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Resumo 

Aedes aegypti é altamente competente para a transmissão aos humanos de arbovírus, 

como chikungunya, dengue e Zika. A recente expansão desta espécie para áreas de onde 

foi eliminada e o seu estabelecimento em novos territórios, combinada com um 

crescimento urbano intensivo e aumento do movimento global de pessoas e mercadorias, 

desencadearam o dramático aumento da incidência de arboviroses nos últimos 40 anos. 

A vulnerabilidade da Europa aos arbovírus está a aumentar em áreas onde as populações 

de mosquitos vetores estão presentes. Um exemplo notável é o recente surto de dengue 

na ilha da Madeira em 2012. Apesar das medidas de controlo vetorial implementadas, a 

espécie Ae. aegypti encontra-se em contínua expansão desde o momento da sua 

introdução em 2005. Neste contexto, foram analisadas populações de Ae. aegypti da ilha 

da Madeira com o objetivo de i) caracterizar a sua suscetibilidade aos inseticidas e os 

potenciais mecanismos de resistência presentes, ii) determinar a origem geográfica de Ae. 

aegypti da região e a sua estrutura genética com recurso a marcadores genéticos, tais como 

microssatélites e ADN mitocondrial, e iii) avaliar a competência da espécie presente na 

ilha para a transmissão dos vírus chikungunya, dengue e Zika.  

A espécie Aedes aegypti presente na Madeira foi considerada resistente a todos os 

inseticidas testados. Ensaios efetuados com sinergistas, que aumentaram 

significativamente as taxas de mortalidade, juntamente com os ensaios bioquímicos, que 

indicaram atividades enzimáticas aumentadas, sugerem a presença de resistência 

metabólica. A análise de microarrays revelou o aumento da expressão de genes 

associados à resistência aos inseticidas, principalmente proteínas cuticulares e citocromo 

oxidases P450. Destes, os genes mais expressos, Cyp9J32 e Cyp9J28, são conhecidos 

metabolizadores de piretróides. A genotipagem de mutações kdr revelou a presença da 

mutação V1016I com uma frequência moderada enquanto a mutação F1534C encontra-

se fixa.  

As análises de genética populacional indicam pelo menos dois eventos de colonização de 

Ae. aegypti na Madeira, sendo a Venezuela o mais provável país de origem destas 

introduções. Estimativas de tamanho efetivo populacional são consistentes com a rápida 

expansão de Ae. aegypti na ilha, atingindo valores máximos em 2012, coincidente com o 

surto de dengue ocorrido neste ano. Mais ainda, os resultados sugerem que as medidas de 

controlo implementadas após o surto podem ter afetado o tamanho efetivo de Ae. aegypti 

no Funchal. 

Finalmente, os estudos de competência vetorial revelaram a elevada suscetibilidade para 

a transmissão dos vírus chikungunya e dengue e moderada suscetibilidade para a 

transmissão do vírus Zika.  Em conjunto, os resultados obtidos corroboram o potencial 

risco para a disseminação de arbovírus na população local de Ae. aegypti. Assim, é 

necessário que a Madeira mantenha, atualize e teste os planos de contigência para estas 

arboviroses, de modo a garantir a devida preparação para futuras epidemias. Mais ainda, 

este estudo contribuiu para uma melhor compreensão do estado de resistência aos 

inseticidas e da estrutura genética de populações de Ae. aegypti na ilha, conhecimentos 

que poderão ser usados no delineamento e implementação de novas estratégias de 

controlo que previnam novos surtos arbovíricos transmitido por esta espécie. 

 

Palavras-chave: Resistência aos inseticidas, genética populacional, competência vetorial 
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Abstract 

Aedes aegypti is highly competent to transmit arboviruses to humans, such as 

chikungunya, dengue and Zika. The recent expansion of this species into areas where it 

has been eliminated and its establishment in new territories, combined with intensive 

urban growth and increased global movement of people and goods, have triggered a 

dramatic increase in the incidence of arboviruses over the last 40 years. The vulnerability 

of Europe to arboviruses is increasing in areas where mosquito vector populations are 

present. A striking example is the recent dengue outbreak on Madeira Island in 2012. 

Despite the vector control measures implemented, Ae. aegypti has been in continuous 

expansion since its introduction in 2005. In this context, Ae. aegypti populations from 

Madeira Island were analysed with the objective of i) characterize their susceptibility to 

insecticides and potential resistance mechanisms present, ii) determine the geographical 

origin of Ae. aegypti in the region and its genetic structure using genetic markers such as 

microsatellites and mitochondrial DNA, and iii) evaluate the competence of the species 

present on the island for chikungunya, dengue and Zika viruses transmission. 

The Aedes aegypti of Madeira was considered resistant to all insecticides tested. 

Bioassays performed with synergists, which significantly increased mortality rates, along 

with biochemical assays, which indicated increased enzymatic activities, suggest the 

presence of metabolic resistance. Microarray analysis revealed increased expression of 

genes associated with insecticide resistance, mainly cuticle proteins and cytochrome P450 

oxidases. Of these, the most expressed genes, Cyp9J32 and Cyp9J28, are known 

pyrethroid metabolizers. Genotyping of kdr mutations revealed the presence of the 

V1016I mutation at a moderate frequency while the F1534C mutation is fixed. 

Population genetics analyses suggest at least two colonization events of Ae. aegypti in 

Madeira, with Venezuela being the most likely origin of these introductions. Effective 

population size estimates are consistent with a rapid expansion of Ae. aegypti on the 

island, reaching maximum values in 2012, coinciding with the dengue outbreak in this 

year. Moreover, results suggest that the control measures implemented after the outbreak 

may have affected the Ae. aegypti effective size in Funchal. 

Finally, vector competence studies revealed high susceptibility for chikungunya and 

dengue viruses transmission and moderate susceptibility to Zika virus transmission. 

Altogether, the results obtained corroborate the potential risk for the dissemination of 

arboviruses in the local population of Ae. aegypti. Thus, it is necessary for Madeira to 

maintain, update and test contingency plans for these arboviruses in order to ensure proper 

preparation for future epidemics. Moreover, this study contributed to a better 

understanding of insecticide resistance status and the population genetic structure of Ae. 

aegypti populations on the island, knowledge that may be used in the design and 

implementation of new control strategies to prevent new outbreaks of arboviruses 

transmitted by this species. 
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1. Arboviruses and vector-borne diseases 

Mosquitoes have a worldwide distribution and are a major health problem in most tropical 

and subtropical countries where they are vectors of parasitic and arboviral diseases 

(Figure 1). 

 

Figure 1. Combined global distribution of major vector-borne diseases. Retrieved from 

Golding et al. (2015). 

 

Vector-borne diseases, especially those caused by arboviruses (arthropod-borne viruses), 

are among the leading causes of morbidity and mortality in humans and animals (Weaver 

and Reisen, 2010). Of these, more than 100 are transmitted by mosquitoes, proclaimed as 

the world’s deadliest species in the world (Kamerow, 2014). Aedes aegypti (Linnaeus, 

1762), also known as the yellow fever mosquito, is considered one of the mosquito species 

with major medical importance. This species is an important nuisance agent, causing 

allergic reactions due to its feeding behaviour and, most importantly, is a primary vector 

of arboviruses, such as dengue (Guzman et al. 2010), chikungunya (Leparc-Goffart et al. 

2014) and Zika (Musso et al. 2015). The fact that Ae. aegypti females feeds primarily on 

humans (a process called anthropophily) is the main reason why this mosquito species is 

such an efficient arbovirus vector.  

Mosquito-borne arboviruses are RNA viruses, comprising different viral families 
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(Flaviviridae, Togaviridae, Bunyaviridae, Reoviridae, Rhabdodviridae), and may be 

transmitted by different mechanisms: i) horizontal transmission - the most usual in which 

the transmission cycle involves a host and a hematophagous arthropod vector; ii) vertical 

transmission - involves the passage of the virus from an infected female to its progeny, 

and; iii) venereal transmission, in which virus is transmitted during mating (Weaver and 

Reisen, 2010). The parameters that shape the transmission potential of a given mosquito 

population to act as a disease vector are known and form the components of vectorial 

capacity (Figure 2) (Shaw and Catteruccia, 2018).  

 

Figure 2. Components of mosquito vectorial capacity. Retrieved from Shaw and 

Catteruccia (2018). 

 

Vector competence refers to the vector’s capability to withstand infection, replication and 

transmission of a particular virus (Bennett et al. 2002). Before a mosquito-vector becomes 

infectious, the pathogens have to overcome several barriers in the invertebrate host. These 

include a midgut infection barrier (MIB), a midgut escape barrier (MEB) and a salivary 

gland barrier (SGB) (Bennett et al. 2002). These barriers are of extremely importance 

since a good vector must be easily infected by the pathogen and, subsequently, become 

infectious. The key features related to arboviral infection of mosquitoes comprises i) 

ingestion of viremic blood from an infected host, ii) infection of midgut cells, subsequent 

viral replication and midgut escape, iii) dissemination to the hemocoel and secondary 
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tissues, iv) infection of the salivary glands (Franz et al. 2015). 

The genetic background of the vector and the pathogen greatly influences this important 

trait. In addition, vector competence may also be affected by environmental factors 

(Lambrechts et al. 2011) and by the mosquito microbiome and immune system (Hedge et 

al. 2015; Dennison et al. 2015; Tham et al. 2018). 

Although described by Garrett-Jones and Grab (1964) as two individual parameters, 

currently some authors consider vector competence as part of vectorial capacity estimates. 

 

1.1.Vector competence evaluation 

To determine the vector competence of a mosquito-vector, the following parameters are 

used: 

 Infection rate (IR), corresponding to the proportion of females presenting infected 

digestive tract among the analysed females; 

 Dissemination rate (DR), corresponding to the proportion of females with infected 

wings/legs or head among females with infected digestive tract. This allows to 

assess the ability of the virus to cross the mosquito digestive tract barrier and to 

disseminate into the hemocele; 

 Dissemination efficiency (DE), corresponding to the proportion of females with 

infected wings/legs or head among the females tested; 

 Transmission rate (TR), corresponding to the proportion of females with 

infectious saliva among females with disseminated virus beyond the midgut 

barrier; 

 Transmission efficiency (TE), corresponding to the proportion of females with 

infectious saliva among tested ones. 

The rate of disseminated infection and its efficiency is essential to evaluate the ability of 

the virus to cross the MIB and MEB, with subsequent dissemination into the hemocele, 

while the rate and efficiency of transmission indicates that the virus has crossed the last 

barrier, the SGB, and is able to be released in the mosquito saliva. Therefore, vector 

competence parameters, such as TR and TE, are crucial for risk assessment of arbovirus 

transmission mediated by local mosquito populations. 



Chapter 1 

6 
 

Aedes aegypti displays high estimates of vector competence to several arboviruses 

(Weaver and Reisen, 2010). However, in order to understand the current worldwide 

distribution of Ae. aegypti-borne diseases, as well as the ability of this species to invade 

and thrive in new territories, it is necessary to analyse this mosquito ability to live in close 

association with humans, in the urban and domestic environment. 

 

2. A successful invader 

2.1.Bioecology 

Ecological plasticity and desiccation-resistant eggs have been the major features 

associated with the success of establishment and subsequent expansion of Ae. aegypti 

worldwide. As for all mosquito species, Aedes aegypti life cycle involves two distinct 

stages: the aquatic phase, where the immature stages develop, and an aerial phase, also 

known as the adult stage (Figure 3).   

 

Figure 3. Schematic representation of Aedes aegypti life cycle. Retrieved from: 

https://us.biogents.com/aedes-aegypti-yellow-fever-mosquitoes/life-cycle-aedes-

https://us.biogents.com/aedes-aegypti-yellow-fever-mosquitoes/life-cycle-aedes-aegypti-yellow-fever-mosquito-en/
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aegypti-yellow-fever-mosquito-en/ 

 

The life cycle starts with egg laying at the water surface level, a process called oviposition. 

Females deposit around 100 eggs during a single gonotrophic cycle, i.e. the period 

encompassing the host-seeking behaviour to find a blood meal until the egg laying. Larval 

biotopes, or breeding sites, are typically small artificial containers such as ornamental 

flowerpots, tires or any water-holding container in or around the peridomestic or domestic 

area. In addition, although less frequently, Ae. aegypti may also lay eggs in natural 

breeding sites such as plant’s armpits that accumulate water. After selecting a suitable 

breeding site, the female will place a few eggs above the water surface on the inner wall 

of the container and move to another location, repeating the process, until all eggs of the 

batch are layed. This dispersion of the egg batch through several breeding places, known 

as “skip oviposition”, is a common behaviour among Aedine species and a strategy to 

increase the survival probability of the species (Reiter et al. 1995).  

When submerged by water, eggs will hatch, and undergo four larval stages until reaching 

the pupa stage. During this phase, considered a quiescence stage, a deep tissue 

rearrangement takes place and, after 1-2 days, the adult will emerge. Newly emerged 

females will search for a blood meal and a male for mating. As for any anautogenus 

species, Ae. aegypti females need a blood meal in order to mature their eggs. This blood 

meal is often from a human but females also feed on other vertebrates. This species is a 

very aggressive day-biting mosquito with endophagic (mainly indoor) and endophilic 

(resting indoor) habits. Adult Ae. aegypti specimens rarely disperse from the place where 

they emerge (Harrington et al. 2005). The flight dispersal is short (around 200 metres), 

usually dependent upon the availability of food sources and suitable oviposition sites.  

One particular characteristic is fundamental to understand the history of dispersal and 

expansion of Ae. aegypti: eggs are resistant to desiccation, remaining viable for up to one 

year. This characteristic together with its peridomestic behaviour, have contributed to the 

successful human-mediated worldwide dispersion of the species. 

 

2.2.History of Aedes aegypti 

https://us.biogents.com/aedes-aegypti-yellow-fever-mosquitoes/life-cycle-aedes-aegypti-yellow-fever-mosquito-en/
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Aedes aegypti is native from Africa, where an ancestral darker form, or subspecies, Ae. 

aegypti formosus (Aaf), considered zoophilic, can be found in sylvatic habitats, breeding 

in tree and rock holes (Powell and Tabachnick, 2013). Anthropogenic changes may have 

interfered in the behaviour of Ae. aegypti formosus. In particular, water holding containers 

in the domestic and peridomestic area may have given rise to suitable mosquito-breeding 

sites, especially during extended dry seasons (Powell, 2018). It is presumed that after 

some generations, the Ae. aegypti populations exploiting these new larval habitats may 

have evolved a preference for human blood feeding, eventually giving rise to a 

“domesticated” paler form, denoted Ae. aegypti aegypti (Aaa) (Figure 4).  

 

Figure 4.  Aedes aegypti females of the African subspecies formosus (left) and the urban 

subspecies aegypti (right). Retrieved from Powell (2016). 

Hybridization between forms is observed in the wild but its ecological or genetic 

consequences remains unclear (Powell, 2016). These subspecies differ in bioecological 

traits, vectorial capacity and competence, which render them different medical 

importance. Since Ae. aegypti aegypti is almost exclusively anthropophilic and it is the 

form that spread out of Africa becoming widely distributed across tropical and subtropical 

latitudes (Figure 5), it is considered the subspecies with major medical importance, 

responsible for the great majority of the arboviral outbreaks1. 

                                                      
1 For ease of communication, from here on we refer to Ae. aegypti as the subspecies aegypti aegypti, 

unless otherwise stated. 
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Figure 5.  Aedes aegypti subspecies worldwide distribution. Year of introduction is given 

for locations newly infested with this mosquito species since 2006. Retrieved from Powell 

(2016). 

 

Due to its desiccation-resistant eggs, Ae. aegypti has been able to move out of Africa and 

rapidly disperse worldwide. Historical and epidemiological records allow us to 

understand the spread of Ae. aegypti and invasion timeline (Powell and Tabachnick, 

2013). Altogether, these records suggest a West African origin of this mosquito species 

that has spread to the New World, 400-500 years ago, aboard slave ships. At the same 

time, it is believed that this species has invaded southern Europe, reaching Spain and 

Portugal also through maritime transport. Around 1960 this species was present in several 

European countries such as France, Italy, Bosnia, Macedonia and Russia (Christophers, 

1960). Although present in the Iberian Peninsula until mid-20th century, no record of this 

species has been reported in the last six decades. Its supposed disappearance is often 

associated with the malaria eradication campaigns carried out in the 1950’s (Powell and 

Tabachnick, 2013). It is believed that the Asian continent was colonized during 19th 

century by specimens with origin in the New World (Brown et al. 2014). In Europe, re-

emergence of this species was recently reported the eastern Black Sea coast (southern 
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Russia, Georgia, eastern Turkey) (Kotsakiozi et al. 2018a), Netherlands (Ibanez-Justicia 

et al. 2018), Canary Islands (ECDC, 2018), and in the Portuguese island of Madeira 

(Figure 6). 

 

Figure 6. Aedes aegypti current distribution in Europe. Retrieved from 

https://ecdc.europa.eu/en/publications-data/aedes-aegypti-current-known-distribution-

january-2019. 

 

3. Population genetics as a tool against Aedes aegypti 

Population genetics studies of Ae. aegypti have played an important role in tracing the 

colonization history of this species. It is presumed that the highly invasive capacity of this 

species is related to the high genetic variation of its genome (Mathews et al. 2018). For 

entomologists, population genetics has numerous applications. By determining the 

ongoing gene flow between populations we can more easily understand the role of 

arthropod vectors in disease epidemiology and design better vector control measures. For 

instance, population genetic studies helped unravelling the presence of the two subspecies 

of Ae. aegypti (Aaa and Aaf), with different epidemiological importances (Powell et al. 
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1980; Wallis et al. 1983; Brown et al. 2011; Brown et al. 2014; Kotsakiozi et al. 2018b). 

In addition, these studies also contributed to better elucidate the expansion and migration 

of Ae. aegypti between countries raising issues about the spread of insecticide resistance 

or other relevant genes, such as those involved in vector competence. The public health 

threat posed by a new species introduction may also be early assessed by determining the 

geographic origin of the invading individuals through population genetic studies (Failloux 

et al. 2002a).  

The type of molecular markers used in population genetics studies has evolved overtime. 

Different genetic markers have been used for phylogenetic and population substructure 

analysis, ranging from isoenzymes (Failloux et al. 2002b), to random amplification of 

polymorphic DNA (RAPD) (Gorrochotegui-Escalante et al. 2000), mtDNA (Moore et al. 

2013) or microsatellites (Slotman et al. 2007; Brown et al. 2011). Until recently, most of 

the population genetics studies with Ae. aegypti relied on mtDNA sequencing and 

microsatellite genotyping. However, the presence of mtDNA pseudogenes can make it 

difficult to obtain clear mtDNA sequences, resulting in misleading results (Hlaing et al. 

2009; Behura et al. 2011). Nevertheless, mtDNA is still a useful marker to infer 

phylogenetic relationships between populations and colonization events in newly 

introductions of Ae. aegypti (Urdaneta-Marquez et al. 2008; Damal et al. 2013). 

Microsatellites were the genetic markers subsequently developed (Slotman et al. 2007; 

Lovin et al. 2009; Brown et al. 2011). Their relatively low cost, high levels of 

polymorphism and ease of scoring led to an increase on the number of studies using these 

markers (Putman and Carbone, 2014). Microssatellites are non-coding regions of simple 

repetitive DNA found throughout the eukaryote genome (Putman and Carbone, 2014). 

The length of a microsatellite sequence and the number of repeats may vary greatly from 

individual to individual due to the high rate of mutations that occur in these regions due 

to slippage during replication (Guichoux et al. 2011). Previous studies have used 

microsatellites to trace the evolutionary history (Brown et al. 2011; Brown et al. 2013; 

Gloria-Soria et al. 2016a), the population size (Saarman et al. 2017) and the temporal 

genetic stability of multiple Ae. aegypti populations (Gloria-Soria et al. 2016b). 

More recently, the development of next generation sequencing technologies enabled the 

study of Ae. aegypti genetic background at a scale never observed before (Evans et al. 

2015). Through genome annotation (Nene et al. 2007), these genomic technologies 
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enabled the design of high-throughput genotyping tools such as DNA arrays or chips 

(Strode et al. 2008; Evans et al 2015). These genomic tools are being used for the 

detection of detoxification genes overexpression associated with insecticide resistance 

(Strode et al. 2008), and for genotyping of thousands of single nucleotide polymorphisms 

(SNPs) that are being used to refine the evolutionary history of Ae. aegypti worldwide 

(Rašić et al. 2014; Rašić et al. 2015; Evans et al. 2015; Crawford et al. 2017; Sherpa et al. 

2018; Kotsakiozi et al. 2018a).  However, population genomics studies are still 

inaccessible to most laboratories due to its cost, need for specific equipment and 

bioinformatics expertise. Therefore, the cost-efficient microsatellite genotyping remains 

a widely used methodology for population genetics studies with Ae. aegypti. Futhermore, 

previous studies combining microsatellites and SNPs, showed comparable results in 

establishing patterns of genetic structure (Pless et al. 2017; Gloria-Soria et al. 2018; 

Kotsakiozi et al. 2018a). However, finer-resolution phylogenies are obtained when using 

SNPs markers when compared to microsatellites or mtDNA due to the higher number of 

polymorphic loci analysed (Pless et al. 2017; Gloria-Soria et al. 2018). 

 

4. What else is driving Aedes aegypti expansion? 

The ecological plasticity of Ae. aegypti, the ability to explore different larval breeding 

sites and the close association with humans, makes Ae. aegypti control a complex task. 

The most successful attempt to control and eradicate Ae. aegypti populations was made 

during the 1950-1960 period, when the Pan American Health Organization (PAHO) 

invested in a comprehensive, well-coordinated eradication campaign that resulted in the 

elimination of Ae. aegypti in almost all Central and South America territory (Hotez, 2016) 

(Figure 7). This eradication program was highly focused in breeding site reduction, 

implemented in collaboration with the military forces, and insecticide spraying with 

dichlorodiphenyltrichloroethane (DDT) (Hotez, 2016). However, after 1970, lack of 

financial support lead to the end of Ae. aegypti control activities. In consequence, regions 

free of Ae.aegypti were once more re-invaded (Figure 7). 
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Figure 7. Distribution of Ae. aegypti in the Americas before and after the vector control 

program of PAHO. Retrieved from Gubler (2011). 

 

4.1.Vector control methodologies 

Since there are no vaccines or treatment against aegypti-transmitted arboviruses, vector 

control remains as the mainstay of arbovirus prevention by aiming to reduce human-

mosquito contact (Simmons et al. 2012). Below, a selection of control methodologies, in 

use or under development, will be presented. These methodologies tools that derive from 

the understanding of Ae. aegypti bioecological features, in particular, the species 

breeding, resting and biting behaviours.  
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Figure 8. Control methodologies currently used or in development against Ae. aegypti. 

Retrieved from Baldacchino et al. (2015). Legend: dsRNA – double stranded RNA; Bti – 

Bacillus thurigiensis israelensis; Lsph – Lysinibacillus sphaericus. 

 

Environmental management consists in the reduction of the mosquito population densities 

by reducing or eliminating present or potential Ae. aegypti breeding sites. This method is 

commonly known as source reduction and is a community-based strategy. This type of 

control approach is highly dependent on intersectorial collaboration with the participation 

of health authorities, education, public service and environmental entities in order to 

ensure community engagement. When community participation is significant, these 

strategies may play a major role in reducing mosquito densities since Ae. aegypti main 
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breeding sites are those inside or around the domestic and peridomestic area, frequently 

inaccessible to health or vector control workers (WHO, 2009). 

Although mosquito traps are mainly used for monitoring of Ae. aegypti abundance, they 

can also be used as a control tool. Several traps have been developed to control and 

monitor immature or adult stages of Ae. aegypti populations. These include traps targeting 

gravid females (e.g. ovitraps or sticky traps) or host-seeking females (e.g. BG-Sentinel 

traps) in search for a blood meal (Figure 9) (Baldacchino et al. 2015).  

 

Figure 9. Ovitrap (left image) and a BG-Sentinel trap (right image). Photos taken by the 

author. 

 

Ovitraps are a simple and effective trap designed to be an inexpensive monitoring tool. 

They consist of a small black plastic bucket filled with water to two thirds and an 

oviposition support. Females will lay eggs in the support, enabling the detection of 

container-breeding mosquitoes and assessment of the adult population dynamics. 

However, when an insecticide or a sticky material is added to the ovitrap wall or water, 

entering females may be killed during oviposition. Different trap types and specifications 

are reviewed in Johnson et al. (2017). 

The BG-Sentinel trap is nowadays the most commonly used adult monitoring tool to 

capture Ae. aegypti specimens (Krockel et al. 2006; Crepeau et al. 2013; Pombi et al. 

2014). These traps can be used with a variety of mosquito attractants, which makes it a 

versatile tool for mosquito research and surveillance. In addition, Ae. aegypti specimens 

are kept alive inside the trap enabling virological or RNA-based arbovirus detection. The 

only difficulty using this trap is the constant need of electrical power. However, it is an 

eco-friendly tool since eliminates Ae. aegypti individuals from the total remaining 
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population without the use of insecticides (Englbrecht et al. 2015). 

Most of the traps above mentioned are capable of a process called autodissemination, 

where contaminated mosquitoes are used as vehicles of insecticide dispersal (Devine et 

al. 2009). In this strategy, a mosquito is contaminated by an insecticidal compound in an 

autodissemination station and subsequently disperses the compound that will kill or 

interfere with mosquito development in subsequent contacts with untreated breeding sites 

or other mosquitoes. The compounds used in this strategy are insect growth regulators 

(IGRs) such as pyriproxyfen, and biocides such as the bacteria Spinosad and the fungus 

Beauveria bassiana, showing promising results in laboratory and field trials (Darriet et 

al. 2010; Jacups et al. 2014; Ocampo et al. 2014; Snetselaar et al. 2014). 

Biological control is the reduction of a vector mosquito population by the introduction of 

natural predators, competitors, parasites and bacterial toxins of biological origin 

(Baldacchino et al. 2015). Biological agents are widely used in controlling mosquito 

larvae, including bacterial toxins (e.g. Bacillus thurigiensis israelensis, Bti), copepods, 

larvivorous fish and Toxorhynchites larvae that predate Ae. aegypti immatures. This 

method has some major advantages: i) no environmental contamination since it is 

chemical-free; ii) the organisms involved are predators and/or target-specific for mosquito 

species; iii) natural autodissemination may happen. However, larval control, either 

biological or chemical, may be logistically difficult to implement. The ability to detect, 

access and treat breeding sites is the greatest obstacle to Ae. aegypti larval control that 

often leads to a low area coverage in vector control programs. 

Genetic control aims to induce genetic alterations in the target species that are 

disadvantageous to itself or the etiological agent that transmits. The first developed 

method was the Sterile Insect Technique (SIT) involving the release of sterile male insects 

to mate with the wild population present in the area. If mass releases of irradiated sterile 

males occur into an area, when these males mate with the local female population, non-

viable offspring is produced. The continuous release of these sterile males will result in 

the reduction and subsequent elimination of a specific mosquito population (Alphey et al. 

2010). However, this technique has not been widely used against mosquitoes due to the 

radiation effects on the male fitness, the need to produce large number of insects and the 

difficulty of separating males from females before field release. Nonetheless, this method 
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is being tested in Italy against invasive populations of Aedes albopictus as a tool to supress 

mosquito populations (Bellini et al. 2013). Sterile insect technique strategies may also be 

employed in combination with pyriproxyfen autodissemination, a strategy called 

“Boosted SIT” (Bouyer and Lefrançois, 2014), where pyriproxyfen-treated sterile males 

are released and will, subsequently, contaminate females and disseminate the compound 

throughout the target area. 

Another genetic method with a potential role in the control of arboviral diseases involves 

Wolbachia-infected Ae. aegypti mosquitoes (Hoffmann et al. 2011). Although present in 

65% of insect species (McGraw and O’Neill, 2013), Wolbachia pipientis is an 

endosymbiotic bacteria that is not naturally present in Ae. aegypti species. Recent studies 

revealed that Wolbachia can spread rapidly into the host population as a consequence of 

cytoplasmic incompatibility (CI) and due to maternal inheritance (Hoffmann et al. 2011; 

Hoffmann et al. 2014). There are two types of releases with Wolbachia-infected 

mosquitoes: one where Wolbachia-infected males mate with uninfected females 

generating unfertile eggs, called incompatible insect technique (IIT), meant to suppress 

the wild population; or the release of infected females that mate with uninfected and 

infected males and generate fertile offspring, facilitating the spread of Wolbachia in the 

target population (Figure 10). Previous laboratory and field experiments in Australia, 

Vietnam and Brazil revealed that Wolbachia spread quickly in the wild Ae. aegypti 

population (Hoffmann et al. 2011; Dutra et al. 2015;Nguyen et al. 2015). The importance 

of these results is related to the fact that Wolbachia interferes with the ability of Ae. 

aegypti to transmit several arboviruses including chikungunya, dengue and Zika (Aliota 

et al. 2016a; Aliota et al. 2016b). However, the long-term efficacy of this technology still 

needs to be proven. 
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Figure 10. Different outcomes of Wolbachia-infected Ae. aegypti mosquitoes in the wild 

populations. Retrieved from Ritchie et al. (2018). 

 

Another innovative approach that is being tested in field releases is known as release of 

insects carrying a dominant lethal allele (RIDL). This strategy replaces the need for 

harmful irradiation used in SIT by the use of genetically modified male mosquitoes 

carrying a late acting lethal gene that, when expressed, will cause the death of the larvae 

or pupae (Figure 11) (Alphey et al. 2010). This strategy has been field deployed in 

Cayman Islands (Harris et al. 2012), Malaysia (Lacroix et al. 2012), Brazil (Carvalho et 

al. 2015) and Panama (Gorman et al. 2016) and Ae.aegypti suppression was achieved with 

considerable results (80-95% of reduction in mosquito densities). 

 

 

Figure 11. Release of insects carrying a dominant lethal allele (RIDL). Males carrying 
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the lethal transgene are released in the field and mate with wild type females. The 

resulting offspring die before reaching the pupal stage. Retrieved from McGraw and 

O’Neill (2013).  

 

However, for genetic control technologies to succeed, public and community engagement 

is mandatory coupled with regulatory agencies requirements that are necessary to fulfil. 

Chemical control is still a major tool for the control of Ae. aegypti (Vontas et al. 2012; 

Moyes et al. 2017; Fernandes et al. 2018). It is the primary strategy in an outbreak scenario 

when rapid reduction of adult mosquito densities is urgently needed. There are four major 

classes of insecticides approved for mosquito control: organophosphates, 

organochlorines, carbamates and pyrethroids. An alternative to these common insecticide 

classes are the IGRs in which increased interest is observed due to its different mode of 

action (Lau et al. 2015). Due to European directives, IGRs and pyrethroids are the most 

used chemical compounds in mosquito control strategies in European territory 

(Baldacchino et al. 2015). Therefore, special importance will be given to these chemical 

compounds. 

Insect grown regulators, such as pyriproxyfen or methoprene, are chemical compounds 

that mimic the hormones responsible for insect development and growth (Devine et al. 

2009). Hence, immature development is blocked and subsequent death is observed after 

few days. IGRs are environmentally safe, ideal for integration with other vector control 

tools and could provide high-coverage when using with the autodissemination technique 

(Devine et al. 2009). In addition, previous studies showed that, when in contact with IGRs, 

reduced female fertility and fecundity is observed (Ohba et al. 2013). Pyrethroids 

represent the latest synthetic insecticide class authorized by the European Union (EU) and 

the most used in vector control programs mostly due to their low toxicity for humans and 

mammals and because of their effectiveness and low cost (Baldacchino et al. 2015). Their 

target is the insect nervous system, where they act on the Vgsc, causing paralysis and 

subsequent mosquito death (Hemingway et al. 2004). Today, these compounds are used 

in insecticide-treated materials (ITMs), such as nets or curtains, in indoor residual 

spraying (IRS) (Paredes-Esquivel et al. 2016; Hladish et al. 2018) and as spatial repellents 

(Buhagiar et al. 2017; Bibbs et al. 2018).  
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Another approach is the development of attractive toxic sugar baits (ATSB) (Muller et al. 

2010; Naranjo et al. 2013) involving the use of insecticides in a sugar meal solution that 

attract and kill sugar-seeking mosquitoes (Baldacchino et al. 2015). Since both males and 

females require sugar throughout mosquito’s lifespan, the potential of these traps is 

considerable for vector control strategies. These bait stations have been successful against 

mosquito vectors (Stewart et al. 2013; Revay et al. 2014; Qualls et al. 2015a) and sand 

flies (Qualls et al. 2015b). In addition, viral surveillance in host-seeking mosquitoes is 

possible by using only the sugar-based solution and removing the toxic compound (van 

der Hurk et al. 2014; Girod et al. 2015). This approach allows tracking arbovirus 

circulation in wild mosquito populations and estimate the risk of transmission to humans 

(Flies et al. 2015). 

In conclusion, chemical control has been the backbone of vector control programs against 

Ae. aegypti. Unfortunately, the outcome of these strategies have not been satisfactory and, 

instead, increased vector dispersal and the spread of aegypti-borne epidemics is alarming. 

Insecticide-based strategies are highly dependent on Ae. aegypti population susceptibility 

to the chemicals used.  Therefore, the evolution and spread of insecticide resistance 

mechanisms in several mosquito populations have contributed for the inefficiency of 

these strategies (Maciel-de-Freitas et al. 2014).  

 

5. Insecticide resistance 

The continuous and disproportionate use of insecticides in agricultural practices and in 

public health has driven the evolution of insecticide resistance by selecting resistance 

mechanisms that allow a small proportion of the mosquito population to survive and thrive 

despite insecticide applications (Figure 12). Knowledge about the population 

susceptibility status and the underlying resistance mechanisms present in a new given 

mosquito vector population will be essential for future designing of efficient vector 

control programs. 
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Figure 12. Evolution of insecticide resistance in mosquito populations. Adapted from 

IRAC (2010). 

 

According to the WHO, insecticide resistance is “the ability of mosquitoes to survive 

exposure to a standard dose of insecticide; this ability may be the result of physiological 

or behavioural adaptation. The emergence of insecticide resistance in a vector population 

is an evolutionary phenomenon due to either behavioural avoidance (e.g. exophily instead 

of endophily) or physiological factors whereby the insecticide is metabolized, not 

potentiated, or absorbed less in resistant mosquitoes than by susceptible mosquitoes” 

(WHO, 2016).  

Insecticide resistance is now widespread in several Ae. aegypti populations throughout 

the globe (Moyes et al. 2017), constituting a serious threat for vector control strategies. 

Therefore, it is essential to better elucidate these resistance mechanisms in order to 

prolong the effectiveness of current insecticides and ensure the sustainability of vector 

control programs. 
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5.1.Insecticide resistance mechanisms 

Resistance to insecticides may occur due to several mechanisms: as an avoidance 

behaviour to the insecticidal compound (behavioural resistance), modification of the 

insecticide target by mutation or structural change (target-site resistance), a decrease in 

the insecticide penetration into the mosquito body (cuticular resistance), or sequestration 

within the body or degradation by detoxification enzymes (metabolic resistance) 

(Hemingway et al. 2004) (Figure 13). 

 

 

Figure 13. Main insecticide resistance mechanisms in mosquitoes. CNS: central nervous 

system. Retrieved from Nkya et al. (2013). 

 

Multiple mechanisms may be present in a single insect providing cross-resistance to 

insecticides. Reduced penetration or cuticular resistance is caused by modifications in the 

cuticle that prevent or slow the absorption or penetration of insecticides into the mosquito 

(Balabanidou et al. 2018). However, further studies are required in order to identify the 

significance of this type of resistance in Ae. aegypti species (Moyes et al. 2017). Target-

site resistance consists of an amino acid change in the target-site receptor that will reduce 

the binding to the insecticide compound. This type of resistance occurs in the 

acetylcholinestare (AChE), GABA and in the Vgsc receptors (Hemingway and Ranson, 

2004). Of these, the presence of mutations on the Vgsc, also known as knockdown 



General Introduction 

23 
 

resistance mutations (kdr), have been the only target-site mutations widely detected in Ae. 

aegypti populations (reviewed in Moyes et al. 2017). Individuals carrying these mutations 

are less affected by the knockdown effect caused by the contact with pyrethroids or DDT, 

the insecticide classes that target the Vgsc. As more research about the molecular basis of 

insecticide resistance is made, additional kdr mutations associated with this resistance 

mechanism are detected (Haddi et al. 2017; Saavedra-Rodriguez et al. 2018). Metabolic 

resistance consists in the overexpression of several enzyme families that will degrade the 

insecticide before reaching its final target. This mechanism is conferred by the 

overexpression of detoxification enzymes and/or qualitative modifications of their protein 

sequence, improving their affinity and/or their catalytic activity against insecticides. The 

most important enzyme families involved in this mechanism are the cytochrome P450 

monooxygenases (P450s), carboxyl/choline esterases (CCEs) and Glutathione-S-

transferases (GSTs) (Figure 14) (Vontas et al. 2012; Smith et al. 2016; Moyes et al. 2017). 

These two important resistance mechanisms and their role in conferring resistance to each 

insecticide class are represented in Figure 14. 

 

 

 

Figure 14. Cross resistance patterns of different classes of insecticides. Retrieved from 

WHO (2012). 

 

While there is no large-scale implementation of alternative vector control methods or 

vaccines against the pathogens transmitted by this vector, better knowledge about these 

resistance mechanisms is desirable for a better detection and resistance management of 
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Ae. aegypti field populations. Until recently, resistance mechanisms detection has been 

constrained by the available techniques, which consisted on polymerase chain reaction 

(PCR) for detection of target-site mutations and of synergist and biochemical assays for 

detection of increased enzymatic activity (Coleman and Hemingway, 2007). The 

annotation of Ae. aegypti genome (Nene et al. 2007) and the subsequent development of 

a microarray technique, named “Aedes detox chip”, enabled the high-throughput analysis 

of overexpression of detoxification genes associated with metabolic resistance (Strode et 

al. 2008; Grisales et al. 2013). The recent discovery of copy number variations (CNVs) 

at genes coding for detoxification enzymes in multiple Ae. aegypti populations, using 

novel RNA-based sequencing techniques, suggests that this mechanism may play a major 

role in resistance phenotype (Faucon et al. 2015; Faucon et al. 2017). These studies also 

highlighted the presence of genetic polymorphisms in regulator/promoter gene regions 

affecting the final enzyme structure, which will allow the design of DNA-based markers 

for early-detection and monitoring of metabolic resistance in Ae. aegypti. 

 

6. Aedes aegypti in Madeira Island 

A paradigmatic example of an invasive and thriving Ae. aegypti population is the case of 

Ae. aegypti in Madeira Island. This mosquito was first detected in Madeira in October 

2005 (Margarita et al. 2006). After complaints by the human population about aggressive 

mosquito bites causing severe allergic reactions, initial entomological studies revealed 

the presence of Ae. aegypti in several Funchal parishes (Margarita et al. 2006). Following 

the introduction and subsequent establishment, Ae. aegypti expanded to the neighbouring 

counties of Câmara de Lobos and Santa Cruz during 2006-2008 (Gonçalves et al. 2008). 

From 2008 to 2012, Ae. aegypti continued its successful expansion throughout the 

southern coast, reaching Calheta and Machico counties (Figure 15).  
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Figure 15. Expansion of Ae. aegypti and land cover categories in Madeira Island. Adapted 

from ECDC (2014). 

 

The ecological plasticity of this mosquito species, together with the favourable climate 

and ecological conditions in Madeira, are major features associated with the success of 

establishment and subsequent expansion of Ae. aegypti in the island. In fact, the 

abundance of flowerpots, a famous tradition in Madeira, serves perfectly to Ae. aegypti 

as an optimal breeding site for larval stages (Almeida et al. 2007). 

 

6.1.Surveillance and vector control implemented against Aedes aegypti in 

Madeira Island 

After the introduction of Ae. aegypti in the island, Madeira Health Authorities promptly 

initiated vector control campaigns, during late 2005 to May 2008, in order to contain and, 



Chapter 1 

26 
 

if possible, eradicate the species from Funchal. These comprised educational campaigns 

for the community, about personal protection and source reduction, and chemical 

(pyrethroids and one organophosphate) and biological (Bti) insecticides to kill immatures 

and adult stages of Ae. aegypti (ECDC, 2014). 

Unfortunately, Ae. aegypti in Madeira was able to withstand the control strategies 

implemented during this period. Trap monitoring made during 2006-2008, by the Natural 

History Museum of Funchal, revealed the expansion of Ae. aegypti inside and outside 

Funchal to near municipalities and counties (Gonçalves et al. 2008). After 2008, 

community-based strategies were intensified in order to provide knowledge and advice to 

the human population about reducing mosquito densities. In 2009, WHO bioassays were 

performed in order to estimate the susceptibility of Ae. aegypti from Funchal to several 

insecticides. Results revealed resistance to pyrethroids and DDT, and susceptibility to 

malathion (Seixas, 2012). Therefore, insecticide resistance may have contributed to the 

apparent failure in containing the expansion of Ae. aegypti in Madeira Island. However, 

these preliminary results should be considered with caution since assays were performed 

without a reference susceptible Ae. aegypti colony as a control.  

In 2011, one year before the dengue outbreak, an island-wide survey with ovitraps was 

carried out in order to update the distribution of the mosquito in the island. Results showed 

the expansion Ae. aegypti west and eastwards, and even a sporadic introduction in Porto 

Moniz (North). However, the species was never again detected in this location, possibly 

due to the cooler climate conditions or to the low number of invading mosquitoes in this 

particular area. Based on the results of this survey, the ovitraps network was extended and 

complemented, with adult traps (BG-Sentinel trap) in Funchal area to monitor Ae. aegypti 

abundance and dispersal (Nazareth et al. 2014). In the same year, Madeira Health 

Authorities joined the “Rede de Vigilância de Vetores”, an entomological surveillance 

network coordinated by the National Institute for Health.  

The ovitrap and BG-Sentinel traps network (Figure 16) is still running nowadays and has 

been crucial in collecting weekly data for Ae. aegypti’s surveillance in Madeira Island. 

During the dengue outrbreak of 2012, the network was critical in providing the Health 

Authorities with important data, pinpointing locations with the highest mosquito densities 

to deploy essential resources. 
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Figure 16. Ovitrap distribution in Madeira Island in the week 30 of 2018. Legend: green 

circle – negative ovitrap; red circle – positive ovitrap; white circle – ovitrap with no data.  

Retrieved from: http://iasaude.sras.gov-madeira.pt/naomosquito/. 

 

Additional control efforts were made during the dengue outbreak in 2012. Educational 

campaigns were reinforced through television, radio communications and door-to-door 

visits in the hotspot mosquito areas, in order to show the residents how to remove Ae. 

aegypti breeding sites (ECDC, 2014). During the outbreak, storm drains were found to be 

highly infested with Ae. aegypti larvae. Therefore, the City Hall of Funchal implemented 

a widespread vector control campaign in Funchal, called “Plano Municipal de Combate 

ao Mosquito Vetor de Transmissão da Dengue”, that relied on salt application in every 

positive storm drain for Ae. aegypti larvae. This program had the duration of two years, 

specifically during 2013-2014. 

Nowadays, the ongoing vector control program in Madeira relies on community-based 

strategies and island-wide Ae. aegypti trap surveillance, especially in the International 

Airport and in the Funchal harbour where exportation/importation of Ae. aegypti or even 

new vectors may occur. In addition, the Madeira Dengue Surveillance System (MDSS), 

implemented since the dengue outbreak, is responsible for the detection of imported cases 

into the island. This notification system proved to be valuable for epidemiological 

surveillance of probable and confirmed cases of arboviral diseases in the region (ECDC, 

http://iasaude.sras.gov-madeira.pt/naomosquito/
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2014).  

 

6.2.Dengue outbreak in Madeira – a threat for Europe 

Seven years after the introduction of Ae. aegypti in Madeira, a dengue outbreak occurred 

in the island. This outbreak was the first in European territory since the 1928 epidemics 

in Greece (Halstead and Papaevangelou, 1980), and the first ever in Portugal. 

Entomological surveillance and epidemiological studies found unusual high densities of 

Ae. aegypti and DENV-1, with phylogenetic relationships with South America, as the 

circulating virus in the region (Sousa et al. 2012; Alves et al. 2013). The magnitude of the 

outbreak and the fact that Madeira is an attractive tourist destination led to multiple 

exported cases to mainland Europe (Frank et al. 2013; Huhtamo et al. 2013). The majority 

of dengue cases were recorded in Funchal (77%) where more than half of the Madeira 

population lives (ECDC, 2014).  

The risk for future aegypti-borne outbreaks in Madeira remains. The strong tourism-based 

economy and socioeconomic relationships with South America countries may facilitate 

the introduction of new Ae. aegypti populations, and, viremic travellers into Madeira. In 

addition, the recent crisis in Venezuela is causing the return of several Madeiran 

emigrants to the island, increasing the movement of people and goods coming from 

Caracas, the only direct flight from South America to Funchal city (Wilder-Smith et al. 

2014). The high danger of importation of dengue as well as other arboviruses, such as 

chikungunya or Zika, highlight the need for continuous surveillance of mosquito 

populations. In this matter, the evaluation of vector competence is a crucial parameter for 

assessing the risk of arboviral transmission in Madeira. Competence for DENV-1 

transmission is already presumed but no scientific data is available for other DENV 

serotypes or even for other arboviruses. Knowledge regarding this issue will allow 

adaptation of surveillance and control systems operating in the island, such as the MDSS 

implemented in 2012. 

 

6.3.Genetics of Aedes aegypti in Madeira 

The rapid expansion of Ae. aegypti in Madeira raised questions about the genetic 
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background of this recently introduced species. The first genetic study conducted in the 

region, with mosquito samples from 2009, revealed low mtDNA genetic variation levels 

(one mtDNA haplotype) and the presence of two common kdr mutations associated with 

insecticide resistance (Seixas et al. 2013). In addition, mtDNA results, together with kdr 

mutations and socioeconomic information, pointed to South America, namely Brazil and 

Venezuela, as the most likely source of Ae. aegypti in Madeira. However, this study did 

not provide information on vector population structure or the colonization history of this 

mosquito species in the island. More studies with highly polymorphic genetic markers, 

such as microsatellites, are required to refine the origin of this population and to provide 

information regarding the genetic structure and number of Ae. aegypti introductions into 

the island. 

 

7. Objectives and thesis outline 

The first objective of this thesis was to characterize insecticide susceptibility and 

resistance mechanisms in Ae. aegypti from Madeira Island in order to fill the knowledge 

gap about the resistance profile of this insular population. The second objective was to 

assess the origin, genetic structure and evolutionary history of this recently introduced 

population. These studies are of great interest, not only to associate with insecticide 

resistance data, but also to provide baseline information for eventual use of genetically 

modified mosquitoes in vector control strategies. Finally, the third objective was to 

perform vector competence studies to the major arboviruses transmitted by this vector, as 

these are mandatory to assess the risk of arboviral emergence in Madeira.  

The studies conducted to accomplish the proposed objectives are described in the 

following chapters: 

 Chapter 2 describes the first study addressing the molecular basis of insecticide 

in Ae. aegypti from Madeira Island. The results obtained provide an update of 

insecticide resistance status of this species and possible vector control strategies 

are identified in order to reduce the probability of emergence and the impact of 

vector-borne diseases. 

 Chapter 3 is devoted to the population genetics of Ae. aegypti in Madeira. 

Microsatellite and mitochondrial DNA markers were used in order to detect single 
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or multiple introductions and assess the origin and genetic structure of mosquito 

populations in Madeira. This chapter also provided an opportunity to assess the 

outcome of previous and ongoing vector control programs in the region. 

 Chapters 4 and 5 describe the vector competence studies performed with Ae. 

aegypti populations from Madeira Island for dengue, chikungunya and Zika 

viruses. 

 Chapter 6 is dedicated to the concluding remarks of this thesis, as well as the 

perspetives for future research. 
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Abstract 

Background 

Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya 

and zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite 

an initial insecticide-based vector control program, the species expanded throughout the 

southern coast of the island, suggesting the presence of insecticide resistance. Here, we 

characterized the insecticide resistance status and the underlying mechanisms of two 

populations of Ae. aegypti from madeira island, Funchal and Paúl do mar. 

Methodology/Principal findings 

WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion 

and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical 

assays indicated elevated activities of detoxification enzymes, suggesting the importance 

of metabolic resistance. Microarray-based transcriptome analysis detected significant 

upregulation in both populations of nine cytochrome P450 oxidase genes (including four 

known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, 

Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of 

knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C 

mutation, and presence with moderate frequencies of the V1016I mutation in each 

population.  

Conclusions/Significance 

Significant resistance to three major insecticide classes (pyrethroid, carbamate and 

organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be 

mediated by multiple mechanisms. Implementation of appropriate resistance management 

strategies including rotation of insecticides with alternative modes of action, and methods 

other than chemical-based vector control are strongly advised to delay or reverse the 

spread of resistance and achieve efficient control. 

Keywords: Insecticide resistance, Europe, Aedes aegypti, Madeira, Dengue 

 

 



Chapter 2 

46 
 

Author Summary 

Aedes aegypti is the major mosquito vector of dengue, chikungunya and Zika worldwide. 

After its introduction in Madeira, it took a few years for the first dengue outbreak to occur 

in the region. Control strategies rely mostly on the use of insecticides but their efficiency 

is often being hampered by the ability of mosquitoes to resist to the compounds used. In 

fact, previous vector control programs using insecticides failed to eradicate, or even, to 

limit the spread of Ae. aegypti in Funchal, and now, the mosquito is widely distributed 

throughout the southern coast of the island. Bioassays to determine insecticide 

susceptibility profiles were carried-out in two populations of Madeira Island and the 

molecular mechanisms underlying the observed insecticide resistance phenotype were 

investigated. Transcription levels of detoxification genes were analysed, and screenings 

for kdr mutations, V1016I and F1534C, associated with pyrethroid resistance were 

performed. Our study showed the up-regulation of several detoxification genes of 

multiple enzyme families associated with metabolic resistance, and the presence of the 

two kdr mutations, with the F1534C being fixed. Another suggested mechanism probably 

involved in the resistance phenotype is cuticle thickening, as several cuticle genes were 

found overexpressed. This study reinforces the importance of alternative control 

strategies to suppress Ae. aegypti population and thus reduce the likelihood of arbovirus 

transmission in the region. 

 

Introduction 

Aedes aegypti (Linnaeus, 1762) is the most important vector of dengue, 

chikungunya and Zika viruses. Originally from Africa, this mosquito species invaded 

other territories and currently has a worldwide tropical distribution, probably aided by 

globalization [1]. Of major concern is that novel arboviral outbreaks have occurred 

following the establishment of Ae. aegypti in new areas [2,3]. In Europe, the most recent 

example of invasion and subsequent arboviral outbreak is the case of Madeira Island, a 

Portuguese territory in the Atlantic Ocean. In 2005, Ae. aegypti was first recorded in the 

Santa Luzia parish of Funchal (the capital city of Madeira) and soon the vector spread 

into other parishes of Funchal [4,5]. Control measures based on source reduction were 

soon implement together with insecticide spraying mainly with pyrethroid insecticides, 
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and application of Bacillus thuringiensis israelensis (Bti) for larval control [6,7]. This 

insecticide-based strategy was applied only in Santa Luzia municipality of Funchal, 

during the years 2006-2008. This strategy included outdoor ULV applications with alfa-

cypermethrin and indoor sprayings with tetramethrin and d-fenothrin, in households, and 

pyrethrins, in warehouses and similar facilities. A liquid formulation of Bti was used to 

treat water fountains or other breeding sites that had standing water [7]. Despite the vector 

control measures, Ae. aegypti continued to expand throughout the entire south coast of 

the island [6]. 

In 2012, a dengue outbreak was declared by the Madeira Health Authorities with 

a total of 2,168 cases reported from September 2012 to March 2013 [7]. In this period, a 

total of 78 imported dengue cases were notified in 13 European countries, consisting of 

travelers that had visited the island during the outbreak [7]. This event was of particular 

public health concern given that competent dengue vector Aedes albopictus populations 

are established in southern Europe and have been implicated in autochthonous 

transmission of dengue and chikungunya viruses in Italy, France and Croatia [8-10]. 

Insecticide-based vector control efforts did not succeed in reducing the mosquito 

population, which thrived along the southern coast of the island. This is the most densely 

inhabited part of the island, resulting in a great availability of human hosts and breeding 

sites, which coupled with favourable climatic conditions may explain the rapid 

establishment of Ae. aegypti. Insecticide resistance might also have contributed to the 

apparently limited effectiveness of the implemented insecticide-based control measures, 

but investigation to date has been limited.  

Reduced susceptibility to insecticides has been reported frequently in Ae. aegypti 

and is primarily associated with two major mechanisms of insecticide resistance, 

metabolic detoxification and target-site mutations. Over-expression of genes belonging 

to esterase, Glutathione-S-transferase (GST) and cytochrome P450 oxidase detoxification 

enzyme families has been reported in insecticide resistant Ae. aegypti populations from a 

broad range of geographic locations (reviewed in [11,12]). The role of several 

detoxification enzymes in insecticide resistance, including six P450s in pyrethroid 

resistance and the esterase CCEae3a in organophosphate resistance has been confirmed 

by in vitro and/or in vivo functional validation studies [13,14]. 
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Multiple point mutations have been identified in the voltage-gated sodium channel 

gene (Vgsc) of pyrethroid-resistant Ae. aegypti populations worldwide. Of these, 

mutations at two codons are most commonly involved in resistance to pyrethroids in Ae. 

aegypti, V1016G or I and F1534C, which may act multiplicatively, especially in 

combination with an additional mutation, S989P (reviewed in [12]).  

Cuticle thickening has also been implicated in insecticide resistance by interfering 

with the penetration of the insecticide and thus with the amount and rate of insecticide 

that reaches its target-site [15]. This type of resistance has been documented in several 

insect species including disease vectors [16-18], and genes encoding cuticle proteins have 

been found to be over-expressed in insecticide resistance strains of Ae. aegypti and Ae. 

albopictus, as well as Anopheles stephensi, and Culex pipiens pallens [19-22].  

A previous study [23] detected the V1016I and F1534C point mutations in the 

Vgsc gene of Ae. aegypti from Madeira suggesting that target-site resistance is present on 

the island. However, no information on the prevalence of insecticide susceptibility, nor 

on other mechanisms of resistance in Madeira are available to date. 

In order to clarify possible causes of inefficacy of insecticide-based control 

measures implemented on the island, and to assist health authorities in the planning of 

new interventions, we characterised resistance phenotypes and underlying mechanisms in 

Ae. aegypti from Madeira. 

 

Methods 

Study site and mosquito sampling 

The archipelago of Madeira comprises seven islands and two islets situated in the 

north Atlantic ca. 685 km off the coast of Morocco, West Africa. Madeira is the largest 

island with 742 km2 and a population of around 270,000 inhabitants. The island has a 

mountainous topography and most of the population lives along the coast, especially in 

the south, where the capital Funchal is located (32°39′4″N 16°54′35″W) and where nearly 

half of the population lives. This area is densely populated and domestic flower pots, 

which are the major breeding sites for Ae. aegypti in the island, are very abundant [24]. 

The subtropical climate, hilly landscape with exuberant Laurissilva forest and relative 
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proximity to the European continent make this insular territory a popular tourist 

destination [25]. 

Aedes aegypti were sampled by ovitrap collections carried out in Funchal and Paúl 

do Mar between September and November 2013.Ovitrap distribution in both localities is 

available in the citizen science online platform (http://iasaude.sras.gov-

madeira.pt/naomosquito/). No specific permits were required for the described field 

collections. Immatures were reared to adulthood for subsequent use in insecticide 

susceptibility bioassays. Mosquito rearing and bioassays where performed in the facilities 

of Direção Regional da Agricultura, provided through a cooperation agreement with the 

Instituto de Administração da Saúde e Assuntos Sociais (IASAUDE). The Ae. aegypti 

Rockefeller strain was used as susceptible reference colony. Mosquitoes were reared in a 

controlled environment with stable temperature (26±2ºC), relative humidity (70±5%) and 

photoperiod (12h/12h light/dark). A subset of non-insecticide exposed females, which 

emerged from field collected immatures and from the Rockefeller reference susceptible 

strain were frozen in liquid nitrogen for subsequent use in biochemical assays. In addition, 

individuals from the Funchal and Paul do Mar populations, as well as individuals from 

the susceptible laboratory colonies Rockefeller and New Orleans were stored in 

RNALater (Invitrogen) to be used in the gene expression analysis.  

 

Susceptibility bioassays 

Bioassays were carried out with 3-5day old non-blood fed females using WHO 

insecticide susceptibility tests and protocols [26,27]. Filter papers impregnated with 

insecticide (bendiocarb 0.1%, cyfluthrin 0.15%, fenitrothion 1.0% and permethrin 0.75%) 

were provided by WHO-University of Sains Malaysia (Penang, Malaysia). Insecticides 

were chosen according to the three main classes of chemicals allowed to be used in vector 

control in the region, and based on previous knowledge regarding insecticide resistance 

status of the Ae. aegypti populations [7]. Females were exposed to the insecticide in 

groups of 20-25 per tube, for one hour. Four or five replicates per insecticide were used, 

depending in mosquito availability. After exposure, mosquitoes were transferred to a 

holding tube and supplied with a 10% sugar solution on a cotton pad. Mortality was scored 

24 hours after exposure. The susceptibility status of each mosquito population was 
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assessed according to WHO recommendations, in which a mosquito population is deemed 

resistant to a given insecticide if mortality rates are below 90% [26,27] when testing a 

minimum of 100 specimens. The surviving mosquitoes (considered resistant) and dead 

(considered susceptible) were stored individually in 1.5ml tubes filled with silica gel 

desiccant for DNA-based analysis.  

In addition, WHO susceptibility tests were carried out with pre-exposure to 

synergists to block the action of P450s, esterases and GSTs, in order to assess presence 

of metabolic resistance. Females were exposed to papers impregnated with 4% piperonyl 

butoxide (PBO) or 8% diethyl maleate (DEM) for one hour and then immediately exposed 

to each insecticide or to control papers as described above. Mortality rates were scored 

after 24 hours. 

 

Biochemical assays 

Biochemical assays were performed to quantify the enzymatic activity of the 

major detoxification families: esterases, Glutathione-S transferases (GST) and 

cytochrome P450 oxidases (MFO), following WHO protocols [28]. Forty 3-5 days- old 

individual females from Funchal, Paúl do Mar and an equal number of the Rockefeller 

reference strain were used in each assay. Comparisons of enzyme activity between field 

and reference mosquitoes were tested using a Mann-Whitney non-parametric analysis 

using Graphpad Prism v 6.03. 

 

Microarray: RNA extraction, labeling and hybridization 

Gene expression analysis was carried out at the Liverpool School of Tropical 

Medicine, UK. Three day-old females, non-blood fed and not exposed to insecticides, that 

were F1 progeny of mosquitoes collected in Funchal and Paúl do Mar were compared to 

three day-old non-blood fed, insecticide unexposed females from the susceptible 

reference colony Rockefeller. In addition, the Funchal population was compared to the 

second susceptible reference colony New Orleans, to further reduce the possibility that 

differences observed in expression levels could be related to differences in the genetic 

background of the laboratory strains unrelated to phenotype. Total RNA was extracted 
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from four replicate batches of five mosquitoes using the Arcturus PicoPure RNA isolation 

kit (Applied Biosystems). In all cases, RNA was treated with DNAse using the RNase-

free DNase Set (Qiagen), according to the manufacturer’s instructions. Quantity and 

quality of the RNA extracts were evaluated with a Nanodrop spectrophotometer 

(Nanodrop Technologies) and a 2100 Bioanalyzer (Agilent Technologies), respectively. 

The RNA pools were amplified and labeled using the Low Input Quick Amp Labeling 

Kit (Agilent Technologies). Quality and quantity of labeled cRNA was assessed as above 

before further use. Four hybridizations for each comparison (i.e. Funchal vs New Orleans, 

Funchal vs Rockefeller and Paul do Mar vs Rockefeller) were performed using the 15k 

Agilent “Aedes microarray” (ArrayExpress accession number A-MEXP-1966). After 17 

hours of hybridization at 65oC, the array was washed to remove non-specifically bound 

probes, using Agilent microarray washing buffers. Scanning was performed immediately 

after washing on an Agilent G2205B microarray scanner.  

 

Microarray data analysis 

Data processing was performed using the Agilent Feature extraction software and 

analysis of normalized data used Genespring v13. A strict filtering criterion was used for 

inclusion of probes where all had to be detectable (or marginal) in every array across each 

dataset, resulting in data from 9083 acceptable probes. Probability of differential 

expression was determined by a one-sample t-test (null hypothesis of a ratio of 

field/colony sample expression of 1) with the P-value threshold set at P<0.05. A fold 

change threshold of FC>2, or FC<-2 (for underexpressed probes) was also implemented. 

We employed a replication criterion for significance, such that a gene was considered 

differentially expressed if the probability and fold-change thresholds were met for each 

of the three comparisons with the susceptible reference strains. Although individually the 

use of a threshold of alpha=0.05 would lead to a high expected number of false positives 

(N≈450, ignoring the additional FC criterion), the use of a strict 3/3 replication criterion 

reduces this dramatically to N≈1 [29], again ignoring additional stringency from the FC 

criterion. Owing to this strict replication procedure we also identified probes as 

potentially significant if they exhibited P<0.05 in 2/3 analyses and an extreme level of 

expression (FC>20). For representation but not assessment of significance, fold changes 
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were averaged and P-values combined using Fisher’s method for combining probabilities. 

Microarray validation by qRT-PCR 

The transcription level of candidate overexpressed genes was validated by qRT-

PCR in the Funchal population. Two micrograms of DNAse-treated RNA from each 

sample (four biological replicates for each strain: Funchal, New Orleans and Rockefeller) 

were reverse-transcribed using oligo(dT)20 (Invitrogen) and Superscript III (Invitrogen). 

Amplification reactions of 25μl final volume were performed in a MiniOpticon Two-

Color Real-Time PCR Detection System (BioRad) using 2μl of 1/25 diluted cDNA,0.2μM 

primers (S1 Table) and Kapa SYBR FAST qPCR Master Mix (Kapa-Biosystems). For 

normalization of results, the ribosomal proteins L8_ AAEL000987 and S7 

_AAEL009496 were used [30]. A fivefold dilution series of pooled cDNA was used to 

assess the efficiency of the qPCR reaction for each gene specific primer pair. A no 

template control (NTC) was included to detect contamination, and a melting curve 

analysis was done to check for the presence of a unique PCR product. The thermal profile 

of reactions was 95oC for 3min followed by 40 cycles of 95oC for 15sec, 58oC 30sec and 

60oC for 30sec. Relative expression analysis was performed according to Pfaffl [31]. 

 

DNA isolation and kdr genotyping 

A subsample of mosquitoes phenotyped as susceptible or resistant by WHO assays 

to pyrethroid insecticides (without pre-exposure to synergists) were genotyped for the 

presence of the two previously-detected mutations in the Vgsc gene [23]. Genomic DNA 

was extracted according to Collins et al [32]. Two allele-specific PCR assays (AS-PCR) 

were used to genotype kdr mutations V1016I and F1534C [23]. For the V1016I mutation, 

the protocol used was adapted from Saavedra-Rodriguez et al [33]. Amplifications were 

carried out in 25 l of reaction mixture containing 1X buffer, 3 mM of MgCl2, 0.2 mM 

of each dNTP, 0.1 M of primers Val1016f, Iso1016f and Iso1016r and 1U of Taq DNA 

polymerase. The PCR conditions were identical to those described in Saavedra-Rodriguez 

et al [33]. PCR products were separated by electrophoresis (90 minutes at 90V) in an 

ethidium bromide-stained 3% agarose gel and photographed under UV light. 

The tetra-primer PCR assay described in Harris et al [34] was used to genotype 
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the F1534C mutation. Each reaction of 25 l contained 1X PCR buffer, 2.5 mM MgCl2, 

0.4 mM of each dNTP, 0.25 M of primers AaEx31P, AaEx31Q, AaEx31wt and 

AaEx31mut and 1 U of Taq DNA polymerase. The cycling conditions were the same used 

in Harris et al [34]. PCR products were size-fractioned by electrophoresis in ethidium 

bromide stained 2% agarose gels at 100V (45 minutes) and photographed under UV light.  

All PCR assays contained negative controls (i.e. no DNA template) and positive 

controls, consisting of samples of known genotype confirmed by DNA sequencing [23]. 

 

Results 

Susceptibility bioassays 

Aedes aegypti from Funchal were found to be resistant to all insecticides tested (Fig 

1A), with mortality rates ranging between 10.9% (after permethrin exposure) and 77.5% 

(after fenitrothion exposure). Mortality rates increased significantly when females were 

exposed to one or both of the synergists before the insecticide, suggesting involvement of 

metabolic resistance (Fig 1A). This was particularly evident for permethrin, after 

exposure to either PBO or DEM, and also for fenitrothion, for which complete restoration 

of susceptibility was attained with both synergists. For cyfluthrin and bendiocarb a 

significant increase in mortality was observed after exposure with PBO only. 
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Fig 1. Susceptibility levels of Ae. aegypti from Funchal (A) and Paúl do Mar (B) to 

insecticides. * Significant differences in mortality rates between exposures with and 

without synergists (Fisher’s exact test, P< 0.05). The error bars represent standard 

deviation. 

Resistance to pyrethroids and carbamates was also observed in the Paúl do Mar 

population, with mortality rates between 2% (permethrin), 63.1% (bendiocarb) and 88% 

(cyfluthrin) (Fig 1B). In contrast, exposure to fenitrothion yielded 100% mortality 

indicating full susceptibility to this insecticide. As in the Funchal population, synergist 

assays suggest the presence of metabolic resistance (Fig 1B). Exposure to both synergists, 
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before insecticide contact, led to a significant increase in mortality rates with permethrin. 

In addition, near-full susceptibility to bendiocarb was achieved when previously exposing 

these mosquitoes to PBO. Synergist assays with cyfluthrin, in this Ae. aegypti population, 

did significantly alter the mortality rate. No mortality was observed in the control 

mosquitoes whether exposed to control papers alone or to synergists (with no insecticide). 

Biochemical assays 

A significantly higher enzymatic activity was detected for both α- and β-esterases 

in both populations when compared to the susceptible Rockefeller reference strain (Mann-

Whitney tests, P<0.05), while no significant difference was observed in the enzymatic 

activity of GSTs. A statistically significant difference was seen in mixed function 

oxidases only in the Paúl do Mar population ( P = 0.01). Funchal population did not show 

differences in the enzymatic activity of this enzyme family ( P = 0.7204) (Fig 2).  

 

Fig 2. Activity profile of esterases, GST and mixed function oxidases (MFO) enzyme 

families of Ae. aegypti from Funchal and Paúl do Mar. * Significant differences in 

enzymatic activities between the wild population and the Rockefeller susceptible strain 
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(Mann-Whitney test, P < 0.05) 

 

Microarray analysis of differential expression  

From a total of 9083 probes passing quality control, 141 were differentially 

expressed (|Fold Change|>2, P<0.05, for three out of three comparisons to susceptible 

strains) across the Funchal and Paul do Mar populations (S1 Table). Among the 86 probes 

which were up-regulated (Fig 3), 11 genes were members of the three detoxification 

enzyme super-families (P450s, GSTs and Carboxyl/choline esterases) (Table 1). A further 

gene, Cyp9J32 was also included in the table with the over-expressed genes as it showed 

extreme over-expression, and only marginally missed the threshold P-value in one (out of 

three) comparison. Thus we considered this as a false negative, resulting from our strict 

filtering procedure (Table 1). The P450 oxidases had the highest representation with nine 

genes, all from the CYP6 and CYP9 sub-families and included four known pyrethroid 

metabolizers, of which Cyp9J32 and Cyp9J28 were particularly strongly over-expressed 

(FC>20). Other detoxification genes found overexpressed in both wild populations were 

the GSTd4, GSTd1 and CCEae3a, which metabolizes temephos-oxon (the toxic form of 

the larvicide temephos) and thus may be of relevance for resistance in the populations, 

although we did not evaluate temephos resistance in this study. 
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Fig 3. Commonly up-regulated transcripts in Ae. aegypti populations from Funchal 

and Paúl do Mar. A rhombus shape is used for transcripts meeting the criteria Fold 

Change >2 and P<0.05 in all three comparisons performed. Among these genes are the 

rer1 protein (possibly involved in the retrieval of endoplasmic reticulum proteins), a 

lyposomal aspartic protease precursor and many genes with unknown function. A square 

shape is used for potentially significant up-regulated transcripts, exhibiting a P<0.05 in 

2/3 analyses and an extreme level of expression (FC>20). All transcripts falling into the 

categories of detoxification genes, hexamerins or genes encoding for cuticular proteins 

are shown with red color. Cyp9J27 is present in two distinct locations in the genome and 

so is represented twice, though with different accession numbers (Table 1).  

Beyond genes belonging to detoxification gene families the analysis revealed also 

the overexpression of eight transcripts encoding putative cuticle proteins, which have 

been implicated in resistance through lower insecticide penetration and also of three 

transcripts (AAEL011169, AAEL013759 and AAEL000765, which was highly and 

significantly, P<0.05, up-regulated in 2/3 comparisons) encoding hexamerins, which are 

involved in cellular trafficking and have previously been linked to insecticide resistance 

[35] (Fig 3, S1 Table).  
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Table 1. Commonly overexpressed transcripts in Ae. aegypti from Funchal and Paul do Mar belonging to detoxification gene families.  

Class of 

detoxification gene 

Gene accession 

number 

Gene name Funchal 

vs 

Rockefeller 

(FC) 

 

P-value 

 

Funchal 

vs 

New Orleans 

(FC) 

 

P-value 

 

Paul do Mar  

vs  

Rockefeller 

(FC) 

 

P-value 

P450s AAEL008846 Cyp9J32 41 0.006 53 0.004 10 0.060 

 AAEL014617 Cyp9J28 31 0.028 30 0.019 10 0.008 

 AAEL014893 Cyp6BB2 15 0.005 19 7*10-4 3.6 0.006 

 AAEL014607 Cyp9J27 14 0.021 18 0.018 3.5 0.023 

 AAEL014616 Cyp9J27 14 0.020 16 0.016 4.6 0.006 

 AAEL001288 Cyp9M5 6.6 6*10-4 8.5 0.009 2.3 0.001 

 AAEL001312 Cyp9M6 5.4 0.015 4.7 0.006 4 0.031 

 AAEL009124 Cyp6N12 5.1 3*10-4 6.3 0.003 2.2 0.002 

 AAEL017297 Cyp6M9 4.2 0.007 3.7 0.001 3 0.047 

Esterases AAEL005112 CCEae3a 2.7 0.009 3.4 0.012 2.1 0.001 

GSTs AAEL001054 GSTd4 24 4*10-4 22 2*10-4 9.8 0.004 

 AAEL011741 GSTs1 4.9 2*10-4 2.5 7*10-5 2.2 0.032 

FC represents the relative fold change in expression in the Funchal or Paul do Mar population compared to the respective susceptible colony. Bold type indicates a known 

insecticide metabolizer [13,14,40].  
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qRT-PCR validation 

Quantitative real time PCR was used to validate the differential expression of five 

candidate genes detected as significantly up-regulated in the Funchal population (for 

which microarray data vs. both susceptible colonies was available) compared to the two 

susceptible colonies. We tested the highly overexpressed P450s Cyp9J32 and Cyp9J28, 

the more highly overexpressed of the glutathione S transferases, GSTd4, the more highly 

overexpressed of the hexamerins, AAEL013757 and the more highly overexpressed 

member of genes encoding for putative cuticular proteins, AAEL002246 (S1 Table) 

(Table 2). Although the relative levels of overexpression estimated by qRT-PCR did not 

correspond closely with values obtained from the microarray experiment, the estimates 

from qRT-PCR confirmed up-regulation of the tested genes, thus providing validation of 

the significance indicated by microarrays.  

 

Table 2. Validation of the transcriptional up-regulation of five candidate genes 

through qRT-PCR. 

  qRT-PCR Microarray 

Transcript Reference strain Fold change 

(95% CI) 

Fold Change 

 

Hexamerin 

(AAEL013757) 

Rockefeller 63 (36-90) 57 

New Orleans 123 (54-191) 97 

Cyp9J32 

(AAEL008846) 

Rockefeller 17 (13-21) 41 

New Orleans 107 (81-132) 53 

Cuticular  

(AAEL002246) 

Rockefeller 42 (16-69) 36 

New Orleans 65 (25-105) 51 

Cyp9J28 

(AAEL014617) 

Rockefeller 13 (6-21) 31 

New Orleans 104 (63-144) 30 

GSTd4 

(AAEL001054) 

Rockefeller 169 (34-305) 24 

New Orleans 268 (148-387) 22 

The relative expression ratio of five candidate genes in the Funchal population compared 

to two susceptible laboratory colonies (New Orleans and Rockefeller) is shown. Values 
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are estimated from four biological replicates and 95% confidence intervals are shown. 

Estimated values from the microarray experiment are given for comparison. 

 

Kdr genotyping 

Genotyping of the kdr locus was performed on a total of 91 Funchal and 80 Paúl 

do Mar specimens that had been previously exposed to cyfluthrin or permethrin (Table 

3). The 1534C mutation was found in every specimen genotyped suggesting it may be 

fixed in both populations, while the V1016I mutation showed moderate and similar 

frequencies ranging from 17% in Funchal to 23% in Paúl do Mar (Fisher’s exact tests, P 

= 0.263). Owing to ubiquitous occurrence of the 1534C mutation testing association with 

resistance was not possible. Although the V1016I frequency was slightly higher in 

resistant mosquitoes when compared to susceptible ones, there was no significant 

association between kdr genotypes and the resistance phenotype for either insecticide 

(Fisher’s exact tests, Funchal - cyfluthrin: P = 0.491; permethrin: P =0.699; Paúl do Mar 

-  cyfluthrin: P = 0.316; permethrin: P = 0.219).  

 

Table 3. Summary of kdr genotyping data in Funchal and Paúl do Mar Ae. aegypti 

populations. 

   V1016I F1534C 

Localit

y 

Insecticide N V/

V 

V/

I 

I/

I 

F.(I

) 

F/

F 

F/

C 

C/

C 

F.(C

) 

Funcha

l 

Cyfluthrin resistant 3

2 

20 10 2 0.22 0 0 32 1.00 

 Cyfluthrin 

susceptible 

1

9 

15 4 0 0.11 0 0 19 1.00 

 Permethrin resistant 3

2 

21 11 0 0.17 0 0 32 1.00 

 Permethrin 

susceptible 

8 6 2 0 0.13 0 0 8 1.00 

 Total 9

1 

62 27 2 0.17 0 0 91 1.00 
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Paúl do 

Mar 

Cyfluthrin resistant 1

2 

6 5 1 0.29 0 0 12 1.00 

Cyfluthrin 

susceptible 

3

6 

21 15 0 0.21 0 0 36 1.00 

 Permethrin resistant 3

0 

18 11 1 0.22 0 0 30 1.00 

 Permethrin 

susceptible 

2 0 2 0 0.5 0 0   2 1.00 

 Total 8

0 

45 33 2 0.23 0 0 80 1.00 

 N: sample size. Values correspond to absolute numbers for each genotype. F.(I) and F.(C) 

are the relative frequencies of the mutant allele for each mutation analyzed. 

 

Discussion 

The results of this study showed that Ae. aegypti from Madeira Island is resistant 

to insecticides of different chemical classes: carbamates (bendiocarb), organophosphates 

(fenitrothion) and both type I (permethrin) and type II (cyfluthrin) pyrethroids. Diagnostic 

exposures to these insecticides yielded mortality rates below the thresholds recommended 

by WHO to consider a mosquito population resistant [26,27], excepting the case of 

fenitrothion in Paúl do Mar. Combined bioassays with synergists and analysis of 

detoxification enzyme activities indicated the presence of enzyme-mediated metabolic 

resistance, and/or cuticular resistance. Pre-exposure to PBO, which inhibits P450s, some 

esterases and may also enhance cuticular penetration by the insecticide [36] resulted in a 

significant mortality increase for all insecticides tested. Synergist pre-exposures suggest 

involvement of the three major detoxification enzyme families in the resistance phenotype 

of Ae. aegypti from Madeira island. Biochemical assays only partially agreed with the 

results obtained by the bioassays with synergists, as significantly elevated enzymatic 

levels were detected for esterases only. These discrepancies were not completely 

unexpected as these assays cannot be considered reciprocal. While synergists act as 

inhibitors of enzymes suspected to be implicated in resistance, biochemical assays are a 

measure of enzyme activity without a direct link with the resistance phenotype. 

Furthermore, biochemical assays employ generic substrates which may not be recognized 



Chapter 2 

62 
 

by all variants of these large enzyme families, resulting in reduced sensitivity and 

specificity [36, 37, 38]. The microarray-based transcriptomic analysis showed 

overexpression of genes belonging to the three major detoxification enzyme families in 

agreement with the bioassays with synergists. The majority of overexpressed 

detoxification genes were cytochrome P450 oxidases, including Cyp9J32, Cyp9J28, 

Cyp9J27, Cyp6BB2 and Cyp9M6, which have been found overexpressed in pyrethroid 

resistant Ae. aegypti populations from multiple countries [12,36,39]. In particular, 

Cyp9J28 is an efficient pyrethroid metabolizer [13] that has also been shown to confer 

reduced susceptibility to deltamethrin when ectopically expressed in Drosophila 

melanogaster [40]. Cyp9J32, the most prominent pyrethroid metabolizer in Ae. aegypti, 

showing a very high catalytic efficiency against pyrethroids [13], was the most 

overexpressed P450 gene. The carboxyl-esterase CCEae3A, which has previously been 

associated with resistance to the organophosphate temephos-oxon [14] in both Ae. aegypti 

[30] and Ae. albopictus [41], and acts via sequestration and metabolism of temephos [14], 

was also among the overexpressed genes in Funchal and Paúl do Mar. This should be 

taken into account if temephos is considered for vector control in Madeira. The 

overexpression of two GSTs (GSTd4 and GSTs1) was also revealed by the microarray 

analysis. Of these, GSTd4 has been detected as highly overexpressed in the strongly 

permethrin resistant Singapore SP strain [42]. 

In addition to detoxification gene families, eight transcripts encoding putative 

cuticular proteins were up-regulated possibly indicating alteration of the cuticle as a 

mechanism of resistance. Resistance related to the cuticle by lowering the amount or rate 

of insecticide penetrating into the body has been reported in insects such as Helicoverpa 

armigera [43], Drosophila melanogaster [44], the Trypanosoma cruzi vector Triatoma 

infestans [16], and the Plasmodium vector Anopheles funestus [17]. Thickening of the 

whole cuticle, as well as the epicuticle layer, due to an increased number of cuticular 

hydrocarbons, has also been recently described in a multi-resistant strain of the malaria 

vector Anopheles gambiae [18]. Furthermore, there were also three transcripts (one 

marginally non-significant) encoding hexamerins among the most highly overexpressed 

genes. The link of hexamerins to insecticide resistance is poorly understood, but previous 

studies suggest a role for these storage proteins in cuticle formation [45,46]. It is also 

plausible that composition and thickening of the cuticle might reflect adaptive responses 
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to environmental challenges and/or seasonality, rather than insecticide resistance. 

Seasonal cuticular variations, mostly associated with adaptation to aridity (desiccation 

tolerance), have been previously observed in other insect species, including scorpions 

[47], crickets [48] and more recently in the malaria vector A. coluzzii [49]. There is 

evidence that Ae. aegypti of Madeira derives from a tropical south American source 

population [23], thus, adaptation of this mosquito to the more temperate climate of 

Madeira might have involved changes in cuticle composition and thickening.  

Genotyping of the kdr locus confirmed not only the presence, but probable 

fixation of the pyrethroid resistance mutation F1534C, in line with previous studies [23]. 

However, the V1016I pyrethroid resistant mutation showed a significant frequency 

increase (8% in 2009 [23], to 17% in 2013, this study; Fisher’s exact tests, P = 0.019). 

The role of V1016I in resistance to pyrethroids is currently unclear but frequencies of 

both mutations appear informative and should be routinely monitored [50].  Hu et al [51] 

found that the F1534C mutation is more effective in reducing sensitivity of the sodium 

channel to type I than to type II pyrethroids. This could explain the higher resistance level 

of Ae. aegypti from Funchal to permethrin when compared to cyfluthrin. However, 

reversal of resistance to permethrin with the synergist PBO was comparable to that 

obtained for cyfluthrin suggesting that resistance to both type I and type II pyrethroids 

may be primarily mediated by the metabolic activity of cytochrome P450 oxidases. These 

findings should be taken into consideration by the Health Authorities in Madeira when 

deciding between type I or type II pyrethroids for vector control. If this chemical class 

remains an option for chemical control of Ae. aegypti in Madeira island, the use of type 

II pyrethroids in combination with the synergist PBO appears to be a more effective 

option.  

 

Conclusion 

Insecticide resistance mediated by multiple mechanisms was identified in Ae. 

aegypti from two localities in Madeira. In addition to target-site (kdr) and metabolic 

resistance, a third mechanism consisting of cuticle thickening may also be involved, 

confirming that the insecticide resistance phenotype is multifactorial, and consequently is 

likely to be challenging to reverse. The recent presence of this species in the island and 
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the absence of a continuous, island-wide, insecticide-based control suggests that at least 

some, and maybe most, of the insecticide resistance mechanisms detected were already 

present in the colonizing specimens. Thus, the resistance status of these mosquitoes may 

have played some role in the establishment of this vector in the island, despite the 2006-

2008 insecticide-based vector control campaign. With the current knowledge regarding 

insecticide resistance status and identification of underlying mechanisms, resistance 

management strategies including mode of action rotation (such as biocides and insect 

growth regulators), as well as alternative to chemical-based vector control interventions 

(ranging from environmental management to new paradigms and biotechnology-based 

approaches) is strongly advised, to control Ae. aegypti and thus decrease the probability 

of arbovirus transmission. 
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Abstract 

Historically known as the yellow fever mosquito, Aedes aegypti invaded Madeira Island 

in 2005 and was the vector of the island’s first dengue outbreak in 2012. We have studied 

genetic variation at 16 microsatellites and two mitochondrial DNA genes in temporal 

samples of Madeira Island, in order to assess the origin of the invasion and the population 

structure of this mosquito vector. Our results indicated at least two independent 

colonization events occurred on the island, both having a South American source 

population. In both scenarios, Venezuela was the most probable origin of these 

introductions, a result that is in accordance with the socioeconomic relations between this 

country and Madeira Island. Once introduced, Ae. aegypti has rapidly expanded along the 

southern coast of the island and reached a maximum effective population size (Ne) in 

2012, coincident with the dengue epidemic. After the outbreak, there was a 10-fold 

reduction in Ne estimates, possibly reflecting the impact of community-based vector 

control measures implemented during the outbreak. These findings have implications for 

mosquito surveillance not only for Madeira Island, but also for other European regions 

where Aedes mosquitoes are expanding. 

 

Introduction 

 

Arbovirus transmission is becoming an increasing public health threat in Europe, mainly 

due to the establishment of invasive mosquito vectors and importation of arboviruses by 

viremic travelers1. The Asian tiger mosquito, Aedes albopictus, was first recorded in the 

European continent in Albania, in 19792. Since then, this mosquito invaded most of 

central and western Europe and become established in 27 countries3. Coincidently, 

epidemics of chikungunya and dengue have been reported over the last 20 years, notably 

in Italy (2007, 2017)4,5, France (2010, 2017)6,7 and Croatia (2010)8. Another mosquito 

species responsible for arbovirus transmission is Aedes aegypti, previously present in 

Europe until mid-20th century and re-established in Madeira and in the Black Sea region3. 

In the Portuguese island of Madeira, Ae. aegypti was first reported in 2005, in the vicinity 

of Funchal city. Since then, this mosquito has subsequently expanded its distribution 
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throughout the southern coast of the island9,10, being detected in Santa Cruz (East) in 2008 

and in Paúl do Mar (West) in 2012 (Fig. 1).  

 

Figure 1.  Madeira Island map showing sampling sites: Pául do Mar, a fishing village 

in the western point of Ae. aegypti distribution in the island; Funchal, the capital, where 

the main harbour is present; Santa Cruz, near the only Airport of the island. Below each 

locality name is the year of the first report of the introduction of the species. Pie charts 

indicate proportions of individuals assigned (Tq = 0.50) to each of the three genetic 

clusters determined by STRUCTURE (See text). Grey colour indicate admixed 

individuals with no cluster assignment. The map was produced using ArcGIS 10.2 (Esri, 

Redlands, CA). 

The presence of this mosquito in the island, coupled with the introduction of DENV-1, 

led to an outbreak of dengue fever, with more than 2000 notified cases between October 

2012 and March 201311. The epidemic led to the reinforcement of vector control activities 

in the island for the subsequent months, particularly in the more densely populated area 
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of Funchal city12. Implemented anti-vector activities included larval control through 

massive salt application in the city’s storm drains and community educational campaigns 

in order to remove flower dishes, the main Ae. aegypti breeding site in Madeira13. 

Targeted insecticide/biocide application was performed in health facilities and one school 

located in the most affected Funchal area, using pyrethroids and Bacillus thurigiensis 

israelensis (Bti)12. 

Madeira is a famous touristic destination, mostly for Europeans, with daily flights from/to 

several European countries and regular stops of cruise ships12,14. This scenario increases 

the risk of exportation of both Ae. aegypti and viremic individuals to Europe12. In fact, 

the dengue epidemic in Madeira was responsible for 78 imported cases that were notified 

in 13 different countries, the majority corresponding to tourists that had travelled to the 

island during the outbreak15. To mitigate the risk of importation/exportation of virus and 

vectors, local health authorities perform vector control activities at the International 

Airport and at the Funchal harbour, and coordinate an island-wide integrated Madeira 

Dengue Surveillance System (MDSS), responsible for the detection of imported cases. 

 Despite its insular condition, Madeira has a considerable risk of importing exotic vectors 

and pathogens from tropical regions. This is mainly due to the strong socio-economic 

relations that the island maintains with South American countries, such as Brazil and 

Venezuela14. Coincidently, phylogenetic analysis and an importation index based on the 

air-travel interconnectivity with dengue-endemic countries revealed Venezuela as the 

most likely country of origin for the circulating DENV-1 in the island16. In addition, 

previous studies showed that Ae. aegypti from Madeira is able to transmit dengue, 

chikungunya and Zika viruses17,18, pinpointing the potential risk of local arbovirus 

transmission. 

Previous genetic analyses involving different markers such as mitochondrial DNA, 

knockdown resistance associated genes19, microsatellites20, and Single Nucleotide 

Polymorphisms21, provided evidence for a South American origin of the introduced Ae. 

aegypti population in Madeira. However, these analyses did not have sufficient resolution 

to precisely pinpoint the geographic origin and colonization dynamics of the Ae. aegypti 

Madeira population, mainly because i) a single sample from the island was used; ii) some 

of the most important putative source populations were not included. Moreover, these 
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studies did not provide information about the dynamics of the colonization of this 

mosquito in the island.  

In this study, we analyzed microsatellites and mtDNA genes in Ae. aegypti samples from 

different localities of Madeira island collected at different time-points, as well as from 

additional sites in South America. In addition, genetic data were integrated with global 

genetic data available for this species in order to address the following questions: 

1. What is the population genetic structure and demographic history of Ae. aegypti in 

Madeira island? 

2. Are these populations the result of a single or multiple mosquito introductions? 

3. What is the most likely country of origin of the source populations from which Ae. 

aegypti was introduced? 

 

Results 

Microsatellite genetic variation 

Forty-eight out of 246 (19.5%) exact tests of Hardy-Weinberg proportions were 

significant (Supplementary Table S3). The majority of these departures were associated 

with positive Fis values, indicative of heterozygote deficits. Most heterozygote deficits 

were detected at a single locus, AC4, which accounted for 15 out of the 48 significant 

tests. Micro-checker results suggested that locus AC4 had a high probability of having 

null alleles in all but Fx05L and PM14A samples (Supplementary Table S3). The 

consistent heterozygote deficits and suspicion of null alleles lead us to remove locus AC4 

from subsequent analyses of population structure. There were a total of 348 significant 

pairwise genotypic association tests out of 1851 performed. However, no pair of loci was 

consistently associated across samples, which suggests an absence of linkage 

disequilibrium among loci.  

Microsatellite polymorphism in Ae. aegypti from Madeira was low to moderate, with 

mean over sample AR ranging from 1.7 (AC7) to 6.6 (88AT1) and mean He from 0.081 

(AC7) to 0.789 (88AT) (Supplementary Table S4). Expected heterozygosity was 

significantly lower in the other two localities of Madeira when compared to the mean 

over-years of Funchal (Wilcoxon signed-rank tests, Paúl do Mar: p = 0.001; Santa Cruz: 

p = 0.004). In Paúl do Mar, no significant differences in He were found between 2013 
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and 2014 (Wilcoxon signed-rank test, p = 0.168). The proportion of unrelated individuals 

obtained by ML-RELATE was above 70% in all samples except for Santa Cruz. This 

sample had the highest frequency of related individuals (41%) with a high proportion of 

full sibs (15%) and backcrosses (20%). 

The overall mean AR and He across temporal samples from Madeira was significantly 

different from those of the Brazilian samples (Wilcoxon signed-ranks tests, Santos: AR p 

< 0.001, He p = 0.033; São Sebastião: AR p = 0.018, He p = 0.015) but comparable to the 

sample of Caracas, Venezuela (Wilcoxon signed-ranks tests, Caracas: AR p = 0.159, He 

p = 0.433).  

With the exception of Funchal in 2014, when the larval sample (Fx2014L) was less 

polymorphic, estimates of He and AR were largely similar between larval and adult 

samples collected in the same locality and year (Supplementary Table S3). The degree of 

relatedness among individuals was comparable between larval and adult samples, as 

shown in Supplementary Fig. S1. These results suggest that the genetic variation captured 

by both sampling methods is comparable. Therefore, larval and adult samples were pooled 

in subsequent temporal analyses to represent a single sample per collection year.  

 

Effective population size and demographic stability 

In Funchal, single-sample estimates of effective population size based on the linkage 

disequilibrium method (LD-Ne) increased overtime, from a minimum of 3.4 in 2005 to a 

maximum of 657.0 in 2012, the year of the dengue epidemic (Table 2). After 2012, there 

was ten-fold reduction of LD-Ne. This pattern of temporal variation was not evident in the 

two-sample estimates of Ne (Fs-Ne, Table 2). These estimates varied between 291.1 and 

401.3 with no apparent trend for increase/decrease over years and with overlapping 

95%CI. 
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Table 2. Estimates of effective population size and Mutation-Drift Equilibrium tests.   

 Mutation-drift equilibrium tests Effective population size 

Population Year SMM TPM Mode-Shift LD-Ne Year interval Fs - Ne 

Funchal 2005 10 

(0.299) 

11 

(0.027) 

Normal 3.4 

[2.3-8.7] 

  

 2009 9 

(0.244 

10 

(0.009) 

Normal 42.9 

[28.0-75.0] 

2005-2009 304.9 

[185.1 – 454.3] 

 2011 9 

(0.339) 

11 

(0.015) 

Normal 71.2 

[38.5 - 222.4] 

2009-2011 401.3 

[240.1 – 603.3] 

 2012 9 

(0.165) 

12 

(0.001) 

Normal 657.0 

[166.9 - ∞] 

2011-2012 291.1 

[175.4 – 435.7] 

 2013 10 

(0.103) 

12 

(<0.001) 

Normal 54.9 

[40.2 – 78.6] 

2012-2013 383.1 

[230.8 – 573.3] 

 2014 11 

(0.047) 

12 

(<0.001) 

Shifted 49.9  

[36.5 – 71.1] 

2013-2014 295.2 

[176.6 – 443.8] 

Paúl do Mar 2013 6 

(0.227) 

11 

(<0.001) 

Normal 6.0 

[3.6 – 9.2] 

  

 2014 8 9 Normal 30.6  2013-2014 62.2 
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(0.178) (0.017) [21.8 – 44.1] [34.8 – 97.4] 

Santa Cruz 2014 7 

(0.596) 

9 

(0.312) 

Normal 1.2 

[1.0 – 1.4] 

  

Caracas 2013 10 

(0.116) 

10 

(0.021) 

Shifted 23.9 

[11.1 – 68.8] 

  

Santos 2008 6 

(0.939) 

10 

(0.138) 

Normal 10.8 

[8.7 – 13.2] 

  

São Sebastião 2008 9 

(0.380) 

12 

(<0.001) 

Normal 12.1 

[8.5 – 17.2] 

  

MDE tests: 95% confidence intervals in square brackets. Upper values, number of loci (out of 15) in which He > Heq; lower values are the p-value for the corresponding 

one-tailed Wilcoxon test; SMM: stepwise-mutation model; TPM (30%): two-phased model with 30% of indels greater than one repeat; In bold: significant tests after 

adjustment by the sequential Bonferroni procedure; Effective population size: generations sampled in the two-sample estimates were set at 0 and 10 based on the length 

of time between the two field collections. 
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For both methods, Ne estimates were consistently higher in Funchal, when compared to 

the other localities (Table 2). In Paúl do Mar, there was a 5-fold increase of LD-Ne 

between 2013 and 2014. The lowest LD-Ne estimate was obtained for the only sample 

available from Santa Cruz. The estimates of LD-Ne obtained for the three South American 

continental samples analyzed in this study were consistently lower than those obtained 

for Funchal and Paúl do Mar, except for the samples of 2005 and 2013, respectively 

(Table 2). 

Significant departures from mutation-drift equilibrium were detected by heterozygote 

tests only under the TPM model (Table 2). There was a consistent surplus of loci with 

apparent heterozygote excess in all Madeiran samples, but these were significant only in 

2012 and onwards. In Funchal, the sample of 2014 also showed a shifted allele frequency 

distribution, indicative of a recent bottleneck. In continental samples, heterozygosity tests 

suggest a recent bottleneck in the population of São Sebastião, Brazil. The sample of 

Caracas, Venezuela, presented a shifted allele frequency distribution but the 

corresponding heterozygosity test was only marginally significant (p<0.05). 

 

Population structure and origin 

A first STRUCTURE analysis was performed with the Madeira dataset only and the 

results for the three best K values (K=2 to K=4) are shown in Fig. 2. Graphical 

representations of Evanno’s ΔK can be seen in Supplementary Fig. S2. The sample from 

Paúl do Mar consistently formed a homogenous distinct genetic cluster in the three 

population structure scenarios.  In the K=3 clusters scenario, population partitioning 

corresponds to the geographic localities sampled, with distinct genetic clusters for Santa 

Cruz, Paúl do Mar and Funchal. The K=4 scenario maintains the geographic 

substructuring but separates the samples from Funchal into two different genetic 

backgrounds.  
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Figure 2. Genetic structure of Madeira Ae. aegypti populations using 15 

microsatellite markers. Each bar represents an individual with the colour of the bar 

giving the probability of the individual belonging to a genetic population or cluster. (A, 

B, C) STRUCTURE plots of Madeira populations with K number of clusters as indicated. 

An asterisk indicates the plot representing the optimal K as determined by the delta K 

method. Legend: 1-9: Funchal populations; 10-12: Paúl do Mar populations; 13- Santa 

Cruz population. For population details, see Table 1. 

 

This genetic partitioning within Funchal was not confirmed by the DAPC analysis (Fig. 

3). Madeira samples were divided into two principal genetic clusters. The first 

discriminant function separates Paúl do Mar from Funchal and Santa Cruz while 

subdivision of these two localities in discriminant function two is less pronounced, 

judging from the respective eigenvalues. 
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Figure 3. Discriminant analysis of principal components (DAPC) of Ae. aegypti 

populations in Madeira. Same populations depicted in the STRUCTURE plot shown in 

Figure 2. 

 

A second STRUCTURE analysis was conducted with the complete dataset comprising 

the samples of Madeira and South America genotyped in this study, along with the dataset 

of Gloria-Soria et al. 20. The best K obtained was K=2, reflecting the known segregation 

of the African Aedes aegypti formosus from out-of-Africa Aedes aegypti aegypti 

populations (Fig. 4a; see also Gloria-Soria et al.20).  
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Figure 4. Analyses of Ae. aegypti from Madeira using 11 microsatellite markers. (A) 

STRUCTURE plot separating Aaa = Ae. ae. aegypti, red cluster; Aaf = Ae. ae. formosus, 

blue cluster. (B) Genetic structure of pantropical Ae. aegypti populations. (C) Genetic 

relationships between Madeira and South American populations. Colors of (A, B) are 

presented as in Gloria-Soria et al. (2016). Legend: SS – São Sebastião, Brazil; Cali – 

Cali, Colombia; Bol – Bolivar, Venezuela; Zu – Zulia, Venezuela; Car – Caracas, 

Venezuela. 

 

All Madeiran individuals were homogenously assigned to the Ae. aegypti aegypti group. 

When the analysis was repeated without the African samples, the best value of K was 

equal to four (Fig. 4b). This partitioning reflected the previously shown three continental 

Asian/Pacific, North-Central American and South American clusters20 along with one 

additional cluster that grouped all Madeira island samples with a subset of South-
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American samples. A third STRUCTURE analysis was performed with samples of the 

fourth cluster only (Fig. 4c). This analysis gave a best K=2 and grouped the Madeiran 

samples mainly with Venezuelan samples from Caracas. A few individuals from São 

Sebastião, Brazil, were also assigned to this Madeira/Caracas cluster. The other cluster 

comprised individuals mainly from Brazil, Colombia and non-Caracas Venezuelan 

samples. 

Results of a DAPC analysis conducted with the Madeira/South America subset confirmed 

a closer relationship between Madeira Island and the samples of Caracas, Venezuela, and 

São Sebastião, Brazil (Fig. 5).  

 

Figure 5. Discriminant analysis of principal components (DAPC) of Ae. aegypti 

populations using a Madeira/South America subset . Same populations depicted in the 

STRUCTURE plot shown in Figure 4C. 

 

Mitochondrial DNA analysis 

Summary statistics of genetic variation for each mtDNA gene in Madeira Island are 

shown in Supplementary Table S5. Partial COI sequences were obtained for 202 
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individuals (Supplementary Table S5). The 764 bp alignment revealed the presence of 

three distinct haplotypes and nucleotide diversity (π) of 0.00317. Partial ND4 sequences 

were analyzed from 191 mosquitoes (Supplementary Table S5). The 351 bp alignment 

revealed the presence of four haplotypes and π = 0.00545. Neutrality tests were non-

significant for both genes. 

A Median-Joining haplotype network for the concatenated COI/ND4 sequences is shown 

in Fig. 6. 

 

Figure 6. Median-joining network based on haplotypes obtained from the mtDNA 

concatenated COI and ND4 sequences as generated by Network version 5. The size 

of the nodes corresponds to the number of individuals with corresponding haplotypes. 

The number indicates the number of mutations between each haplotype.  

 

 Of the five different haplotypes identified, haplotype COI_1/ND4_1 was present in over 

90% of all individuals in all localities and it was the only haplotype detected in Paúl do 

Mar in the two years sampled (Table 3). The second most frequent haplotype 

(COI_2/ND4_2) was separated by 23 mutational steps from the central COI_1/ND4_1 

and it was only observed in Funchal. The two most frequent haplotypes were consistently 

detected in Funchal since the first collection in 2005. Three additional low frequency 

haplotypes derived from COI_1/ND4_1 by one or two mutational steps. One of these, 

COI_3/ND4_4 was unique to Santa Cruz only (2014) and haplotype COI_1/ND4_3 was 

unique to the 2005 collection of Funchal, in a single individual. Haplotype COI_1/ND4_4 
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was detected in 2014 simultaneously in Funchal and Santa Cruz. The 21 mtDNA 

sequences obtained from samples of Caracas, Venezuela, were all of the same haplotype, 

COI_1/ND4_1. 
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Table 3. Haplotype frequencies for concatenated COI/ND4 genes from Ae. aegypti populations in Madeira. 

 

  N COI_1/ND4_1 COI_1/ND4_3 COI_1/ND4_4 COI_2/ND4_2 COI_3/ND4_4 

Funchal 2005 14 0.86 0.07 0.00 0.07 0.00 

Funchal 2009 16 1.00 0.00 0.00 0.00 0.00 

Funchal 2011 9 0.56 0.00 0.00 0.44 0.00 

Funchal 2012 28 0.89 0.00 0.00 0.11 0.00 

Funchal 2013 32 0.88 0.00 0.00 0.12 0.00 

Funchal 2014 27 0.89 0.00 0.04 0.07 0.00 

Paúl do Mar 2013 15 1.00 0.00 0.00 0.00 0.00 

Paúl do Mar 2014 28 1.00 0.00 0.00 0.00 0.00 

Santa Cruz 2014 9 0.78 0.00 0.11 0.00 0.11 

 Total Madeira 178 0.90 0.006 0.01 0.08 0.006 
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We performed a phylogenetic analysis with concatenated COI-ND4 sequences to infer 

the phylogenetic relationships between Madeira and worldwide Ae. aegypti sequences22. 

The resulting phylogenetic tree revealed that Ae. aegypti in Madeira is represented by 

members of the two major mtDNA lineages known for this species (Fig. 7)23. The main 

COI_1/ND4_1 is included in the West African lineage and clusters with Venezuelan and 

USA haplotypes. Haplotypes COI_1/ND4_3, COI_1/ND4_4 and COI_3/ND4_4 are also 

included in this clade.  Haplotype COI_2/ND4_2 is included in the East Africa lineage 

that contains sequences from Asia, Central America, Caribe and Brazil.  

 

Figure 7. Phylogenetic tree obtained with a Bayesian inference of concatenated COI 

and ND4 sequences. Sequence number AY072044.1 is an outgroup Aedes albopictus 

specimen. 

 

Discussion 

The results of the present study indicate that the recently established Ae. aegypti 

population of Madeira has derived from at least two independent introductions, possibly 

occurring at different time-points. Venezuela is the most likely geographic origin but a 

Brazilian source population, at least for one of the introductions, cannot be fully excluded. 

After the initial colonization, Ae. aegypti has rapidly expanded throughout the southern 
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part of the island, reaching its maximum effective population size in 2012, which was 

coincident with the dengue outbreak that occurred in Madeira12. The reduction of Ne 

recorded after the outbreak may have been the result of the increased vector control 

implemented to halt virus transmission. 

The lower mtDNA genetic diversity of Ae. aegypti in Madeira is consistent with a recently 

established island population. Values of haplotype diversity below 0.200 recorded in the 

island are lower than those recorded for continental populations of this mosquito species 

(e.g. Brazil24: Hd = 0.800; Florida, USA25: Hd = 0.886; Colombia26: Hd = 0.914).  

However, microsatellite genetic diversity of this 2005 sample (Fx05L) is comparable to 

other Ae. aegypti island27 and mainland populations28,29. Furthermore, MDE tests did not 

provide evidence of a population contraction associated with a founder event mediated 

by only a few individuals. This may reflect a higher evolution rate of microsatellites, with 

mutation rates30 around 10-4-10-3, or that the size of the founding population was still 

sufficient to maintain a representative gene pool of this species.  

Both genetic and historical evidence support an initial introduction of Ae. aegypti in 

Funchal, possibly by maritime transportation. Funchal is the capital and the major urban 

centre of the island, where the international harbour is located. It was in Funchal that the 

first Ae. aegypti specimens were collected in October 20059. In agreement, Funchal 

displays the highest genetic diversity for both mtDNA and microsatellites and the largest 

Ne estimates recorded in Madeira, suggesting a longer established population. After the 

introduction, Ae. aegypti rapidly expanded eastwards and westwards of Funchal, reaching 

Santa Cruz in 200810 and Paúl do Mar in 201212. Again, genetic data supports an earlier 

colonization of Santa Cruz, judging from the higher haplotype diversity when compared 

to Paúl do Mar, with a single haplotype. The lower Ne estimates also agree with 

subsequent colonisations of those two localities after the initial introduction of Ae. aegypti 

in Funchal. This expansion was most probably human-mediated, through road 

transportation along the only highway that connects most of the southern part of the 

island. In fact, the pronounced island’s topography is likely to act as a natural barrier to 

active dispersal of this mosquito and this may be the reason why Ae. aegypti has not yet 

established in the northern part of the island. The influence of human movement in 

shaping genetic diversity, structure and differentiation was also observed on other Ae. 

aegypti insular populations as in the Antilles islands31 and in the Pacific region32. 
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Concatenated mtDNA sequences revealed the presence of two highly divergent 

haplotypes separated by 23 mutation steps (COI_1/ND4_1 and COI_2/ND4_2). These 

two haplotypes were detected in the initial sample of Funchal 2005, providing evidence 

that the initial colonization was made by at least two different maternal lineages. 

However, the presence of a unique mtDNA haplotype (COI_3/ND4_4) in Santa Cruz may 

suggest one additional introduction on the island. Santa Cruz is a county where the 

International Airport of Madeira is located, providing an opportunity for airplane-

mediated transportation of mosquitoes, an occurrence that has been previously detected33. 

While this haplotype was only detected in 2014, we cannot exclude an earlier introduction 

due to the lack of sample availability from previous years in this locality. 

Both Bayesian clustering and DAPC analyses suggest a South American origin of Ae. 

aegypti in Madeira. All Madeira samples grouped in a distinct genetic cluster together 

with specimens from Venezuela, mainly from Caracas. Moreover, the most frequent 

mtDNA haplotype in Madeira (COI_1/ND4_1) is the same haplotype found in all Caracas 

specimens sequenced in this study. A Venezuelan origin of Ae. aegypti in Madeira is not 

surprising given that Madeira has an important emigrant community living in Caracas34. 

During summer, there is extensive movement between Caracas and Madeira because of 

holidaying by the migrant community. Coincidently, the only direct flight connecting 

Madeira and South America is between Funchal and Caracas16.  

A Venezuelan origin of Ae. aegypti also agrees with the insecticide susceptibility profile 

of Ae. aegypti in Madeira. This population was found to be resistant to three different 

insecticide classes and resistance was associated with knockdown resistance (kdr) 

mutations F1534C and V1016I and elevated expression of detoxification enzymes35. 

Similarly, insecticide resistance studies in Ae. aegypti from Venezuela revealed high 

frequencies of F1534C and V1016I kdr mutations and increased activity of glutathione-S 

transferases, esterases and mixed-function oxidases36,37, the same profile as that observed 

in Madeiran Ae. aegypti.  

In addition to a Venezuelan origin, at least one introduction may have derived from Brazil. 

There were 7 individuals from São Sebastião, Brazil, which grouped in the 

Madeira/Caracas genetic cluster and 21 individuals from Madeira with genetic ancestry 

closest to the Brazilian/Colombian cluster. Moreover, the phylogenetic tree indicates that 
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haplotype COI_2/ND4_2 groups in a clade in sequences from Brazil but not from 

Venezuela. However, this may simply reflect that the number of specimens sequenced 

from Venezuela was too low to capture all the haplotype diversity. Therefore, we cannot 

exclude the possibility of haplotype COI_2/ND4_2 also being present in Venezuela but 

not sampled.  

Estimates of LD-Ne in Funchal consistently increased overtime from the first sample 

time-point in 2005 until reaching its highest value in 2012. Coincidently, 2012 was the 

year of the dengue epidemic on the island36. Such an increase in Ne agrees with the rapid 

expansion of this mosquito vector on the island. The precise ecological conditions driving 

this expansion are not fully understood but the mild temperate climate suitable for 

sustaining a mosquito population throughout the year coupled with an extensive 

availability of breeding sites (flower pots)13 in urban and rural areas may have facilitated 

adaptation and subsequent population expansion on the island14.  

The utility of genetic markers in assessing the impact of vector control on the mosquito 

population has been tested previously, with varying degrees of success39,40,41. 

Interestingly, estimates of Fs-Ne did not show any trend of temporal variation. While two-

sample estimates are sensitive to population fluctuations, these methods are influenced 

by the initial (T0) genetic variation of the population, since Ne is retrieved from an 

unbiased estimate of allelic variance42,43. Therefore, the initial low microsatellite 

polymorphism of the Madeiran Ae. aegypti population may have affected the sensitivity 

of Fs-Ne in detecting population contractions. Coincidently, Fs-Ne samples of Funchal in 

the order of the hundreds are within the average values obtained in a previous study 

analyzing a global dataset for Ae. aegypti44. 

After the 2012 outbreak, estimates of Ne significantly decreased in 2013 and 2014. 

Heterozygosity tests and mode-shift allele detected a recent bottleneck during this period. 

These results suggest that the vector control measures implemented after the dengue 

outbreak were effective in reducing Ae. aegypti densities. It should be emphasized that 

vector control during the dengue outbreak of Madeira was predominantly based on 

community-based larval source reduction, enforced by a strong communication campaign 

led by the local health authorities12. Given the high insecticide resistance of Ae. aegypti 

on the island, alternative non-insecticidal methods are essential to contain the mosquito 
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population and, subsequently, prevent arbovirus transmission. In this context, larval 

source reduction is a valid option for Madeira. This method is also recommended by the 

World Health Organization as a primary vector control tool for Ae. aegypti45. 

To conclude, Ae. aegypti has recently arrived in Madeira and rapidly expanded its 

population size to levels able to sustain transmission of an arbovirus epidemic. The 

Venezuelan origin is coherent with the socioeconomic relations of this insular territory 

with that country and highlights the importance of monitoring mosquito populations at 

points of entry such as international harbours and airports. This study also provided 

evidence for the effectiveness of non-insecticidal vector control methods. The relatively 

small effective size of this island vector population may also be regarded as advantageous 

for the implementation of vector control tools that rely on genetically modified 

mosquitoes46.  

 

Methods 

Mosquito samples 

Mosquito collections were performed in three localities of Madeira: Funchal, the capital 

city; Santa Cruz and Paúl do Mar, representing the eastern and western distribution limits 

of Ae. aegypti in the island (Fig. 1). Collections were made at six time points in Funchal 

(2005, 2009, 2011, 2012, 2013 and 2014) and two (2013 and 2014) in Paúl do Mar. In 

addition, mosquito samples from two localities in Brazil (Santos and São Sebastião) and 

one in Venezuela (Caracas) were also analysed. The two Brazilian localities represent 

coastal cities with major international harbours. Caracas is the capital of Venezuela and 

located ca. 30 km away from the major harbour city La Guaira. Sample details, including 

the sampling method, collection year and sample sizes, are available in Supplementary 

Table S1. 

Both immature and adult mosquitoes were sampled. Collected immatures (eggs and 

larvae) were reared to adults under insectary conditions. Adults were identified to species 

using morphological keys47 and stored individually in silica-gel at -20ºC until DNA 

extraction. 
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DNA extraction 

Genomic DNA was extracted using the NZY tissue gDNA isolation kit (NZYtech 

Portugal) for the 2005 Madeira sample, and with the protocol of Collins et al.48 for the 

other Madeira samples. DNA of the individuals from Brazil and Venezuela were extracted 

using a Chelex100® Molecular Biology Grade resin (Bio-rad Laboratories) protocol 

according to the manufacturer’s protocols. 

 

Microsatellite genotyping 

A total of 16 microsatellites were genotyped by fragment size analysis of polymerase 

chain reaction amplified products. Primer sequences and PCR conditions followed 

previously published protocols49,50,51 and are described in Supplementary Table S2. 

Fragment size analysis was performed by capillary electrophoresis on an ABI3130xl 

genetic analyser (Applied Biosystems), at the DNA Analysis Facility at Science Hill, Yale 

University. Microsatellite alleles were scored using GENEMARKER software 

(SoftGenetics, PA, USA).  

The genotypes obtained were integrated into the microsatellite genotypic database of 

Gloria-Soria et al.20, available in VectorBase (Project ID: VBP0000138). This database 

has genotypes for 12 of the 16 microsatellites genotyped in a total of 3,566 individuals 

from 78 countries representing Asian, African and American Ae. aegypti populations. In 

order to calibrate inter-lab allele scoring, 20 individuals from Gloria-Soria et al.20, kindly 

provided by the Jeffrey Powell laboratory at Yale University, were analysed at GHTM 

and the genotypes were compared with the original scorings. 

The genotypes obtained for the samples here analysed are available in VectorBase 

(Project ID: VBP0000303). 

 

Microsatellite data analysis 

Expected heterozygosity (He) and the inbreeding coefficient (Fis) were estimated using 

GENEPOP52. The same software was used to perform exact tests of departure from 

Hardy-Weinberg proportions and of linkage disequilibrium (LD) among pairs of loci. 

Estimates of allele richness (AR) were obtained for each population by the statistical 
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rarefaction approach implemented in HP-RARE53. The software Micro-checker 2.2.354 

was used to test for the presence of null alleles (99% confidence interval) at each 

locus/sample.  

Two estimates of current effective population size (Ne) were made: single-sample 

estimates based on the linkage disequilibrium method55; and two-sample temporal 

estimates, based on the F-statistic of Jorde & Ryman56. Calculations were performed 

using NeEstimator v257. Because rare alleles may bias linkage disequilibrium Ne 

estimates, alleles with frequency below 0.05 at each locus were removed from the 

analysis.  

Evidence of recent population perturbations was assessed by heterozygosity tests as 

implemented in BOTTLENECK version 1.2.0258. Expected heterozygosity estimates 

assuming mutation drift equilibrium (MDE) were calculated from the number of alleles 

and sample size under two mutation models, considered more suitable for microsatellites: 

the stepwise mutation model (SMM) and a two-phased model (TPM) with 30% multistep 

mutations (variance = 30%). Although the SMM has been considered as better suited for 

the type of mutation process most frequent in microsatellites (i.e. DNA slippage59), there 

is evidence that intermediate mutation models such as the TPM with increasing 

proportions of multistep mutations are less prone to detect false positives60. Wilcoxon 

tests were used to assess significance between observed and MDE-expected 

heterozygosities, as recommended for analysis with less than 20 loci61. In addition, the 

allele frequency distribution method was also used60. Under MDE, an L-shaped allele 

frequency distribution is expected, whereas a shifted distribution due to loss of low-

frequency alleles is consistent with a recent bottleneck. 

In order to assess the degree of relatedness among individuals, the maximum-likelihood 

method implemented in ML-RELATE was used63. For each pair of individuals, log-

likelihood estimates are calculated for four pedigree classes: unrelated, half-siblings, full-

siblings and parent-offspring.   

Bayesian clustering analysis was performed using the software STRUCTURE version 

2.3.4.64, in order to assess within-island population subdivision and to determine the most 

likely source populations of Ae. aegypti in Madeira. In a first analysis, only Madeira island 

samples were used. Subsequently, the Madeira island genotypes were analysed with the 
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continental sample dataset of Gloria-Soria et al.20. Twenty independent runs were made 

for each value of K, which varied from one to 10 for within island analysis, including 

source population determination, and from one to five at the subspecies/species level. 

Each run was conducted with a burn-in of 100,000 iterations and 500,000 replicates, 

assuming an admixture model with correlated allele frequencies. The optimal number of 

clusters was determined following the guidelines of Pritchard et al.64 and the delta K 

statistic of Evanno et al.65, using STRUCTURE HARVESTER version 0.6.9466. The 

information from the outputs of each K was aligned by the Greedy method implemented 

in CLUMPP67.  

Discriminant Analysis of Principal Components (DAPC), as implemented by 

ADEGENET68, was used to visualize patterns of genetic differentiation among individual 

mosquitoes belonging to different genetic clusters in a two-dimensional plot. This 

analysis was performed with the samples from Madeira and a subset of candidate source 

populations selected from the Bayesian clustering analysis. 

Whenever multiple tests were performed, the nominal significance level (α = 0.05) was 

adjusted by the sequential Bonferroni procedure69. 

 

Mitochondrial DNA sequencing 

The mitochondrial genes COI and ND4 were analysed by direct sequencing from 

amplified products, corresponding to 764 bp and 351 bp, respectively, using previously 

published primers22,24 and protocols19. In addition to Madeira individuals, mtDNA 

sequences for 21 individuals from Caracas, Venezuela, were also obtained to compensate 

for the scarcity of sequences available in Genbank for this country. Sequences were 

aligned and manually corrected using BioEdit v7.0.570. For each gene, haplotype diversity 

(Hd), nucleotide diversity (π) and the Tajima and Fu and Li neutrality tests were computed 

by DNAsp v5.1071. 

In order to infer the relationships between haplotypes in Madeira, haplotype networks 

were constructed for concatenated COI-ND4 sequences using a median-joining algorithm 

as implemented in the NETWORK software72. 

The BEAST v1.8.4 software73 was used to generate a phylogenetic tree based on the COI-
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ND4 concatenated haplotypes, obtained from sequences produced in this study and others 

retrieved from GenBank (Supplementary Table S2). The analysis was run in three 

separate independent runs with 500 million generations, sampled every 100 000 runs for 

the concatenated genes. A Bayesian skyline population growth model was used. The 

substitution model HKY74 with gamma and invariant sites and three partitions into codon 

positions was selected. MCMC analysis was run long enough for convergence to be 

obtained. To analyze convergence and stability, we used Tracer v1.6 software75. 

TreeAnnotator was used to estimate the final Maximum Clade Credibility Tree, 

summarizing the posterior probability of each clade of the trees, as well as the average 

and confidence interval for the evolutionary rate of each branch of the tree. The obtained 

Bayesian trees were visualized and edited with FIGTREE 1.4.3. 

(http://tree.bio.ed.ac.uk/software/figtree/). 
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Table 1.  Aedes aegypti samples included in this study. 

Sample codea Sample name Country Locality GPS coordinates Collection method Collection month/year Sample size 

1 Fx05L Portugal Funchal 

32.64134,-16.916687 

Larval November/2005 22 

2 Fx09L Portugal Funchal Larval October/2009 48 

3 Fx11A Portugal Funchal BG-traps October/ 2011 45 

4 Fx12A Portugal Funchal BG-traps October/2012 46 

5 Fx12L Portugal Funchal Ovitrap October/2012 46 

6 Fx13A Portugal Funchal BG-traps October/2013 46 

7 Fx13L Portugal Funchal Ovitrap October/2013 46 

8 Fx14A Portugal Funchal BG-traps October/2014 46 

9 Fx14L Portugal Funchal Ovitrap October/2014 46 

10 PM13L Portugal Paúl do Mar 

32.75907, -17.230439 

Ovitrap October/2013 46 

11 PM14A Portugal Paúl do Mar BG-traps October/2014 46 

12 PM14L Portugal Paúl do Mar Ovitrap October/2014 46 

13 SC14L Portugal Santa Cruz 32.689282, -16.79074 Ovitrap October/2014 46 

 Car Venezuela Caracas 10.480594, -66.903606 Ovitrap April/2013 46 

 ST Brazil Santos -23.967882, -46.328887 Ovitrap NA/2008 47 

 SS Brazil São Sebastião -23.806347, -45.401653 Ovitrap NA/2008 47 

 Gloria-Soria et al. (2016) NA NA NA NA NA 3566 

NA, not applicable; a sample codes used in Figure 2. 
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Supplementary Table S1 - Description of the 16 microsatellite markers used. 

 

Locus  Primer Sequence 
Fluorescent 

Primer 
Source Analysis 

AC1 For TCCGGTGGGTTAAGGATAGA M13-FAM 
Slotman et al. 

(2007) 

Within Madeira and worldwide 

analysis 

 Rev ACTTCACGCTCCAGCAATCT   

AC2 For AATACAACGCGATCGACTCC M13-FAM 
Slotman et al. 

(2007) 

 Rev AACGATTAGCTGCTCCGAAA   

AC4 For GCGAATCGGTTCCCATAGTA M13-FAM 
Slotman et al. 

(2007) 

 Rev CTTTATCGATCGACGCCATT   

AC5 For TGGATTGTTCTTAACAAACACGAT M13-FAM 
Slotman et al. 

(2007) 

 Rev CGATCTCACTACGGGTTTCG   

AG1 For AATCCCCACACAAACACACC M13-HEX 
Slotman et al. 

(2007) 

 Rev GGCCGTGGTGTTACTCTCTC   

AG2 For TCCCCTTTCAAACCTAATGG M13-HEX 
Slotman et al. 

(2007) 

 Rev TTTGCCCTCGTATGCTCTCT   

AG5 For TGATCTTGAGAAGGCATCCA M13-HEX 
Slotman et al. 

(2007) 

 Rev CGTTATCCTTTCATCACTTGTTTG   

CT2 For CGCAGTAGGCGATATTCGTT M13-HEX 
Slotman et al. 

(2007) 

 Rev ACCACCACCAACACCATTCT   

A1 For GACGTAAACCGAGTGGGAGA M13-FAM Brown et al. (2011) 

 Rev GCATTTAACCGCGCTAGAAC   

A9 For GCAGCATGCACTTCACATTT M13-FAM Brown et al. (2011) 

 Rev CGAATGGCATCTGATTCAAG   
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B2 For GGAAACACTTGCAGGGACAT M13-HEX Brown et al. (2011) 

 Rev GCAGATGGTGGCAGTAGTGA   

B3 For GCAAGTTGCAAAGTGCTCAA M13-HEX Brown et al. (2011) 

 Rev ACCCACCGTTTGCTTTGTAG   

AG4 For AAAACCTGCGCAACAATCAT M13-FAM 
Slotman et al. 

(2007) 

Within Madeira analysis 

 Rev AAGGACTCCGTATAATCGCAAC   

AC7 For TCGGCAAATTACCACAAACA M13-FAM 
Slotman et al. 

(2007) 

 Rev CATTGGACTCGCTATAACACACA   

88AT1 For CGTCGACGTTATCTCCTTGTT M13-HEX Lovin et al. (2009) 

 Rev CCAACGCAAGATGCAAGATA   

201AAT1 For GATCGTTCGACAGCATCTGA M13-HEX Lovin et al. (2009) 

 Rev GGAAAGCTCATCGCCTACTG   

 

 

*All forward primers were designed with a short M13 tail at the start (TCCCAGTCACGACGT) 
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Supplementary Table S2 - Geographic origin and GenBank accession number of 

sequences used in the phylogenetic analyses. 

COI ND4 Name 

JQ926682 JQ926708 Bolivia_1 

JQ926682 JQ926707 Bolivia_2 

JQ926683 JQ926707 Bolivia_3 

JQ926681 JQ926705 Bolivia_4 

JQ926676 JQ926705 Bolivia_5 

JQ926703 JQ926718 Brazil_1 

JQ926703 JQ926719 Brazil_2-3-4 

JQ926698 JQ926713 Mexico_1-2-3 

JQ926699 JQ926714 Mexico_4 

JQ926696 JQ926711 Martinique_1 

JQ926697 JQ926712 Martinique_2-3 

JQ926701 JQ926726 Venezuela_1-2-3 

JQ926684 JQ926725 USA_1-2-3-4-5 

JQ926691 JQ926720 Thailand_1-2 

JQ926692 JQ926721 Thailand_3 

JQ926685 JQ926723 Vietnam_1-2 

JQ926686 JQ926724 Vietnam_3 

JQ926687 JQ926724 Vietnam_4 

JQ926688 JQ926722 Cambodia_1 

JQ926689 JQ926722 Cambodia_2 

JQ926690 JQ926722 Cambodia_3 

JQ926704 JQ926715 Tanzania_1-2-3-4 

JQ926693 JQ926709 RCI_1 

JQ926694 JQ926709 RCI_2 

JQ926695 JQ926710 RCI_3 

JQ926700 JQ926717 Guinea_1-2 

JQ926702 JQ926716 Cameroon_1-2-3 

Supplementary Table S3. Microsatellite genetic variation and null alleles frequency. 

https://1drv.ms/x/s!Agj5UMQqVs9xg8UPmQWlu6Y2oAqhvg 



Origin and expansion of the mosquito Aedes aegypti in Madeira Island (Portugal) 

107 
 

Supplementary Table S4. Summary statistics for mtDNA genes in Ae. aegypti from 

Madeira. 

 N S H Hd π D (Tajima) D* F* Gene size 

COI 202 14 3 0.198 0.00317 0.044 1.525 1.158 764 bp 

ND4 191 13 4 0.192 0.00545 -0.353 0.822 0.458 351 bp 

COI/ND4 178 27 5 0.177 0.00345 -0.5077 1.524 0.839 1115 bp 

N, sample size; S, number of segregating sites; H, number of haplotypes; Hd, haplotype 

diversity; π, nucleotide diversity; D, Tajima’s D statistic; D* and F*, Fu and Li’s 

statistics. 

 

Supplementary Table S5. MtDNA haplotype sequences for COI and ND4 across Ae. 

aegypti samples from Madeira Island. 

 

Haplotype N Polymorphic positions  

ND4  0 0 0 1 1 1 1 2 2 2 2 2 3  

  1 2 7 3 4 5 9 1 3 6 7 7 1  

  6 2 3 3 2 5 0 7 5 8 1 7 3  

H1 171 T T T C T G T A T A T T C  

H2 16 C C C T C . C G C G A C T  

H3 1 . . . . . A . . . . . . .  

H4 3 . . . . . . . G . . A . .  

 

COI                

  0 0 0 0 1 1 1 3 3 4 4 4 4 6 

  0 6 7 7 5 6 8 1 3 1 6 6 9 8 

  1 7 0 9 1 3 4 3 4 2 3 9 3 2 

H1 180 A C T A G G C A T G A T C C 

H2 19 G T C G A A T G C A G C T T 

H3 2 . . . . . . . . C . . . . . 
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N corresponds to the number of sample belonging to this haplotype. 

 

 

Supplementary Figure S1. Proportion (in percentage) of related and unrelated pairs 

of individuals as determined by ML-RELATE. Legend: U - unrelated, HS - half-

siblings, FS - full-siblings and PO - parent-offspring. NS refers to a non-significant 

difference between adult and larval samples using Chi-square test (p > 0.05).  
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Supplementary Figure S2. Graphics of Evanno’s ΔK for the different Bayesian 

clustering analysis implemented by STRUCTURE. (a) All Madeira samples (Figure 

2), (b) Worldwide dataset and Madeira (Figure 4a), (c) Ae. aegypti aegypti and Madeira 

samples (Figure 4b), (d) Madeira and South America samples (Figure 4c). 
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Abstract 

Background: 

Since its emergence in 2007 in Micronesia and Polynesia, the arthropod-borne flavivirus 

Zika virus (ZIKV) has spread in the Americas and the Caribbean, following first detection 

in Brazil in May 2015. The risk of ZIKV emergence in Europe increases as imported 

cases are repeatedly reported. Together with chikungunya virus (CHIKV) and dengue 

virus (DENV), ZIKV is transmitted by Aedes mosquitoes. Any countries where these 

mosquitoes are present could be potential sites for future ZIKV outbreak. We assessed 

the vector competence of European Aedes mosquitoes (Aedes aegypti and Aedes 

albopictus) for the currently circulating Asian genotype of ZIKV. 

 

Methodology/Principal Findings: 

Two populations of Ae. aegypti from the island of Madeira (Funchal and Paul do Mar) 

and two populations of Ae. albopictus from France (Nice and Bar-sur-Loup) were 

challenged with an Asian genotype of ZIKV isolated from a patient in April 2014 in New 

Caledonia. Fully engorged mosquitoes were then maintained in insectary conditions 

(28°±1°C, 16h:8h light:dark cycle and 80% humidity). 16-24 mosquitoes from each 

population were examined at 3, 6, 9 and 14 days post-infection to estimate the infection 

rate, disseminated infection rate and transmission efficiency. Based on these experimental 

infections, we demonstrated that Ae. albopictus from France were not very susceptible to 

ZIKV. 

 

Conclusions/Significance: 

In combination with the restricted distribution of European Ae. albopictus, our results on 

vector competence corroborate the low risk for ZIKV to expand into most parts of Europe 

with the possible exception of the warmest regions bordering the Mediterranean coastline. 

 

Keywords: Aedes albopictus, Aedes aegypti, Europe, Zika virus, emergence risk. 
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Author summary 

 

In May 2015, local transmission of Zika virus (ZIKV) was reported in Brazil and since 

then, more than 1.5 million human cases have been reported in Latin America and the 

Caribbean. This arbovirus, primarily found in Africa and Asia, is mainly transmitted by 

Aedes mosquitoes, Aedes aegypti and Aedes albopictus. Viremic travelers returning from 

America to European countries where Ae. albopictus is established could become the 

source for local transmission of ZIKV. In order to estimate the risk of seeding ZIKV into 

local mosquito populations, the susceptibility of European Ae. aegypti and Ae. albopictus 

to ZIKV was measured using experimental infections. We demonstrated that Ae. 

albopictus and Ae. aegypti from Europe were not very susceptible to ZIKV. The threat 

for a Zika outbreak in Europe should be limited. 

 

Introduction 

 

Zika virus (ZIKV) (genus Flavivirus, family Flaviviridae) is an emerging arthropod-

borne virus transmitted to humans by Aedes mosquitoes. ZIKV infection in humans was 

first observed in Africa in 1952 [1], and can cause a broad range of clinical symptoms 

presenting as a “dengue-like” syndrome: headache, rash, fever, and arthralgia. In 2007, 

an outbreak of ZIKV on Yap Island resulted in 73% of the total population becoming 

infected [2]. Following this, ZIKV continued to spread rapidly with outbreaks in French 

Polynesia in October 2013 [3], New Caledonia in 2015 [4], and subsequently, Brazil in 

May 2015 [5, 6]. During this expansion period, the primary transmission vector is 

considered to have been Aedes aegypti, although Aedes albopictus could potentially serve 

as a secondary transmission vector [7] as ZIKV detection has been reported in field-

collected Ae. albopictus in Central Africa [8]. As Musso et al. [9] observed, the pattern 

of ZIKV emergence from Africa, throughout Asia, to its subsequent arrival in South 

America and the Caribbean closely resembles the emergence of Chikungunya virus 

(CHIKV). In Europe, returning ZIKV-viremic travelers may become a source of local 

transmission in the presence of Aedes mosquitoes, Ae. albopictus in Continental Europe 

and Ae. aegypti in the Portuguese island of Madeira. Ae. albopictus originated from Asia 

was recorded for the first time in Europe in Albania in 1979 [10], then in Italy in 1990 
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[11]. It is now present in all European countries around the Mediterranean Sea [12]. This 

mosquito was implicated as a vector of CHIKV and DENV in Europe [13]. On the other 

hand, Ae. aegypti disappeared after the 1950s with the improvement of hygiene and anti-

malaria vector control. This mosquito reinvaded European territory, Madeira island, in 

2005 [14], and around the Black Sea in southern Russia, Abkhazia, and Georgia in 2004 

[12]. The species was responsible for outbreaks of yellow fever in Italy in 1804 [15] and 

dengue in Greece in 1927–1928 [16]. To assess the possible risk of ZIKV transmission 

in Europe, we compared the relative vector competence of European Ae. aegypti and Ae. 

albopictus populations to the Asian genotype of ZIKV. 

 

Materials and Methods 

 

Ethics Statement 

The Institut Pasteur animal facility has received accreditation from the French Ministry 

of Agriculture to perform experiments on live animals in compliance with the French and 

European regulations on care and protection of laboratory animals. This study was 

approved by the Institutional Animal Care and Use Committee (IACUC) at the Institut 

Pasteur. No specific permits were required for the described field studies in locations that 

are not protected in any way and did not involve endangered or protected species. 

 

Mosquitoes 

Four populations of mosquitoes (two populations of Ae. aegypti: Funchal (32°40’N, 

16°55’W) and Paul do Mar (32°45’N, 17°13’W), collected on island of Madeira and two 

populations of Ae. albopictus: Nice (43°42’N, 7°15’E) and Bar-sur-Loup (43°42’N, 

6°59’E) in France) were collected using ovitraps. Eggs were immersed in dechlorinated 

tap water for hatching. Larvae were distributed in pans of 150-200 individuals and 

supplied with 1 yeast tablet dissolved in 1L of water every 48 hours. All immature stages 

were maintained at 28°C ± 1°C. After emergence, adults were given free access to a 10% 

sucrose solution and maintained at 28°C ± 1°C with 70% relative humidity and a 16:8 

light/dark cycle. The F1 generation of Ae. aegypti from Madeira and F7-8 generation of 

Ae. albopictus from France were used for experimental infections. 
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Viral strain 

The ZIKV strain (NC-2014-5132) originally isolated from a patient in April 2014 in New 

Caledonia was used to infect mosquitoes. The viral stock used was subcultured five times 

on Vero cells prior to the infectious blood-meal. The NC-2014-5132 strain is 

phylogenetically closely related to the ZIKV strains circulating in the South Pacific 

region, Brazil [5] and French Guiana [17]. 

 

Oral Infection of Mosquitoes 

Infectious blood-meals were provided using a titer of 107 TCID50/mL. Seven-day old 

mosquitoes were fed on blood-meals containing two parts washed rabbit erythrocytes to 

one part viral suspension supplemented with ATP at a final concentration of 5 mM. Rabbit 

arterial blood was collected and erythrocytes were washed five times with Phosphate 

buffered saline (PBS) 24 h before the infectious blood-meal. Engorged females were 

transferred to cardboard containers with free access to 10% sucrose solution and 

maintained at 28°C and 70% relative humidity with a 16:8 light/dark cycle. 16-24 female 

mosquitoes from each population were analyzed at 3, 6, 9, and 14 days post-infection 

(dpi) to estimate the infection rate, disseminated infection rate and transmission 

efficiency. Briefly, legs and wings were removed from each mosquito followed by 

insertion of the proboscis into a 20 µL tip containing 5 µL FBS for 20 minutes. The saliva-

containing FBS was expelled into 45 µL serum free L-15 media (Gibco), and stored at -

80°C. Following salivation, mosquitoes were decapitated and head and body (thorax and 

abdomen) were homogenized separately in 300 µL L-15 media supplemented with 3% 

FBS using a Precellys homogenizer (Bertin Technologies) then stored at -80°C. Infection 

rate was measured as the percentage of mosquitoes with infected bodies among the total 

number of analyzed mosquitoes. Disseminated infection rate was estimated as the 

percentage of mosquitoes with infected heads (i.e., the virus had successfully crossed the 

midgut barrier to reach the mosquito hemocoel) among the total number of mosquitoes 

with infected bodies. Transmission efficiency was calculated as the overall proportion of 

females with infectious saliva among the total number of tested mosquitoes. Samples 

were titrated by plaque assay in Vero cells. 
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Virus Quantification 

For head/body homogenates and saliva samples, Vero E6 cell monolayers were 

inoculated with serial 10-fold dilutions of virus-containing samples and incubated for 1 

hour at 37°C followed by an overlay consisting of DMEM 2X, 2% FBS, antibiotics and 

1% agarose. At 7 dpi, overlay was removed and cells were fixed with crystal violet (0.2% 

Crystal Violet, 10% Formaldehyde, 20% ethanol) and positive/negative screening was 

performed for cytopathic effect (body and head homogenates) or plaques were 

enumerated (head and saliva samples). Vero E6 cells (ATCC CRL-1586) were 

maintained in DMEM (Gibco) supplemented with 10% fetal bovine serum (Eurobio), 

Penicillin and Streptomycin, and 0.29 mg/mL l-glutamine. 

 

Statistical analysis 

All statistical tests were conducted with the STATA software (StataCorp LP, Texas, 

USA) using 1-sided Fisher’s exact test and P-values>0·05 were considered non-

significant. 

 

Results 

Aedes aegypti from Madeira transmit ZIKV efficiently 

To test whether Ae. aegypti from a European territory were able to transmit ZIKV, we 

analyzed the vector competence of two Ae. aegypti populations collected on the island of 

Madeira based on three parameters: viral infection of the mosquito midgut, viral 

dissemination to secondary organs, and transmission potential, analyzed at 3, 6, 9, and 14 

dpi. Only mosquitoes presenting an infection (i.e. infected midgut) were analyzed for 

viral dissemination. The two populations presented similar infection (P = 0.50 (3 dpi), 

0.17 (6), 0.36 (9), 0.50 (14); Figure 1) and disseminated infection (P = 0.59 (3 dpi), 0.63 

(6), 0.43 (9), 0.06 (14); Figure 1) with the highest rates measured at 9 dpi and 9-14 dpi, 

respectively. When examining transmission efficiency, only Ae. aegypti Funchal were 

able to transmit ZIKV at 9 (1 individual among 20 tested) and 14 dpi (1 among 20) (Figure 
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1). When considering the number of viral particles in heads, no significant difference was 

detected between Ae. aegypti Funchal and Ae. aegypti Paul do Mar (P = 1 (3 dpi), 0.22 

(6), 0.60 (9), 0.38 (14); Figure 2). When examining viral loads in saliva, only Ae. aegypti 

Funchal exhibited 1550 particles at 9 dpi and 50 at 14 dpi (Figure 2). 

 

Figure 1. Ae. aegypti from Madeira Island and Ae. albopictus from France were 

assessed for viral infection (A, B), dissemination (C, D), and transmission (E, F) at 

days 3, 6, 9, 14 after infection with ZIKV provided at a titer of 107 TCID50/mL. 16-

24 mosquitoes were sampled each day. Infection rates were measured as the percentage 

of mosquitoes with infected bodies among the total number of analyzed mosquitoes. 

Disseminated infection rates were estimated as the percentage of mosquitoes with 

infected heads (i.e., the virus has successfully crossed the midgut barrier to reach the 
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hemocoel) among the total number of mosquitoes with infected bodies. The transmission 

efficiency was calculated as the overall proportion of females with infectious saliva 

among the total number of tested mosquitoes. Arrows refer to scenarios of ZIKV 

introduction into Europe from the Americas via transmission by Aedes albopictus (in 

blue) and/or Ae. aegypti (in grey). AE = Ae. aegypti; AL = Ae. albopictus. In red, countries 

where ZIKV has been isolated. Error bars show the confidence intervals (95%). In 

brackets, the number of mosquitoes tested. 
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Figure 2. Viral loads in heads (A) and saliva (B) for mosquitoes infected with ZIKV 

provided at a titer of 107 TCID50/mL. The number of infectious particles per head 

homogenate and saliva was estimated by plaque assays on Vero cells. Titers were 

expressed as PFU (plaque-forming unit). AE = Ae. aegypti; AL = Ae. albopictus. Error 
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bars refer to the standard error. In brackets, the number of mosquitoes tested. 

 

French Ae. albopictus showed significantly reduced competence to transmit ZIKV 

To determine if Ae. albopictus present in continental Europe were able to sustain local 

transmission of ZIKV as previously observed with CHIKV and DENV, we evaluated the 

vector competence of two Ae. albopictus populations collected in Nice and Bar-sur-Loup 

in the South of France. When compared with Ae. aegypti, the two Ae. albopictus 

populations showed similar infection rates at 3 dpi (P = 0.08) and 6 dpi (P = 0.11) and 

disseminated infection rates at 9 dpi (P = 0.62) and 14 dpi (P = 0.10) (Figure 1). Only 

one individual among 24 Ae. albopictus Bar-sur-Loup tested at 14 dpi was able to transmit 

ZIKV (Figure 1). When analyzing the number of viral particles in heads, only few 

mosquitoes were infected (Figure 2). When examining saliva, one Ae. albopictus Bar-sur-

Loup exhibited 2 viral particles at 14 dpi (Figure 2). 

In summary, ZIKV dissemination through Ae. aegypti was noticeably superior and the 

virus in saliva was detected earlier in Ae. aegypti than in Ae. albopictus. However both 

mosquito species showed similar transmission efficiencies at 9-14 dpi. 

 

Discussion 

ZIKV could be transmitted, spread and maintained in Europe either via (i) Madeira where 

the main vector Ae. aegypti has been established since 2005 or (ii) Continental Europe 

where Ae. albopictus is known to have been present since 1979 [12]. We demonstrated 

that ZIKV was amplified and expectorated efficiently in saliva by European Ae. aegypti 

from Madeira. This contrasts with the lower vector competence for ZIKV of French Ae. 

albopictus. Taking these observations and the overall average lower temperatures of most 

regions of Europe into account, the risk of major outbreaks of Zika fever in most areas of 

Europe, at least for the immediate future, appears to be relatively low. 

Our results highlight the potential risk for ZIKV transmission on Madeira where 

two main factors are present: the presence of the main vector, Ae. aegypti introduced in 

2005 [18] and imported cases from Brazil with which Madeira, an autonomous region of 

Portugal, maintains active exchanges of goods and people sharing the same language. 
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Thus Madeira Island could be considered as a stepping stone for an introduction of ZIKV 

into Europe. 

Autochthonous cases of CHIKV and DENV have been reported in Europe since 

2007: CHIKV in Italy in 2007, South France in 2010, 2014, and DENV in South France 

in 2010, 2013, 2015, and Croatia in 2010 [19]. The invasive species Ae. albopictus first 

detected in Europe in 1979 [10] has played a central role in this transmission [19]. Thus, 

there might be a risk of a similar establishment of ZIKV in Europe upon the return of 

viremic travelers [20, 21]. We showed that Ae. albopictus from South France were less 

competent for ZIKV infection requiring 14 days to be expectorated in the mosquito saliva 

after infection. Therefore, we can suggest that the Asian tiger mosquito from Southern 

France and more widely, Europe, are less suitable to sustain local transmission of ZIKV 

compared to CHIKV and perhaps, DENV. Ae. albopictus Nice were not able to 

expectorate ZIKV in saliva at day 14 post-infection like Ae. albopictus Bar-sur-Loup 

suggesting two populations genetically differentiated. 

Considering the extensive airline travel between Latin America and Europe, the risk 

for local transmission of ZIKV in the European area where the mosquito Ae. albopictus 

is widely distributed, is assumed to be minimal based on our studies of vector 

competence. Nevertheless, reinforcement of surveillance and control of mosquitoes 

should remain a strong priority in Europe since Aedes mosquitoes also transmit DENV 

and CHIKV and virus adaptation to new vectors cannot be excluded, as previously 

observed with CHIKV in La Reunion [22, 23]. 
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Abstract 

Background: Aedes spp. mosquitoes mainly transmit the arboviruses dengue virus 

(DENV) and chikungunya virus (CHIKV) in urban areas, causing a severe public health 

problem. In 2012–2013, a major dengue outbreak occurred on Madeira Island where the 

mosquito Aedes aegypti was the only vector. Up to now, the competence of Ae. aegypti 

populations from Madeira to transmit DENV or CHIKV remains unknown. This study 

aimed to assess experimentally the ability of Ae. aegypti populations from Madeira to 

transmit these viruses. 

Results: By orally exposing mosquitoes to CHIKV (NC/2011-568) and DENV-2 

(Bangkok), the vector competence of two field-collected Ae. aegypti populations, i.e. 

Funchal and Paúl do Mar, was evaluated. We found that both populations were similarly 

infected and ensured the dissemination and transmission of CHIKV at the same rates. 

With DENV-2, viral dissemination was significantly higher in the Funchal population 

compared to Paúl do Mar. We found no significant differences in transmission rates 

between populations. 

Conclusions: To our knowledge, this study has demonstrated for the first time the ability 

of temperate European Ae. aegypti populations from Madeira to transmit DENV and 

CHIKV. As our results suggest, there is a potential risk for the local transmission of 

DENV and CHIKV if introduced to Madeira or continental Europe where Aedes 

albopictus is present. Our results highlight the need for continuing vector surveillance 

and control on Madeira Island to future-proof the Island against mosquito-borne 

epidemics. 

Keywords: Arbovirus, Europe, Vector competence, Aedes aegypti. 

 

Background 

Aedes aegypti (Linnaeus, 1762) is known to be the vector of several arboviruses [1]. 

While originally native to Africa, this species has continuously expanded its range during 

the last centuries [2], including to the European territories such as Madeira Island 

(Portugal), Georgia and occasionally in the Netherlands [3, 4]. First detected in 2005 in 

the city of Funchal on Madeira, this mosquito is now widely distributed throughout the 

southern coast of the island [5] and was responsible for a major dengue outbreak in 
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October 2012 with thousands of dengue cases [6], representing the first autochthonous 

cases in a Portuguese territory. 

Beside the dengue virus (DENV; genus Flavivirus, family Flaviviridae), Ae. 

aegypti is also experimentally competent for chikungunya virus (CHIKV; genus 

Alphavirus, family Togaviridae) [7, 8]. Dengue and chikungunya are serious public health 

issues in tropical regions, and each virus family has different serotypes, lineages and 

genotypes [9, 10]. Dengue is caused by four genetically distinct DENV serotypes (1, 2, 3 

and 4) and generally lead to a self-limited febrile illness characterised by a headache, 

fever and rash. CHIKV causes an acute febrile illness characterised by severe arthralgia 

[11]. Phylogenetic analysis suggests that CHIKV lineages can be classified into three 

distinct genotypes: Asian, West African and Eastern/Central/Southern African (ECSA). 

Both DENV and CHIKV infections have a large proportion of asymptomatic cases 

contributing actively to virus dissemination and transmission [12]. 

The recent emergence of dengue and chikungunya in Europe, such as the 2012 

outbreaks of dengue in Madeira and chikungunya in France [13, 14] and Italy [15], have 

raised concerns of arbovirus transmission in countries infested by mosquito species that 

could sustain epidemics, especially Ae. aegypti and/or Aedes albopictus (Skuse, 1894) 

[16]. Due to the intense social and commercial relations with Brazil and Venezuela, 

Madeira Island could serve as a source for the introduction of Ae. aegypti and/or 

arboviruses to continental Europe [17]. The risk of arboviral outbreaks in Madeira is real 

since imported cases of DENV and Zika virus (ZIKV) were detected in citizens returning 

from DENV- and ZIKV-infected countries [18] and local Ae. aegypti populations from 

Madeira were experimentally susceptible to ZIKV [19]. This study aims to assess the 

ability of Ae. aegypti populations from Madeira Island to experimentally transmit CHIKV 

and DENV. The results obtained will provide a solid basis for decisions regarding disease 

prevention and control for the Madeira Health Authorities and decision-makers in Europe. 

 

Methods 

Mosquitoes 

Two Ae. aegypti populations from Madeira were used in vector competence assays: the 

Funchal population, collected in the major urban area and island’s capital city, and Paúl 

do Mar population collected in the most western point of the species distribution on the 
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island, c.42 km away from Funchal, and considered a rural area. Mosquito eggs were 

collected in 2014 using widely distributed ovitraps [20] and hatched in insectaries. The 

larvae were split as 200–300 individuals per pan and fed with yeast tablets. Emerging 

adults were maintained in cages at 28 ± 1 C with a 14 h light/10 h dark photocycle, 80% 

relative humidity, and supplied with a 10% sucrose solution ad libitum. The F1 generation 

was used for experimental infections. 

 

Viral strains 

CHIKV (NC/2011-568) was isolated in 2011 from a patient by the Institut Pasteur of New 

Caledonia (kindly provided by Dr Myrielle Dupont-Rouzeyrol); this isolate belongs to 

the Asian genotype and possesses an alanine at base position 226 in the E1 envelope 

glycoprotein (GenBank: HE806461). DENV belonging to serotype 2 (DENV-2) was 

isolated in 1974 from a patient in Bangkok, Thailand [21]. Both viral stocks were 

produced following 2–3 passages on C6/36 Ae. albopictus-derived cells. 

 

Mosquito oral infections 

Four batches of 60 one-week-old female adults were fed on an infectious blood-meal that 

consisted of 1400 µl of washed rabbit erythrocytes, 700 µl of viral suspension, 

supplemented with 5 mM adenosine triphosphate (ATP), a phagostimulant. Two feeders 

were prepared per virus, and a feeder was available to two batches of mosquito 

(successively) for 20 min. The viral titre of the infectious blood-meal was determined at 

2  107 focus-forming units (ffu)/ml for DENV-2 and 2  107 ffu/ml for CHIKV. After 

exposure, fully engorged females were transferred to cardboard containers and 

maintained with 10% sucrose at 28 ± 1 C and 80% relative humidity. 

 

Dissemination and transmission analysis 

Twenty mosquitoes from each population were analysed at different time-points: 3, 6, 9 

and 14 days post-infection (dpi) for CHIKV and 7 and 14 dpi for DENV-2. To estimate 

the infection and dissemination, the virus in bodies (including thorax and abdomen) and 

heads was analysed, respectively. Mosquito samples were grounded in 300 µl of 

Leibovitz L15 medium (Invitrogen, Carlsbad, USA) supplemented with 3% fetal bovine 

serum (FBS). Samples were then centrifuged for 5 min at 10,000 rpm, and the 
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supernatant obtained was used for virus quantification. To estimate transmission, saliva 

was collected from each mosquito as previously described [22]. Briefly, legs and wings 

were removed from each mosquito, and the proboscis was inserted into a 20 µl tip 

containing 5 µl of FBS. After 20 min, saliva containing FBS was expelled into 45 µl of 

Leibovitz L15 medium for titration. Infection rate (IR) was used as a measure of 

susceptibility to each virus and corresponds to the number of mosquitoes with the infected 

body among the tested ones. The percentage of mosquitoes with infected heads among 

mosquitoes with an infected body is the dissemination rate (DR). The transmission rate 

(TR) is defined as the percentage of mosquitoes with infectious saliva among mosquitoes 

with positive viral dissemination. The number of viral particles per saliva and head was 

determined by titration using focus fluorescent assay on C6/36 cells. Briefly, 10-fold 

serial dilutions were performed for each sample and inoculated onto C6/36 cell culture in 

96-well plates. After incubation at 28 °C during three days (CHIKV) or 5 days (DENV), 

plates were stained using hyper-immune ascetic fluid specific to CHIKV or DENV as the 

primary antibody. Alexa Fluor 488 goat anti-mouse IgG was used as the second antibody 

(Life Technologies, Carlsbad, USA). 

 

Statistical analysis 

Statistical analyses were performed with GraphPad Prism v 6.03. Proportions were 

compared using Chi-square test and sample distributions with the Mann-Whitney test (n 

= 2) or Kruskal-Wallis test (n > 2). P-values > 0.05 were considered non-significant. 

 

Results 

Aedes aegypti from Madeira Island is highly susceptible to CHIKV infection 

The susceptibility of Ae. aegypti from Madeira Island for CHIKV was studied using a 

viral strain belonging to Asian lineage, as the current circulating lineage in the Americas 

[10]. Our results showed that local Ae. aegypti can transmit CHIKV very efficiently: 

Funchal and Paúl do Mar populations were both highly susceptible to CHIKV infection, 

with similar infection rates [Chi-square test: P > 0.05; 3 dpi (χ2 = 1.02, df = 1, P = 0.31); 

6 dpi (χ2 = 1.02, df = 1, P = 0.31)] ranging from 95 to 100% after 3 dpi (Table 1). 
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Table 1 Infection, dissemination and transmission rates (in %) estimated at different 

days after exposure of Ae. aegypti from Madeira to CHIKV NC/2011-568 strain  

 

Days post-

infection 

Funchal Paúl do Mar 

IR 

n (%) 

DR 

n (%) 

 

TR 

n (%) 

IR 

n (%) 

DR 

n (%) 

TR 

n (%) 

3 95 (20) 84.2 (19) 25 (16) 100 (20) 90 (20) 27.7 (18) 

6 95 (20) 94.7 (19) 33.3 (18) 100 (20) 100 (20) 55 (20) 

9 100 (20) 95 (20) 57.9 (19) 100 (20) 100 (20) 50 (20) 

14 100 (20) 100 (20) 40 (20) 100 (20) 100 (20) 25 (20) 

Abbreviations: IR, infection rate; DR, dissemination rate; TR, transmission rate; n, the 

number of mosquitoes analysed 

 

To measure the ability of CHIKV to cross the mosquito midgut barrier, 

dissemination rate (DR) was assessed at 3, 6, 9 and 14 dpi. According to the results, 100% 

DR was reached at 6 dpi for the Paúl do Mar population and 14 dpi for the Funchal 

population. No difference of DR was detected between the two populations [Chi-square 

test: P > 0.05; 3 dpi (χ2 = 0.29, df = 1, P = 0.59); 6 dpi (χ2 = 1.08, df = 1, P = 0.30); 9 dpi 

(χ2 = 1.02, df = 1, P = 0.31)]. The intensity of viral dissemination was evaluated by 

estimating the number of viral particles in head homogenates. Virus in heads was 

detectable from 3 dpi in both populations. The number of viral particles (Fig. 1) varied 

significantly throughout the time course in both populations [Kruskal-Wallis test: P < 

0.05; Funchal (χ2 = 21.80, df = 3, P < 0.0001); Paúl do Mar (χ2 = 12.72, df = 3, P = 0.005)]. 

When taking into account sequential method of Bonferroni, allowing to adjust the 

significance level of each test to the number of tests run, both P-values remain significant. 

Significant differences were found at 6 dpi between the two populations (Mann-Whitney 

U-test: Z = 2.62, P = 0.009). The maximum number of CHIKV was detected at 6 dpi with 

5.77 ± 0.53 log10 ffu/ml for the Funchal strain and 5.42 ± 0.75 log10 ffu/ml for the Paúl 

do Mar strain. 
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Fig. 1 Dissemination of CHIKV in Ae. aegypti from Madeira Island. Mosquitoes were 

sacrificed, and heads were removed for viral titration at days 3, 6, 9 and 14 after infection 

on C6/36 cells. The numbers of analysed mosquitoes are given in parentheses. An asterisk 

refers to significant difference (P-value < 0.05). Error bars refer to the standard deviation. 

 

To evaluate the ability of CHIKV to reach the salivary glands and be transmitted 

through the mosquito bite, transmission rate (TR) was assessed at 3, 6, 9 and 14 dpi. 

Although only 20–25% of mosquitoes were able to transmit at 3 dpi, TR increased after 

6 dpi for both populations. When comparing TR between the two populations at a given 

dpi, no significant differences were detected [Chi-square test: P > 0.05; 3 dpi (χ2 = 0.03, 

df = 1, P = 0.85); 6 dpi (χ2 = 1.79, df = 1, P = 0.18); 9 dpi (χ2 = 0.24, df = 1, P = 0.62); 14 

dpi (χ2 = 1.02, df = 1, P = 0.31)]. The intensity of viral transmission was evaluated by 

quantifying the viral load in mosquito saliva. CHIKV particles reached its maximum at 

14 dpi for both populations, with Funchal presenting a 2.62 ± 0.79 log10 ffu/ml and Paúl 

do Mar with 2.96 ± 1.14 log10 ffu/ml. At a given dpi, no significant difference was 

detected between populations [Mann-Whitney test: P > 0.05; 3 dpi (Z = 0.0, P = 1.0); 6 

dpi (Z = -1.71, P = 0.09); 9 dpi (Z = -0.32, P = 0.74); 14 dpi (Z = -0.74, P = 0.46)]. In 

addition, the number of viral particles in saliva (Fig. 2) did not vary along with the dpi 

for both populations [Kruskal-Wallis test: P > 0.05; Funchal (χ2 = 0.98, df = 3, P = 0.80); 

Paúl do Mar (χ2 = 3.61, df = 3, P = 0.30)]. 
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Fig. 2 Transmission of CHIKV in the saliva of Ae. aegypti from Madeira Island. 

Mosquitoes were sacrificed, and saliva was collected individually and titrated at days 3, 

6, 9 and 14 after infection on C6/36 cells. The numbers of analysed mosquitoes are given 

in parentheses. Error bars refer to the standard deviation. 

 

 

Aedes aegypti from Funchal and Paúl do Mar transmit DENV-2 at different rates 

The potential of DENV-2 transmission by Ae. aegypti from Madeira was measured by 

infecting mosquitoes with a DENV-2 strain from Bangkok. IR, DR and TR were assessed 

at 7 and 14 dpi (Table 2).  

 

Table 2 Infection, dissemination and transmission rates (in %) calculated at different 

days after infection of Ae. aegypti from Madeira with DENV-2 Bangkok strain 

Days post-

infection 

Funchal Paúl do Mar 

IR 

n (%) 

DR 

n (%) 

TR 

n (%) 

IR 

n (%) 

DR 

n (%) 

TR 

n (%) 

7 95 (20) 52.6 (19) 0 (10) 80 (20) 18.7 (16) 0 (3) 

14 95 (20) 94.7 (19) 27.7 (18) 75 (20) 80 (15) 8.3 (12) 

Abbreviations: IR, infection rate; DR, dissemination rate; TR, transmission rate; n, the 

number of mosquitoes analysed 

 

Our study indicated a different pattern of susceptibility to dengue infection compared to 

chikungunya infection. While both populations presented similar IR [Chi-square test P > 
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0.05; 7 dpi (χ2 = 2.05, df = 1, P = 0.15); 14 dpi (χ2 = 3.13, df = 1, P = 0.08)], the Funchal 

population ensured a better dissemination of DENV-2 than Paúl do Mar at 7 dpi [Chi-

square test: P < 0.05; 7 dpi (χ2 = 4.27, df = 1, P = 0.04)] Virus titer in heads was slightly 

higher at 14 dpi for the Funchal strain (Mann-Whitney test: Z = 2.11, P = 0.03). The 

maximum number of DENV-2 particles in mosquito heads was detected at 14 dpi for both 

populations: 4.51 ± 0.63 log10 ffu/ml for Funchal population and 3.98 ± 0.88 log10 ffu/ml 

for Paúl do Mar population (Fig. 3).  

 

Fig. 3 Dissemination of DENV in Ae. aegypti from Madeira Island. Mosquitoes were 

sacrificed, and heads were removed for viral titration at days 7 and 14 after infection on 

C6/36 cells. The numbers of analysed mosquitoes are given in parentheses. An asterisk 

refers to significant difference (P-value < 0.05). Error bars refer to the standard deviation. 

 

When examining TR, transmission with DENV-2 was lower than with CHIKV. TR 

reached a maximum at 14 dpi: 27.7% for the Funchal population and 8.3% for the Paúl 

do Mar population. No significant differences were detected between populations at each 

dpi (Chi-square test: χ2 = 1.70, df = 1, P = 0.19 at 14 dpi). As observed with CHIKV, the 

number of viral particles in saliva was lower than in heads (Figs. 3, 4). The maximum 

number of DENV particles in saliva was reached at 14 dpi: 1.81 ± 0.34 log10 ffu/ml for 

the Funchal population and 1.60 ffu/ml for the Paúl do Mar population (Fig. 4). Both 

populations presented a similar number of viral particles in saliva at 14 dpi (Mann-

Whitney test: Z = 0.69, P = 0.49). 
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Fig. 4 Transmission of DENV in the saliva of Ae. aegypti from Madeira Island. 

Mosquitoes were sacrificed, and saliva was collected individually and titrated at days 7 

and 14 after infection on C6/36 cells. The numbers of analysed mosquitoes are given in 

parentheses. Error bars refer to the standard deviation. 

 

Discussion 

To our knowledge, this study represents the first evaluation of the vector competence of 

European Ae. aegypti populations for the transmission of two arboviruses of medical 

importance, CHIKV and DENV. Since its arrival in 2005, Ae. aegypti has been spreading 

throughout Madeira Island, increasing the risk of emergence of mosquito-borne diseases. 

The risk became a reality in 2012 when autochthonous cases of DENV-1 were reported 

in Funchal [6, 23]; Venezuela in South America was the most probable origin of virus 

importation [24]. After this event, vector competence studies with Ae. aegypti from 

Madeira became pivotal in evaluating the risk of arboviral disease outbreak.  

Our data demonstrate that the local Ae. aegypti populations are very susceptible 

to CHIKV and DENV-2 infections. Regarding CHIKV, our results showed that only three 

days after infection, Ae. aegypti from Madeira was able to transmit this virus suggesting 

that the extrinsic incubation period of CHIKV with this vector population was short, as 

expected [7]. Despite high levels of viral dissemination (84–100%), Ae. aegypti from both 

localities displayed quite similar and moderate transmission rates (25–55%), with 

Funchal ensuring a slightly higher virus transmission at 14 dpi compared to the Paúl do 
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Mar population. Similar results were also obtained with other populations of Ae. aegypti 

from the Americas, with transmission ranging between 20–80% [8, 25], and Africa [26]. 

In the case of a possible chikungunya outbreak on the island, the onset of cases would be 

alarmingly fast, particularly in Funchal city, where most of the inhabitants live and work.  

In addition to CHIKV risk assessment, vector competence for DENV-2 

transmission was also evaluated. The reason DENV-2 was chosen for the vector 

competence study was related to the increasing concern that a new serotype will arrive in 

Madeira. Dengue secondary infection might lead to severe clinical symptoms and 

potential fatalities [9]. Our results underline a significantly higher dissemination 

efficiency of DENV-2 in Ae. aegypti from Funchal when comparing to Paúl do Mar. 

However, we observed no significant differences in transmission rate between the two 

populations or in the number of virus particles in mosquito saliva. This suggests that 

higher dissemination of DENV-2 in Ae. aegypti may not be correlated with the higher 

transmission in saliva. It would be interesting to verify if this result can be found with 

another serotype [27]. Funchal city differs from Paúl do Mar in possessing higher human 

and Ae. aegypti densities favourable to arbovirus transmission as illustrated by the 2012 

dengue outbreak caused by DENV-1. Funchal was the central hotspot for DENV-1 

transmission, and no DENV-1 cases were observed in Paúl do Mar [23]. Similar viral 

midgut infection and dissemination rates were observed in other studies with Ae. aegypti 

from the Americas, Australia and, surprisingly, from Africa, even using different 

methodologies than the one used in this study [7, 28–32]. 

Madeira Island could be a stepping-stone for the introduction of ZIKV into 

Europe. The main factors are present: the vector Ae. aegypti, imported cases from Brazil 

and Venezuela [19], and a naïve human population. Vector competence studies for ZIKV 

were also performed using the same Ae. aegypti population described in this study [19]. 

It has been demonstrated that the Funchal strain was the only population showing viral 

particles in saliva samples [19]. One should also note that the level of vector competence 

mostly depends on mosquito population genetics and the viral genotype used in the oral 

infections [25]. To provide a complete risk assessment of arboviral emergence, more 

studies should be implemented using additional viral strains or genotypes circulating in 

areas neighbouring Madeira Island. 
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CHIKV and DENV are two arboviruses with the highest potential to be introduced 

to Madeira Island. Based on genetic markers (mtDNA and kdr mutations), it has been 

shown that Ae. aegypti from Madeira originated from Brazil or Venezuela [33]. Owing 

to the extensive exchanges of goods and people with the two South American countries, 

the risk of CHIKV autochthonous cases on Madeira Island remains high. As previously 

stated, the Asian genotype of CHIKV was used for the oral infections in Ae. aegypti from 

Madeira. CHIKV has had a severe impact in the Americas since 2014, particularly in 

Venezuela with the highest number of cases recorded in the Andean region [34]. As with 

CHIKV, all DENV serotypes can be introduced to Madeira by a viremic traveller 

returning to Funchal from Caracas [35]. Caracas is connected to the island by weekly 

direct flights [24]. 

This study also highlights the need for further studies to define the genetic 

background of the Ae. aegypti populations of Madeira. Differences observed in DENV 

dissemination between Ae. aegypti from Funchal and Paúl do Mar could suggest 

population-based differences. Attention should be given to differential gene expression 

related to insecticide resistance [36] or immunity genes which may explain the differences 

observed. Moreover, the natural habitat of both populations presents distinct 

environmental and typological conditions: Funchal is considered an urban area, with 

vector control activities whereas Paúl do Mar is mainly a rural area, geographically 

isolated from the rest of the island, and with a higher mean temperature along the year. 

Therefore, the role of environmental and genetic factors should be considered. Additional 

population genetic studies are being performed with polymorphic DNA markers to refine 

our knowledge about the origin, genetic differentiation, and stability of the species in the 

island. 

The temperate climate on Madeira Island can also play a key role in modulating 

Ae. aegypti vector competence for arbovirus transmission. It has been shown that 

temperature affects the vector competence in a tripartite interaction between mosquito 

genotype, viral genotype, and environment [25, 37]. Considering the Madeira climate, it 

would be of great importance to assess the vector competence under lower incubation 

temperature regimes, such as 20 °C, in contrast to the usual incubation temperature of 28 

°C. 
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Conclusions 

Based on our results, we strongly recommend that a robust and strengthened vector 

surveillance program be maintained on Madeira Island. There is an urgent need for new 

control strategies since the local Ae. aegypti populations are considered resistant to 

several insecticide classes [36] and this could lead to the complete failure of the vector 

control programmes. Our results with CHIKV and DENV suggest that it is crucial for 

Madeira Island to be prepared for more mosquito-borne disease epidemics. If mosquito 

densities reach levels like those observed during the dengue outbreak in 2012, immediate 

control measures, such as intensive community-based campaigns or using alternative 

non-chemical strategies, should be triggered to prevent arbovirus transmission. Our 

results are also of great importance for European countries where another species, Ae. 

albopictus, has been implicated in the last chikungunya and dengue outbreaks [13–15]. 

Coordination of vector control strategies between all European countries should be 

implemented as globalisation will contribute to the growing expansion of vector-borne 

pathogens, mosquito vectors and viremic people. 
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Concluding remarks and perspectives 

This study has produced relevant data on important traits of Ae. aegypti in Madeira, 

including a comprehensive assessment of the population genetics of this mosquito and its 

competence for arboviruses transmission.  

The first part of the project presented in this thesis (Chapter 2) explored insecticide 

susceptibility and underlying resistance mechanisms present in Ae. aegypti from Madeira 

Island. High levels of insecticide resistance were found for all insecticide classes in the 

two island populations tested. The only exception was the population of Paúl do Mar 

where susceptibility to fenitrothion was observed. Pre-exposure to synergists, 

biochemical assays and microarray-based gene expression analysis all agree with 

presence of metabolic resistance mechanisms, involving overexpression of detoxifying 

enzymes (esterases, GSTs and oxidases). In addition, overexpression at genes coding for 

cuticular proteins suggest that cuticle thickening may also contribute to the resistance 

phenotype. Genotyping of kdr mutations showed fixation of the F1534C mutation and the 

presence of the V1016I mutation at moderate frequencies. Worryingly, the frequency of 

the resistance associated 1016I alleles has significantly increased since 2009.  Continued 

monitoring of this locus is recommended, as continuous selection pressure may lead to 

eventual fixation of resistance alleles. 

While the major resistance mechanisms were disclosed for the Madeiran Ae. aegypi 

populations, there are still a few aspects that require further investigation. Monitoring of 

the newly described V410L kdr mutation (Haddi et al. 2017) is recommended. The 

presence of this mutation together with V1016I and F1534C was associated with high 

levels of pyrethroid resistance in Latin American Ae. aegypti populations (Saaverda-

Rodriguez et al. 2018). Furthermore, population genetic analysis (Chapter 3) confirmed 

the Venezuelan origin of Ae. aegypti in Madeira, stressing the need to genotype, in 

Madeira populations, newly described kdr mutations found in mosquito populations from 

this region. In addition to novel target-site mutations, genomic studies confirmed the role 

of CNVs in the overexpression of detoxification enzymes associated with insecticide 

resistance and have provided a set of genomic markers to track metabolic resistance in 

Ae. aegypti (Faucon et al. 2015, 2017). Therefore, the search for CNVs in Madeira 
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populations and its functional validation, through RNAi or CRISPR/cas9 systems 

(Itokawa et al. 2016; Homem and Davies, 2018), is required in order to complete the 

species insecticide resistance profile in the island. Finally, electron microscopy studies 

(Balabinidou et al. 2018) are needed to confirm if in fact Ae. aegypti from Madeira have 

a thicker cuticle when compared to reference susceptible populations. Previous studies, 

in insectary conditions, revealed that when insecticide selection pressure is removed, 

susceptibility could be restored after 10 generations (Grossman et al. 2018). The results 

obtained in Chapter 2 also raise questions on how the resistance profile is being kept 

under a scenario where no insecticides are being used in current vector control strategies. 

For this reason, the impact of household insecticides should be evaluated (Gray et al. 

2018).  

Presence of multiple mechanisms of insecticide resistance in the same mosquito 

population poses serious obstacles to the implementation and sustainability of insecticide-

based vector control. Specifically, it remains to be addressed whether the use of 

insecticides can still be considered an option for Madeira, for instance, during an 

arbovirus outbreak. The WHO (2012) Global Plan for Insecticide Resistance 

Management recommends four major strategies for managing insecticide resistance: 

rotations of insecticides, mixtures of insecticides and/or insecticides/synergists, use of 

interventions in combination and mosaic spraying. All of these strategies rely on the 

expectation that field populations are resistant to a limited number of insecticides 

available for public health. Judging from the bioassays data and the complex combination 

of resistance mechanisms found in Madeira, these expectations are unlikely to be met.  

Such argument plays in favor of the adoption of non-insecticidal methods, as the mainstay 

for vector control in Madeira. 

Another argument in favor of the adoption of alternative non-insecticidal vector control 

methods in Madeira comes from the results obtained by the population genetic analysis 

(Chapter 3). Effective population size estimates indicate that the Ae. aegypti population 

has increased until 2012, when the dengue outbreak occurred in the island. This 

population growth trend suggests that the 2005-2008 insecticide-based campaign was 

insufficient to reduce Ae. aegypti abundance and contain its expansion. On the other hand, 

the 10-fold reduction in Ne that was observed after the outbreak may be regarded as a 
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promising result that encourages the use of educational campaigns to promote 

community-based vector control measures to reduce Ae. aegypti abundance.  

The emergence of DENV and re-emergence of yellow fever viruses (YFV), as well as the 

occurrence of epidemics due to novel arboviruses such as CHIKV and ZIKV, reinforce 

the need to better understand the evolutionary origin and population genetic structure of 

Ae. aegypti. The results obtained in Chapters 2 and 3 suggest that the resistance phenotype 

was already an established trait in the colonizing specimens that invaded Madeira in 2005. 

Therefore, the South American genetic background had a major influence in the invasion 

and the establishment success of this species. While low genetic diversity and effective 

size may induce extinction, the same does not seem to be the case for invasive species 

such as Ae. aegypti (Estoup et al. 2016). Despite the initial low genetic variability, 

suggesting a low number of founder mosquitoes, the invasive population was able to 

expand and thrive in a new habitat. The underlying mechanisms of successful local 

adaptation to a new environment are of great interest, not only to Madeira but also for 

Europe, where Ae. aegypti invasion may also occur. Newly developed genomic tools, 

such as SNP chips (Evans et al. 2015) or RADseq (Rašić et al. 2014), are now available 

to study the genetic basis of Ae. aegypti biological traits. The newly sequenced Ae. aegypti 

genome assembly (AaegL5) was improved (Mathews et al. 2018) and revealed that 65% 

of the genome is composed by transposable elements (TEs), repetitive DNA that cause 

genetic variation (Salgueiro et al. 2013). These may have a major role in ecological 

plasticity and successful adaptation to a new environment of Aedes species (Arensburger 

et al. 2011; Goubert et al. 2017), such as the case of Ae. aegypti in Madeira. Genomic 

tools could also help to refine population origin, genetic differentiation and better 

elucidate the demographic history of Ae. aegypti in Madeira (Rašić et al. 2015; Crawford 

et al. 2017; Gloria-Soria et al. 2018; Sherpa et al. 2018). Moreover, these genomic 

approaches may help to clarify the genetic basis of other important traits, such as vector 

competence (Evans et al. 2015).  

Re-introduction of dengue as well as importation of other arbovirus is possible due to 

Madeira connections with endemic countries (Lourenço and Recker, 2014). The 

experimental infections with arboviruses described in chapters 4 and 5 demonstrated that 

Ae. aegypti from Madeira is a competent vector for all the viruses tested under laboratory 
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conditions. These results are fundamental for the design of effective control strategies and 

for general public health decision making, in areas where vector-borne diseases may 

emerge, such as the case of Madeira Island. The relevance of this data is associated to the 

fact that Madeira is a tourism region, visited by hundreds of thousands of tourists every 

year. This fact, coupled with optimal climatic factors for Ae. aegypti breeding and a non-

immune human population, puts in evidence the potential vulnerability of Madeira and 

Europe regarding future emergence of dengue or other arboviral infections transmitted by 

Ae. aegypti. In the context, further vector competence studies should be undertaken to test 

the ability of Ae. aegypti from Madeira to transmit other DENV, CHIKV and ZIKV 

serotypes/lineages. Moreover, previous studies showed that Ae. aegypti can transmit these 

viruses simultaneously in double or triple infections (Rückert et al. 2017). It is also known 

that different temperature regimes may also influence vector competence results (Vega-

Rúa et al. 2015; Brustolin et al. 2018). Therefore, it is recommended that additional 

experimental infections are performed using one or several viruses under different 

temperature regimes in order to assess the competence of the Madeira island Ae. aegypti 

population for co-transmission of different arboviruses under the Mediterranean 

temperate climate that characterizes this island. In addition, information about vector 

competence for other (re)emerging arboviruses would be also necessary. New emerging 

arboviruses such as Mayaro virus or Ross River virus and re-emergence of the YFV 

(Wilder-Smith et al. 2017) put in evidence the need to assess the ability of Ae. aegypti to 

transmit these viruses.  

Another remaining line to explore is the role of the microbiota of Ae. aegypti from 

Madeira in shaping vector competence for arbovirus transmission. Previous studies 

detected the presence of Insect Specific Flaviviruses (ISFVs) in the Madeiran Ae. aegypti 

population (Calzolari et al. 2016). These viruses are known for interfering in vector 

competence by competing with the pathogenic virus for resources inside the mosquito 

(Hedge et al. 2015; Zakrzewski et al. 2018). Therefore, exploring the relationships 

between ISFVs and pathogenic arboviruses in experimental infections may help in the 

design of new tools to control arboviral transmission. 

In addition to contributing to new knowledge on mechanisms of insecticide resistance 

and on the genetic structure and evolutionary biology of a recently introduced Ae. aegypti 
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population in an island setting, the research conducted also aimed at providing Madeira 

Health Authorities with informative data from an operational perspective, for the design 

and implementation of contingency plans against Ae. aegypti and aegypti-borne 

infections. Overall, the results here described not only answered the proposed objectives 

but also represent a basis for future research, in order to establish more efficient vector 

control programs in Madeira and other regions of similar ecological settings. 
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