
the distance from the inner vessel surface. In the example the distance is 0.25m

Linear:
Zcut(θ) = ± d

cos θ

Square:
Zcut(θ) = d

cos2 θ

Quartic:
Zcut(θ) = d

cos4 θ

Figure 2.24: Different shape Zcut functions. The linear one correspond to the horizontal
cut on Z axis where d is the fixed quota for the cut (dstd = ±1.67). For the Seasonal
fiducial Volume has been necessary maximize the Volume to cut away only the end cup
region considerably dirty with background events.

we solve before the system between the RFV (θ) and Zcut(θ) to obtain the intersection

points θ̂i, therefore we defined the new fiducial volume function as:

R̂FV (θ) =


Zcut(θ) θ > θ̂1

RFV (θ) θ̂1 ≤ θ ≤ θ̂2

Zcut(θ) θ > θ̂2

(2.26)
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Now we can identify the fiducial volume profile with this new function in polar coor-

dinates and then we can calculate the fiducial volume as the integral:

VF = 2π

∫ π

0

dθR̂3
FV (θ) sin(θ) (2.27)

and the error can be evaluated as:

σFV = 2π

∫ π

0

dθR̂3
FV (θ) sin(θ)

σR(θ)√
Nbins − 1

(2.28)

where σRθ it’s the resolution of Gaussian function 2.18.

2.6 Data Selection

The solar neutrino events cannot be distinguished by background events. However a

series of cuts applied on an event-by-event basis has been developed with the aim to

remove the tagged background and non physical events. This series of cuts have been

used to select the event in order to build the final spectrum for 7Be, pep and CNO

analysis. For the seasonal analysis, as already explained, the fiducial volume that has

been modified with respect to the standard analysis.

Basically these cuts operate on four fundamental physical quantities measured from

the Digital Acquisition System (DAQ): time, energy, position of the event and Gatti’s

parameter (Pulse shape). We present quickly the main variables used to perform the

data selection.

2.6.1 Variable Definition

Gatti’s Parameter

This parameter is defined starting from two reference pulse shapes obtained from the

PMTs output signal [79, 80, 81]. By means of the study of 214Bi–210Po fast decay and

from the 11C pure events, we have been able to select three pure sample for β− (214Bi),

β+ (11C) and α (210Po) events. Therefore, as shown in Fig.2.25, we have build these

two reference shapes that we used to evaluate the Gatti’s parameter as follow: we call
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Figure 2.25: Final result of three steps
method to determine new fiducial volume, fix-
ing the distance from the inner vessel surface.
In the example the distance is 0.25m
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Figure 2.26: Final result of three steps
method to determine new fiducial volume, fix-
ing the distance from the inner vessel surface.
In the example the distance is 0.25m

P1(t) and P2(t) the normalized reference shapes. We rebin these reference shape in

order to compare directly with the data:

r1,2(t) =

∫ t0+(n+1)∆t

t0+n∆t

P1,2(t)dt (2.29)

where n in the number of the bins and ∆t the binsize. We define then the Gatti

parameter as:

G =
∑
n

e(tn)w(tn) (2.30)

where e(tn) is the distributions of the time-binned distribution for the generic events

measure in the experiment and w(tn) is a weight defined as:

w(tn) =
r1(tn)− r2(tn)

r1(tn) + r2(tn)
(2.31)

Also G has a proper distribution in which the mean value is:

Ĝ =
∑
n

r(tn)w(tn) (2.32)

and a corresponding variance:

σG =
1

N

∑
n

r(tn)w2(tn)− Ĝ (2.33)
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that might be energy dependent. In Fig.2.26 we show the two distribution for α (Red

line) and β (Black line) events. The beta events have a negative Gatti’s parameter and

the α events a positive Gatti’s parameter. These properties have been used to cut away

the 210Po alpha events by mean of a double Gaussian fit and statistical subtraction.

Spherical Harmonics and anisotropy parameter

These variables are necessary to perform a correction of noisy events. We assume that

each event is generated in initial point and the photoelectrons propagate in isotropic

way. The angular distribution of cos(θ) and φ by means of position reconstructions are

developed in Spherical Harmonics :

Y m
l (θ, φ) =

2
√
π

Nh

eimφPm
l (cos θ) (2.34)

with m = −1, 0, 1 and Pm
l the Legendre polynomials and Nh is the total number of

detected hits. Therefore we calculate three complex coefficients Sm:

Sm =

Nh∑
i=1

Y m
l (θi, φi) (2.35)

where the index runs on the hits in the cluster while θi and φi are the spherical coor-

dinates of the hit PMT in a reference frame centered in the reconstructed vertex. We

define the SHp variable as:

SHp = |S−1|+ |S0|+ |S1| (2.36)

For the anisotropy parameter βl we take a pair of events i and j and evaluate the angle

θij between the two PMTs in which the event ith and jth are detected with respect to

the reconstructed position of the event. The anisotropy parameter is defined as:

βl =
2

N(N + 1)

N∑
i=0

N∑
j=i+1

Pl(cos θij) (2.37)

where Pl(cos θij) is the Legendre polynomial and N is the number of photoelectron.
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2.6.2 Standard cuts for Events Selection

Muons Identification

As already explained the detector is provided of a outer detector (OD) and internal

detector (ID). The outer detector is necessary to detect the cosmic rays in order to

identify the muon events and to remove the so called daughter-muon events. A detailed

discussion is present in [13]. A muon that passes in Water Tank (WT) shield emits a

Čerenkov light that produce a cluster of hits in the OD PMTs. This event does trigger

the OD by creating a Muon Trigger Flag (MTF) in the Muon Cluster Rack (MCR).

Then we might to have three cases: first, the muon passes also in the IV producing a

large amount of light with a specific pulse-shape (Inner Detector Flag, IDF), therefore

this is excluded from DAQ because three of these flags have been activated; second the

muon passes only through the buffer region: in this case all three flags are not active,

but the muon saturate the electronics of detector. For this reason all PMTs are vetoed

for 300 ms, in order to exclude all the cosmogenics decay events. The third case is

when the muon passes only in the OD. In this last case the neutrons produced in the

WT could penetrate inside the Inner vessel therefore a time-veto of 2 ms are sufficient

to absorb the external neutrons. The total live time reduction after these cuts is equal

to 1.6%.

Multiple Cluster Events

All accepted events have to deposit just one time the energy during the DAQ gate of

16 µs. If during this period the cluster algorithm does not identify any or multiple

energy depositions on a single PMTs, then the event is rejected. The pile-up occurs

when in the gate two or more event are too close in time to be distinguished. Therefore

a condition is that each accepted event must have a single peak in the DAQ gate.

Removal of Coincidence Events

All events with mutual distance smaller than 1.5 m, in 2 ms of time window, are

rejected. This cut remove all random events and the 214Bi–214Po events produce in the
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Radon chain decay.

Check of Npe quality

The quality of charge variable defined in Eq.?? for each event is checked by means of

two independent parameters: Rpe and Rq.

Rpe is defined as the ratio Rpe = Npe/N
exp
pe of number of photoelectrons measured Npe

and the number of photoelectrons expected Nexp
pe for a given number of PMTs hit Np:

N exp
pe =

−Ntot · ln
(

1− Np

Ntot

)
[
1 + gC · ln

(
1− Np

Ntot

)] (2.38)

in which Ntot is the total number of PMTs and gC depend from the fiducial volume

adopted, usually the value is 0.11. Rq instead is used to exclude the events that have

an abnormal number of hits with a invalid charge and is defined as:

Rq =
Npe

Npe−avg
(2.39)

where Npe−avg is are the number of photoelectrons with a valid time but invalid charge,

therefore the charge is taken equal to the average of other valid hits in the 15 ns time

window around the hit. For a valid scintillation event this number is equal to one. The

accepted ranges for these two values are:

– 0.6 < Rpe < 1.6;

– Rq > 0.5

They are used also to suppress the noisy events.

Isotropy of light emission and Sphericity Control

In order to check the isotropic emission of the light in a scintillation event, we can use

the anisotropy parameter and the Spherical Harmonics to check the features as follow:

– βl < 0.027 + exp(1.3060.017Npe) + exp(3.1990.002Npe);

– SHp < 0.119 + exp(12.3570.305Np) + exp(0.6120.011Np)
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Figure 2.27: The effects of event selec-
tion are well visible in these spectra. The
initial spectrum is the blue one. The first
important reduction is due to muon event
cut that dominate mainly at high energy
(Black line). The other important reduc-
tion is due to fiducial volume cut that re-
duce the number of event until to obtain
the red spectrum.
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Figure 2.28: In this figure we observe the
survival event to the cuts described from
different energy variables: Np (black), Nh

(red) and Npe (blue).

Additional noise removal

The position of a cluster which caused the trigger generation has a well defined position

within the DAQ gate. The rms of the distribution of the cluster start time is ∼55 ns and

features some tails. An event is accepted only if its cluster starts within a conservative

1.7 µs wide time window which has a fixed position in the DAQ gate.

Final Results

In Fig.2.27 are showed the spectra at different step of the standard cuts. The Final

spectrum used in 7Be analysis [91], applying the standard fiducial volume, is the red

one. In the Seasonal analysis has been used the same cuts with exception of the fiducial

volume larger than the standard one.

In Fig.2.28 we show the same spectrum but withe the different energy variables. In the

last spectrum are well visible the Polonium peak around 200 npe in Np,h variable and

210 npe in Npe. The Beryllium shoulder is in evidence between 240–320 npe in Np,h
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variable and between 300–400 npe with Npe variable. The other important structures

in the spectrum are the 11C spectrum between 400-700 npe in Np,h and the high energy

peak of the Thallium 208Tl at 860 npe in Np,h variables. Increasing the radius of the

fiducial volume we observe that the main contribution due to external background is

present at these high energies.
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Empirical Mode Decomposition

3.1 Introduction

The Weierstrass theorem establishes that it is possible, in general, to approximate of

continue functions in a close interval [a, b], with a polynomial function Pn(x). This

polynomial is a orthogonal and complete base in the functional space for the function

f(x), then:

lim
M→∞

PM(x) = f(x) (3.1)

A particular polynomial set is the Fourier series expansion, in which the base is com-

posed by orthonormal trigonometric functions sinn(x) and cosn(x) that are a superpo-

sition of the versor e±inx:

f(x) = lim
M→∞

fM(x) = lim
M→∞

M∑
n=−M

c
(M)
n√
2π
einx (3.2)

the superscript M means that the Fourier coefficients c
(M)
n are depending on the number

of terms used in the expansion.

The convergence of Fourier series to the function f(x), continue in the closed interval

[−π, π], is uniform only if f(x) is continue and its derivative is a piecewise continue

function with f(−π) = f(π). In addition if x ∈ [−π, π] and f(x) is periodic,

f(x) = f(x+ 2π), the convergence is uniform everywhere.

The Fourier transform could be generalized for each kind of interval x ∈ [a, b], with

a, b → ∞. This is used to decompose in spectral components any kind of continue
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functions. All these components are called harmonics and are preexisting for the whole

sampling time, even before that their effects may be visible in the signal. In addition

their frequencies are a physical system constants. What does it happen if the function is

not periodic and non linear? To approximate the discontinuous points, the expansion in

Fourier series generate a very high number of these harmonics, but losing the frequency

resolution and overestimating the total energy associated with the spectrum. This is

a really big problem related to the Fourier analysis applied on non linear and non

stationary functions like noisy real dataset, where the signal-to-noise ratio is extremely

low (SNR < 0.5).

The seasonal modulation of neutrino fluxes is an excellent periodical signal, but it is

hidden in a higher statistical fluctuation of data, because of the very low statistics

in the daily count rates. From Monte Carlo simulations, we found that the signal to

noise ratio expected is about SNR ∼ 0.2, therefore extremely weakly compared to

the statistical noise. To perform the seasonal modulation analysis, we have to apply a

numerical method able to filter out all high frequencies due to the statistical fluctuation,

leaving only the expected seasonal frequency given by:

νSeas =
1

365.24 [day]
= 2.739× 10−3 [day−1].

In order to extract this signal from Borexino dataset, we will apply a new empirical

method introduced by Huang et al. 1998 [98], called ”Empirical Mode Decomposition“

(EMD), to decompose the non linear dataset in a set of oscillating mode functions

called ”Intrinsic Mode Functions“ or IMF. In order to perform the extraction of these

IMF we applied the numerical algorithm called “sifting” based on cubic-spline inter-

polation. It is worth to point out that there is not an analytical formulation for the

IMF, as in the Fourier expansion. A key role is played by the stopping criteria of the

sifting algorithm to extract each IMF. The theory poses two general criteria that each

IMF must satisfy, but in the numerical algorithm there are several ways to obtain it.

We took into account two criteria proposed by Rilling [103] and another one proposed

by Wu and Huang [101].

Finally we used the Wu and Huang criterion for two main reasons: a poor literature

found with the Rilling criteria and a slightly stronger and complete theoretical discus-
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sion of Wu and Huang criterion.

In the next of this chapter we will show that IMFs are able to describe much better

the real spectrum of non linear functions with higher frequency resolution. In addition

we will demonstrate that these IMFs are complete and also a “quasi-orthogonal” base

of functions for signals.

3.2 Sifting procedure and IMF definition

3.2.1 The “sifting” algorithm

We can think of the Empirical Mode Decomposition (EMD) as an extension and gener-

alization of Fourier Transform (FT) for non linear and non stationary functions. Unlike

the harmonics obtained with FT, in which we force to expand any continue function

in terms of sine or cosine with a constant frequency for each component, the Empirical

Mode Decomposition decomposes a given signal in a superposition of adaptive func-

tions with a narrow frequency band: the Intrinsic Mode Functions (IMF).

The IMFs carries the physical information and represent, ideally, one frequency (nearly

monochromatic). The IMF can be defined as the residual function obtained from reit-

eration of the sifting procedure, by mean of an algorithm defined for the first time by

Huang [101], until to satisfy the IMF conditions. This algorithm can be summarized

as follow:

1. For any data set x(t) we identify all local extrema (maximal and minimal).

2. We interpolate all local maxima (minima) with a cubic spline obtaining two

envelopes for the local maxima (minima) u(t) (l(t)) Fig.3.1.

3. Therefore we take mean function between the two envelopes

m(t) = [u(t) + l(t)]/2. (3.3)

4. Then we take the difference between the initial function x(t) and the function

m(t):

h(t) = x(t)−m(t). (3.4)
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Figure 3.1: Sifting Procedure. The blue line is the cubic spline to interpolate the
local maxima (blue points) and the red line the local minima. The magenta line
represents the mean value of two envelopes.

Figure 3.2: Subtraction of proto-IMF from original signal. In this case the residue do
not have mean value equal to zero over all, then we have repeat the sifting procedure
again.

We call h(t) proto-IMF, as in Fig.3.2.

5. We have to check if the proto-IMF satisfy two conditions:

– The number of local extrema and the number of zero-crossing points must

be equal or differ at most by 1.

– At any time the mean value between two envelopes u(t) and l(t) must be

zero.
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If the proto-IMF satisfies these two conditions and the stopping criteria as in

Fig.3.3, then it is a IMF;

Figure 3.3: Subtraction of kth-proto-IMF from the previous one (i−1)th. In this
case the residue have the mean value equal to zero over all its length, then it satisfy
one of IMF criteria.

6. If the proto-IMF does not satisfy the previous conditions we iterate the point 1-5

on the function h(t) as many time as needed until it satisfies the conditions and

stopping criteria.

7. At the end, if the proto-IMF satisfies the condition 5, we promote it as IMF and

call it c(t).

8. Repeat the points 1–7 on the residue

r(t) = x(t)− c(t) (3.5)

as if it is a new dataset.

9. The operation ends when the last residue contain no more that one extreme.
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Figure 3.4: Sifting procedure scheme to extract the intrinsic mode function.

Mathematically, to obtain the first IMF, we can write the procedure as follow:

h1,1(t) = x(t)−m1,1(t)

h1,2(t) = h1,1(t)−m1,2(t) = x(t)− (m1,1 +m1,2)

· · ·

· · ·

h1,k(t) = h1,k−1(t)−m1,k(t) = x(t)− (m1,1 +m1,2 + · · ·+m1,k);

⇒ c1(t) = x(t)−
∑k

l=1 m1,l

(3.6)

where h1,k is the k-th proto-IMF that satisfy the stopping criteria. Subsequently, we

have:

x(t)− c1(t) = r1(t);

r1(t)− c2(t) = r2(t);

· · ·

· · ·

rN−1(t)− cN(t) = rN(t);

(3.7)

⇒ x(t)−
N∑
j=1

cj = rN(t). (3.8)
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where N can be evaluated from the dataset bin number, as shown in the next section.

It can be shown that, the base formed from all IMFs is a complete base for the initial

function:

x(t) =
N∑
j=1

cj + rN(t) (3.9)

In this procedure the sum of all IMFs can reproduce exactly the initial signal (com-

pleteness) and it is quite easy to implement by means of the cubic spline. But there is

a question still open: what are the stopping criteria for the procedure to be closed?

3.2.2 The IMF stopping criteria and their properties

The first criterion for the sifting algorithm stoppage was proposed by Wu & Huang in

1998 [98], called Cauchy criterion, in which the sifting process stops when the Standard

Deviation (SD):

SD =
T∑
t=0

[hk−1(t)− hk(t)]2

h2
k−1(t)

(3.10)

is smaller than a fixed value, usually between 0.2 and 0.3. In Eq.3.10 hk(t) are the

proto-IMF at k-th step of j-th mode. In literature there are several other stopping

criteria, but unfortunately there are not yet strong theoretical prescription to impose a

criterion with respect to another one. Two independent studies of Flandrin et al. 2004

[104] and Wu & Huang 2004 [99] demonstrate that the EMD have the property of a

bank of dyadic 1 filter, in particular way Wu and Huang 2004 showed that performing

the sifting procedure about 10 times to extract each IMF, the algorithm behaves as a

dyadic filter.

A number of iterations too high or too low can produce effect of over-decomposition or

under-decomposition, in the sense that the last IMF can still have some local maximum

or local minimum and not a monotonic shape.

Starting from dyadic filter properties of the algorithm, we have that the number of

cycles in the latest IMF are about half of previous one extracted and so on, until the

1The term “dyad” simply means “two”. Thus, successive bands in a dyadic filter bank are obtained

using a frequency-scale factor two.
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last IMF that is monotonic (trend). Therefore, using the Nyquist-Shannon sampling

theorem [109, 110], the sampling frequency must be at most double than the higher

frequency present into the signal. We can assume the inverse of temporal unit of single

bin as the sampling frequency of the dataset, therefore the maximum frequency that

we can observe in the data spectrum is given by Nyquist frequency:

νNyq =
nbins
2∆t

, (3.11)

where nbins is the number of bins present in our sample and ∆t is the time bin-size.

From the dyadic properties of algorithm, again, we can also deduce the maximum

number of IMF that can be extracted:

NMax
IMF = −blog2 νNyqc (3.12)

where the “floor” brackets indicate the “lower” integer part of logarithm: bxc =

x− {x}, where {x} is the fractional part of the real number x. In addition each IMF

has a narrow spectral band that is peaked around the frequency of the main component

of the signal contained in the dataset. In general we find that if in the data is present

only white noise, the bounds of IMF spectrum is, at leading order, defined by the

empirical relation:

2−(NIMF+1) < νIMF < 2−NIMF . (3.13)

Therefore, given an expected frequency ν, we will find this component in the IMF

number NIMF :

NIMF = −blog2 νc. (3.14)

If all IMF found follow these rules, then the dyadic filter properties are preserved.

3.2.3 Huang Method and EEMD

We found a Matlab code in RCADA official internet site2 where are also present most

of the reference papers with some application in different fields. We implemented these

2RCADA – Research Center for Adaptive data Analysis

( http://rcada.ncu.edu.tw/research1 clip program.htm)
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basic codes in a more complex program to perform the seasonal modulation analysis

of solar neutrinos, also adding new functions to evaluate the initial phase and the

instantaneous frequency, as we will show in the next section.

The Huang’s code used can works with two kind of algorithms:

– The standard EMD algorithm, where the user can choose the number of iterations

of sifting procedure to extract each IMF (we used 20 iterations for the analysis,

but the default was 10).

– The so called “Ensemble Empirical Mode Decomposition” (EEMD) in which the

standard procedure is iterate many times adding a white noise to the signal

(Dithering). The standard method does not consider this procedure.

The most important step in the Empirical Mode Decomposition is the performance of

the sifting algorithm, that decomposes the initial dataset in its Intrinsic Mode Func-

tions. The standard EMD, in which this algorithm is applied just once on dataset,

showed several problems related to its strong dependence from the initial conditions.

In addition the mixing mode effects are observed, in which a physical signal, with a

given frequency, is shared on different IMFs.

Therefore, changing the initial condition of dataset (i.e. performing another data tak-

ing or adding the white noise with a finite amplitude) the resulting IMFs change their

shapes. Doing several tests xi(t), adding each time to the initial signal x(t) a new set

of white noise ωi(t):

xi(t) = x(t) + ωi(t) (3.15)

and taking the average of IMFs for j-th mode extracted from all xi(t) (or “ensemble”

of IMFs), the mixing mode effect disappears as well as the dependence of IMF shape

from initial conditions. This method is the new improvement of EMD, called Ensemble

Empirical Mode Decomposition (EEMD).

Assuming the presence of a given signal into the dataset, the statistical fluctuation can

introduce some distortions. This effect is important especially if the signal to noise

ratio (SNR) is particularly low.

Adding the white noise to the initial dataset, also if the SNR slightly decreases, it can

74



Chapter 3. Empirical Mode Decomposition

delete partially the distortions due to the statistical noise. Performing this sum several

times and taking the IMF average for a given oscillating mode, the white noise elimi-

nates the distortions of statistical noise leaving only the persistent contribution of the

physical signal hidden in the dataset, or simply distorted by the statistical fluctuations.

The amplitude of the white noise is a free parameter that has to be evaluated case by

case. It is given by the sigma of a Gaussian distribution with mean value centred

on zero, used to generate the random white noise. A too small value of its standard

deviation σstd, as compared with the Poissonian bin error, does not change very much

the initial conditions and is not enough to delete the statistical noise.

Conversely, amplitude comparable with the statistical error, or larger, can damage

seriously the information contained in the dataset. A good value used in the litera-

ture, but found also empirically by means of several simulation in the next chapter,

is around 10%〈σbin〉, where 〈σbin〉 is the average error in the dataset. We have the

best performance of sifting algorithm when the dataset is continuous, but some gaps

might be present. They can be filled with random events, with the same features of the

data. The gap dimension must be much smaller than the length of the signal period,

to preserve the information.

3.3 Instantaneous Frequency

This kind of analysis introduces a new concept of “Instantaneous Frequency“ (IF). In

the classical wave theory and Fourier analysis, we consider each signal as an superpo-

sition of sine and cosine components with well specified frequency ω, defined as the

inverse of period T :

ω =
2π

T
(3.16)

Mathematically we define this quantity as a temporal derivative of a phase function

or, in case of wavelength, as a spatial derivative of phase function:

ω = −∂θ
∂t

k =
∂θ

∂x
(3.17)
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Therefore we obtain the following law of wave conservation:

∂θ

∂x
+
∂k

∂t
= 0. (3.18)

This relation is one of fundamental laws that governs all wave motions and it must

be verified for all kinds of vibrational motions, beyond the trivial one of a sinusoid

with a constant frequency. This can justify also mathematically the new concept of

Instantaneous Frequency (IF) introduced with EMD. The Fourier analysis is able to

decompose a given signal in several sinusoidal components, called harmonics. But it

fails when is applied to non-stationary signal or non linear functions, producing a very

high number of harmonics to approximate the original signal. Only a small number of

these harmonics contains a real physical meaning, the other ones are only an mathe-

matical artefact without any physical meaning.

To solve this problem, several numerical methods were introduced in order to decom-

pose a non stationary signal. The most used technique is the windowing, in which the

whole dataset is divided in smaller time windows, also with different size, and then

the Fourier transform is applied, as in the wavelet, Lomb-Scargle and other numerical

procedures.

These new procedures move the problem to smaller scale, but does not solve the key

problem, that is: the Fourier series, by definition, converges in uniform way to a

function f(t) , in a closed interval [π,−π], if f(t) is continuous and its derivative is

a piecewise continuous function in this interval and have both f(π) = f(−π) and

f(t) = f(t + T/2π). Then it could be applied in a right way only to continue and

periodic functions. The other applications are only a forcing of linear approximation

to non linear systems.

The harmonic distortions showed by Fourier analysis, can be explained as the effect of

a “intrawave” that modulate in time the signal frequency. The intrawave is a charac-

teristic of non stationary or non linear system, because it describes the time evolution

of frequency of a system also within a period of oscillation. To describe this new entity

of wave system we need to use the instantaneous frequency.

In Fig.3.6 we show four different time-frequency spectra of the same signal: the speech

“Hello!” shown in Fig.3.5. To obtain the four kind of spectra are used a filter pass-
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Figure 3.5: Speech signal for the sound “Hello!”.

(a) (b)

(c) (d)

Figure 3.6: Comparison between time-frequency spectrograms obtained with differ-
ent techniques from the speech in Fig.3.5: (a) Narrow band, (b) Wide band, (c)
Morlet-wavelet, (d) Normalized Hilbert Transform (NHT).
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band (a), wideband (b), Morlet-wavelet (c) and Normalized Hilbert transform (d). All

four spectra present more or less the same pattern, therefore can localize the main

frequencies in the same way, but what really changes is the capability to separate the

different components. In particular by comparing the Morlet-wavelet (c) with NHT

(d), we observe an increasing of details in the time frequency composition in the case

of EMD compared to Wavelet technique. These spectra show the high capability of

EMD to separate the real components present in a signal evaluating also their real

associated energy. In the case of wavelet, we observe a very high color range for the

main components. This means that the Fourier Transform overestimate the real energy

(proportional to square of the amplitude) contained in each spectral component.

3.3.1 The Analytical Signal

In the ideal case, the instantaneous frequency (IF) of a mono-component signal should

be evaluated as the time derivative of a phase function θ(x, t), that is the argument of an

analytical signal where the imaginary part is given by a π/2 shift of its carrier function

cosϕ(t) by mean of the quadrature operator Q[x(t)]. Thus any mono-component signal

can be divided as:

x(t) = a(t) cosϕ(t), (3.19)

where a(t) is the amplitude modulation function and cosϕ(t) its carrier function.

Therefore applying the quadrature operator to the signal, we obtain:

Q[x(t)] = a(t) sinϕ(t). (3.20)

With these expression we can evaluate the IF as in the standard wave theory, by mean

of Eq. 3.17, but it is not easy to do this for quasi-mono-component functions obtained

with Empirical Mode Decomposition or wavelet decomposition. The first one is how

to find a unique pair of functions [a(t), φ(t)] to represent the data, the second is how

to find a method to calculate the quadrature of the signal directly.

In the traditional way this is done by means of the Analytical Signal (AS) through the

Hilbert transform (HT) but actually this is only an approximation of quadrature.
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To obtain the AS, first we have to write the Hilbert transform for our signal:

y(t) =
1

π
P
∫ ∞
−∞

x(t′)

t′ − t
dt′ (3.21)

where P indicate the Cauchy principal value. Also in this case we have several ways

to define the imaginary part y(t), but the Hilbert transform provide the unique way

to define a imaginary part such that x(t) and y(t) form a complex conjugate pair such

that z(t) is an analytical function:

z(t) = x(t) + i y(t) = a(t)eiθ(t) (3.22)

where

a(t) =
[
x2(t) + y2(t)

]1/2
θ(t) = arctan

(
y(t)

x(t)

)
(3.23)

The equation Eq.3.23, together to the definition of Hilbert transform like a convolution

of signal x(t) and the function 1/t (Eq.3.21), emphasizes the local proprieties of x(t).

In general we define the Instantaneous Frequency as:

ω(t) =
1

2π

dθ(t)

dt
(3.24)

then, in principle from this definition, we need to have one frequency for a given time:

this means a mono-chromatic function, but there is not a firmly definition of “mono-

component” signal to judge whether a function is mono-component or not. For this

reason it was used a definition of “Narrow Band” as limitation on data to define IF.

Because the time derivative of the phase function dϕ(t)/dt has the physical meaning

of IF, the AS has to show some features:

– The function has to be mono-component, with mean equal to zero locally;

– The wave has to be symmetric with respect to zero mean.

These conditions have to be verified from all IMFs obtained with EMD or by function

extracted by means of wavelet, but these are only necessary conditions. A most gen-

eral conditions that IMFs have to verify, are provided by two theorems: the Bedrosian

theorem [105] and Nuttall theorem [106],
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Theorem: Bedrosian’s Theorem (1963)

Let f(x) and g(x) denote generally complex function in L2(−∞,∞) of

real variable x. If

1. the Fourier transform F [u] of f(x) vanishes for |u| > a and the

Fourier transform G[u] of g(x) vanishes for |u| < a, where a is an

arbitrary and positive constant, or

2. f(x) and g(x) are analytic (i.e., their real and imaginary parts are

a Hilbert pairs), then the Hilbert transform of the product of f(x)

and g(x) is given by:

H[f(x) · g(x)] = f(x)H[g(x)] (3.25)

The Bedrosian theorem tells us that if the amplitude function a(t) and the carrier

function cosφ(t) have no overlapping Fourier spectrum, we can separate the amplitude

modulation factor from the carrier function and write:

H[x(t)] = H[a(t) cosφ(t)] = a(t)H[cosφ(t)]. (3.26)

Theorem: Nuttall’s Theorem (1966)

Let x(t) = a(t) cosφ(t), where a(t) and φ(t) are arbitrary, not necessary

narrow band functions, and H[x(t)] the Hilbert transform of x(t) and

Q[x(t)] = a(t) sinφ(t) is the quadrature of x(t), then:

E =

∫ ∞
−∞

[H[x(t)]−Q[x(t)]]2 dt = 2

∫ ω0

−∞
Fq(ω)dω, (3.27)

where

Fq(ω) = F (ω) + i

∫ ∞
−∞

a(t) sinφ(t)e−iωtdt (3.28)

where F (ω) is the Fourier spectrum of signal and Fq(ω) is the Fourier

spectrum of quadrature of signal.

Therefore the necessary and sufficient condition so that the Hilbert transform coincides

with the quadrature is that the error must be E = 0. This seems to be a great result,

but there are several difficulties to apply it in practice.

The first one is that we do not know the spectrum of quadrature of signal Fq(ω) if the
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quadrature is unknown. Then we cannot evaluate the error E. Another difficulty is

due to the fact that the error is expressed as an integral, then it provides a global mea-

surement of discrepancy and does not make possible to understand which part causes

the error in a non stationary signal. The last issue is that, the Nuttall theorem, tells

us only that H[x(t)] and Q[x(t)] are different, but does not offer an error index on the

frequency, then it’s only an approximation for the error index of IF.

The limitation of these two theorems are fundamental to define a IF with physical

meaning, also because they have strong theoretical foundation.

To solve these serious problems, that can make useless the Hilbert Transform. Huang

et al. 2010 [? ] showed that performing the “Normalization Scheme” (NS) to de-

compose the AM from FM, both Bedrosian and Nuttall theorems are satisfied. This

normalization has three important consequences:

1. This is the most important, the normalized carrier enables us directly to compute

the quadrature;

2. The normalized carrier has an unitary amplitude, the satisfy automatically the

Bedrosian theorem;

3. The normalized carrier enables us to provide a local energy based measure of

error as that provided from Nuttall’s theorem.

The NS is an empirical method designed to separate the AM from FM. First, we identify

the local maximum extrema for the module of a given IMF. Then we interpolate it with

the usual cubic spline and divide the IMF signal with this spline:

y1(t) =
x(t)

e1(t)
(3.29)

in this way we can guarantee that the carrier function has a unitary amplitude. Really

to obtain a unitary amplitude we have to iterate the procedure from 3 to 5 times:

y2(t) =
y1(t)

e2(t)
...

yn(t) =
yn−1(t)

en(t)

(3.30)
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When |yn(t)| has all maxima less or equal to the unity, then the procedure is terminated

and we can write:

yn(t) = cosφ(t) = F (t) (3.31)

where F (t) is our carrier function. For the Amplitude Modulation function AM, we

obtain that:

A(t) =
x(t)

F (t)
=

n∏
i=1

en(t). (3.32)

Then we obtain that the original IMF is defined as:

x(t) = A(t) ∗ F (t) = A(t) cosφ(t) (3.33)

With this new definition we can calculate the Hilbert transform and define the AS as:

z(t) = x(t) + iy(y) = A(t)e−iθ̂(t) (3.34)

then the new phase function is:

θ̂(t) = arctan

(
y(t)

x(t)

)
(3.35)

3.3.2 Calculation of Frequency and Phase

Starting from the Euler’s formula of Analytical Signal (AS), defined in Eq.(3.22), if we

try to evaluate the Instantaneous Frequency (IF) simply as time derivative of phase

function θ̂(t), we obtain a unphysical result with negative values for the frequency.

Huang et al. 2009 [100] introduced a simply method to perform the empirical nor-

malization of a given signal to evaluate the instantaneous frequency by means of two

methods: the Direct Quadrature (DQ) or the “Normalized Hilbert Transform” (NHT).

By means of empirical procedure of separating the Amplitude Modulation function

(AM) from the Frequency Modulation function (FM) showed in the previous section,

we define a carrier function F (t) that satisfies the Bedrosian theorem, because sym-

metric with respect to the mean value with Fourier spectrum non overlapping with

the amplitude modulation function and, in addition, its modulus is smaller than 1:

|F (t)| ≤ 1.

82



Chapter 3. Empirical Mode Decomposition

We can describe the carrier function as a cosine of the phase function because their

values are contained within the unitary circle:

F (t) = cosφ(t). (3.36)

Therefore, by applying the quadrature operator, that is a simply π/2 phase shift of the

function, we can define the sine of phase function as:

DQ[F (t)] = sinφ(t) =
√

1− F 2(t). (3.37)

We can define the phase function φ(t) as:

φ(t) = arctan

[
sinφ(t)

cosφ(t)

]
= arctan

[√
1− F 2(t)

F (t)

]
. (3.38)

Taking the time derivative of this phase function, we obtain an instantaneous frequency

with a real physical meaning of frequency as in the classical wave theory. The Nuttal’s

theorem guarantees also that if we build the Analytical Signal, by means of Hilbert

Transform of the Normalized carrier function |F (t)| ≤ 1, and define the phase function

as in Eq.3.23, where the AS amplitude now coincides with amplitude modulation func-

tion A(t) in Eq.3.32, both Direct Quadrature and Hilbert Transform are identical and

the Eq.3.27 is equal to zero. Therefore we can use alternatively both methods if before

we perform the Normalization scheme. In this way we are sure that the Instantaneous

frequency obtained has a physical meaning of a frequency.
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Seasonal Modulation Analysis

4.1 Introduction

In the following section we will describe the measurement of seasonal modulation of

solar neutrino fluxes due to the Earth’s revolution around the Sun. This kind of mea-

surement is essential to demonstrate that the observed data from Borexino experiment

are related to the solar neutrinos and, in particular, to the 7Be neutrino.

At first glance it looks like a easy task but, unlike the muon seasonal variation [90],

in which the sinusoidal modulation was well visible in the dataset, the weakness of

the signal, the high intensity of statistical fluctuations and the background variation

during the data taking, they made this measurement extremely challenging.

In addition the statistical noise plus the background variation does not make the signal

periodic. This means that also applying the Fourier transform to extract the spectral

components does not work properly because of non-stationarity data.

For these reasons, we decided to apply the EEMD method, instead of traditional meth-

ods based on Fourier transform, because the EEMD is an adaptive technique designed

for non-stationary and non-linear signals and also because it is able to calculate with

much more accuracy the instantaneous frequency.

The Earth’s orbit is elliptical and the Sun occupies one of the foci. Its eccentricity

is very small, about e = 0.01671, therefore we have calculated the time variation of
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Figure 4.1: Earth’s orbit with the dates of main positions. To define the phase we refer
to 3rd January in which the flux is maximum ϕ = 3 [day]

distance from the Sun by using the Kepler’s equations:

r(t) =
a(1− e2)

1 + e · cos θ(t)
(4.1)

where r(t) is the distance between the Earth and the Sun and

θ(t) = 2π · t− ϕ
T

with ϕ = 3 Day. (4.2)

Actually the linear equation for the angle θ(t) is a good approximation with an error

of the order of 0.03%. Therefore, it is negligible with respect to the precision of

the experiment. The flux observed from Borexino, assuming the Earth dimensions

negligible with respect to the semi -major axis a = 1.496× 108 km, is:

φ
7Be
ν (t) =

φTot7Be

4πr2(t)
=

φTot7Be

4πa2(1− e2)2

[
1 + e · cos

(
2π

T
(t− ϕ)

)]2

(4.3)

where φTot7Be is the isotropic flux for ν7Be. When the neutrino flux comes out of the solar

surface, it is already reduced because of the MSW effect. We can then convert directly

the flux incoming in Borexino to Compton spectrum as it follows:

Φ
7Be
e (t) =

∫ Tmaxe

0

∫ Emaxν

0

dσ(E ′ν)

dT ′e

∣∣∣∣
ES

dφ
7Be
ν (t)

dE ′ν
R(E ′ν , T

′
e) dE ′ν dT ′e =
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= Φ
7Be
0 ·

[
1 + e · cos

(
2π

T
(t− ϕ)

)]2

(4.4)

where Φ
7Be
0 = 46.0± 1.5 cpd/100ton is the mean value obtained from 7Be-analysis [91],

Tmaxe is the maximum electron recoil energy, from kinematic of elastic scattering:

Tmaxe =
2Eν

mc2 + 2Eν
· Eν (4.5)

and R(Eν , Te) is the detector resolution.

In order to exclude the background components at low and high energies, we selected

a energy windows where to extract the signal. For this reason we are interested only

in counting the rate of spectral components in this energy window.

4.2 Stability and Selection of Data

4.2.1 Data and Background Stability

The time stability of Borexino detector and its backgrounds are two crucial issues to

perform the seasonal analysis of ν7Be solar neutrino flux. As showed in Fig.4.4, along

with the Compton spectrum for electron-neutrino elastic scattering, in the energy range

considered

105 npe < Te < 380 npe,

there are several background components related to Radon chain. The daughter com-

ponents of Radon can be divided in three kinds of events:

– Fast coincidences: Events like 214Bi −214 Po. They are well identified and

removed by mean of a filter program in a first selection of data (negligible);

– α events: The main contribution is provided by monochromatic component of

the 210Po, but there are also other small contributions provided by 218Po, 212Po

and 222Rn. These contribution are completely removed by means of α/β-cut.

– β-events: these kind of events are indistinguishable from neutrino scattering

signal. The main contributions in this case are provided by the 85Kr and the 210Bi
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that are superimposed on CNO-neutrinos and a part of ν7Be spectrum. Another

small contribution is provided by 214Pb that is strongly reduced by the use of a

filter that is able to identify these events by means of coincidence technique with

a efficiency of 89%.

During the data taking, the experiment needed several operations: tuning of electronic

systems, filling operations on liquid scintillator for both Inner Vessel and Outer Vessel

(buffer purification) and also on the water of the external shield of the Outer Detector

(water loops) in order to thermalize the liquid scintillator inside the Stainless Steel

Sphere (SSS). After refilling operations of liquid scintillator, the events coming directly

from the Radon decay, like the 214Pd or the α particles like 218Po and 222Rn, can give

rise to spikes in the dataset. In Fig.4.2 we show the effects of the count rates of Radon

due to refilling operations. These spikes are visible at the beginning of data taking (af-

ter the first filling), in June of 2009 and in March of 2010. We have decided to remove

these data (1-2 week for each spike) to improve the stability of data time series.

Most of the background elements introduced by the refilling can be drastically reduced

by means of the tagging method or by means of the Gatti’s parameter selection as for

the 210Po (close to 99%).

The most dangerous background component is the 210Bi. This element decay through

the β-channel (T1/2 = 5 day (±5%) Q = 1162.1 keV (±8%)) with a spectrum ranging

within 0 < Te < 600 npe in charge (m4charge noavg). Therefore this decay is impos-

sible to distinguish from Compton’s spectrum of electron-neutrino scattering, because

they are overlapped. It has another dangerous feature: it is not stable but increases

in time like a slow exponential during all data taking period as showed in Fig.4.9. Its

increasing may be explained with the convective motion of the liquid scintillator in the

inner vessel. The nylon of the vessel is rich of this element and liquid scintillator that

rises close the vessel brings on the top this element that goes down in the center of the

detector. This increasing of count rates seems not to influence much the possibility of

identifying the ν7Be shoulder, but it could give some distortion to the signal when the

count rates becomes higher at the end of data series.

The operations on the liquid scintillator of the Inner vessel, together with the temper-
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ature changes, has also another effect: the inflation of internal nylon vessel as shown

in Fig.4.3 (a). This inflation and deflation also influences the time stability of contri-

bution from external background. Because of the different density of liquid scintillator

between the inner vessel and the buffer region, especially if the inner vessel is not well

inflated, the nylon vessel is pushed up because it is slightly lighter than the buffer

liquid. This generates an asymmetry between the top and the bottom regions of the

detector for the external background contribution (208Tl and 214Bi), which is provided

mainly by the PMTs. At very high energy at Tcharge > 1000 npe the count rate of

208T l-peak is modulated from the Vessel shape and its position compared to the Stain-

less Steel Sphere (SSS) in which are located on the photo-multipliers. If we compare

the time evolution of Inner Vessel Volume in Fig. 4.3.a) with the evolution of thallium

peak in Fig. 4.3 (b) it is visible an anti-correlation: when the Volume decreases and

then nylon vessel goes up to the top, the count rate increases. When there is a new

inflation, by means of refilling, the count rates goes back to the lower rate.
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(a) Lead Time Variation

(b) Energy Windows Rates

Figure 4.2: Time variation of Lead 214Pb
measured by means of time coincidences
method during all 3 years of data taking. The
spikes are well visible due to filling, at the
beginning, and also after the refilling opera-
tions in the middle of 07/2009 in figure a).
These temporary increases of count rates for
the Lead, and then for the Radon, give rise
to increase of count rates also for Beryllium
shoulder (orange points in figure b)). Fortu-
nately, we can remove these events by means
of time coincidence tagging.

(a) Volume Time Variation
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(b) Data for 208Tl Time Variation

Figure 4.3: The time variation of volume of
Inner Vessel changes also the counts rate for
the external background at high energy. The
figure b) shows us the count rates of 208Tl
peak was influenced by Volume time varia-
tions.

4.2.2 Energy Range and FV Selection

The Borexino spectrum in Fig.4.4 is composed by several background components

that, if unstable, could modify the count rates of the energy windows in which they

are dominant. These could introduces small distortions in the dataset that we are
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analyzing. To perform the analysis we have done a study of small fluctuations of

dataset on a long period, in a small portion of the spectrum in which the solar neutrinos

spectra are dominant. We divided the spectrum in different regions which were present

different spectral components between background and neutrino spectra:

– 90-105 npe for (14C + νpp+
14Cpup)

– 105-380 npe for “wide” Spectral components

(14Cpup + νpp + νpep + νCNO + ν7Be+
210Bibkg+

85Krbkg),

– 210-380 npe for “high” Spectral components

(νpep + νCNO + ν7Be+
210Bibkg+

85Krbkg),

– 300-360 npe for “narrow” Spectral components

(νpep + νCNO + ν7Be+
210Bibkg),

– 380-460 npe for (νpep + νCNO+210Bi+11C)

– 600-800 npe for 11C

14C 7Be 210Bi 11C 214Bi210Bi 208Tl

Figure 4.4: Energy windows for different background components. In each energy window
there is the dominance of a particular background element.
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– 1000-1280 npe for beta events from 214Bi+ External Background

– 1280-1450 npe for 208Tl, the thallium peak at Te=2.6 MeV.

The energy ranges are expressed in charge m4charge noavg 1 (“number of photoelec-

trons” npe) because, as already shown in section ??, it is much more stable in time

compared with the other charge variables. Another reason is that in this way the re-

sults are directly comparable with the measurement of 7Be flux analysis [91].

By means of Gatti’s parameter selection [? ], we can distinguish between the α-events

(positive value) and β-events (negative values). Among the β-events there are also

present neutrino-electron scattering events, indistinguishable from the real β-events

of background. By making a bi-dimensional fit in the Gatti-Charge space, showed in

Fig.4.5 (a), we perform a cut of all events within 3σ from the center of 210Po Gaus-

sian peak, in which the 210Po α-events are represented, in first approximation, by a

bi-dimensional Gaussian function. In this way we lost about 66% of total β-events in

the energy range considered (105 npe < Te < 380 npe).

The percentage of relative count rates for all components, after the α/β cut, are re-

ported in Tab.4.1 for two energy windows that we took into account for this analysis:

∆Te = 105− 380 npe and ∆Te = 210− 360 npe. These percentage are evaluated from

the spectral shape of Monte Carlo reproducing the analytical fit results of Borexino

spectrum.

To perform the simulations, we consider only the main components in the energy re-

gion of neutrino shoulder: the solar neutrino rate of 7Be, plus the slow exponential of

Bismuth 120Bi and the constant component of 85Kr shown in Tab.4.1.

In Tab.4.2 we have reported an estimation of expected values for the Signal to Noise

Ratio (SNR), at different sizes of energy windows and with different masses for the fidu-

cial volumes. As a signal, we have considered the amplitude of seasonal modulation

flux. Instead, for the noise, we took into account the standard deviation of background

plus the one of the signal. To do this estimation we did not take into account the

contributions of external background, that is negligible at small radii, but become im-

1The charge variable used is defined in the section...
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(a) Bi-dimensional Fit Gatti charge

(b) α/β statistical cut

Figure 4.5: Gatti vs Charge space for the Borexino spectrum. The red line shows the α/β
statistical cut that reduces the total number of events by 66% in the ∆Te = 105 − 380 npe
energy range.

portant to radii larger than r > 3.75m (or ∆r = rIV − rFV = (4.25−3.75)m = 0.5m).

In the second step, we have to understand if there are similar fluctuations in the closest

energy regions, because these could be an indication that the modulations might be

driven by some background components.

From the fit results, we can see that the intensity of neutrino count rates is enough to
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β-spectrum % [105-380] npe % [210-380] npe Tot [cpd/100]

14C 3.1× 10−6 % 0.00 % 3.5× 106

14CPile−up 0.80 % 0.00 % 95

210Bi 53.06 % 17.98 % 41.5± 1.5

85Kr 48.78 % 9.45 % 29± 5

7Be* 18.11 % 0.00 % 46.0± 1.5

7Be 53.02 % 26.65 % 46.0± 1.5

13N 53.20 % 16.34 % 2.36

15O 49.72 % 23.56 % 3.36

pp 2.00 % 0.00 % 133± 0.8

pep 44.41 % 24.28 % 2.8± 0.3

SNR 0.93 1.36 –

Table 4.1: Percentage of total counts rate for each spectral component in two energy windows
considered, expressed in charge variable: m4charge noavg. In the last line, we also show the
signal to noise ratio between the ν7Be and the background.

FV SNR = ∆Φ0(7%)/
√
σ2
S + σ2

B (S/N)

[100ton] [140-380] npe [210-380] npe [300-360] npe

0.75 0.2058 0.1722 0.1064

1.50 0.2331 0.2415 0.1498

2.80 0.39 0.3311 0.2051

Table 4.2: Signal to Noise ratio for signal modulation for different energy windows and
different FVs. The energy ranges are expressed with the charge variable m4charge noavg.

be dominant as compared to the background components. The maximum amplitude

of seasonal modulation of the neutrino flux is about 7% of the mean value measured

in the total flux analysis. This means that for the case of new FV = 145 tons and

energy window of ∆Te = 105 − 380 npe, the SNR = 0.2. Therefore, the real signal

that we want to measure is extremely weak as compared to the Poissonian statistical

fluctuation. The EMD method, in this case, performs a filtering of all high frequency
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components (mainly noise), leaving, in the latest modes functions, only the residual

at low frequency like the seasonal component and, in the very last IMF, the trend of

background components showed in Fig.4.15.

These ratios were not stable in time during whole data taking period due to increase

of 210Bi.

In order to enlarge the fiducial volume, we had to take into account the nylon balloon

movements of Inner Vessel (IV). After its perforation, happened around the April 2008,

and because of the leak of the internal liquid scintillator in the buffer region, the IV

deflated losing about 17 m3 of its initial volume as shown in Fig.4.3. Because of its

deflation it lost also its spherical shape, but preserved a cylindrical symmetry with

respect to the z-axis. By using the algorithm defined in section §2.5.4, we were able

to identify the position of the surface of the nylon balloon, by means of the weekly

datasets (dst), with an accuracy of σR = ±20 cm. Starting from this profile, upon

which we projected the entire surface of the IV sphere, in polar coordinates, we set a

distance from it, to define the limits of new FV. Because of the background asymme-

try, related to vessel shape position shown in Fig.4.6, we decided to choose different

distances from the vessel for the top side (80 cm) equatorial side (75 cm) bottom side

(60 cm) showed in Fig.4.6. Moreover, to eliminate the background contribution related

to the end cups of IV, we performed a cut in the top and bottom side with a narrow

parabola:

z(θ) =
d

cos4 θ
(4.6)

in polar coordinate where d = 2.60m from the center of detector.
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(a) External Background in the energy window
95 npe < Te < 380 npe
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(b) External Background in the energy window
1000 npe < Te < 1280 npe

Figure 4.6: Penetration inside the Inner vessel of external background events simulated
with a source of Thorium 228Th of 3 MBq at different energy windows. These images
show that, also with a very intense source, the number of event beyond 75 cm from vessel
are negligible, also at the same energy of Beryllium spectrum.

4.3 Borexino Events Simulation

In this section we describe the simulations of Borexino dataset to test the Empirical

Mode Decomposition behavior in the case of very low signal to noise ratio.

Generating different dataset and looking at the IMFs of each simulation, we observed

two main potentially dangerous phenomena:

1. The shape of IMF extracted from sifting algorithm changes with the initial con-

ditions of the dataset.

2. The presence of mixing mode between two close IMFs. This means that the

expected signal can be shared between two different IMFs.

From the simulations, we observed that these two phenomena disappear if we take the

IMF average from several simulations of the dataset. In Fig.4.7 we show this effect

where the blue lines are the IMFs with the signal extracted from 100 dataset simulated,
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Figure 4.7: In green we show the average of all IMF8/9 generated from Monte Carlo.
The red curve is the expected signal used to generate the simulation. The decreasing of
amplitude could be due to the increasing of exponential function for the background.

the light green line is the average of all of them and finally the dashed-red line is the

expected signal.

The real data of Borexino are Poissonian and unrepeatable, so we cannot repeat a new

data taking with the same detector conditions. The only way is to emulate different

data taking by shifting the data points of a small quantity within the statistical error of

1σ. To apply this technique, also called “Dithering”, we sum up to the dataset a random

noise with Gaussian distribution (White Noise). As we will show in the next sections,

we have done these simulations to choose the parameters of dithering (the sigma of

Gaussian distribution) and to understand the real sensitivity to the amplitude, phase

and frequency of modulating signal.

The last issue of the dataset was the presence of gaps between the data points from

few days up to two weeks long, after the calibration campaigns. The lack of data for

several days, in the dataset, compromised the efficiency of the sifting algorithm when

it decomposed the initial dataset in intrinsic mode functions. In order to improve the

performance of sifting, we filled the empty time bins with random events during the

dithering application. Also in this case the random events had a Gaussian distribution,

96



Chapter 4. Seasonal Modulation Analysis

but the sigma was the root square of mean count rates of the whole dataset.

In the next sections we will describe how we defined the Borexino-like dataset and in

particular how we simulated the same signal-to-noise ratio of dataset. Then we will

show the results to select the parameter for the dithering and the test of coverage for

the sensitivity to signal features. In the last section we will apply all these techniques

on the real dataset and we will show the main results.

4.3.1 Signal-Background Generator

To simulate the real dataset, we consider the daily count rates of the low energy region,

in which the Compton spectrum shoulder of electron-neutrino scattering is present.

Starting from the Tab.4.3, we used a percentage of the total spectral shape integral for

the main components in the energy window considered, in order to reproduce, with a

good approximation, the real signal-to-noise ratio. Therefore, to generate the statistical

fluctuation of real data, we used a random generator with Gaussian distribution and

a mean value equal to zero. The sigma of the Gaussian distribution was equal to the

square root of expected count rates for each component. In this way we simulated

the statistical noise for each component and then we summed all these components to

obtain the real dataset.

In Fig.4.8 we made a comparison between the simulated signal and real one. The 85Kr

is assumed to be constant in time from a direct measurement by mean of coincidences

method ??. Its contribution in the energy range

210 npe < Te < 380npe

was of 22% percentage of its total spectrum. In the case of the 210Bi and the ν7Be, we

summed two random noise to two functions respectively:

– The slow exponential function for the 210Bi:

Φ210(t) = Φ210
0 exp

(
t

τ

)
(4.7)

where 1/τ = 0.34± 0.02 [yr−1].
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Figure 4.8: Exponential fit to describe the background increase during 3-year of data
taking in the standard FV.

– The seasonal function is Eq.4.4:

Φ
7Be(t) ' Φ

7Be
0

[
1 + 2e · cos

(
2π

T
(t− η0)

)]
(4.8)

where Φ
7Be
0 is the average rate measured by Borexino in 3 year of exposure and

e is the eccentricity of the Earth’s orbit.

For this simulation the amplitude of modulation expected is:

|∆ΦνBe7| = 2e · Φ7Be
0 ' 7%Φ

7Be
0 (4.9)

For example the amplitude (peak to peak) of modulation for the ν
7Be flux, in the energy

range

210 npe < Te < 360npe

is:

δΦ
7Be ' 7%Φ

7Be
0 = 1.15 cpd/100ton. (4.10)
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Component cpd/100ton % [140-380] npe % [210-380] npe % [300-360] npe

Be7 46.0 55.5% 35.9% 11.8%

Bi210 40.0 46.5% 27.3% 8.3%

Kr85 30.5 48.1% 22.6% 2.9%

Table 4.3: Percentage fractions of counts by performing the integral of spectral shape in
different energy range expressed in m4charge noavg.

This means that the expected amplitude for the IMF is:

AIMF = 0.57cpd/100ton (4.11)

that correspond to SNR = 0.2.
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Figure 4.9: Exponential fit to describe the background increase during 3-year of data
taking in the standard FV.
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4.3.2 Dithering

In this section we performed several simulations to define the best value of the sigma

of the Gaussian distribution to generate random events in order to eliminate the over-

lapping between the modulating signal, present in the dataset, and the statistical fluc-

tuation of data. We applied the dithering to the dataset in the following way: the

first step was to generate the dataset with its own random noise, as described in the

previous section. For the second step we have two equivalent ways to proceed: in the

first method, that we used for this work, we filled the empty days of dataset with

random events having the same features of simulated data. Then we summed to this

new dataset a vector of white noise events with the same length. We applied to this

new dataset, now without gaps, the sifting algorithm to evaluate the frequency, the

amplitude and the phase as defined in the chapter ??. With the values found, after

100 reiteration of this procedure, we filled the histograms in Fig.4.17 obtaining the

distribution showed for each parameter.

To define the final mean values for the parameters of the IMF considered, we made

a Gaussian fit of their distributions. We repeated again these steps 10 times for each

value to test of the σdith. As reference dimension for this parameter, we considered the

average of bin errors for the whole dataset. For the Poissonian distributions the value

is equal, in good approximation, to the square root of the bin content. We chose the

dimension of σDith as a small fraction of this error, starting from very small fraction to

the total bin error value (100%):

σDith [cpd/100ton] = {0.1%, 0.5%, 1.0%, 3.5%, 7.5%,

10.0%, 16.0%, 35.0%, 70.0%, 100%}
(4.12)

For each value showed in Eq.4.12 for σDith, we took the mean of χ2 evaluated in each

of 10 simulations as it follows:

χ2 =

(
µi − µTh

)2

σ2
i

(4.13)

in which µi is the value of the parameter measured from the IMF, σi is the associated

error and µTh is the expected results. We plotted the results in Fig.4.10, where each
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point is the average of the results from the 10 simulations. From these simulations we

found that the best value for the σDith of Gaussian distribution is the 10% of the mean

of the bins error from eccentricity results. For the frequency it seems that, increasing

the dithering parameter, the χ2 further decreases, but we get a worse eccentricity

results.

We applied these results in the next sections to check the sensitivity of this method for

the features of the modulating signal used to generate the dataset. The second method,

to perform this kind of analysis, is a little bit different. Instead of extracting 100 times

the IMFs and getting the mean values of parameter distributions, we summed 100

times the dithering to the dataset and then we applied the sifting algorithm, in order

to extract the IMF and evaluate the amplitude and the mean period of the IMF in

which the seasonal modulation is present. The results were more or less equivalent,

but the first method seemed to be more efficient in extracting the IMF with a shape

closer to the expected one.
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(c) Average periods results from 10 Simulation
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(d) Average Eccentricity results from 10
Simulation

Figure 4.10: On the left column it is showed the χ2 average (a) and the period values average (c)
results from 10 simulation (T = 1 yr). On the right column there are same results for the Eccentricity
(e = 0.0167). The best values for both the parameters are taken at σDithering = 10%.

4.3.3 Eccentricity Change

We were looking for the limits of Empirical Mode Decomposition to identify the mod-

ulating signal present in the dataset. In this section we tried to change, in our simu-

lations, the amplitude of the eccentricity of the Earth’s orbit of ±10%, ±20%, ±35%

and ±50% starting from initial value of e = 0.0167.

This test was necessary to understand what is the signal amplitude threshold and if the

EMD is able to distinguish between the different cases. This test was also important

to understand the role of noise for the estimation of signal amplitude.

In Fig.4.11 we plotted the results starting from the green star that represents the

value for the Earth’s orbit eccentricity. On x-axis we put the input values for the
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eccentricity for the simulation and on y-axis the respective measured values for a FV

of 150 tons. The results showing a good agreement, within the errors, with the red

dashed-line for the expected values. The method also showed the amplitude limit in

which we could see, in same conditions of signal-to-noise ratio, the presence of the

signal. In particular, for a fiducial volume of 150 tons and the narrow energy window

of 300 npe < Te < 360 npe used for these simulations, the method was able to extract

the signal with an eccentricity reduced of 20% of Earth orbit eccentricity: e ≥ 0.0134.

For values smaller than this one, the points remained greater than the theoretical val-

ues. This value is exactly e ≥ 0.0134. This threshold might depend on uncertainty due

to the fluctuation noise or the presence of a threshold for the S/N ratio between the

signal and noise contribution. By means of this exercise it could be posed a general

limit of method, starting from SNR. In this case we showed that our technique was

able to be sensitive for the weak signals like the seasonal fluctuation of solar neutrino.
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Figure 4.11: Simulation of seasonal signals with different eccentricity values. Starting
from the real value (green star) we added and subtracted to this eccentricity the ±10%,
±20%, ±35%, ±50% as shown on the x-axis. The results found by means of EMD method
were in agreement within the error. When the eccentricity became too small, the EMD
failed.
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4.3.4 Phase Change

Another important check concerned the sensitivity of method for the phase determina-

tion. We want to understand if changing the phase or summing another signal with a

π/2 and π of phase shift, we would have found the same trigonometric results for the

sum of two cosine functions.

In order to do this test, we took two seasonal-like functions with a different phase and

then we summed together the modulating parts Σ:

Σ = Φ0 ×

[(
1 + e cos

(
2π

T
(t− η1)

))2

+

(
1 + e cos

(
2π

T

(
t− η1 −

π

2

)))2

− 1

]

' Φ0 ×
[
1 + 2

√
2e cos

(
2π

T

(
t− η1 −

π

4

))]
(4.14)

Therefore, we generated a new dataset adding to this signal the white noise and then

we performed the EMD analysis.

The analytical result is shown in Fig.4.12 with the red line that is a signal increased of
√

2 and a signal shifted of π/4. From the simulation results, shown in Fig.??, putting

this signal in the count rates, we obtain the same features of the analytical result. In

this way we showed also that the method was really sensitive to the presence of a signal

with particular characteristics and that the IMF were not a random coincidence. We

expected instead to find a random phase and frequency variation in the case of absence

of a signal, i.e. in the case where we summed two signals with opposing phases.

4.4 Real Data Analysis

4.4.1 Dataset Definition

We used 3 years long dataset already selected to perform the 7Be neutrino flux mea-

surement in [91]. This dataset started from 16 May 2007 to 10 May 2010, for a total

exposure of 740.7 live days. As it is already shown in the section §??, we used the

charge variable m4charge noavg because it was much more stable in time, as com-
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Figure 4.12: Example of summing of two seasonal-like signals with different initial phases used
to check the phase sensitivity of method. The red sinusoid is the resulting function that we
wanted to find in our simulated data. On the left the expected trigonometric result; on the right
the IMF in which is present the signal in phase with the expected result.

pared with the other charge variables available in our analysis framework.

For this dataset, also called Borexino Phase I, it was not possible to make the sum

of the same months, year by year, because of background instability already discussed

in section §4.2. There was a first natural subdivision of the 3 years long dataset in 8

datasets with different sizes in time, related mainly to different operations made on the

detector. With this first subdivision, each dataset was homogeneous. But performing

the fit, the analysis highlighted for the first time the background instability and, in

particular, related to the increase of 210Bi component.

For the first approach, discussed in the next section, we used a time binning of two

months for the sinusoidal fit of data with two different methods.

For the EMD method, instead, we used a 1 day binning in order to improve the perfor-

mances of sifting algorithm and to take into account all possible variations of detected

background.

In both cases of different time binning (1 day or two months), to increase as much as

possible the number of events in the each dataset, we had to increase the dimension of

Fiducial Volume (FV) considered.
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4.4.2 A Preliminary Study on Data with a Direct Fit

As preliminary analysis, we did a direct fit of count rates present in the ν-Be7 shoulder

region, between 280 - 380 npe (in charge variable m4charge noavg). We used the

Kepler’s function in Eq.(4.4) plus a exponential function to describe both the seasonal

modulation of neutrino flux and the increasing of background count rate.

To make this preliminary analysis, we also did a first rough FV cut setting the distance

from the nylon surface of Inner Vessel (IV) fixed to ∆R = 0.75 m and a cut on z-axis

at zcut = ±2.0m.

The background instability related to the Radon contamination and to the external

background (because of the vessel movement), made this dataset, with two months long

bins, unstable and the sinusoidal fit results were not consistent with expected results.

At the same time, we tried to use another technique based on results from the spectral

fit code.

Instead of using the count rates of each small two month dataset, we did the spectral

fit 250 times for each 2-month dataset, varying the initial value of only two parameter

to which the fit result was sensitive: the 85Kr and the quenching factor for the 11C

spectrum. We took each time a random value for their initial values from a Gaussian

distribution around their best values from the total fit. Then, with each one of the 250

fit results, we filled an histogram for each variable and then we took the average values

from a Gaussian fit shown in Fig.4.13. In Fig. 4.14 we showed the fit results assuming

the Kepler’s equation Eq.4.4, imposing only a narrow range for the initial phase (from

0 to 3.5 days). The other parameters, like the total counting rate, the eccentricity and

the period of sinusoidal function are left free with wider ranges. In the latter case,

the measured value for the period was in good agreement with the expected value of

TSeas = 365.24 [day] = 1 yr and the mean value for the count rates was in agreement,

within the error, with the best value of total fit Φ
7Be
0 = 46 cpd/100ton [91], but the

eccentricity resulted to be about double compared to the expected one, with a very

large error ( 67%).

The fit procedure allowed to take into account the presence of spikes in the count rates

of Radon. It allowed to perform a measurement if beta events, even taking into account
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Figure 4.13: First result obtained performing the whole spectral fit of data with two-
months binsize. The error in y-axis correspond to error of mean value obtained from
Gaussian fit of distribution of 250 spectral fit results. The error in x -axis correspond to
real integration time.

all α-events (we did not make the α/β subtraction in this case) but the error associated

to each point does not allowed us to obtain a small value for the χ2.

These two possible methods to perform this analysis did not give us satisfactory results

because of the large error and low statistic present in the dataset. These two reason

constrained us to find a new method able to extract weak signals from very noisily

and non stationary dataset. In the next section we showed the results applying the

Ensemble Empirical Mode Decomposition (EEMD) of Borexino dataset, in which was

done a much more careful selection of Fiducial Volume and a statistical subtraction of

Radon and α events.
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Figure 4.14: First result obtained performing the whole spectral fit of data with two-
months binsize. The error in y-axis correspond to error of mean value obtained from
Gaussian fit of distribution of 250 spectral fit results. The error in x -axis correspond to
real integration time.

4.4.3 EEMD Analysis of the energy range Te = 105− 380 npe

In the Borexino dataset there are gaps with different time lengths, usually one or two

day, but in the year 2009 there were much more long interruptions because of cali-

bration campaigns up to two weeks long. We filled these gaps with white noise and

apply the procedure for the dithering described in the section § 4.3.2, without losing

or modifying the information contained in low frequency in the dataset. Therefore, we

evaluate by means of Gaussian fit of result distributions the parameters for the am-

plitude and frequency. We used these values to make the measurement of eccentricity

and modulation period respectively:

– Period:

T =
1

ω
; ∆T =

∆ω

ω2
; (4.15)

– Eccentricity:

e =

√
a(z)

Φ7Be
e

− 1; ∆e =
1

2Φ7Be
e

∆a(z)√
e

; (4.16)

The IMF extracted from the sifting algorithm are showed in fig.4.15. The noise related

to the statistical fluctuation was absorbed mainly in the first 5 IMFs, in which there

are the high frequency components. These components with high frequency do not

carry any kind of information. The physical informations, in our case, are present in
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the latest IMFs where the low frequency components are dominant. The frequency

that we are looking for, is the seasonal modulation:

νSeas =
1

365.24 [day]
= 0.00274[day−1] (4.17)

because of the properties of dyadic filter of the sifting algorithm, we can anticipate

in which number of the IMF we can expect to find the seasonal modulation. The

maximum number of IMF that we can obtain from a correct sifting is related to the

number of data points in the dataset: nbins. We have that the maximum number of

IMF is:

NMax
IMF = −

⌊
log2

(
2

nbins

)⌋
= −blog2 νNyquistc (4.18)

where the Nyquist frequency is half of sampling frequency νsample = 1/nbins. In our

case we have nbins ' 1200 bins and each bin is 1 day long. Therefore the maximum

number IMF that we can extract is:

NMax
IMF = −

⌊
log2

(
2

nbins

)⌋
= 9 (4.19)

in which the last one (IMF9/9) is the trend of dataset. Instead the number of the IMF

in which we expect to find our seasonal signal is:

NIMF = −
⌊

log2

(
1

365.24

)⌋
= −blog2 νSeasc = 8 (4.20)

Therefore we expect to find the seasonal signal, with a mean frequency νSeas = 0.00274

[day−1], in the spectrum of the IMF8/9 that was exactly what we found in the data

analysis shown Fig.4.18. In the upper figure we showed the Time-Frequency space in

which there are the instantaneous frequency for all IMFs. In particular we showed only

the frequency range where there is the instantaneous frequency of IMF8/9 in which the

seasonal frequency is present. The dashed white line indicates the value of expected

frequency. The color of the line indicates the amplitude of analytical signal associate

to the IMF for each instant. To make the power spectrum in the lower figure we took

the average in time of the squared amplitude for each value of the frequency. The green

line is the power spectrum for all IMF except the last one (the trend), the red, blue and

magenta line are the contribution to the total spectrum of the IMFs 8,7,6 respectively.
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The power spectrum shows the feature of each IMF, if the sinusoidal signal is present

the instantaneous frequency is close to be constant in time, as expected for a periodic

function. In the case in which the signal was absent the power spectra has several

peaks and a broad spectrum without a specific dominant component. This means

that these IMFs are still dominated by the white noise and that do not carry any

physical information. From the fit with a Gaussian function of the power spectrum,

we evaluated the average of frequency for each IMF extracted after the application of

the dithering and the filling of empty bins recursively for 100 times. In this way we

filled the lower histogram in Fig. 4.18 (b) obtaining the frequency distribution of 100

IMF in which the signal is present. By means of another fit of this new distribution we

define the average frequency of the signal present in our dataset. The same was done

for the amplitude for each IMF. We expected that the amplitude should be constant

in time, therefore we took the time average of amplitude for the analytical signal and

then we filled the upper histogram in Fig. 4.18 (b). The Gaussian fit of the amplitude

distribution tells us the average amplitude of our signal.

The last quantity necessary to define completely a periodic function is the initial phase.

For the seasonal function the initial phase tells us the day in which the flux have the

maximum, that is the January 3rd. Therefore the initial phase, expressed in day is

ϕ0 = 3. To obtain this value we fitted the phase function with a straight line:

θ(t) = 〈ω〉t− ϕ0 (4.21)

where 〈ω〉 is the average of instantaneous frequency of each IMF. Therefore we sub-

tracted 〈ω〉t to the instantaneous phase function θ(t) obtaining a constant residual func-

tion that indicate the value of initial phase. Unfortunately, the introduction of dithering

generate a large family of parallel line that generate a broad distribution of initial val-

ues, but centred on ϕ0 = 15.47±9[day] with a large sigma of σϕ0 = 66±12[day]. These

results indicate that the best resolution that we had, was of 2 months (∼ 60[days])

that was also the best time resolution used to perform the direct fit with the sinusoidal

function. Finally we plotted in Fig.4.20 the best fit results for the eccentricity and

period for Borexino data that are in good agreement with the expected results for the

Earth’s orbit.
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∆Te = 105− 380 npe Earth ⊕

TSeas [yr] 0.96 ±0.07 (9%) 1.0

e 0.032 ±0.004 (14%) 0.0167

ϕ0 [day] 15 ±9 (60%) 3.0

Table 4.4: Final results of Seasonal Analysis with Empirical Mode Decomposition. Excepted
for the eccentricity, that is in agreement within 3σ, both period and initial phase are in good
agreement with expected values for the terrestrial orbit.
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Figure 4.15: From initial data, sequence of IMF extracted by mean of sifting algorithm.
We observe that the statistical noise is absorbed from the first 5 IMFs. A portion of
real signal is visible in the last but one IMF8/9 and in the last one we have a monotonic
function called trend. The units on y-axis are arbitrary.
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The line color indicate the amplitude of analytical signal. In the lower figure we showed the
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expected for the seasonal signal are within 3σ compared the mean values of the
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Figure 4.18: Initial Phase evaluation from the Phase function of analytical function of the
IMF8/9. In figure (a) we showed the constant behaviour of the residual function ϕ0(t) =
θ(t)− 〈ω(t)〉 · t. In figure (b) we had taken the distribution of time average for ϕ0(t) .
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Figure 4.19: IMF8/9 extracted from Borexino data by means of sifting algorithm. The dark
green line is the average of 100 IMF (light-green line). The red-dashed line is the expected
seasonal modulation for all neutrino contained in the energy range.
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114



Chapter 5

New Matter Sensitive Observables

5.1 Introduction: Neutrino Global Fit and Non Stan-

dard Interaction

The non standard interactions may involve all the unsolved questions about the weak

interactions. The future generations of neutrino experiments plan to perform the mea-

surements of the CP phase and to investigate the neutrino masses hierarchy. To perform

these kind of measurements we have to know with a very high precision the MSW pa-

rameters. The solar neutrino puzzle was definitively solved by mean of the results of

reactor anti-neutrino experiment KamLAND [15, 12], that introduced a strong con-

straint on ∆m2
12, ruling out all possible solutions and leaving only two very small

region on tan2 θ12 vs ∆m2
12 space. These two region are called Large Mixing Angle

(LMA) (tan2 θ = [0.3, 0.5] and ∆m2
12 = [10−5, 10−4]eV 2) and LOW region with the

same tan2 θ12 range, but with a ∆m2
12 range much more lower than LMA solution

(∆m2
12 ∼ 10−7eV 2), as shown in the left-panel of Fig.5.1. The last Borexino results,

that measured with a 5% of error the 7Be solar neutrino flux [91], plus the low energy

region of 8B solar neutrino fluxes (Eν ≥ 3 MeV ) [95], put an improvement to Kam-

LAND results by ruling out also the LOW solution, but without appreciable changing

for the LMA solution as showed in the right panel of Fig.5.1.

Performing the update for all neutrino experiment results as for SuperKamiokaNDE-
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Figure 5.1: Allowed regions (d.o. f. = 3) of the space of parameters at 68.27% C.L.
(pink), 95.45% C.L. (green) and 99.73% C.L. (blue) by the solar-without Borexino (left
panel) and solar-with Borexino (right panel) data set.

IV [5], SNO [11] and the new results from Daya Bay experiment for the sin2 θ13 =

0.023+0.014
−0.018 [21], we found our global fit best value: tan2 θ12 = 0.48± 0.02

∆m2
12 = (7.58± 0.17)× 10−5 eV 2.

(5.1)

The high precision reached today with which we can perform the measurement of the

MSW oscillation parameters, could be used to investigate the new and non standard

kind of interactions (NSI) for neutrinos with the normal matter and in general for the

weak interactions.

A first parametrization of MSW theory was performed by [25, 26], by multiplying the

Hamiltonian term of matter interaction by a factor AMSW :

V (x)→ AMSW · V (x), (5.2)

where

V (x) =
√

2GFNe(x), (5.3)
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Figure 5.2: AMSW bounds for the combination of all solar experiment, CHOOZ [45]
and KamLAND [15] experiment data as available in the 2002, 2003 and 2004. The short
dashed line indicates the 1,2,3 and 4σ. Especially after the new data of KamLAND in
2004, the no matter effect is rejected at > 6σ. On the contrary the matter effect is largely
preferred with a minimum for ∆χ2 around AMSW = 2 at ∼ 2σ.

Ne(x) is the electron density in the solar interior and GF the Fermi constant. With

this parametrization for AMSW = 0 the matter effects are not present. Instead, for

AMSW = 1 the we have the updated standard oscillations due to the matter effect.

They have shown that the minimum of ∆χ2, as a function of AMSW parameter, prefers

the solutions where AMSW ≥ 1 and ruled out at 5σ the vacuum solution with AMSW =

0, as shown in Fig.5.2. This important result was achieved with the high statistic

KamLAND results in the 2004 [15] We are therefore interested in using the global fit

results to investigate the weak interaction properties as the Neutral (NC) and Charge

Current (CC) coupling factors and how some NSI terms could modify the matter
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potential in the MSW theory. To include all possible NSI terms, we can write the most

generic four-fermion Lagrangian of interaction as:

LNSI = −2
√

2GF (ναγρνβ)
(
varepsilonff̃Lαβ f̄Lγ

ρf̃L + εff̃Rαβ f̄Rγ
ρf̃R

)
+ h.c. (5.4)

where GF is the Fermi coupling constant, εff̃Pαβ (with f = e, u, d and P = L,R) denote

the strength of the NSI (with respect to GF ) between the neutrinos ν with flavour α

or β and the Left(Right)-lepton components of fermions f and f̃ . The bounds on the

εαβ parameters come from accelerator based experiments as CHARM II, that already

constrained the parameters |εµL/R| < 0.03 at (90% of C.L.) [27]. Other new bounds are

found by means of atmospheric neutrino experiments as MINOS [36] and other ones

TEXONO reactor neutrino experiment [37].

The NSI modify both propagation and detection neutrino processes. In particular the

propagation or oscillation are sensitive only to εff̃Pαβ , where f = f̃ . Therefore we can

write εff̃Pαβ ≡ εfPαβ. In addition they are sensitive only to vector components of the

interaction, then εfαβ ≡ εfLαβ + εfRαβ.

We can write the term of Hamiltonian for the matter interaction as:

Hmat =
√

2GFne


1 + εee ε∗eµ ε∗eτ

εeµ εµµ ε∗µτ

εeτ εµτ εττ

 (5.5)

where ne is the number of electron density and the strength factors εαβ are defined as:

εαβ =
∑
f,P

εfPαβ
nfP
ne

where f = e, u, d and P = L,R. (5.6)

This relation shows also the dependence of the NSI from chemical composition of the

medium in which the neutrino propagates. Using the combinations of the εαβ ele-

ments, we can study how propagation and detection are affected by NSI by simulating

the neutrino propagation in the solar structure and also in the Earth. The chemical

composition provided by the solar models and the matter density distribution in the

solar core are verified with much more precision by helioseismological data. Therefore

we will use the electron, proton and neutron density distributions of the solar model

as input data in our simulation of the solar structure.
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5.1.1 Neutrino evolution and new parametrizations

To study the neutrino time evolution in a medium, we can start from its standard MSW

Hamiltonian [38], that takes into account both vacuum term (only kinetic energy) and

the interaction term with the matter, depending on its electron density:

i
d

dt


νe

νµ

ντ

 =
1

2Eν

U


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U † + aSI


1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ





νe

νµ

ντ

 .

(5.7)

where aSI =
√

2GFne and εαβ =
∑

f,P

nf
ne
εfPαβ, as shown in previous section in Eq.5.5.

In the case of neutrino propagation, we are sensitive only to the vectorial terms εαV =

εαL + εαR. Therefore, in general, the off-diagonal component of NSI, related to the

flavour change neutral current, undergoes a further suppression factors as compared to

diagonal ones. As a conseguence, we take into account only the diagonal entries that

are more difficult to constrain through the long-baseline experiments (see [38]). The

U matrix are the correspondent Cabibbo-Kobayashi-Maskawa matrix for the leptons

that rotates the mass eigenstates into flavour eigenstates for the neutrino fields.

Transforming into new basis ν̃ = U †23ν and using the fact that for solar neutrino

GFNe � ∆m2
atm/Eν , we can modify the standard Hamiltonian of matter interaction

by adding a new term of NSI aSI + aNSI as already shown in [28], where:

aNSI =
√

2GF

∑
f=e,u,d

nf
(
εfee − cos2 θ23ε

f
µµ − sin2 θ23ε

f
ττ

)
≡
√

2GF

∑
f

nfε
f
� (5.8)

where εf� ≡ εfee − cos2 θ23ε
f
µµ − sin2 θ23ε

f
ττ is the fundamental parameter that we want

to probe with the global fit of solar neutrino experiment results.

To probe the dependence of ε� on fermion species, we write the aNSI explicating the

proton-neutron number of density as it follows:

aNSI =
√

2GF [np(ε
e
� + εp�) + nnε

n
�] (5.9)

where we used the neutrality of the matter where ne = np. We can make clearer the

dependence of non standard interaction from the neutron-proton ratio as:

aNSI = aSI

[
Es +

(
nn
np
− 1

)
Ens
]

(5.10)
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where Es = εe� + εp� + εn� and Ens = εn�. Here it is clear that Es, also called iso-singlet

factor, depends on the standard interaction with normal matter and is dependent from

chemical composition of the medium, on the contrary Ens depends only on εn� and

neutron density number and also on the features of neutral current interaction that

takes place with them. We rewrite our new parametrization in a more suitable form,

in order to compare our results with the previous works [25, 44] as follow:

AMSW = 1 + Es +

(
nn
np
− 1

)
Ens (5.11)

where AMSW is the factor used to investigate the real magnitude of matter potential

effects in the MSW theory for the flavour neutrino oscillation (Hmat = AMSW · aSI).

In this new factor we have an explicit dependence on the neutron-proton ratio that

changes in the solar interior. The different solar neutrino fluxes are produced in differ-

ent regions of solar core, where also the n/p ratios are different. Therefore, from solar

neutrino spectrum analysis, we could discriminate between the iso-singlet parameter

Es and non-singlet Ens. In the standard theory, in which we do not take care of Ens
term, the iso-singlet term is equal to:

Es = AMSW − 1 (5.12)

If we consider that a generic matter as in the interior of the solar core where n/p

ratio changes with the radius, AMSW − 1 cannot be reduced as a function of Es or Ens,

therefore we have to handle their linear combination as a parameter.

In the next section we will show that the A�MSW in the solar case can be expressed as :

A�MSW = 1 + Es − 0.57Ens (5.13)

On the other hand, in the case of Earth’s matter we have:

A⊕MSW = 1 + Es − δexEns (5.14)

where δex = (nn/np − 1) ' 2% is the neutrons over protons excess in the Earth.

5.1.2 Implementation of New Variable in MSW Theory

Starting from the standard MSW theory for three flavour neutrino oscillation, we are

going to implement the NSI corrections to the equations of MSW formalism form both
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Sun and Earth case. As for MSW theory, we considered the neutrino particles as

ultra-relativistic because of their masses are negligible as compared to their kinetic

energies. To evaluate the survival probability of the electron flavour in the Sun and

Earth interiors, we consider only the transition νe → νµ and νe → ντ , because the solar

neutrino experiments are sensitive only to electron neutrino interaction and cannot

distinguish between νµ and ντ . For this reason we take into account only ∆m2
12, θ12

and θ13 for the mixing matrix.

The survival probability for solar matter, in which the matter density decrease as

exponential function of the radius, can be written as:

Pee = cos4 θ13

(
1

2
+

1

2
cos 2θ� cos 2θ12

)
+ sin4 θ13 (5.15)

where θ� is the mixing angle at neutrino production point, inside the solar core, in

which the density is equal to ρprod. We have that this mixing angle is a function of

∆m2
12/Eν , the density of the production point ρprod and θ13:

cos 2θ� =
cos 2θ12 − ξ�

[1− 2ξ� cos 2θ12 + ξ2
�]

1/2
(5.16)

where ξ� is defined as the ratio between the neutrino oscillation length in the vacuum

lν and the one in the matter l0:

lν =
4πE

∆m2
; l0 =

2πmN√
2A�MSWGFρprodYe cos2 θ13

. (5.17)

Therefore we have:

ξ� =
lν
l0

= A�MSW

2
√

2GFρprodYe cos2 θ13

mN

E

∆m2
(5.18)

that, at leading order can be expressed as:

ξ� ' 0.203× A�MSW · cos2 θ13

(
E

1 MeV

)(
ρprodYe

100 g cm−3

)
(5.19)

where, for the solar case, A�MSW is defined in Eq.5.13.

In general, in the Eqs.5.18, 5.19 we defined ρprod as matter density, Ye as the number of

electrons per nucleon and mN as nucleon mass. In these calculations we did not take

into account the real different distributions of density for protons and neutron nucleons
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in the radius of the Sun that could provide different contributions to the mixing effects

non considered in the standard approach.

In ours new calculations we considered the neutrino interactions with these different

distributions for the nucleons, provided by the solar model as it will be discussed in

the next section. On these purposes, we performed a modification of the number of

density function and the NSI correction factor as:

cos2 θ13A
�
MSW ≡ cos2 θ13 [ne(r) · Es + (nn(r)− ne(r)) · Ens] (5.20)

where ne(r) = np(r) and nn(r) are the number of density of nucleons (protons and

neutrons) as a function of solar radius provided by solar standard model considered.

By making explicit the ξ� in the survival probability Pee and studying its variation

with energy (fixing the MSW parameters), we observe a linear dependence on ξ� for

low energy ranges of solar neutrino:

Pee = cos4 θ13

[
1− 1

2
sin2 2θ12(1 + ξ� cos2 θ12)

]
+ sin4 θ13. (5.21)

Instead for higher energies the dependence on goes as (1/ξ)2:

Pee = cos4 θ13

[
sin2 θ12 +

1

4
sin2 2θ12 cos2 θ12

(
1

ξ�

)2
]

+ sin4 θ13 (5.22)

These relation show that at low energies we are much more sensitive to AMSW correc-

tions, being ξ2 ∝ AMSW .

5.2 Simulations of neutrino propagation in the Sun

and the Earth structures

In order to study the flavour neutrino states evolution, we simulate their propagation

first in the solar interior, then we emulate their state evolution also in the Earth’s

interior taking into account its density stratifications (PREM) [48]. In this way we

calculate the night/day asymmetry of the solar flux taking into account the solar ex-

posure for each experimental site (Kamioka (Jap), Assergi (Ita) and Sudbury (Can)).

We performed these simulation varying the values of Es, Ens and marginalizing the
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parameter tan2 θ12, ∆m2
12 and cos θ13.

We generated 1000 random values with a flat distribution in the ranges Es = [0.5, 2.5]

and Ens = [−3.0, 1.0] and for the values of cos2 θ13 we used a Gaussian distribution

around the best value measured by Daya Bay [21], expressed as sin2 θ13 = 0.092±0.016

with a standard deviation equal to its error, then we convert to cos2 θ13. In this

way we also marginalized the cos2 θ13 parameter. We used these values to calculate

the survival probability map, P1e(tan2 θ12,∆m
2
12), for the electron flavour outside the

Sun core assuming as lighter mass eigenstate m1, and the regeneration probability

P2e(tan2 θ12,∆m
2
12) in the Earth, also in the case of KamLAND experiment, in order

to evaluate the final survival probability:

Pee = [P1e(1− P2e) + P2e(1− P1e)] cos4 θ13 + sin4 θ13. (5.23)

Therefore we evaluate the χ2 for the main experiments like SK-IV [29], SNO [35],

Gallex/GNO-SAGE [41, 40, 39], Homestake [42], Borexino [90] and KamLAND anti-ν

experiment [12].

The neutrino fluxes used in these simulation are produced with the high metallicity So-

lar Model [30] because of its best agreement with the depth of convective envelope and

best agreement with the helioseismological data, related to the internal solar density.

5.2.1 Solar Model

From results of the solar models [34] used in this work, we obtain several information

about the structure of the solar interior and, in particular, its chemical evolution in

time and the final distribution of the nuclei of chemical elements. These information

give us also the neutrino production distributions and also the neutron nn(r) and pro-

ton/electron np(r) = ne(r) distribution as a function of the radius r = R/R� (charge

neutrality of the matter).

We can use these three distributions to simulate the neutrino propagation in the solar

interior in order to calculate the survival probability of the flavour neutrino state. In

order to calculate the survival probability we consider the so called normal mass hier-

archy, in which the lighter mass eigenstate is |ν1〉 with eigenvalue m1 (m1 < m2 < m3).
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Considering the electron neutrino flavour state as the lighter linear superposition of all

three mass eigenstates, with respect to other neutrino flavours, hence the predominant

mass eigenstate is |ν1〉. For this reasons we are interested in evaluating the probability

Pe1 that the neutrino comes out of the solar core, holding the |ν1〉 mass eigenstate as

predominant. In the simulations we consider the Sun as a unidimensional structure

where r = R/R� is the radius in terms of R� = 6.96× 108 m.

Starting from the center of the solar core (r0 ' 10−3) we divided the whole structure in

a large number of short layers (δr ∼ 10−3×r). For each ith-layer of the solar structure,

we evaluate the survival probability Pe1(ri + δr) considering the density constant in its

interior and following its evolution up to the solar surface (rn = 1). Then we evaluate

the survival probability Pe1 for all fluxes of neutrinos produced in the given initial layer

that we are considering. We repeated this calculation starting from successive layers

of the solar structure, in order to calculate for each flux the effective probability Pe1

taking into account the position of the region where it has been produced. Therefore

we draw for each combination of [Es, Ens and cos2 θ13] a Pe1-map of oscillation param-

eters [log10(tan2 θ12), log10(∆m2
12/4Eν)] space1. We evaluate the survival probability

only for the LMA region and for a neutrino energy range 200 keV < Eν < 20 MeV .

The ranges of parameters used for the probability evaluation are:

−1.0 < log10(tan2 θ12) < 0.0;

−13.0 < log10

(
∆m2

12

4Eν

)
< −9.0.

(5.24)

In Fig.5.3 we show the survival probability Pe1 that an initial electron neutrino, pro-

duced in the solar core by nuclear reactions, has outside the solar surface in the vacuum.

Then we assumed in this case that in the electron flavour state the lighter eigenstate is

dominant with respect to other ones (normal hierarchy). To evaluate probability Pe1,

we assumed that the neutrino is produced in an initial point ri inside the solar struc-

ture. We assume also that there are no interactions with the other neutrino coming

from more internal regions and that it propagates forward up to the surface. At ri

1 We used for both parameters the log-scales only for the sake of simplicity
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Figure 5.3: Survival probability that a electron neutrino produced inside the solar core.
It goes out from the solar surface with lighter mass eigenstate m1 (by assuming this
hierarchy for neutrino mass). The probability depends on the ∆2

12/(4Eν) ratio.

point we have a density ρ�(ri) given by:

ρ�(ri) = cos4 θj13

[
np(ri)E js + (nn(ri)− np(ri))E jns

]
(5.25)

where j is the particular combination of parameter θ13, Es and Ens used for the simu-

lation. The quantity np(ri) and nn(ri) are the density distribution for proton/electron

and neutron particles provided by solar models.

Therefore we begin calculating the time evolution function for the flavour neutrino

state in order to evaluate how the probability Pe1(ri) evolves after the crossing of suc-

cessive layer ri+1 = ri + δr · · · rn = 1.

We perform this calculation for each couple of parameter ∆m2/4Eν , tan2 θ12 in the

range considered. Therefore we have a Pe1 distribution shown in Fig. 5.3 as a function

of the MSW parameters and neutrino energy. The solutions for MSW equations, to

describe the 3-flavour propagation and oscillations, are in general extremely complex

[49]. In the case of solar neutrinos we can reduce the problem of 3 generation flavour

propagation to the effective two-flavour problem following the formalism introduced by

[46, 47]. We are interested in evaluating the transitional amplitude T2ν(νe → ν1) for

a neutrino that crosses in the ith-layer where the density is ρ�(ri) (constant in this
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layer). The flavour eigenstate of neutrino |να〉 = U∗ |νi〉 where:

U =

 cos θ12 sin θ12

− sin θ12 cos θ12

 (5.26)

is a Hermitian rotational matrix .

For practical case of neutrino propagation in a medium with a constant density, as

in the case of single layer of the solar core, we can adopt directly the two-flavour

formalism.

We start from space-evolution equation for the neutrino field:

i
d

dL

 νe

νx

 =
1

2E

U
 m2

1 0

0 m2
2

U−1 +

 A 0

0 0

 νe

νx



=
1

4E

(Σ + A) +

 −∆m2
12c12 + A ∆m2

12s12

∆m2
12s12 ∆m2

12c12 − A

 νe

νx


(5.27)

where c12 = cos θ12, s12 = sin θ12 and

Σ = m2
1 +m2

2; ∆m2
12 = m2

2 −m2
1 ∆m2

13 = m2
3 −m2

1. (5.28)

The effect of matter interaction is contained in A, defined as:

A = 2
√

2GFNe(ri)E = 2
√

2GF (Ye/mN)ρ�(ri)E. (5.29)

For the sake of simplicity, we are going to reduce the notation in the same way as done

in the program code. We define:

i
d

dL

 νe

νx

 =

 1

4E
(Σ + A) +

 −a1 b1

b1 a1

 νe

νx

 (5.30)

where 
a1 =

∆m2
12

4Eν
cos 2θ −

√
2

2
GF (Ye/mN)ρ�(ri),

b1 =
∆m2

12

4E
sin 2θ,

(5.31)
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Solving the eigenvalue equations we obtain the following set of functions as solution

for time evolution flavour state:
y1(ri) = cos

(√
a2

1 + b2
1 · ri

)
− i a1√

a2
1 + b2

1

sin
(√

a2
1 + b2

1 · ri
)

y2(ri) = −i b1√
a2

1 + b2
1

sin
(√

a2
1 + b2

1 · ri
) (5.32)

therefore we can define the eigenvector matrix for each point ri as:

Zm(ri) =

 y1(ri) y2(ri)

y2(ri) y∗1(ri)

 (5.33)

the final matrix is given by the recursive multiplication of these matrices

Zm =
n∏
k=i

Zm(rk) (5.34)

where i = 0...n runs from the center of the solar core to the surface and correspond to

the point ri where the neutrino has been generated. Therefore ri is the point where we

start in evaluating the space evolution of neutrino flavour state in the solar interior.

We change in the mass basis:

Zf = U∗ · Zm =

 Zm
11c12 − Zm

21s12 Zm
12c12 − Zm

22s12

Zm
11s12 + Zm

21c12 Zm
12s12 + Zm

22c12

 (5.35)

The probability Pe1 is given by:

Pe1 = |Ze
11|

2 = |Zm
11 cos θ12 − Zm

21 sin θ12|2 = |T2ν(νe → νe)|2 (5.36)

This corresponds to the probability that an initial electron neutrino, produced inside

the solar core, comes out of the solar surface in the |ν1〉 eigenstate. This neutrino

propagates in the solar-earth vacuum space without any interaction as far as it comes

in contact with earth. By means of this probability we can evaluate the local flux

intensity produced by nuclear reactions starting from the point ri:

dφν(ri)

dr
= Pe1 ·

dNν(ri)

dr
(5.37)
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where dNν(ri)/dr is the production rate of neutrino evaluated in solar model for each

species of neutrino (pp, pep, hep, Be7, B8, N13, O15, F17). Therefore the total flux

is given by the integral over the solar radius:

φν =

∫ R�=1

0

dφν(ri)

dr
dr. (5.38)

These are normalized fluxes because at this point we are interested only to the proba-

bility of the oscillation as show in Fig.5.3 for the 7Be.

5.2.2 Earth Model

The neutrinos coming from the Sun have a weak interaction with earth matter, but

it exists the probability that some of flavour oscillated neutrinos changes their states

coming back in a electron flavour state.

This effect, also called “regeneration”, takes place when the neutrinos pass through the

Earth matter before to be detected from the experiments. The regeneration effect gives

the Night/Day (N/D) asymmetry observed in the 8B neutrino flux at higher energies.

This effect depends on the angle exposure of experiment with respect to the zenith

and on the density of different internal shells of the earth crossed by neutrinos during

their propagation. The reference for the matter density distribution in the internal

earth structure is [48], where, by means of the measurements of the earthquake-wave

velocity, it is reconstructed the internal shell structure of the earth and it is measured

the density of them. In Fig.5.5 we show the density ρ as a function of the depth, along

with the velocity of the wave components (VP and VS) inside the core and the mantle.

To take into account the N/D effect, we cannot consider the Earth as a unidimensional

body, as done for the Sun, but we have to consider its rotation around its axis. Starting

from the time-exposure of each experiment, situated at opposite longitudes (Canada,

Italy and Japan), we divide overnight rotation in 6 main angle where we trace the path

across the Earth shells are intercepted by the solar neutrino before their detection.

Obviously, during the daily exposure, the regeneration effect is absent, therefore we

consider the solar fluxes without perturbations. To evaluate the regeneration effect,
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Figure 5.4: The PREM or Preliminary Reference Earth Model show the inner structure
of the Earth starting from the superficial crust with a average density close to the water
ρ⊕(r = n) ∼ 1.02g/cm3 to core density at 6371.0 km of depth where the density is
ρ⊕(r = 0) ∼ 13.0g/cm3.

we consider the formalism discussed in [50, 51].

The night survival probability for the electron neutrino flavour is:

PN
ee = PD

ee − cos 2θ� cos2 θ13〈freg〉zenith (5.39)

where PD
ee is the probability in the solar case Eq.5.15, freg is the regeneration effect

given in general by:

freg = P2e − sin2 θ12 cos2 θ13 (5.40)

where Pe2 is the transition probability of second mass eigenstate to νe that we have to

calculate for the solar neutrinos.

As shown in Fig.5.5 shows, the internal Earth structure is composed by several shells

with very different sizes and densities ranging from ρsurf ' 1.02 g · cm−3 on surface to

the higher densities present in the mantle and core ρcore ' 13.0g·cm−3. For comparison,

the solar core has a density about 10 times bigger: ρ� ' 150.0 g · cm−3.

The time exposure provided by experiments gives us the direction of the Sun with

respect to the zenith of experiment site. By means of this information we can evaluate
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the path of neutrinos through the shells of the Earth. The length of this path is

given, roughly by δl =
√
R2
k+1 −R2

k, where Rk is the radius of the shell. Starting

from entrance point in Earth crust, as in the solar case, we follow the mass eigenstate

evolution up to the detector, changing each time the neutrino pass in a new shell the

density of the medium. The density evaluated for the earth is given by:

ρSh(ri) = ρ⊕(ri)(npEs + (nn − np)Ens) (5.41)

in which ρ⊕(ri) are the polynomials describing the density curve in each shell as a

function of the radius. The number of densities for neutron and proton in the Earth

are fixed to the crust values: nn = 0.506 and np = 0.494.

The probability P2e for the electron neutrino regeneration is evaluated in the same way

for the solar case, but instead of the first entries of the propagation matrix, we take

into account the following term:

P2e = |Ze
12|2 = |Zm

11s12 + Zm
12c12|2 (5.42)

In the case of reactor sources, in which we can assume the crust densities constant in

a large part of the neutrino path, we can approximate freg as:

freg = ξ⊕ cos2 θ13 sin2 2θ⊕ sin2

[
AMSWa⊕ cos2 θ13(1− 2ξ−1

⊕ cos2 θ12 + ξ−2
⊕ )−

1
2

(
L

2

)]
(5.43)

where ξ⊕ is defined as the Eq.5.18 but with earth densities as defined in Eq.5.25 in

which nn, np and ne are the terrestrial values. The parameter a⊕ is defined as

a⊕ ≡
√

2GFN
⊕
e =

√
2GFY

⊕
e ρ⊕

mN

(5.44)

where ρ⊕ is defined as ρ� in Eq.5.25 Finally L is the length of path crossed by neutrinos

in the Earth.

5.2.3 Neutrino Experiments

After the calculation for the survival probability in the Sun of lighter mass eigenstate

Pe1 and the different regeneration probability as a function of the zenith angle in each
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experiment, we can evaluate the total survival probability for the electron neutrino

flavour and the relative rate or electron spectrum for each experiment considered. The

survival probability is expressed as a function of θ2
12 angle and as the ∆m2/(4Eν) ratio.

Therefore to evaluate the total rate for a given pair of MSW parameters, we interpolate

the survival probability map for different neutrino energies Eν .

The solar neutrino fluxes used to evaluate the experimental rate and then the χ2 map

are provided by [34]. In Tab.5.1 we show the neutrino fluxes predicted by the solar

models, in which we considered the results of the first column for the Grevesse and

Sauval chemical composition [83]. To evaluate the χ2 map, we marginalized all main

Flux GS98 AGS05 AGSS09 AGSS09ph

pp 5.97 6.04 6.03 6.01

pep 1.41 1.44 1.44 1.43

hep 7.91 8.24 8.18 8.10

7Be 5.08 4.54 4.64 4.79

8B 5.88 4.66 4.85 5.22

13N 2.82 1.85 2.07 2.15

15O 2.09 1.29 1.47 1.55

17F 5.65 3.14 3.48 3.70

Table 5.1: Predicted neutrino fluxes.
Neutrino fluxes are given in units of 1010(pp),
109(7Be), 108(pep, 13N, 15O), 106(8B, 17F) and
103(hep) cm−2 s−1.

parameters with exception for the new one introduced in this work:

χ2
global(Es, Ens) = Marg

[
χ2
�(∆m2

12, θ12, θ13, Es, Ens, fB8, fBe7, fpp, fCNO)+

+χ2
KamLAND(∆m2

12, θ12, θ13)]
(5.45)

where the Marg operator is introduced in [52]. The χ2
� =

∑n
i=1 χ

2
i is the sum of

χ2
i evaluated for each single solar neutrino experiment as (i = {Borexino, SK, SNO,

Gallex/SAGE/GNO, Homestake}) and fα, with α = B8, Be7..., are the neutrino fluxes

predicted by the solar model.
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Below it is listed a summary of the experimental results necessary to determine the χ2

map with their corresponding features related to our calculations.

Homestake

This was the first experiment able to observe the neutrino interactions with the matter

[57]. Base on inversed beta-decay proposed by Pontecorvo and Alvarez [77, 78] of

chlorine:

νe +37 Cl→37 Ar + e− (5.46)

with threshold energy of Ethr
nu = 0.814 MeV. The main fluxes observed are the Be7

neutrino and the CNO neutrinos. The experiment result consist only of the number

of Argon nuclei measured after fixed time of exposure, hence only a energy integrated

value of the neutrino fluxes, without distinguish the neutrino type and its relative

energy.

The total counting rate observed is:

R37Cl = 2.56± 0.23SNU (5.47)

where SNU = 10−36 events×atoms−1×s−1 is the Solar Neutrino Units. This results

was also the first evidence of Solar Neutrino Anomaly (SNA), the expected rate from

solar model, without MSW flavour suppression, is R0
37Cl = 8SNU more than 3 times

the measured value. In order to evaluate this rate we used the energy distribution of

neutrinos dφα/dEν (normalized to 1) multiplied by the total fluxes fα, provided both

by solar models, therefore we multiply this result for the flavor survival probability

Pee(Eν) in Eq. 5.23 then for the cross section of Homestake experiment calculated by

J.Bahcall [56] dσ37Cl/dEν . The final rate is:

R37Cl =

∫ Emax

Ethr

dφα
dE ′
· fα · Pee(E ′) ·

dσ37Cl

dE ′
dE ′ (5.48)

Gallex/GNO and SAGE

The Gallex/GNO [65, 66, 67, 68, 69, 70] and SAGE [71, 72, 73, 74, 75, 76] radiochem-

ical experiment was able to measure for the first time the νpp neutrino that is most

132



Chapter 5. New Matter Sensitive Observables

intense neutrino flux emitted from the sun fpp ' 6× 1010cm−2 s−1. They are very sim-

ilar experiment located in the Laboratori Nazionali del Gran Sasso (LNGS-INFN) in

Italy and in Baksan Neutrino Laboratory (BNO) at the north of Caucasian mountains

respectively. They observe the neutrino events by means of reaction:

νe + 71Ga→ 71Ge+ e− (5.49)

with a very low threshold Ethr = 0.240 MeV. Also in this case the results of both

experiments are the integral on total energy range of contributions of all neutrino

fluxes, without distinguish among the components. The total rate measured is a average

between the Gallex/GNO and SAGE counting rate, obtained by detecting the number

of Germanium nuclei present in the liquid detector (Gallium):

R
Gallex/GNO+SAGE
71Ga = 68.1± 3.75 SNU. (5.50)

SuperKamiokaNDE

The SuperKamiokaNDE is the bigger neutrino experiment based on Čerenkov effect

of scattered electrons by solar neutrino, filled with 5 × 104 tons of water within the

Kamioka mine in Japan and with more than 104 photo-multipliers on internal surface.

Together to KamiokaNDE it was the first neutrino detector able to observe the neutrino

events in real time with a threshold energy of Ethr5 MeV in the phase I and then with

a new threshold in the phase II and III at Ethr = 4.5 MeV. This experiment is able

also to observe the direction of neutrinos showing the dependence of the flux with the

position of the Sun [2, 3, 5]. In this case we reconstruct the energy spectrum calculating

the cross section [58] with radiative corrections. The total rate is calculated as integral

of Čerenkov spectrum given by:

dΦνe
e

dTe
=

∫
Eνe

dσνeES
dTedE ′νe

·
dφMSW

νe

dEνe
dEνe (5.51)

and the other neutrino flavours:

dΦνx
e

dTe
=

∫
Eνx

dσνxES
dTedE ′νx

·
dφMSW

νx

dEνx
dEνx (5.52)

where σνaES are the cross section for electron neutrino and the other µ − τ flavours.

The flux φMSW
νa are solar fluxes reduced by survival probability. From these spectra we
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Figure 5.5: Čerenkov spectrum of electron scattering in the SuperKamiokaNDE experi-
ment generated by 8B + hep neutrino fluxes.

perform a Gaussian convolution to obtain the effective spectrum observed within each

bin, centred on bin energy T̃ ie , as follow:

dΦ̃i
e

dT̃ ie
=

∫
Te

1√
2πσ(Te)

exp

(
−(T̃ ie − Te)2

2σ2(Te)

)
dφe
dTe

dTe (5.53)

where in this case σ(Te) is the resolution of experiment, defined as:

σSK(Te) = −0.25 + 0.20
√
Te + 0.06 Te. (5.54)

and the integral is done on total energy range. Hence we can integrate this last spec-

trum on the bin energy range. The total rate observed in this way is expressed in term

of neutrino flux as:

ΦSK
8B = (2.35± 0.08)× 106 cm−2 s−1. (5.55)

Also in this case it is visible a strong reduction of the flux as compared to the expected

from solar models.
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SNO

The SNO/SNO+ experiment (Sudbury Neutrino Observatory) is a water Čerenkov

experiment using heavy water (D2O) situated in the Creighton mine (INCO Ltd.)

near to Sudbury, Ontario Canada [4].

This experiment is able to observe with a similar statistic all three interaction that

could be done by a neutrino (Neutral Current (NC), Charge Current (CC) and Elastic

Scattering (ES)) then it is the only one able to observe directly the total neutrino flux

independently from the MSW oscillations. The possible reaction are the following:

CC : νe + d→ p+ p+ e− ECC
th = 1.44MeV

NC : να + d→ p+ n+ να ENC
th = 2.22MeV

ES : να + e− → να + e− EES
th = 5.5MeV

(5.56)

where α = e, µ, τ . Unfortunately for the CC the threshold has been fixed to 5.5 MeV

because of the high background.

In this case, instead of evaluating directly the spectra for each kind of interaction,

the collaboration defined a polynomial for the Pee(Eν) and for the D/N asymmetry

Aee(Eν), as a neutrino energy function:

P d
ee = c0 + c1(Eν [MeV ]− 10) + c2(Eν(MeV )− 10)2 (5.57)

and the Day-Night asymmetry:

Aee(Eν) = a0 + a1(Eν − 10) (5.58)

Therefore we evaluated the survival probability and D/N asymmetry as energy func-

tions, with fB8 fixed, and fitted the new curves with these polynomial. Hence we

evaluated the χ2 for the SNO results:

χ2
j(∆m

2, tan2 θ12) = (RExp −RTeo
j )Tσ−1

SNO(RExp −RTeo
j ) (5.59)

using the best fit shown in Tab.5.2 for RExp and the inverse of the matrix correlation

σSNO shown in Tab.5.3. Here the subscript j indicates a given combination of {E js ,

E jns and cos θj13} In Fig.5.6 we show and example Pee(Eν) and Aee(Eν) function with

relative spread due to parameters uncertainties and correlations.
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Best fit Stat. Systematic uncertainty

Basic D/N MC Total

ΦB8 5.25 ±0.16 +0.11
−0.12 ±0.01 +0.01

−0.03
+0.11
−0.13

c0 0.317 ±0.016 +0.008
−0.010 ±0.002 +0.002

−0.001 ±0.009

c1 0.0039 +0.0065
−0.0067

+0.0047
−0.0038

+0.0012
−0.0018

+0.0004
−0.0008 ±0.0045

c2 -0.0010 ±0.0029 +0.0013
−0.0016

+0.0002
−0.0003

+0.0004
−0.0002

+0.0014
−0.0016

a0 0.046 ±0.031 +0.007
−0.005 ±0.012 +0.002

−0.003
+0.014
−0.013

a1 -0.016 ±0.025 +0.003
−0.006 ±0.009 ±0.002 +0.010

−0.011

Table 5.2: Results from the maximum likelihood fit in [11]. Note that ΦB8 is in units
of ×106 cm−2 s−1. The D/N systematic uncertainties includes the effect of all nuisance
parameters that were applied differently between day and night. We performed the fit of Pee
and Aee for each combination of Es, Ens and cos θ13 using the best fit to evaluate the χ2 for
SNO experiment.

ΦB8 c0 c1 c2 a0 a1

ΦB8 1.000 -0.723 0.302 -0.168 0.028 -0.012

c0 -0.723 1.000 -0.299 -0.366 -0.376 0.129

c1 0.302 -0.299 1.000 -0.206 0.219 -0.677

c2 -0.168 -0.366 -0.206 1.000 0.008 -0.035

a0 0.028 -0.376 0.219 0.008 1.000 -0.297

a1 -0.012 0.129 -0.677 -0.035 -0.297 1.000

Table 5.3: Correlation matrix from the maximum likelihood fit.
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Figure 5.6: Čerenkov spectrum of electron scattering in the SuperKamiokaNDE experi-
ment generated by 8B + hep neutrino fluxes.

Borexino

The Borexino experiment features are extensively discussed in the previous chapters.

Here we take into account the last best fit for the count rates of neutrino νBe7, that is

φBe7e = 46.0± 1.5 [91] and then we calculate the χ2 as:

χ2 =
(Rsim(θ12,∆m

2
12)−Rexp)

2

σ2
(5.60)

where Rsim(θ12,∆m
2
12) is the count rates for the beryllium shoulder in the Borexino

spectrum obtained from the simulation for a fixed set of values (cos2 θ13, ES, ENS) vary-

ing the value of ∆m2 and tan2 θ12.
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KamLAND

The KamLAND experiment is located in the same place of the old KamiokaNDE

experiment, in the Kamioka mine in Japan. Its position is close to 16 nuclear reactors

that contribute for a relevant anti-neutrino flux. It consists of 1 kiloton of liquid

scintillator that detect reactor anti-neutrinos through the reaction:

p+ νe → n+ e+ (5.61)

The positron is then detected when it scintillates and when it annihilates with an

electron. This annihilation, in delayed coincidence with the γ-ray from neutron capture,

represents an easily distinguishible signal. The anti-neutrino energy spectrum was

measured at distance from the nuclear power plants where the oscillating effect was

negligible by [60, 61]. The phenomenological parametrization of this spectrum is found

to be depending on which kind of isotope is involved [62]:

dNν

dEν
= ea0+a1Eν+a2Eν (5.62)

where the parameters ai are reported in Tab.5.4 and the spectrum is expressed in

νe/Mev − fission. Therefore we have define how many fissions for each isotope there

are. For a given nuclear reactor plant this quantity will depend on three factors:

1. The thermal power of that reactor;

2. The isotopic composition of the reactor fuel;

3. The amount of thermal power emitted during the fissioning of a nucleus of a given

isotope.

In Tab. 5.5 we report the main characteristics of the nuclear plants considered by the

collaboration and we take into account also the time variation of the isotopes in the

nuclear fuel and then the power variances showed in [59]. In order to evaluate the

effective spectrum observed by KamLAND we start from the initial spectrum for each

reactor and its time variation and we apply the MSW flavour oscillation as for the solar

case in which in the three flavour case we have that the survival probability is:

P 3ν
ee = cos4 θ13P̃

2ν
ee + sin4 θ13 (5.63)
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Isotope 235U 239Pu 238U 241Pu

a0 0.870 0.896 0.976 0.793
a1 -0.160 -0.239 -0.162 -0.080
a2 -0.0910 -0.0981 -0.0790 -0.1085

Table 5.4: Parameters for
dNν

dEν
parameterization. The resulting spectrum is given in units

of νe/MeV-fission.

Reactor Site Distance (km) Max. Thermal Power (GW)

Kashiwazaki 160 24.6
Ohi 180 13.7
Takahama 191 10.2
Hamaoka 213 10.6
Tsuruga 139 4.5
Shiga 81 1.6
Mihama 145 4.9
Fukushima-1 344 14.2
Fukushima-2 344 13.2
Tokai-II 295 3.3
Shimane 414 3.8
Ikata 561 6.0
Genkai 755 6.7
Onagawa 430 4.1
Tomari 784 3.3
Sendai 824 5.3

Table 5.5: Reactor parameters. Reproduced from reference [63].
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where P̃ 2ν
ee is evaluated as in the earth case in which:

P̃ 2ν
ee = 1− sin2 2θ12⊕ sin2

(
1.27 ·∆m2

12⊕L

E

)
(5.64)

where L is the distance from the nuclear plant in which the anti-neutrino is produced

and E is the energy of emission of νe in MeV. Here sin2 2θ12⊕ and ∆m2
12⊕ are defined

in the usual way taking into account the new definition of densities 5.41:

sin2 2θ12⊕ =
sin2 2θ12

(cos 2θ12 − A/∆m2
12)2 + sin2 2θ12

(5.65)

and

∆m2
12⊕ = ∆m2

12

√
(cos 2θ12 − A/∆m2

12)2 + sin2 2θ12 (5.66)

where A = a⊕ show in Eq.5.44.

5.3 Results

The ∆χ2 maps in Fig.5.9 shows the dependence of matter potential by a linear combi-

nation of two parameters Es and Ens drawing a valley beside, in good approximation,
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to the plane Es = 0.57Ens + c. This means that the parametrization done in [25, 26]

changes with chemical features of the medium considered and then with its neutron,

proton ratio, as shown in Eq.5.11. For the solar neutrinos the correlation between Es
and Ens is dominate only by the solar nn/np ratio because, in the Earth interior, this

ratio is much smaller (Eq.5.13). The ∆χ2 map also shows the dependence of AMSW

parameter on the neutrino experiment results and which measurement we can prefer

to improve the narrow shape of the valley.

The current measurements of neutrino fluxes performed by all experiments described

in the previous section give a large shape of ∆χ2 valley (5.9.a). The next measurements

expected that could really improved this results are:

– the low energy threshold measurement for the 8B neutrino flux within 3σ of CL,

– the observation of day-night asymmetry of 8B neutrino flux at 2σ of CL.

We simulated the expected results to understand how these new measurements could

change the ∆χ2 valley. In Fig.5.9.b we simulated the actual 8B flux at low energy [30]

for high metallicity solar model. In Fig.5.9.c it is shown only the expected day-night

asymmetry and in the last one Fig.5.9.d it is shown their combination. We observe in

particular a strong reduction of the extension of ∆χ2-valley Fig.5.9.b by improving the

measurements of the low energy region for the 8B solar neutrino flux as expected from

future Borexino results or by lowering the threshold energy from SNO experiment.

The day-night asymmetry effects are due only to the matter of the Earth, therefore,

as discuss above, they did not give any appreciable improvements on Ens, but it places

new bounds only on Es as shown in Fig.5.9.c.

In addition these simulated results suggest to study the ∆χ2 profile along the Es −

0.57Ens direction.

We simulated the solar neutrino propagation with 1000 random values for Es and Ens
in the Sun and in the Earth, then we calculated the expected experimental results and

relative χ2 in the global fit. We took the projection of all χ2 results on Es − 0.57Ens
plane as show in Fig.5.10. In this figure the points are randomly distributed on [Es, Ens]

plane, but from the projection of their distribution, they draw a low profile that, in
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Figure 5.9: ∆χ2 contour plots varying Es and Ens and marginalizing the ∆m2
12, tan2 θ12 and

cos2 θ13. In figure a) is generated with the current solar neutrino data. In figure b and c we added
to the current data the expected results for the new 8B neutrino flux at low energy and the expected
new D/N asymmetry with higher CL. In last figure d) the combination of both with the current solar
neutrino data.
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first approximation, is the minimum profile of the χ2 valley.

In Fig.5.10 we considered only the last neutrino experiment results, therefore the strong

improvement from the 8B spectrum is not present, but, starting from the Eq.5.13

AMSW = 1 + Es − 0.57Ens,

we can observe two main results. First, the vacuum solutionAMSW = 0 (Es − 0.57Ens = −1)

is excluded over 5σ. Second, the minimum is found at Es − 0.57Ens = 0.65 that it is

larger than SI solution, in which the expected value is Es−0.57Ens = 0 (or AMSW = 1).

The standard solution is contained within 2σ of CL, then it is not excluded, but there

could be present also some extra interactions that make the matter potential in MSW

larger than the standard one.

Actually, the current solar neutrino results are not able to put other constraints on this

new parameter.

The new results expected from Borexino phase II, about the low energy 8B solar neu-

trino flux with higher statistics and also the new analysis on 7Be flux with lower

background, may be able to give new important informations or new constraint about

the NSI parameters, in both the cases, for propagation and detection, as suggest in [1].
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Conclusions

The analysis performed in this thesis guarantees that flux observed from Borexino with

an average rate of RBe7 = 46.0 ± 1.5(stat) 1.5
1.6(syst) cpd/100tons is generated by the

Sun, because of its intrinsic seasonal signature. On the Earth there could be several

physical quantities that could have the same periodicity, therefore a particular accu-

racy was required in order to exclude all possible interferences from degenerate spectral

components. In particular, the main contribution could be due to the muon flux which

has also a seasonal modulation, but with opposite phase. A trace of the muon modula-

tion can be detected, with the EMD decomposition, in the 11C spectrum that present

a IMF with opposite phase as expected. The strong dependence of the count rates

on the vessel shape has been reduced by means of the choice of a asymmetric fiducial

volume from top to bottom.

The tool developed in this work to identify the nylon vessel shape is a valid criterion to

perform the study of vessel stability useful also for the “Operational Group” to inves-

tigate the status of detector taking an image of the vessel each week without stopping

the data acquisition. So far, in order to observe the inner vessel status, it was necessary

to stop the data taking for 3 days each 6 months, in order to switch on the lights inside

the stainless steel sphere and take the pictures. This operation is particular dangerous

for the PMTs exposed to high luminosity. Starting from now this kind of operations

could be performed only once per year, for example.

The criteria for the data selection adopted for this analysis, allowed us to obtain the
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cleanest sample with a maximized signal to noise ratio (SNR). Unfortunately the sta-

tistical fluctuations of the data taken day by day (about 24h for each data point) do

not permit to appreciate the small variations of the count rates due to the increasing

or decreasing of the neutrino fluxes. In addition also the background time instability,

mainly due to the 210Bi events, makes much more difficult to perform this measure-

ment.

Fortunately the time scale of the noise, the signal and of the background are very

different each other. In the first approximation the spectral components of each contri-

bution have a different frequency ranges, therefore could be possible to separate each

one by means of a filter. The sifting algorithm perform exactly this operation, leaving

in each IMF of a given mode a residual signal in which the frequencies range is about

half of the previous one.

This is a characteristic of the so called dyadic filter. The sifting is able to perform this

operation by filtering out all the high frequencies, due to the statistical fluctuations,

leaving only the real signal present in the dataset, although with a weak amplitude as

in the seasonal modulation case.

The main difference with the Fourier analysis is that the EMD filters out the real

spectral components, on the contrary the Fourier analysis “generate1” the harmonics

in order to improve the approximation to the real signal by means of a finite Fourier

series.

In addition the Fourier transform has a bad behavior on non linear and non periodic

functions, as in the case of very noisy signals.

This means that all techniques which adopt the Fourier transforms have a worse fre-

quency resolution when are applied on the non periodic functions,with respect to the

EMD. This worse resolution is due to the attempt to better approximate the non linear

function.

In this thesis we deeply investigated the real capability of the EMD to observe the

seasonal modulation.

1Really, for each harmonic component it is associated an amplitude obtained by means of a mini-

mization.
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By means of several simulations we checked mainly the real capability to perform

the measurements of the amplitude, the frequency and finally of the initial phase of

the seasonal sinusoidal-like function.

The main problem found is the strong dependence of IMF functions on the random

noise in the initial dataset (initial conditions). It has been solved by summing a random

white noise2 100 times to the initial dataset. Each time we extracted all the oscillation

modes and then we took the average of all 100 IMF for each oscillation mode.

This procedure guarantees that the IMF average is independent from the initial noise

component of a given dataset and also the extracted information.

We found a good sensitivity to the frequency of the seasonal modulation with a value in

good agreement with the annual periodicity, but weaker agreement for the amplitude.

The eccentricity of the Earth orbit is found within 3σ of the expected one. A possible

cause of this slight divergence could be a strong influences of the background + vessel

shapes variation not completely eliminated yet.

The EMD finally was able to extract as last residual function the most reliable function

that can describe the background time variation, opening new possibility to perform

more accurate measurements for the CNO neutrinos.

In the second part of this work I dealt with the non standard interactions (NSI). This

is a real big field in which the frontiers have not been explored yet and the Borexino

experiment might be really the only experiment that could provide new information.

For the NSI there are two kind of approaches: the physics related to the particle

detection and the second one related to the propagation. I focussed on the propagation

part of the problem by performing a simulation of neutrino propagation from the

production point in the interior of the Sun, to its arrival on the Earth. Along this

path, excluding the solar core regions in which the flavour oscillation happens, the

neutrino propagates in the vacuum without any perturbations. We can observe this

flux during the day time with the detectors. A different quantity of the flux is observed

2The withe noise is obtained by means of a random generator of events with a Gaussian distribution

around the central value, by definition.
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during the night because of regeneration effect due to non negligible density of Earth

interior (up to a tenth of the solar density). This effect depends also on the neutrino

energy and for this reason Borexino is not able to observe this asymmetry from the

νBe7 energy (Eν = 0.862 MeV). In the simulation I assumed that the matter potential

of MSW theory, responsible for the flavour resonance effect in high density matter,

could be parametrized to understand which kind of interaction is dominant during the

neutrino propagation. The results show a strong dependence on the neutron/proton

ratio, therefore on the chemical composition of the medium in which propagate. They

show also direct proportionality between two free parameter Es and Ens adopted in

the simulation. The main result is that a detailed study on low energy region for νB8

spectrum is preferred because the parameter AMSW with which the parametrization

has been done is much more sensitive at this energy range. Unfortunately the flux of

νBe7 does not provided a big contribution to the AMSW shape, although it permitted

the exclusion of LOW solution in the ∆m12 vs tan θ12 space. The simulations pointed

out that the parameter AMSW prefers values more larger than 1 as shown in Fig.5.10

where the minimum of ∆χ2 for the parameter Es − 0.57Ens is bigger than 0 (standard

MSW effect). This result can indicate that some new kind of interaction can be take

into consideration and that this is independent of the solar density. In addition extra

terms in Lagrangian interaction are not excluded, but at present the solar neutrino

experiment are not able to improve the resolution on the AMSW parameter.
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