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Abstract 

 
The ABC-type transporters constitute one of the largest and most diverse transporter 

superfamilies characterized by a highly conserved ATP-binding cassette, and are widespread 

among all domains of life. Recent studies, performed in our laboratory demonstrated that MsmX 

ATPase from Bacillus subtilis interacts with several distinct ABC sugar importers thus, unlike 

other NBDs MsmX was shown to be multitask serving as energy-generating component to 

several sugar importers. Sharing of an ATPase among carbohydrate ABC transporters in both 

Gram-positive and Gram-negative bacteria seems to be a common strategy for adaption and 

survival and may represent novel therapeutic approaches for targeting since ABC importers are 

exclusive to prokaryotes. 

To characterize multipurpose ATPases and to assess their intra- and interspecies 

interchangeability, we fine-tuned a genetic system in B. subtilis for controlled ectopic gene 

expression. The functionality of distinct multitask ATPases alleles was determined by their ability 

to complement the role of MsmX in a B. subtilis msmX-null mutant. Moreover, this genetic 

system allowed the determination of intracellular accumulation of the tested ATPases by 

Western-Blot analysis. 

The results show that an ATPase from B. thuringiensis was able to fulfill the role of MsmX 

in its absence, while another ATPase from B. subtilis YurJ was only able to partially play MsmX 

role. In addition to intra- and interspecies interchangeability of Bacillus ATPases, we found that 

ATPases from Streptococcus pneumoniae and Staphylococcus aureus were also able to 

complement to a certain degree the B. subtilis MsmX function in vivo. In contrast ATPases from 

the Gram-negative bacterium Escherichia coli were not functional in B. subtilis. Furthermore, all 

the tested ATPases accumulate in the cells. 

Our study shows that B. subtilis can be use as model for the study of bacterial multitask 

ATPases. Furthermore, it provides a genetic tool for the characterization of this phenomenon in 

bacterial carbohydrate transport and particularly in bacterial pathogens. 

 

 

 

Keywords: Bacillus subtilis, ABC sugar importers, Multitask ATPases, MsmX, 

Interchangeability, Bacterial pathogens.  
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Resumo 

Os transportadores do tipo ABC constituem uma das maiores e mais diversificadas 

superfamílias de transportadores que são caracterizadas por possuírem uma cassete de ligação 

ao ATP com elevado grau de conservação, encontrando-se amplamente distribuídos em todos 

os domínios da vida. Estudos recentes, desempenhados no nosso laboratório, demonstraram 

que a ATPase MsmX proveniente da espécie Bacillus subtilis interage com diversos importadores 

ABC de açúcares distintos, sendo que, ao contrário de outros NBDs, MsmX revelou ser 

multitarefa servindo como componente gerador de energia de vários importadores de açúcares. 

A partilha de uma ATPase entre transportadores ABC de carboidratos em bactérias Gram-

positivas e Gram-negativas aparenta ser uma estratégia comum de adaptação e sobrevivência, 

e pode representar um alvo para novas abordagens terapêuticas dado que os importadores ABC 

são exclusivos dos procariontes. 

De modo a caracterizar as ATPases multipropósito e no sentido de determinar a sua 

permutabilidade intra- e inter-espécies, aperfeiçoou-se um sistema genético em B. subtilis para 

obter uma expressão ectópica controlada do gene. A funcionalidade de alelos distintos das 

ATPases multitarefa foi determinada através da sua capacidade de complementar o papel de 

MsmX num mutante de B. subtilis sem o gene msmX. Além disso, este sistema genético permitiu 

a determinação da acumulação intracelular das ATPases testadas através de uma análise do tipo 

Western-Blot. 

Os resultados demonstraram que uma ATPase proveniente de B. thuringiensis é capaz de 

realizar na totalidade o papel de MsmX na célula durante a sua ausência, enquanto outra ATPase 

de B. subtilis (YurJ) foi apenas capaz de desempenhar parcialmente o papel de MsmX. Para além 

da permutabilidade intra e inter-especies de ATPases em Bacillus, descobriu-se que, ATPases 

provenientes de Streptococcus pneumoniae e Staphylococcus aureus também são capazes de 

complementar em determinado grau a função in vivo de MsmX de B. subtilis. Em contraste, 

ATPases provenientes da bactéria Gram-negativa Escherichia coli não demonstraram esta 

funcionalidade em B. subtilis. Adicionalmente, verificou-se que todas as ATPases testadas são 

produzidas e acumulam no interior das células do hospedeiro. 

O nosso trabalho de investigação demonstra que B. subtilis pode ser utilizado como um 

modelo para o estudo de ATPases multitarefa bacterianas. Além disso, o estudo fornece uma 

ferramenta genética para a caracterização deste fenómeno no transporte bacteriano de 

carboidratos, e em particular em agentes patogénicos bacterianos.  

Palavras-chaves: Bacillus subtilis, Importadores ABC de açúcares, ATPases multitarefa, 

MsmX, Permutabilidade, Agentes patogénicos bacterianos.  
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1. General Introduction 

 

1.1. Bacillus subtilis – An overview 

 
Bacillus subtilis is a Gram-positive and rod-shape bacteria that like other members of the 

genus Bacillus, is able to form an endospore in order to survive in extreme environmental 

conditions. This bacterium is found in the soil, water sources or in association with plants and 

animal gastrointestinal tract (Priest, 1993; Casula and Cutting, 2002). In these environments the 

major source of carbohydrates for microorganisms is plant biomass, which is constituted by 

cellulose and hemicellulose polymers. Therefore B. subtilis, and the other microorganisms, from 

these habitats possess a wide variety of extracellular polysaccharide degrading enzymes, 

cellulases and hemicellulases. The resulting degradation products (mono-, di- and 

oligosaccharides) are imported to the cells through different transport systems, including 

specific ABC transporters. 

Kunst et al in 1997 sequenced the entire genome of B. subtilis, opening the doors for a 

full use of this bacterium as a model of Gram-positive bacteria in fundamental and applied 

research. For example in industrial microbiology, specifically in “white biotechnology”, which 

relies on microorganisms and enzymes to synthesize products that are easily degradable, and 

during their production require less energy and create less waste (Chauhan et al, 2012). 

Carbohydrate-, lipid- and protein-degrading enzymes, antibiotics, fine biochemicals (vitamins) 

and insecticides (Harwood, 1992) are examples of the use of Bacillus spp in the “white 

biotechnology” associated with the vast diversity of the metabolism of this organism.  

Hemicellulases and cellulases are the major industrially important enzymes right after the 

proteases (Polizeli et al, 2005; Dhawan and Kaur, 2007), due to the wide abundance of 

hemicellulose and cellulose in nature.  Microbial mannanases, which degradate hemicellulose, 

are mainly produced by Gram-positive Bacillus species (Mabrouk and Ahwany, 2008; Meenakshi 

et al, 2010) in extracellular medium. These enzymes can act in wide range of pH and 

temperature, being used in multiple applications in pulp and paper, pharmaceutical, food, feed, 

oil and textile industries (Chauhan et al, 2012). 
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1.1.1. AraNPQ ABC importer and the Multitask MsmX ATPase 

 

Quentin et al, 1999 performed in silico an inventory and assembly of the ABC transporter 

systems in the complete genome of Bacillus subtilis with an in silico analysis, estimating the 

existence of at least 78 ABC transporters based on the identification of 86 NBDs in 78 proteins, 

103 MSD proteins and 37 BPD proteins representing 5% of the protein-coding genes of this 

organism. The uptake of sugars is undertaken by at least 10 ABC systems, being one of this 

importers the AraNPQ. The AraNPQ system is encoded by the araABDLMNPQ-abfA operon (Sá 

Nogueira et al, 1997), where AraN is the high-affinity substrate-binding protein (BPD) and AraP 

and AraQ are the two transmembrane domains (TMDs). In this operon are present genes 

encoding for enzymes that play a role in arabinose catabolism and degradation of 

arabinooligosaccharides (Inácio et al, 2008). This system is regulated at the transcriptional level 

by induction in the presence of arabinose and repression by glucose (Sá-Nogueira et al, 1997; 

Sá-Nogueira and Mota, 1997). AraNPQ is the sole transporter for α-1,5-arabinotriose, and α-1,5-

arabinotetraose is only partially accountable for the uptake of α-1,5-arabinobiose (Ferreira and 

Sá-Nogueira, 2010) 

The AraNPQ transporter in the context of the arabinose operon lacks a gene encoding 

for the nucleotide-binding domains (NBDs) or ATPase, which is necessary to provide energy to 

the system. Ferreira and Sá-Nogueira (2010) identified the ATPase MsmX, encoded in a 

monocistronic gene in another locus of the chromosome, as the NBD partner of the AraNPQ 

transporter. Later, the MsmX was also identified as the NBD partner of the CycB-GanPQ 

transporter responsible for the uptake of galactooligosaccharides, and YesOPQ and YtcQP-YteQ 

transporters that are involved in the transport of galacturonic acid oligomers and/or rhamnose-

galacturonic acid disaccharides (Ferreira and Sá-Nogueira, unpublished data). This ATPase is also 

related with another importer in B. subtilis, the maltose and maltodextrins transporter MdxEFG, 

in a previous study conducted by Schönert et al (2006). Clearly the data show that MsmX is a 

multitask ATPase shared by multiple sugar ABC transporters (Ferreira and Sá-Nogueira, 2010 

and unpublished data; Schönert et al, 2006) (Figure 1.1). 
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Figure 1.1 – MsmX-dependent ABC importers in B. subtilis. The ABC-type importer AraNPQ is 

involved in the uptake of α-1,5-arabinooligosaccaharides (arabinotriose, arabinotetraose and some 
arabinobiose). The ABC-type importer MdxEFG is involved in the uptake of maltodextrins. The CycB-
GanPQ ABC-type importer is responsible for the uptake of galactooligosaccharides. The YesOPQ and 
YtcQP-YteQ transport systems are involved in the uptake of galacturonic acid oligomers and/or 
rhamnogalaturonic acid (adapted from Ferreira and Sá-Nogueira, unpublished data). 

 

 

1.2. Membrane Transports 

 

Selective permeability to nutrients and metabolites is an essential feature for cell survival, 

requiring transporters in the membrane with different characteristics in the function and 

structure, each one adapted to the type of solute translocated. Membrane transporters are 

distinguished based on the energy source used and therefore are classified in four major groups: 

protein channels, primary active transporters, secondary transporters and group translocators. 

Channels allow the passage of solutes through facilitated diffusion in a process that is 

energy-independent. In Gram-negative bacteria, porin proteins form a TM-spanning aqueous 

pore constituting a channel in the outer-membrane that allow diffusion of several substrates. 

Another example are the cytoplasmic membrane channels which are gated and controlled by 

voltage (Ren et al, 2001) or membrane tensions, for instance the MscS channel in E. coli that 

function as a protector of the cells from hypo-osmotic shock (Levina et al, 1999; Bass et al, 2002; 

Davidson et al, 2008). 
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Primary active transporters constitute a large and diverse protein family that transport 

substrates across the membrane against a concentration gradient, which depends upon the 

energy withdrawn from chemical, electrical or solar energy sources. The largest and most 

widespread family of this class is the ATP-binding cassete (ABC) transporters that obtain energy 

through the hydrolysis of ATP molecules for the translocation of the substrate.  

Secondary active transporters use energy provided by ion gradients to drive transport, 

being examples uniporters, antiporters and symporters (Davidson et al, 2008). Group 

translocation causes chemical changes in the substrates, being one example of this family the 

phosphotransferase system (PTS), which is exclusive to prokaryotes and plays an important role 

in the uptake of sugars. In this system the transported carbohydrate is phosphorylate once it 

reaches the cytoplasmic side of the membrane by phosphoenolpyruvate (PEP) that act as both 

the phosphate donor for sugar phosphorylation and the energy source for sugar accumulation 

(Postma et al, 1993; Robillard and Broos, 1999; Tchieu et al, 2001; Saier et al, 2002; Jaehme et 

al, 2015). 

 

1.3. ABC Transporters 

 
1.3.1. An overview 

 

ABC-type transporters constitute a large and diverse superfamily of ATP-dependent 

protein complexes, which play an important role in organisms from the three domains of life 

Bacteria, Archaea and Eukarya (Eitinger et al, 2011). They are characterised by a highly 

conserved ATP-binding cassette that hydrolyses ATP molecules and provide free energy that is 

converted into trans-bilayer movement of substrates, by the transmembrane domains, as 

import to the cytoplasm or export from the cytoplasm (Locher, 2009). The type of substrates 

transported by this systems varies in a wide range from small inorganic and organic molecules, 

such as amino acids, sugars, nucleosides, vitamins and metal clusters to larger organic 

compounds, as peptides, lipid molecules, oligonucleotides and polysaccharides (Wilkens, 2015). 

The importance of the ABC transporters goes beyond the uptake of nutrients or export of toxic 

waste, for example ABC importers have important roles in the maintenance of cell integrity, 

responses to environmental stresses, cell-to-cell communication and cell differentiation, and in 

pathogenicity (Eitinger et al, 2011) and ABC exporters are involved in the drug resistance of 

bacteria and cancer cells (ter Beek et al, 2014).   
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All ABC transporters have a core with the same modular architecture: two 

transmembrane domains (TMDs) or subunits and two nucleotide-binding domains (NBDs) or 

subunits. So far four types of ABC transporters have been identified based on the TMDs folds as 

determined by the crystal structures: importers type I and type II, ECF transporters (importer 

type III) and exporters. The available structures of ABC transporters provided fundamental 

knowledge about the transport mechanism and the great structural diversity of this systems (ter 

Beek et al, 2014). 

1.3.2. Types of ABC Transporters 

 

Canonical (protein-dependent) ABC transporters can be distinguish in two major groups:  

importers and exporters. Within the importers group there are two classes (I and II) and the 

energy coupling factor (ECF) transporters considered the third class of importers, although it is 

structurally and functionally more distinct (Eitinger et al, 2011 and Erkens et al, 2011). Until a 

few years ago it was believed that ABC importers only existed in bacteria and archaea, however 

recent studies showed evidence of the presence of class I and II Importers in plants, namely 

Arabidopsis thaliana and Oryza sativa (Eitinger et al, 2011). ABC exporters exists in bacteria, 

archaea and eukaryotes, being the only type of ABC transporters present in higher eukaryotes, 

and are involved in the transport of hydrophobic compounds such as lipids, fatty acids, 

cholesterol, drugs and large molecules as proteins (ter Beek et al, 2014). This type of 

transporters plays an important role in mammals since its defects are associated with several 

diseases such as, immune deficiency and cancer, cystic fibrosis, genetic conditions including 

Tangier and Stargardt disease (Wilkens, 2015). The following image (Figure 1.2) illustrates the 

four types of ABC transporters. 

 
Figure 1.2 - Four distinct folds of ABC transporters. The components of the general architecture are 

the two NBDs (blue and sky blue) that are attached to two TMDs (orange and yellow). Additional domains 
(green) that often have a regulatory function (C-terminal regulatory domain [CRD]) are present in some 
transporters. In Type I and II importers, the SBPs (or SBDs; magenta). ECF, energy coupling factor (Adapted from 
ter Beek et al, 2014).  
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ABC Importers were originally divided in two categories, type I and type II, due to 

differences in the size and overall architecture of the core of the transporters (Locher, 2009; 

Oldham et al, 2008), which is associated with the type of substrates transported. In general, 

importers type I contain less transmembrane helices than the type II, are smaller and use a single 

type of mechanism of transport the “alternating access model” (Jardetzky, 1966; Rice et al, 

2014). This is associated with the transport of substances in bulk (although not exclusively) as 

amino acids and sugars (ter Beek et al, 2014), being examples the methionine transporter MetNI, 

the maltose transporter MalFGK2 and molybdate transporters ModBC (from Archaeoglobus 

fulgidus and Methanosarcina acetivorans) (Rice et al, 2014). 

 Importers of type II are more specialized in the transport of compounds in small 

quantities such as, metal chelates and vitamins (Davidson et al, 2008; Eitinger et al, 2011). 

Complexes that fall in this category are the vitamin B12 transporter BtuCD, the heme transporter 

HmuUV and the molybdate transporter MolBC (HI1470/1) from Haemophilus influenzae (Rice et 

al, 2014), which possess differences in the transport mechanism that are also associated with 

the substrate size ranging from vitamin B12 to molybdate (Rice et al, 2013 and 2014). 

Energy coupling factor (ECF) transporters were recently considered as a third class of 

ABC importers (Rodionov et al, 2009), due to the energy withdrawn from ATP hydrolyse, 

although displaying significant difference with the other classes for instance in lacking a 

substrate-binding protein (SBP) presenting instead a EcfS or S component (ter Beek et al, 2014). 

These complexes have a critical role in micronutrient uptake in bacteria and archaea, being 

examples the folate and the hydroxymethyl pyrimidine transporters from Lactobacillus brevis 

(Wang et al, 2013; Xu et al, 2013; Rice et al, 2014). 

Briefly there are ABC transporters that evolved to perform different functions than 

membrane transport, the so-called non-canonical ABC transporters, being examples the chloride 

channel CFTR, and the sulfonylurea receptor SUR (Wilkens, 2015). 

The AraNPQ transport system, the system evaluated in this study, is an ABC importer 

type I so our focus is in this class of transporters.  
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1.3.3. Transport Mechanism 

 
Type I importers mechanism of transport was first proposed by Jardetzky in 1966 (and 

further elaborated by Tanford, 1982) as the “alternating access” model and ever since other 

mechanisms with a few shared features were proposed, namely “switch” model (Higgins et al, 

2004), and “constant contact” model (Sauna et al, 2007; Siarheyeva et al, 2010).  

The maltose importer (MalEFGK2) from E. coli is one of the best-characterized Type I 

systems, and may be used to explain the transport mechanism employed by this type of 

transporters. Chen (2013) proposed a mechanism for the maltose transporter based on the 

“alternating access” model, deduced from the interpretation of X-Ray crystallography 

experiments that captured the complex in several conformations: inward-facing, pre-

translocation, and outward-facing conformations (Figure 1.3). Biochemical experiments and 

structural studies using spectroscopic techniques such as, electron paramagnetic resonance, 

(Davidson et al, 1992; Chen et al, 2001; Lu et al, 2005; Grote et al, 2008, 2009; Orelle et al, 2008, 

2010; Bordignon et al, 2010; Jacso et al, 2012; Böhm et al, 2013; Chen, 2013), support this 

proposed mechanism (ter Beek et al, 2014). 

 

 
 

Figure 1.3 – Conformations of the MalEFGK2 transporter (class I importer). Structures have been 

determined for the inward-facing, pre-translocation, and outward-facing conformations (Protein Data 
Bank accession nº: 4JBW, 4KHZ, and 4KI0). Adapted from ter Beek, et al (2014). 
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The proposed mechanism for type I importers, exemplified by the MalEFGK2 transporter, 

is the following (Figure 1.4): the binding of a substrate-loaded MBP (MalE) to the TMDs causes 

a conformational change in these domains that is propagated to the NBDs, bringing the two 

monomers (NBDs) into closer proximity (the pre-translocation state). This proximity allows the 

ATP to bind to the NDBs causing the dimer to close with two ATP molecules located at the 

interface, which in turn causes conformational changes in the TMDs allowing the cavity to open 

toward the outside (outward open/facing) and the substrate to binds to a specific site on the 

TM (MalF). The NDBs promote the hydrolysis of the ATP molecules and the consequent release 

of its products (Pi and ADP) triggers the dimer to move apart, that in turn propagate the 

conformational change to the TMDs allowing them to expose their cavity to the cytoplasm with 

subsequent release of the substrate (ter Beek, et al 2014). 

 

Figure 1.4 – The transport mechanism of Type I importers (exemplified by MalEFGK2). The 

inward-facing type I transporter (e.g., MalFGK2) binds to the substrate through the SPB. NBDs dimerize 
and result in the outward-facing conformation, allowing the substrate to contact with the TMDs. ATP is 
hydrolyzed and product release, together with NBD dissociation, resets the transporter to the inward-
facing conformation. Adapted from Wilkens (2015). 
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1.3.4. The solute binding protein (SBP) 

 

In Type I transporters (and also in Type II) the substrate is delivered to the 

transmembrane domains through a soluble substrate-binding protein (SBP) located in the trans-

side of the membrane (Quiocho and Ledvina, 1996; Berntsson et al, 2010). The SBPs present in 

Gram-negative bacteria constitute soluble proteins with 30-40 kDa that are freely diffused 

through the periplasm, while in Gram-positive bacteria and archaea they are anchored to the 

membrane through a lipid or a separate TM helix  (Sutcliffe and Russell, 1995; Biemans-

Oldehinkel et al, 2006; Eitinger et al, 2011; Wilkens, 2015). 

SPBs are able to bind to a wide variety of substrates therefore displaying different 

affinities that range from the nanomolar to the micromolar. The sequence and size of the SPBs 

are also determined by the type of binding subtract, however the general architecture is highly 

conserved with two symmetrical domains or lobs that are connected via a hinge region (Quiocho 

and Ledvina, 1996; Davidson et al, 2008; ter Beek et al, 2014; Eitinger et al, 2011). 

The maltose-binding protein (MalE), a constituent of the maltose importer (MalEFGK2) 

from E. coli, share the same mechanism of substrate binding than the others SPBs: the Venus fly 

trap model (Figure 1.5; Quiocho and Ledvina, 1996; ter Beek et al, 2014). Basically in the absence 

of a ligand, the two lobes adopt predominantly an open conformation that changes to a close 

conformation when the subtract binds to the SPBs becoming trapped inside. The substrate is 

released into the TMDs through the interaction of each lobe of the SPBs with the respective two 

domains of the TMDs.   

                 
 

Figure 1.5 - Rearrangements in SBP MalE upon the substrate binding. (A) In the substrate-free 

form (Protein Data Bank accession no. 1ANF), the cavity between two protein lobes connected by the 
hinge is accessible. (B) Upon the binding of substrate maltose (dark sticks; Protein Data Bank accession 
no. 1EZ9), the cavity becomes occluded. Adapted from ter Beek et al, 2014. 
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1.3.5. The transmembrane domains (TMDs) 
 

The two transmembrane domains form a translocation pore in the membrane that 

allows the passage of the substrate from the cis-side to the trans-side.  This domains are mainly 

constituted by 4 to 10 membrane-spanning α-helices (Eitinger et al, 2011) and in type I importers 

the two domains can be either identical (homodimers) or structurally similar (heterodimers). In 

the maltose transporter MalFGK2 the TMDs, MalF and MalG, displaying 8 and 6 helices, 

respectively, form a heterodimer, which are structurally related but not sequence related since 

they only share 13% of amino acid sequence identity (ter Beek et al, 2014; Rice et al, 2014). The 

TMDs primary sequence is less conserved than the NBDs but they share a similar topology 

characteristic from each transporter class.  

The transmembrane domain MalF plays an important role in the maltose transporter, 

besides the formation of the pore, due to two unique features: an additional loop (P2) that 

interacts with the SBP MalE and a substrate-binding site for the maltose (Oldham et al, 2007). 

The P2 loop acts like a receptor that recognize the SBP inducing an activated conformational 

change of the MalE, while maintaining the MalE and MalF in close contact throughout the 

catalytic cycle (Daus et al, 2009; Jacso et al, 2009 and 2012; Rice et al, 2014). 

Upon the release of the substrate into the transmembrane domains, one maltose 

molecule binds to a unique site on the MalF domain composed by 10 residues that interact with 

the molecule through H-bonds, van der Waals interactions and aromatic ring stacking (Oldham 

et al, 2007; Eitinger et al, 2011). These residues were identified from crystallographic studies 

and mutagenesis experiments (Chen, 2013; Oldham and Chen, 2011). 

MalG, the other transmembrane domain, also displays two important functions 

alongside with the formation of the translocation pathway. MalG P3 loop, the “scoop”, is 

inserted in the SPB binding site and promotes the displacement of the sugar, facilitating an 

efficient transfer into the membrane pore (Figure 1.6; Oldham et al, 2007). Another important 

interaction of the MalG is the insertion of its C-terminal tail into the MalK dimer interface (the 

ATPase), more specifically through the interaction with the Q-loop of each monomer, which may 

represent an important factor for the formation of the catalytic intermediate conformation of 

the entire transporter (Oldham et al, 2007). 
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Figure 1.6 - Transfer of the maltose from MBP to the TM binding site. Insertion of the MalG scoop 

loop into the substrate-binding site of MBP. A maltose molecule is modelled into the binding site on the 
basis of the crystal structure of open maltose-bound MBP (PDB accession number 1JW5). Adapted from 
Oldham et al, 2007. 

 

An essential feature of the two TMDs MalF and MalG is the so called “coupling helices” 

that consists in two short helices per domain with a characteristic “EAA” motif. This feature is 

an architecturally conserved element that forms the NBD–TMD interface, where it contacts the 

Q-loop in the NBDs grooves (Figure 1.7; Locher, 2009; Oldham et al, 2007). 

 

 

Figure 1.7 - The TMD–MalK interface. a) Docking of the EAA loops into a surface cleft of MalK. The 

EAA loops of MalF and MalG are compared by superposition of the two MalK subunits. The MalK dimer is 
also shown as a transparent surface model. WA, Walker A motif; WB, Walker B motif. c) Insertion of the 
MalG C-terminal tail into the MalK dimer interface. The two MalK subunits are represented as a 
transparent surface model except for the interacting Q loops, which are shown in stick model. Hydrogen 
bonds and salt bridges are indicated by black dashed lines. Adapted from Oldham et al, 2007. 
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1.3.6. The nucleotide binding domains (NBDs) 
 

The nucleotide binding domains (NBD), also called ATPases, are considered the “motor 

domains” of the ABC-type transporters, since they provide the necessary energy to induce the 

conformational changes in the TMDs. The NBDs exhibit a highly conserved structure and 

sequence with several conserved motifs among all ABC transporters, being considered the 

hallmark of the family. They function in the dimeric form and depend on magnesium ions for 

catalysis, each monomer consists of two subdomains: a RecA-like and an α-helical subdomain 

that are interconnected by two flexible loop regions. The RecA-like subdomain is found in other 

P-loop ATPases while the α-helical subdomain is unique to the ABC transporters and presents a 

more structural diversity (Davidson et al, 2008). In the maltose transporter MalFGK2, the NBDs 

are the two MalK units, whose genes are encoded in the transporter operon. MalK ATPase is a 

model for the NBDs structure in type I importers, as the whole transporter is a model for this 

type of importers. 

NBDs can be identified at the sequence level by a specific set of seven highly conserved 

motifs (Figure 1.8; ter Beek et al, 2014): 

(1) The A-loop helps to position the ATP molecule through stacking with the adenine ring 

of the conserved aromatic residue (usually a tyrosine);  

(2) The P-loop or Walker A motif (GXXGXGK(S/T)) is a phosphate-binding loop that 

contains the highly conserved lysine residue, which form a network of interactions with two 

phosphates of the ATP molecule; 

(3) The Walker B motif (φφφφDE, where φ is a hydrophobic amino acid) seems to 

perform two functions: helps to coordinate the magnesium ion via the conserved aspartate 

residue and polarizes the attacking water through the glutamate residue that functions as a 

general base (ex: maltose transport; Oldham and Chen, 2011); 

(4) The D-loop (motif: SALD) directly follows the Walker B motif, and affect the geometry 

of the catalytic site helping to form the ATP hydrolysis site through conformational changes; 

(5) The H-loop (or switch region) contains a highly conserved histidine residue that forms 

a hinge between a beta strand and an alfa helix near the C terminus of the NBD, holding 

together, through interaction the γ-phosphate, the attacking water and the catalytic glutamate 

for catalysis (Oldham and Chen, 2011);  
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(6) The Q-loop possess a conserved glutamine residue that binds to the Mg2+ cofactor in 

the active site, therefore its mobility is essential to complete the catalytic cycle of the 

transporter (Daus et al, 2007). It is located at the interface between the RecA-like subdomain 

and the alfa-helical subdomain, as well as at the interface to the TMDs constituting a major site 

of interaction with the “coupling helix” of the TMDs (Dawson et al, 2007; Eitinger, et al 2011; ter 

Beek et al, 2014). 

(7) The ‘LSGGQ’ motif (C-loop) is the ABC signature motif, representing a characteristic 

feature of the ABC superfamily (Schneider and Hunke, 1998). This motif is located in the α-helical 

subdomain, in the N-terminal end of a long helix that directs the positive charge of the helical 

dipole toward the γ-phosphate of ATP. 

 

 
Figure 1.8 - The structure of the NBDs, as exemplified by the MalK dimer of the maltose 
transporter MalEFGK2 (Protein Data Bank accession no. 3RLF). (A) View along an axis perpendicular to 

the membrane plane from the trans-side onto the NBDs (The TMDs and SBP have been removed for 
clarity). Domains and highly conserved sequence motifs are color-coded: green, α-helical domain; light 
blue, RecA-like domain; faded gray, regulatory C-terminal domain; red, A-loop; magenta, Walker A; 
orange, Walker B; blue, D-loop; green, H-loop; cyan, ABC motif; yellow, Q-loop. The ATP analogue AMP-
PNP is shown in sticks. (B) The relative positions of sequence motifs in NBDs. Adapted from ter Beek et al, 
2014. 

  

B) 
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In the outward-facing conformation of the maltose transporter the NBDs form a 

“sandwich dimer” with two molecules of ATP, where one molecule is bound to NBD1 

coordinated by P-loop residues from NBD1 and from residues of the signature sequence of NBD2 

and vice versa for the second ATP. The number of ATP molecules that need to be hydrolysed to 

accomplish a complete transport cycle is not universal for all ATP transporters (Davidson and 

Sharma, 1997). 

The interconnection between the NBDs with the TMDs depend on two key elements: the 

Q-loop from the NBDs and the “coupling helix” from the TMDs (Figure 1.7; Wilkens, 2015). This 

two elements allow the transference of motion from the NBDs to the TMDs, that come from the 

rotational movement of the RecA-like domain with respect to the NBD helical domain during the 

catalysis, which was shown through crystallographic and EPR spectroscopy experiments with the 

maltose ATP-binding cassette transporter (Khare et al, 2009; Orelle et al 2010; Wilkens, 2015). 

Maltose transporter is regulated by IIAglc, an enzyme from PEP-dependent sugar PTS 

system, that inhibits transport activity or through the binding of MalT, a transcription factor 

(activator) that belongs to the maltose transporter (Boos and Shuman, 1998). The inhibition of 

the transport is accomplish by the binding of two IIAglc with the MalK dimer (Chen et al, 2013), 

which prevents the closure of the MalK dimer and maintain MalFGK2 in the inward-facing resting 

state (Rice et al, 2014). 

 

1.3.7. Multitask ATPases 
 

ATPases or the NBDs are essential components to the ABC-type transporters, however a 

closer look to the gene clusters of some species, that encode sugar ABC transporters, 

demonstrated that the nucleotide-binding domains sequences are occasionally absent from the 

cluster. Early evidence that an ATPase was capable of energizing more than one ABC transporter 

system was observed with the MsiK ATPase, whose gene was not encoded in an ABC transporter 

operon. This ATPase is shared by the cellobiose and the maltose ABC transport systems in 

Streptomyces reticuli and S. lividans (Schlösser et al, 1997). 

 

In B. subtilis, the MsmX ATPase is the multitask ATPase that provides energy to multiple 

ABC transporters (Ferreira and Sá-Nogueira, 2010 and unpublished data), while the msmX gene  
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is not encoded in the transporters operon but in a monocistronic message (see above, section 

1.1.1). 

Several reports have demonstrated that some sugar ABC transporters systems share an 

ATPase with greater incidence in Gram-positive bacteria (Schlösser et al, 1997; Ferreira and Sá-

Nogueira, 2010; Marion et al, 2011b; Tyx et al, 2011; Tan et al, 2015;) however, the existence of 

this phenomenon in a Gram-negative bacteria is also observed (Silva et al, 2005; Chevance et al, 

2006). So far the only examples of a multitask ATPase in a pathogenic bacteria is the MsmK 

ATPase in different species of the genus Streptococcus namely, S. pneumoniae (Marion et al, 

2011b; Tyx et al, 2011), S. suis (Tan et al, 2015) and S. mutans (Webb et al, 2008).  

 

1.3.7.1. MsmK, a multitask ATPase in Streptococcus species 
 

S. pneumoniae or pneumococcus (a Gram-positive bacteria), is an opportunistic 

respiratory human pathogen that can cause diseases as otitis media, meningitis and pneumonia, 

being the last two diseases a major cause of death. This pathogen possesses a vast ability in the 

utilization of carbohydrates which may provide a competitive advantage in the bacterial 

population of the nasopharynx. Since this organism uses as a carbon source only carbohydrates 

their import is ensured by 30% of the transport mechanisms of the organism encoded by the 

genome, being ABC transporters particularly important (Tyx et al, 2011, Buckwalter et al, 2012). 

There are six or seven (depending on the strain) predicted carbohydrate uptake transporter 

family 1 (CUT1) ABC importers within the pneumococcal genome, which lack in each locus a 

gene coding for an ATPase required to energize the transporter (Buckwalter et al, 2012). In S. 

pneumoniae TIGR4 there are three ABC importers from CUT1 family, the RafEFG, SatABC and 

MalXCD transporters, for which MsmK ATPase is the component that provides energy to the 

systems (Marion et al, 2011b). In S. pneumoniae, RafEFG is responsible for the uptake of 

raffinose (Rosenow et al, 1999), while SatABC transports sialic acid (Marion et al, 2011) and 

MalXCD provides the uptake of maltooligosaccharides (Puyet et al, 1993; Abbott et al, 2010). 

The MsmK ATPase also contributes to pneumococcal colonization of the S. pneumoniae, which 

suggests that transport of at least one of the carbohydrate substrates is important during 

colonization (Marion et al, 2011b). An example is the transport of sialic acid that was associated 

with cell signalling during the chain of events of the biofilm formation, colonization and host 

invasion of the organism (Trappetti et al, 2009; Marion et al, 2011).   
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In S. suis, an emerging important pathogen that is causing deadly infections in pigs and 

in humans, MsmK was also identified as a multitask ATPase that provides energy to MsmEFG 

and MalXCD transporters. Likewise, the ATPase gene is not encoded in the operons of these ABC 

transporters, and is responsible for the uptake of raffinose and melibiose through MsmEFG 

transporter and maltotriose, maltotetraose and maltodextrins (product of glycogen 

degradation) by MalXCD transporter, thereby contributing to the colonization and the in vivo 

survival of S. suis (Tan et al, 2015). 

In Streptococcus species, namely S. pneumonia, S. pyrogens and S. suis, the CUT1 family 

of ABC importers are usually encoded in operons lacking the gene that codes for an ATPase. 

However, in S. mutans the MsmEFGK and MalXFGK carbohydrates transporters of the CUT1 

family both possess a gene encoding for the respective ATPase (MsmK and MalK) together with 

the genes that encode for the two transmembrane proteins and the solute binding domain in 

the same operon (Webb et al, 2008). The multiple sugar metabolism system (MsmEFGK) is 

responsible for the uptake of melibiose, raffinose, isomaltotriose, stachyose and isomaltose 

(Russel et al, 1992; Tao et al, 1993), and the MalXFGK is involved in the uptake of maltotriose, 

maltotetraose and other maltodextrins which are zymolytic products of pullulan and glycogen 

(Webb et al, 2008). The special feature about these transporters is that in spite of having their 

own ATPase, when suppression of one of these proteins occurs the other protein is capable of 

providing energy to the alternative system (Webb et al, 2008). A schematic presentation of the 

msm and mal loci encoding ABC transporters and a schematic of the carbohydrates utilized in S. 

mutans, S. pneumoniae and S. suis, are represented in Figure 1.9 and 1.10, respectively. 
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1.3.7.2. Multitask ATPases from Streptomyces species and Thermus 

thermophilus. 

 
Streptomyces species hydrolyse chitin to oligosaccharides being (GlcNAc)2 and 

chitosan the main products. In S. coelicolor A3(2) the (GlcNAc)2 uptake occurs via the ABC 

transporter DasABC (Saito et al, 2007) and the chitosan-derived oligosaccharides uptake is 

accomplished by the ABC transporter CsnEFG (Viens et al, 2015). The respective operons of both 

transporters lack a gene encoding an ATPase, however it was demonstrated that the MsiK 

protein is the ATPase responsible for providing energy to the system (Saito et al, 2008; Viens et 

al, 2015). In S. lividans and S. reticuli the MsiK ATPase is shared by two distinct ABC transporters 

responsible for the uptake of the disaccharides cellobiose and maltose (Schlösser et al, 1997). 

Additionally in S. reticuli the MsiK ATPase was also associated with the ABC transporter 

responsible for the uptake of trehalose (Schlösser et al, 2000). 

  

Figure 1.9 - Schematic presentation of the msm and 

mal loci encoding relevant carbohydrate ABC 

transporters in selected streptococci. The genes within 

the loci encoding components of the S. suis MsmEFG (A), S. 

mutans MsmEFGK (B), S. pneumoniae MsmEFG (C), S. suis 

MalXCD (D), S. mutans MalXFGK (E) and S. pneumoniae 

MalXCD (F) are represented. Arrows indicate the direction of 

transcription. Gray arrows, genes encoding the ATPase of ABC 

transporters; spotted arrows, genes encoding solute binding 

proteins; black arrows, genes encoding permeases of ABC 

transporters; blank arrows, other genes adjacent. Adapted from 

Tan et al, 2015 

Figure 1.10 - Schematic summary of 

carbohydrates utilization by ABC 

transporters in S. mutans (A), S. 

pneumoniae (B) and S. suis (C). Above 

each ABC complexes is a list of known or 

putative carbohydrates transported by each 

ABC transporter. Bidirectional arrow means the 

MsmK and MalK ATPases can energize 

permeases interactively. Unidirectional arrows 

mean the degradation of pullulan and glycogen 

by pullulanases SpuA or ApuA. Adapted from 

Tan et al, 2015 
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To date the phenomenon of a multitask ATPase is mainly associated with Gram-

positive bacteria however, in spite of being less frequent, it also occurs in Gram-negative 

bacteria, as reported in Thermus thermophilus. The MalK1 ATPase, which is homologous to MalK 

from E. coli, and is encoded in a monocistronic gene is responsible for energizing two distinct 

ABC importers: the trehalose/maltose/sucrose/palatinose (TMSP) ABC transporter (Silva et al, 

2005) and the glucose/mannose ABC transport system (Chevance et al, 2006). 

 

 

 

1.4. Scope of the Thesis 

 

In this study we will characterize multipurpose ATPases from both Gram-positive and 

Gram-negative bacteria and assess their intra- and interspecies interchangeability in the host B. 

subtilis. A genetic system is fine-tuned to test the ability of ATPases from other species to 

complement MsmX function and establish B. subtilis as model for the study of bacterial multitask 

ATPases.  
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2. Materials and Methods 
 

2.1. Substrates 

 
1,5-α-L-Arabinotriose (sugar beet, purity 95%) was purchased from Megazyme 

International Ireland Ltd., and arabinose from Sigma-Aldrich Co. 

 

2.2. Bioinformatic Analysis 

 
For the identification of MsmX homologs in other Gram-positive and Gram-negative 

bacteria, bioinformatics tools were used. BLASTp algorithm was the tool chosen to compare 

MsmX amino acid sequence with the sequence database from the National Center for 

Biotechnology Information at the National Institutes of Health, Bethesda, Maryland 

(http://www.ncbi.nlm.nih.gov). Proteins with an identity superior to 40% were considered as 

targets. An amino acid sequences alignment was made using the multiple sequence alignment 

program Clustal Omega (EMBL-EBI).  Protein 3-D structures were predicted using the online 

program I-TASSER created by Zang Lab, University of Michigan (Zhang, 2008; Roy et al, 2010; 

Yang et al, 2015). 

 

2.3. Isolation of chromosomal DNA 

 
Chromosomal DNA was extracted from Escherichia coli K-12 strain based on the method 

described by Ferrari et al (1982). The strain was grown overnight (37 ̊ C, 180 rpm), in liquid Luria-

Bertani (LB) medium (Miller, 1972). All subsequent centrifugations were performed at 16060 g. 

The cells were harvested in two tubes with 2 mL of culture each by centrifugation for 2 minutes, 

washed once with 50 mM Tris and 5 mM EDTA, and resuspended in 175 µL of 50 mM Tris, 5 mM 

EDTA, lysozyme 1 mg/mL and RNase 20 µg/mL with incubation at 37 °C for 30 minutes. After, 

the solutions were vigorously agitated for 5 minutes and further incubated at the same 

temperature for at least 15 minutes, followed by a centrifugation step of 10 minutes. 100 µL of 

phenol (saturated with Tris-HCl, pH=8) was added to each tube, followed by centrifugation for 5 

minutes. Each aqueous phase was recovered and mixed with 100 µL of chloroform:isoamyl 

alcohol (24:1), followed by centrifugation for 3 minutes. The upper phase from the two tubes, 

was mixed and two volumes of absolute ethanol were added. The precipitated DNA was 
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collected by centrifugation for 20 minutes at 4 °C, dried and further resuspended in 1X TAE 

buffer. 

 

2.4. DNA manipulation and sequencing 

 
Routine DNA manipulations were performed as described by Sambrook et al (1989). All 

restriction enzymes were purchased from Thermo Fisher Scientific Inc. and used according to 

the manufacturer’s recommendations. PCR amplifications were carried out using Phusion® high-

fidelity DNA polymerase (Thermo Fisher Scientific Inc.). Oligonucleotides designed in this work 

or in previous experiments performed in our laboratory, were purchased from Metabion 

International AG or StabVida, Lda (Table 2.2). DNA from agarose gels and PCR products were 

purified with the illustra™ GFX™ PCR DNA and Gel Band Purification kit (GE Healthcare). All DNA 

ligations were performed using T4 DNA ligase (Thermo Fisher Scientific Inc.). Plasmids were 

purified using the NZYMiniprep kit (NZYTech, Lda). DNA was sequenced using the method of 

Sanger performed at StabVida, Lda.  

 

2.5. Site-directed mutagenesis by Overlapping PCR 

 
Chromosomal DNA of strain Escherichia coli K-12 was used as template for site-directed 

mutagenesis by primer extension, using mutagenic oligonucleotides ARA862 and ARA863 and 

flanking oligonucleotides. This pair of mutagenic primers allowed the insertion of a nucleotide C 

in codon 320, thereby restoring the wild-type phenotype of the protein YcjV with a total length 

of 360 amino acids. Primers ARA860 and ARA863 created fragment AB and primers ARA862 and 

ARA861 generated fragment CD, which through overlapping PCR resulted in a fragment of ycjV 

gene with HindIII and SphI restriction sites, provided by the flanking primers ARA860 and 

ARA861. Another fragment containing ycjV gene and NheI and BglII restriction sites, harbored in 

the flanking primers ARA845 and ARA846, was generated through the junction of fragment AB, 

created by primers ARA845 and ARA863, and fragment CD created by primers ARA862 and 

ARA846. For both experiments, two polymerase chain reactions were carried on using 1x 

Phusion®HF Buffer (Thermo Fisher Scientific Inc.), 0.5 µM primers, 200 µM dNTPs, 1.2 ng/µl of 

template genomic DNA (in the first reaction) and 0.2 ng/µl of Template DNA (in the second 

reaction: fragments AB, CD) and 0.05 U/µl of Phusion®High-Fidelity DNA Polymerase (Thermo   
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Fisher Scientific Inc.) in a total volume of 50 µl. The insertion of the nucleotide was confirmed 

by DNA sequencing. 

 

2.6. Construction of plasmids and strains 

 
Plasmid pPS1 was obtained by amplification of the HD73_RS21400 gene from 

chromosomal DNA of strain Bacillus thuringiensis serovar kurstaki str. HD73 (Bacillus Genetic 

Stock Center, BGSC, Ohio State University), with the oligonucleotides ARA851 and ARA852, 

bearing unique restriction sites NheI and BglII, and subsequent cloning of this fragment (1082 

bp) into pSN74 digested with NheI and BglII. pPS2 was obtained by amplification of the ugpC 

gene, from chromosomal DNA of the pathogenic strain Staphylococcus aureus subsp. aureus 

ST398 (a gift from Hermínia de Lencastre, ITQB, Universidade Nova de Lisboa), using 

oligonucleotides ARA843 and ARA844, which harbor unique restriction sites NheI and BglII, and 

then the resulting fragment (1079 bp) was inserted between the NheI and BglII sites of pSN74. 

The amplification of the malK gene, from chromosomal DNA of strain Escherichia coli K-12, with 

oligonucleotides ARA847 and ARA848, which contain unique restriction sites NheI and BglII, and 

subsequent cloning of this fragment (1097 bp) into pSN74 NheI- BglII, yielded plasmid pPS3. 

Another amplification of the malK gene was made using oligonucleotides ARA858 and ARA859, 

which contain unique restriction sites HindIII and SphI, and cloning this fragment (1220 bp) into 

pDR111 (a gift from David Rudner, Harvard University) digested with HindIII and SphI, yielded 

plasmid pPS6.  Plasmid pPS4 was obtained by amplification of the yurJ gene, from chromosomal 

DNA of the wild-type strain Bacillus subtilis 168T+, with oligonucleotides ARA837 and ARA838, 

bearing unique restriction sites NheI and BglII, and subsequent cloning of this fragment (1085 

bp) into pSN74 digested with NheI and BglII. Plasmid pPS5 was obtained by amplification of 

msmK gene using pAM7 as template with oligonucleotides ARA855 and ARA749, which contain 

unique restriction sites SalI and SphI, and subsequent cloning of this fragment (1241 bp) into 

pDR111 digested with SalI and SphI. 

Plasmid pPS7 was obtained by amplification of a DNA fragment from pSN74 containing 

the lacI gene and the terminal end of the msmX gene with oligonucleotides ARA854 (mutagenic 

primer contain a unique restriction site BglII and two novel codons) and ARA632. This procedure 

introduced two novel amino acids (Leu, Glu) into the msmX coding region preceding the C-

terminal His-tag were introduced into the msmX coding region of plasmid pSN74. The resulting 

amplification product was digested with BglII and BamHI and the product (1452 bp) sub cloned   
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into pSN74 BglII-BamHI, yielding pPS7. msmK gene was amplified from pAM7 with the 

oligonucleotides ARA773 and ARA774 (Sá-Nogueira, unpublished), which harbour unique 

restriction sites NheI and BglII, respectively, and digested with NheI and BglII resulting in a 

fragment with 1112bp. All genes of msmX homologs amplified as described above and digested 

with NheI and BglII were further cloned into pPS7 NheI-BglII, yielding the following plasmids: 

pPS8 (HD73_RS21400), pPS9 (msmK), pPS10 (ugpC), pPS11 (malK), and, pPS12 (yurJ). The 

amplification of ycjV gene from chromosomal DNA of strain E. coli K-12, obtained by site-

directed mutagenesis (described in the previous topic), yielded a fragment with unique 

restriction sites HindIII and SphI and another fragment with unique restriction sites NheI and 

BglII. Plasmid pPS13 was obtained by cloning a fragment (1191bp) containing ycjV gene, digested 

with HindIII and SphI, into pDR111 HindIII-SphI. ycjV gene digested with NheI and BglII resulted 

in a fragment with 1064bp, being subsequently cloned into pPS7 NheI-BglII which yielded 

plasmid pPS14. 

Plasmids and oligonucleotides used in this work are listed in Table 2.1 and 2.2, 

respectively. Oligonucleotides ARA411, ARA430, ARA442, ARA662, ARA741 and ARA841 were 

used for DNA sequencing (see Appendices 6.2 to 6.17) 
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Table 2.1 – List of plasmids used in this work. 

Plasmids Relevant construction 
Source or 
Reference 

 

pDR111 
Derivative of the Pspac(hy) plasmid pJQ43; contains an 

additional lacO binding site 
David Rudner*  

pGS1 
pMS38 derivate used for the fusion of a C-terminal His-tag to 

msmX at his own locus, bla, cat 

Ferreira and                              
Sá-Nogueira, 
unpublished 

 

pMJ2 
pMJ1 derivate used for the creation of msmX-null mutations, 

bla, cat 

Ferreira and                              
Sá-Nogueira, 

2010 
 

pAM7 pDR111 derivate, with msmK under the control of Pspank(hy) 
Mendes and                             
Sá-Nogueira, 
unpublished 

 

pAM12 
pDR111 derivate, with msmX under the control of Pspank(hy), 

and with BglII and NheI restriction sites in the msmX coding 
region 

Mendes and                                
Sá-Nogueira,  
unpublished 

 

pSN74 
pDR111 derivate, with an additional C-terminal His-tag in the 

coding region of msmX from pAM10 under the control of 
Pspank(hy) 

Sá-Nogueira, 
unpublished* 

 

pSN75 
pSN74 derivate, with msmK under the control of Pspank(hy) and 

with a C-Terminal His-tag 
Sá-Nogueira, 
unpublished* 

 

pPS1 
pSN74 derivate, with HD73_RS21400 under the control of 

Pspank(hy) and with a C-Terminal His-tag 
This work*  

pPS2 
pSN74 derivate, with ugpC under the control of Pspank(hy) and 

with a C-Terminal His-tag 
This work*  

pPS3 
pSN74 derivate, with malK under the control of Pspank(hy) and 

with a C-Terminal His-tag 
This work*  

pPS4 
pSN74 derivate, with yurJ under the control of Pspank(hy) and 

with a C-Terminal His-tag 
This work*  

pPS5 pDR111 derivate, with msmK under the control of Pspank(hy)  This work*  

pPS6 pDR111 derivate, with malK under the control of Pspank(hy) This work*  

pPS7 
pSN74 derivate, with the insertion of two amino acids (Leu, Glu) 

in msmX sequence, followed by the C-Terminal His-tag 
This work*  

pPS8 
pPS7 derivate, with HD73_RS21400 under the control of 

Pspank(hy), and with a C-Terminal LEHis-tag  
This work*  

pPS9 
pPS7 derivate, with msmK under the control of Pspank(hy), and 

with a C-Terminal LEHis-tag  
This work*  

pPS10 
pPS7 derivate, with ugpC under the control of Pspank(hy), and 

with a C-Terminal LEHis-tag  
This work*  

pPS11 
pPS7 derivate, with malK under the control of Pspank(hy), and 

with a C-Terminal LEHis-tag  
This work*  

pPS12 
pPS7 derivate, with yurJ under the control of Pspank(hy), and 

with a C-Terminal LEHis-tag 
This work*  

pPS13 pDR111 derivate, with ycjV under the control of Pspank(hy) This work*  

pPS14 
pPS7 derivate, with ycjV under the control of Pspank(hy), and 

with a C-Terminal LEHis-tag 
This work*  

*See Appendices 6.1 to 6.17 
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Table 2.2 – List of oligonucleotides used in this work. 

Oligonucleotides Sequencea 

ARA411 CTCTTGCCAGTCACGTTACG 
ARA430 GCGACATCGTATAACGTTACTGG 
ARA442 GAGCTGCCTGCCGCGTTTCGGTG 
ARA632 AGAGCTGTACGCAGCCGCTG 
ARA662 ACATCGGCAAAGAGGTCATC 
ARA741 CTTGTGTCGACAGGGAATTGCTG 
ARA749 GCACGCATGCACTGATATCTCTCC 
ARA773 CACCTCATGGCTAGCTTGAATCTTA 
ARA774 GCCGCCAGATCTTTTTTCAGTTTCTAC 
ARA837 CTGATGGCTAGCTTAACATTTGAACACG 
ARA838 TAAGATCTCTCTTCCGTTTCCGCATCG 
ARA841 GTACATAATGGATTTCCTTACG 
ARA843 GCCAACATGGCTAGCTTAAAGTTAG 
ARA844 GCCGCCAGATCTATTTCCTGTTTTTTC 
ARA845 ATCAACATGGCTAGCCTTTCGTTAC 
ARA846 TTGGCGAGATCTTATTTCCGTTTCTGC 
ARA847 AAGTTTATGGCTAGCGTACAGCTGC 
ARA848 TTAGCCAGATCTCTCCTTATGCAGTCG 
ARA851 GGTACCATGGCTAGCCTTAAATTAG 
ARA852 TTAGCGAGATCTTTGTTCAGTTTGG 
ARA854 GAAGATCTCGACTCGAGCACCACCATCACCACCACTAAGATC 
ARA855 CGCGCCGTCGACTATATAATATAATTATC 
ARA858 CGGAAGCTTGCTGTCGATGACAGG 
ARA859 CAGTGCATGCCTCCTGAGTCATTGC 
ARA860 TGGCCAAGCTTATCGGCCTTCTG 
ARA861 CACATCAGGCATGCGGTACAGGG 
ARA862 TTGGGGGGCACGAGTTAGTGG 
ARA863 ACTAACTCGTGCCCCCCAACC 

a Sequence orientation is 5’     3´. Restriction sites are underlined. 

 

 

Plasmid pDR111 was used to transform the B. subtilis wild-type strain 168T+, according to 

the method described by Anagnostopoulos and Spizizen (1961), yielding strain ISN1. Plasmids 

pSN74, pSN75 and pPS1 to pPS14 were used to transform the B. subtilis strain IQB495, resulting 

in strains ISN2 to ISN17 (Table 2.3), respectively. The amyE- phenotype of the transformants was 

confirmed on plates of solid LB medium containing 1% (w/v) potato starch. After overnight 

incubation, plates were flooded with a solution of 0.5% (w/v) I2-5.0% (w/v) KI for detection of 

starch hydrolysis. 
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Table 2.3 – List of B. subtilis strains used or constructed during this work. 

Strain Relevant genotype Source or Referencea 

168T+ Prototroph F. E. Young 

IQB495 ΔmsmX::cat 
pMJ2 b → 168T+ 

(Ferreira and Sá-Nogueira, 
2010) 

IQB622 msmX-LEHis6  cat 
pGS1 → 168T+ 

(Ferreira and Sá-Nogueira, 
unpublished) 

IQB672 ΔmsmX::cat ΔamyE::Pspank(hy) 
pDR111 b → IQB495 
(Mendes and Sá-Nogueira, 

unpublished) 

IQB676 
ΔmsmX::cat ΔamyE::Pspank(hy)-msmX(Glu3Ser, 

Ile364Ser) 

pAM12 b → IQB495 
(Mendes and Sá-Nogueira, 

unpublished) 

ISN1 ΔamyE::Pspank(hy)-spec pDR111b → 168T+ 

ISN2 ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-His6 pSN74 b → IQB495 

ISN3 ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-His6  pSN75 b → IQB495 

ISN4 ΔmsmX::cat ΔamyE::Pspank(hy)- HD73_RS21400-His6 pPS1 b → IQB495 

ISN5 ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-His6 pPS2 b → IQB495 

ISN6 ΔmsmX::cat ΔamyE::Pspank(hy)-malK-His6 pPS3 b → IQB495 

ISN7 ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-His6 pPS4 b → IQB495 

ISN8 ΔmsmX::cat ΔamyE::Pspank(hy)-msmK pPS5 b → IQB495 

ISN9 ΔmsmX::cat ΔamyE::Pspank(hy)-malK pPS6 b → IQB495 

ISN10 ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-LEHis6 pPS7 b → IQB495 

ISN11 ΔmsmX::cat ΔamyE::Pspank(hy)- HD73_RS21400-LEHis6  pPS8 b → IQB495 

ISN12 ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-LEHis6 pPS9 b → IQB495 

ISN13 ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-LEHis6 pPS10 b → IQB495 

ISN14 ΔmsmX::cat ΔamyE::Pspank(hy)-malK-LEHis6 pPS11 b → IQB495 

ISN15 ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6 pPS12 b → IQB495 

ISN16 ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV pPS13 b → IQB495 

ISN17 ΔmsmX::cat ΔamyE::Pspank(hy)- ycjV-LEHis6 pPS14 b → IQB495 
a The arrows indicate transformation and point from donor DNA to recipient strain 
b The DNA was linearized with ScaI  

 

 

2.7. Growth conditions 
 

E. coli DH5α (Gibco-BRL) was used as host for the construction of all plasmids. The strain 

was grown in liquid Luria-Bertani (LB) medium and on LB solidified with 1.5% (w/v) agar and 

ampicillin (100 µg/mL). B. subtilis strains were grown in liquid LB medium, LB medium solidified 

with 1.5% (w/v) agar or SP medium (Martin et al, 1987) with chloramphenicol (5 µg/mL) and/or   
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spectinomycin (60 µg/mL) being added as required. Growth kinetics parameters of the wild-type 

and mutant B. subtilis strains were determined in liquid minimal medium. B. subtilis strains 

IQB672, IQB676, IQB622, and ISN1 to ISN17, were grown overnight (37 ̊ C, 180 rpm), from freshly 

streaked colonies, in C minimal medium (Pascal et al, 1971) supplemented with L-tryptophan 

(100 µg/mL), potassium glutamate (8 µg/mL) and potassium succinate (6 µg/mL) (CSK medium; 

Debarbouille et al, 1990). The cell cultures were washed and resuspended, to an initial OD600nm 

of approximately 0.05, in 1.5 mL of CSK medium without potassium succinate and supplemented 

with different carbon and energy sources (arabinose and arabinotriose) to a final concentration 

of 0.1% (w/v) and 1 mM of ITPG added when appropriated. The cultures were grown in sterile 

50 mL Falcon tubes (Sarstedt), incubated at 37 ˚C and 180 rpm in an Aquatron® Waterbath 

Rotary Shaker and the OD600nm periodically measured in an Ultrospec™ 2100 pro UV/Visible 

Spectrophotometer (GE Healthcare Life Sciences). 

 

2.8. Protein extracts of B. subtilis 
 

B. subtilis strains ISN10 to 15, ISN17 and IQB622 were grown in CSK minimal medium 

supplemented with 0.1% (w/v) of arabinose or arabionotriose, in the presence or absent of the 

inducer IPTG, as previously described for growth kinetic parameters (see previous topic). Cells 

from the strains ISN12-15 and ISN17 grown in CSK medium with arabinotriose 0.1%, in the 

presence or absent of the inducer IPTG, and cells from the strains ISN10 and ISN11 grown with 

arabionotriose 0.1% without IPTG, were collected after 8 h of experiment with O.D600nm <0.4. 

Cells of the remaining growing cultures were collected when O.D600nm reached 0.65-0.8.  A total 

of 1.1 to 1.4 mL of each culture was centrifuged at 6000 g and 4° C for 5 minutes, and the 

sediment resuspended  in 50 to 100 µL (depending on the O.D600nm of the culture) of Lysis Buffer 

(500 mM KCl, 20 mM Hepes K+ pH 7.6, 10 mM EDTA, 1 mM DTT, 10% glycerol). Lysozyme (1 

mg/mL) was added to the mixture and incubated for 10 minutes at 37 °C, followed by three 

cycles of freezing in liquid nitrogen and thawing for 5 minutes at 37 °C. 10 mM PMSF and 7.5 U 

of Benzonase® Nuclease (Sigma-Aldrich Co.) were added followed by an incubation for 15 

minutes at 37 °C. The total protein content for each extract was determined using Bio-Rad 

Protein Assay (Bio-Rad Laboratories, Inc). 
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2.9. Western-Blot assay 

 
Immunoblot assay was performed using the cell free extracts, to detect the presence of 

the recombinant ATPase in the cells. In this procedure, first it was made an electrophoretic 

separation of all proteins contained in each extract, from strains grown in arabinose or 

arabinotriose 0.1% (w/v), obtain in inducible or non-inducible conditions. 10 µg of total protein 

from each extract [20 µg of total protein from the extract of IQB622 grown in arabinose 0.1% 

(w/v)], and 0.6 µg of purified MsmX-LEHis6 were load in 12.5% SDS-PAGE and run at a constant 

voltage (150 V) for approximately 1 h. The fractionated proteins were then electrotransfered 

into a nitrocellulose membrane (Bio-Rad) in a semi-dry Bio-Rad Trans-Blot® Turbo™ Transfer 

System, for 30 minutes at constant voltage (25 V) and constant amperage (1.0 A). Afterwards 

the membrane was stained with Ponceau S to verify the transference efficient. All subsequent 

incubation and wash steps were performed at room temperature with mild shaking. The 

membrane was incubated in blocking solution [powdered non-fat milk solution in 1X PBS-

Tween20 0.1% (4% w/v)] for 1 h, followed by incubation with 10 mL of the primary antibody 

(mouse monoclonal Anti-6X His-tag® antibody [HIS.H8; Abcam], diluted 1:1000 in blocking 

solution) for 1 h. The membrane was then washed three times with PBS 1X-Tween20 0.1% (with 

two incubation periods of 10 minutes), and then  incubated in 10 mL of the secondary antibody 

(HRP-conjugated donkey anti-mouse IgG antibody [Jackson ImmunoResearch Europe Ltd.], 

diluted 1:10000 in blocking solution) for 1 h. Finally, the membrane was washed three times 

with PBS 1X-Tween20 0.1% (with two incubation periods of 10 minutes). All subsequent steps 

were performed in a dark room. Blots were developed using 1 mL of SuperSignal™ West Pico 

Chemiluminescent Subtract (Thermo Scientific). Amersham Hyperfilm plates (GE Healtcare) 

were exposed to luminescence for 30 s or 40 s, 1 minute, 3 minutes and/or 4 minutes inside a 

Hypercassette Autoradiography Cassette (GE Healtcare). 

 

2.10. Protein analysis  
 

The analysis of the production, purification and molecular mass of the proteins was 

performed with SDS-PAGE (stained with Coomassie Blue), using Low Molecular Weight Protein 

Marker (NZYTech) as standard. 
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3. Results and Discussion 
 

3.1. Complementation analysis of MsmX homologs in msmX-null mutant B. 

subtilis strains  

 

3.1.1 In silico Analysis 

 
An in silico survey was conducted for the identification of MsmX homologs, in Gram-

positive and Gram-negative bacteria, using BLASTp tool. From this analysis Bacillus subtilis, 

Bacillus thuringiensis, Staphylococcus aureus, Streptococcus pneumoniae and Escherichia coli 

proteins were selected (Table 3.1). The protein from Bacillus thuringiensis displays the higher 

identity (74%), while UgpC from Staphylococcus aureus exhibits an identity of 66%. MsmK from 

Streptococcus pneumoniae (Gram-positive bacteria) and YcjV from Escherichia coli (Gram-

negative bacteria) display the same identity (64%) to MsmX from B. subtilis. On the other hand, 

the protein YurJ also from B. subtilis, has a lower identity (58%). Since MalK from Escherichia coli 

is a model ATPase it was included in this study, however this protein possesses the lower identity 

(45%). A multiple alignment of the proteins primary sequence was performed using 

ClustalOmega and is shown in the Appendix 6.18 (wild-type form) and 6.19 (recombinant form). 

The genomic context of each gene selected for study is illustrated in Appendices 6.20 to 6.25. 

 

Table 3.1 – List of MsmX homologs selected for this work.  

Species Gene name 
NCBI 

Reference 

Protein 

Length 
Identitya 

Bacillus thuringiensis serovar 

kurstaki str. HD73 
HD73_RS21400 WP_000818931.1 366 271 (74%) 

Staphylococcus aureus subsp. 

aureus ST398 

ugpC 

(or SAPIG0223) 

CAQ48661.1 

(GeneBank) 
365 240 (66%) 

Streptococcus pneumoniae 

TIGR4 

msmK             

(or SP_1580) 

AAK75666.1 

(GeneBank) 
376 241 (64%) 

Escherichia coli str. K-12  
ycjV                 

(or b4524) 

P77481.2 

(UniProtKB) 
360 233 (64%) 

Bacillus subtilis subsp. subtilis 

str. 168 

yurJ                

(or BSU32550) 
NP_391135.1 367 212 (58%) 

Escherichia coli str. K-12  
malK               

(or b4035) 
NP_418459.1 371 162 (45%) 

a  Amino acid identity to B. subtilis MsmX is indicated  
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3.1.2 Fine-tuning of a Genetic System for Complementation Analysis  

 
An in vivo system for the expression of MsmX and MsmX homologs was constructed in a 

B. subtilis msmX-null mutant (IQB495) by Mendes and Sá-Nogueira (unpublished work), in order 

to test if other ATPases found in pathogenic species from Gram-positive and Gram-negative 

bacteria, are able to play the role of MsmX in the cell. The genetic system consists of an 

integrative B. subtilis vector with the target gene under the control of the inducible Phyper-

spank promotor. The integrative vector allows the incorporation of the genes in the 

chromosome and guarantees no variations in the number of copies present in the cell during 

the experiments and comparison analysis. A comparable and controlled expression of the 

different genes is achieved through the use of an inducible promotor.  

The genetic system was improved through the creation of new restriction sites in the 

msmX gene, which allowed the cloning of the msmX homologs coding sequences in the plasmid 

flanked by the sequences of the ribosome binding site (RBS) and the terminator of the msmX 

gene. These modifications were introduced by Mendes and Sá-Nogueira (unpublished results) 

in order to eliminate transcriptional and post-transcriptional regulation variables. A third 

generation of improvement was constructed by Sá-Nogueira (unpublished results) and consists 

in the incorporation of a C-terminal His-tag, which allows the detection of the in vivo intracellular 

accumulation of the target ATPase. 

All the vectors derive from the integrative plasmid pDR111 (Appendix 6.1). This plasmid 

possesses a modified and stronger version of the Pspac promoter, the Phyper-spank promoter 

(Pspank(hy)), that enables a controlled gene expression and additionally bears a lacO binding 

site that allows a better repression in the absence of inducer (Quisel et al, 2001; Britton et al, 

2002). Gene expression can be induced with IPTG, a compound that mimics allolactose but is 

not hydrolysable, therefore maintaining sustainable levels of expression along time. The plasmid 

possesses two amyE gene fragments for integration at the amyE locus of the B. subtilis 

chromosome. The plasmid used in this study contains the ribosomal binding site (RBS) and the 

terminator of the msmX gene, in order to eliminate transcriptional and post-transcriptional 

regulation variables. This vector allows the cloning of only the open reading frame (ORF) of the 

ATPase gene to be tested, due to modifications made in the N-terminal and C-terminal of msmX 

gene that created two unique restriction sites NheI and BglII, respectively (pAM12; Mendes and 

Sá-Nogueira, unpublished work). Furthermore, it was also introduced a C-terminal His-tag that  
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allows the detection of the intracellular amount of the proteins in the cell with Western-Blot 

assays (pSN74; Sá-Nogueira, unpublished results). 

A schematic illustration of the fine-tuned in vivo system is shown in Figure 3.1. 

 

Figure 3.1 - Schematic illustration of the in vivo system fine-tuned. A) Representation of the 

translated protein MsmX (by a green rectangle with stripes) and the translated MsmX homologs (by 
rectangles with different colours for each homolog). MsmX protein’s C- and N-terminal modifications are 
represented in the homologs by small green squares with stripes; the C-terminal His6-tag is represented 
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C) 

A) 
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in all proteins by a small white square with stripes. B) Representation of the modifications made in the 
msmX gene of plasmid pSN74. The msmX gene is represented by a green arrow and the promotor of the 
transcriptional unit is depicted by a grey arrow and a black box. Above is displayed the sequence of the 5’ 
and 3’-end of the msmX gene. The ribosome-binding site, RBS, is underlined. The msmX gene was modified 
through the mutation of residues (represented in bold), in order to introduced new restriction sites, NheI 
(5´-end) and BglII (3´-end), both double underlined (pAM12; Mendes and Sá-Nogueira, unpublished work). 
The system was fine-tuned through the addition of a His-tag (3´-end), which is underlined in bold (pSN74; 
Sá-Nogueira, unpublished work). C) In B. subtilis chromosome, the amyE locus at 28° is represented (top 
left) with the genes introduced by double-recombination event with pDR111 derivatives: a lacI copy (red 
arrow), a spectinomycin resistance cassette (blue arrow), both from pDR111, a copy of msmX gene, or 
homolog (green arrow) and the amyE fragments (yellow arrows). At 340°, is shown the yxkF-msmX operon 
with the msmX inactivated by an insertion-delection mutation with a chloramphenicol resistence cassete 
(cat). 

 

The strains constructed or used in this work, resulting from the partial integration of 

pDR111 (ISN1 and IQB672) and its derivatives (ISN8, ISN9 and ISN16), pAM12 (IQB676), or pSN74 

and its derivatives (ISN2 and ISN3 to ISN7), are represented in a schematic illustration shown in 

Figure 3.2. 
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IQB676 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX(Glu3Ser, Ile364Ser)) 
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ISN9 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK) 

 

 
ISN16 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV) 

 

 

Figure 3.2 – Schematic representation of the amyE locus and the yxkf-msmX operon in the 
chromosome of several B. subtilis strains used in the work (not drawn to scale). 

 

3.1.3 Functional studies of different ATPases in B. subtilis  

 
The AraNPQ uptake system cannot transport arabionotriose in the absence of MsmX 

(Ferreira and Sá-Nogueira, 2010), thus it was chosen to evaluate the capability of the other 

ATPases to fully (or partially) complement MsmX absence. In order to assess the functionality of 

the ATPases growth kinetic assays were performed in minimal medium supplemented with 

arabinose or arabionotriose as the sole carbon and energy source, and in the presence or 

absence of the inducer IPTG. 

 

3.1.3.1. Wild-type MsmX and MsmX Homologs  

B. subtilis strains constructed with the genetic system developed by Mendes and Sá-

Nogueira (unpublished work; see above 3.1.2 subsection) were evaluated to test the 

functionality of the different wild-type ATPases. Growth kinetic parameters of several B. subtilis 

strains in minimal medium using arabinose (MsmX independent uptake) and arabionotriose 

(MsmX dependent uptake) as the sole carbon and energy source, were determined and the 

results are summarized in Tables 3.2, 3.3 and 3.4. The B. subtilis IQB672 strain (Mendes and Sá-

Nogueira, unpublished work; Figure 3.2) possesses a msmX-null genetic background, and 

therefore was used as negative control. B. subtilis ISN1 strain (Figure 3.2) was constructed by 

transformation of the wild-type 168T+ strain with plasmid pDR111, and was used as a positive 

control.  
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Table 3.2 – Growth of different B. subtilis strains ISN1, IQB672 and IQB673 in the presence of 

distinct saccharides as sole carbon and energy source. 

Carbon Source 

Doubling Time (minutes)* 

ISN1 
(ΔamyE::Pspank(hy)-

spec) 

IQB672  
(ΔmsmX::cat 

ΔamyE::Pspank(hy)) 

IQB673 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
msmX) 

Arabinose 0.1% 62.25±0.98 70.66±5.83 78.47±3.47 

Arabinotriose 0.1% 86.84±0.76 No Growth No Growth 

Arabinotriose 0.1% + IPTG 1mM - No Growth 107.60±3.85 

*Cells were grown in CSK medium (see Materials and Methods). Growth kinetics parameters were 
determined and the results represent the average of three independent experiments (see Annexes for 
the complete data used to determine the doubling time). The results of strain IQB673 displayed were 
obtained from Mendes and Sá-Nogueira (unpublished work), and the arabinose growth for this strain was 
performed only twice by the authors. 

 

B. subtilis IQB673 strain, which contains msmX gene placed at the amyE locus, under the 

control of an inducible promoter is unable to grow in minimal medium with arabionotriose as 

the sole carbon and energy source in the absence of the inducer ITPG displays like the negative 

control IQB672 strain (Table 3.2, Figure 3.4 and Figure 3.5). However, when IPTG was added to 

the medium, the ability to utilize arabinotriose as carbon and energy source was restore and the 

doubling time is similar to the wild-type ISN1 strain (considering the deviations; Table 3.2, Figure 

3.3). These results show the efficacy of the regulation of expression in the used genetic system 

by the effector molecule ITPG, and confirm that the AraNPQ transport system depends on the 

presence of the ATPase MsmX (Ferreira and Sá-Nogueira, 2010). The uptake of arabinose is not 

dependent on this transport system, or the multitask ATPase MsmX (Ferreira and Sá-Nogueira, 

2010), which is confirmed by the results obtained in the presence of arabinose and in the 

absence of the inducer: the doubling time of the strain IQB673 is similar to that of the wild-type 

ISN1 strain (considering the deviations; Table 3.2).  
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Figure 3.3 – Growth of B. subtilis ISN1 (ΔamyE::Pspank(hy)-spec) in CSK medium using arabinose 

and arabionotriose as the sole carbon and energy source. 
 

 

Figure 3.4 – Growth of B. subtilis IQB672 (ΔmsmX::cat ΔamyE::Pspank(hy)) in CSK medium using 
arabinose and arabionotriose as the sole carbon and energy source. 
 

 

Figure 3.5 – Growth of B. subtilis ISN673 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX) in CSK medium 

using arabinose and arabionotriose as the sole carbon and energy source.   

0.01

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

O
D

60
0n

m

Time (h)

Arabinose 0.1%

A3 0.1%

0.01

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

O
D

6
0

0
n

m

Time (h)

Arabinose 0.1%

A3 0.1%

A3 0.1% + ITPG

0.01

0.10

1.00

0 1 2 3 4 5 6 7 8

O
D

60
0n

m

Time (h)

Arabinose 0.1%

A3 0.1%

A3 0.1% + ITPG



MsmX as model for functional studies of Multitask ATPases from pathogenic bacteria 

43 

The growth rate of the B. subtilis strains bearing the different MsmX homologs grown in 

the presence of arabinose is similar to the wild-type ISN1 strain (Table 3.3 and Table 3.4). 

However, in the presence of arabionotriose and IPTG are quite distinct. 

 

Table 3.3 – Growth of different B. subtilis strains IQB642, IQB677 and IQB678 in the presence of 

distinct saccharides as sole carbon and energy source. 

Carbon Source 

Doubling Time (minutes)* 

IQB642 
(ΔmsmX::cat 

amyE::[Phyper-
spank-yurJ spec]    

[B. subtilis]) 

IQB677 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)- 
HD73_RS21400    

[B. thuringiensis]) 

IQB678 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
ugpC [S. aureus]) 

Arabinose 0.1% - 79.01±0.59 79.98±1.65 

Arabinotriose 0.1% No Growth No Growth No Growth 

Arabinotriose 0.1% + IPTG 1mM 94.60±0.50 141.18±3.76 205.47±8.28 

* Results adapted from Ferreira and Sá-Nogueira (strain IQB642, unpublished data) and Mendes and Sá-
Nogueira (strains IQB677 and IQB678, unpublished data). Cells were grown in CSK medium (see Materials 
and Methods). Growth kinetics parameters were determined and the results represent the average of 
three independent experiments, except the arabinose growth for IQB677 and IQB678 without IPTG, which 
were performed only twice by the authors. 

 

In previous studies, here presented for clarity, Ferreira and Sá-Nogueira (unpublished 

data) cloned yurJ gene from B. subtilis in pDR111 and transformed the plasmid in B. subtilis 

IQB495, yielding strain IQB642. This strain displays a doubling time very similar to that of B. 

subtilis IQB673, which possesses msmX gene, suggesting that YurJ is able to fulfil the role of 

MsmX in the AraNPQ transport system (Table 3.2 and 3.3). In previous experiments performed 

by Mendes and Sá-Nogueira (unpublished data) HD73_RS21400 gene from B. thuringiensis was 

cloned in pDR111, and posteriorly transformed in B. subtilis IQB495 resulting in strain IQB677. 

The growth rate of B. subtilis IQB677 is 1.4-fold higher than B. subtilis IQB673 (Table 3.2 and 

3.3), indicating that the ATPase from B. thuringiensis (HD73_RS21400) is able to partially 

complement the MsmX deficiency. Although the ATPase HD73_RS21400 shares 74% of amino 

acid (a. a.) identity to MsmX, it shows a lower degree of complementation than that of YurJ 

which only shares 58% of a. a. identity to MsmX.  

 Similarly, the ugpC gene from S. aureus was cloned in pDR111 and transformed in B. 

subtilis IQB495 resulting in strain IQB678, constructed by Mendes and Sá-Nogueira (unpublished   
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data), is only able to partially complement the msmX-null mutation, since the strain IQB678 

grows with a doubling time approximately 2-fold higher than B. subtilis IQB673 (Table 3.2 and 

3.3).  

 

Table 3.4 – Growth of different B. subtilis strains ISN8, ISN9 and ISN16 in the presence of distinct 

saccharides as sole carbon and energy source. 

Carbon Source 

Doubling Time (minutes)* 

ISN8 
 ( ΔmsmX::cat 

ΔamyE::Pspank(hy)-
msmK [S. 

pneumoniae]) 

ISN9 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
malK [E. coli]) 

ISN16 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
ycjV [E. coli]) 

Arabinose 0.1% 78.60±4.15 72.10±1.79 69.48±4.19 

Arabinotriose 0.1% No Growth No Growth No Growth 

Arabinotriose 0.1% + IPTG 1mM 168.46±8.50 No Growth No Growth 

*Cells were grown in CSK medium (see Materials and Methods). Growth kinetics parameters were 
determined and the results represent the average of three independent experiments (see Annexes for 
the complete data used to determine the doubling time).  

 

Likewise, MsmK from S. pneumoniae also exhibits a partial degree of complementation, 

as observed in the B. subtilis ISN8 strain (Figure 3.2) displaying  a doubling time approximately 

1.7-fold higher than the IQB673 strain (Table 3.4, Figure 3.6). UgpC and MsmK share a similar 

percentage of amino acids identity to MsmX, 66% and 64%, respectively, which is higher than 

that observed for YurJ, however in this genetic system complementation is less efficient.  

 
Figure 3.6 - Growth of B. subtilis ISN8 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK) in CSK medium 
using arabinose and arabionotriose as the sole carbon and energy source.  
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The different complementation degrees observed suggest that there is not a direct 

correlation between the percentage of amino acids identity that the homologs share with MsmX 

and the efficiency of functional complementation. However differences in one or two amino 

acids near the conserved region of the Q-loop (see Appendix 6.18) may affect the interaction 

with the TMDs through the “coupling helix” (ter Beek et al, 2014) and thus slowing down the 

uptake of arabionotriose and consequently the ability to growth. Another possible explanation 

for the observed results may be the differences in post-transcriptional regulation such as mRNA 

stability and/or RBS strength since the genes were cloned with their own RBS. Mendes and Sá-

Nogueira (unpublished data) verified differences in the RBS strength of the genes through the 

calculation of the translation initiation rates (RBS CalculatorV2.0 tool; Salis et al, 2009; Salis, 2011), 

however no correlation was found with the complementation results.   

B. subtilis strains ISN9 and ISN16 (Figure 3.2) possess the ATPases MalK and YcjV 

respectively, two proteins from the Gram-negative bacteria E. coli, and are unable to utilize 

arabinotriose as the sole carbon and energy source (Table 3.4, Figures 3.7 and 3.8). MalK displays 

the lowest a. a. identity to MsmX however, ATPase YcjV that does not substitute MsmX function 

in the transport system shares 64% of amino acid identity with MsmX, which is the same 

percentage shared between MsmK and MsmX. A closer look into the primary sequences 

alignment (see Appendix 6.18) highlights the absence of a small region of five amino acids in 

these two ATPases from E. coli, which is present in MsmX and all the other tested ATPases from 

Gram-positive bacteria.  

 

 

Figure 3.7 - Growth of B. subtilis ISN9 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK) in CSK medium 
using arabinose and arabionotriose as the sole carbon and energy source. 
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Figure 3.8 - Growth of B. subtilis ISN16 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV) in CSK medium 
using arabinose and arabionotriose as the sole carbon and energy source 

 

3.1.3.2. Recombinant MsmX and MsmX Homologs with a C-terminal His-tag 

 

To assess the intracellular level of all the ATPases expressed in B. subtilis modified versions 

of the proteins were constructed, strains ISN2-ISN7, and their functionality was examined by 

determination of the growth kinetic parameters of the different strains as described above. The 

eight strains were grown in minimal medium using arabinose (MsmX independent uptake) and 

arabionotriose (MsmX dependent uptake) as the sole carbon and energy source, and the results 

are summarized in Tables 3.5 and 3.6. In the presence of arabinose the B. subtilis strains ISN2-

ISN7 present the same growth rate as the strains with the wild-type proteins. However, in the 

minimal medium with arabionotriose and the inducer IPTG, strains ISN2-5 and ISN7 with the 

recombinant proteins show different kinetic parameters relatively to the wild-type proteins 

strains IQB673, ISN8, IQB677, IQB678 and IQB642, respectively (Tables 3.2, 3.3 and 3.4). 
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Table 3.5 – Growth of different B. subtilis strains IQB673, IQB676 and ISN2 in the presence of 

distinct saccharides as sole carbon and energy source. 

Carbon Source 

Doubling Time (minutes)* 

IQB673 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
msmX) 

IQB676 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
msmX(Glu3Ser, 

Ile364Ser)) 

ISN2 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
msmX-His6) 

Arabinose 0.1% 78.47±3.47 70.48±5.70 69.73±7.68 

Arabinotriose 0.1% No Growth No Growth No Growth 

Arabinotriose 0.1% + IPTG 1mM 107.60±3.85 110.57±2.26 204.95±7.10 

*Cells were grown in CSK medium (see Materials and Methods). Growth kinetics parameters were 
determined and the results represent the average of three independent experiments, except the 
arabinose growth for strain IQB676, which was performed only twice (see Annexes for the complete data 
used to determine the doubling time). The results of the strain IQB673 (Mendes and Sá-Nogueira, 
unpublished data) are the same presented in table 3.2 and are shown here to facilitate comparison.  

 

During the process of fine-tunning the genetic system, Mendes and Sá-Nogueira 

(unpublished results) constructed B. subtilis IQB676 strain (Figure 3.2) which possesses the 

msmX gene with modified C- and N-terminal sequences to generate the restriction sites of NheI 

and BglII to facilitate sub-cloning of the coding region of other ATPases (see 3.1.2 subsection). 

In the presence of arabinotriose and the inducer IPTG this strain displays a doubling time similar 

to the B. subtilis IQB673 strain (Table 3.5; Figure 3.9), demonstrating that the modifications 

introduced did not affect the function of the protein MsmX. However, in B. subtilis ISN2 strain 

(Figure 3.2), which possesses, in addition to the previous modifications, a C-terminal H6-tag, in 

the presence of arabionotriose with the inducer IPTG displays a doubling time 2-fold higher than 

that of B. subtilis IQB676 strain (Table 3.5, Figure 3.10). This observation suggests that the 

addition of the His-tail is affecting the ATPase function. 
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Figure 3.9 - Growth of B. subtilis IQB676 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX(Glu3Ser, 
Ile364Ser)) in CSK medium using arabinose and arabionotriose as the sole carbon and energy 
source. 
 

 

Figure 3.10 - Growth of B. subtilis ISN2 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-His6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 
 

Growth kinetic parameters of the five strains bearing the other ATPases under study (ISN3 

to ISN7) in minimal medium using arabinose (MsmX independent uptake) and arabionotriose 

(MsmX dependent uptake) as the sole carbon and energy source, were also determined and the 

results are summarized in Table 3.6. 
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Table 3.6 – Growth of different B. subtilis strains ISN3, ISN4, ISN5, ISN6 and ISN7 in the presence 

of distinct saccharides as sole carbon and energy source. 

Carbon 
Source 

Doubling Time (minutes)* 

ISN3 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
msmK-His6                     

[S. pneumoniae])) 

ISN4 
( ΔmsmX::cat 

ΔamyE::Pspank(hy)- 
HD73_RS21400-His6 

[B. thuringiensis]) 

ISN5 
(ΔmsmX::cat 

ΔamyE::Pspank
(hy)-ugpC-His6 

[S. aureus]) 

ISN6 
(ΔmsmX::cat 

ΔamyE::Pspank
(hy)-malK-His6 

[E.coli]) 

ISN7 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)
-yurJ-His6                     

[B. subtilis]) 

Arabinose 
0.1% 

68.68±2.31 69.98±1.79 74.19±3.53 71.24±3.79 69.79±2.42 

Arabinotriose 
0.1% 

No Growth No Growth No Growth No Growth No Growth 

Arabinotriose 
0.1% + IPTG 

1mM 
150.26±7.33 111.95±2.71 No Growth No Growth No Growth 

*Cells were grown in CSK medium (see Materials and Methods). Growth kinetics parameters were 
determined and the results represent the average of three independent experiments, except the 
arabinotriose growth for strains ISN5 and ISN6 without IPTG, which were performed only twice (see 
Annexes for the complete data used to determine the doubling time).  

 

The recombinant ATPase HD73_RS21400 (from B. thuringiensis) cloned in B. subtilis ISN4 

(Figure 3.2) fully complements MsmX function in the uptake of arabinotriose, since the doubling 

time of ISN4 (Table 3.6, Figure 3.12) decreased approximately 1.25-fold relatively to value 

displayed by the strain IQB677 with the wild-type protein (Table 3.3), being very similar to the 

value determined from the IQB673 strain growth (Table 3.5). It was also observed an 

improvement in the growth of B. subtilis ISN3 strain (Figure 3.2), with the recombinant MsmK 

from S. pneumonie (Table 3.6, Figure 3.11), when compared to strain ISN8 with the wild-type 

protein (Table 3.4). However, in the strains ISN5 and ISN7 (Figure 3.2) with the ATPases UgpC-

His6 and YurJ-His6, respectively, it was observed a significantly increase in the doubling time 

values (Table 3.6; Figure 3.13 (strain ISN5) and Figure 3.15 (strain ISN7)). The strain ISN6 (Figure 

3.2) with the ATPase MalK-His6 maintained the same growth rate (Table 3.6, Figure 3.14) 

compared to that of strain ISN9 with the wild-type protein (Table 3.4). 
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Figure 3.11 - Growth of B. subtilis ISN3 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-His6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 

 

 

Figure 3.12 - Growth of B. subtilis ISN4 (ΔmsmX::cat ΔamyE::Pspank(hy)-HD73_RS21400-His6) in 
CSK medium using arabinose and arabionotriose as the sole carbon and energy source.  

 

 

Figure 3.13 - Growth of B. subtilis ISN5 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-His6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source.  
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Figure 3.14 - Growth of B. subtilis ISN6 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-His6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 

 

 

Figure 3.15 - Growth of B. subtilis ISN7 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-His6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 
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present in the cells. A similar improvement of MsmK-His6 protein production due to the TIR of 

the msmX gene could also explain the decrease of the doubling time of the B. subtilis ISN3 strain. 

B. subtilis ISN5 represents a different situation due to a significantly poor growth relatively to 

that of strain IQB678 (UgpC, wild-type protein), which could mean that the RBS of the ugpC gene 

was stronger than the RBS of the msmX gene, representing a slower TIR and consequently a 

lower level of ATPase. However, in this case, it is also possible that the C-terminal His-tag may 

be interfering with UgpC function in the transport system. Less likely but also possible is the 

inference of the a. a. modified in the C- and N-terminal, although they are not involved in the 

main domains of the ATPase. The same hypotheses maybe be applied to B. subtilis ISN7 strain 

(with the ATPase YurJ-His6) that also exhibits non-growth phenotype in arabinotriose. 

 

3.1.4.  Analysis of the predicted proteins structures   

 
To understand the differences between the wild-type and the recombinant ATPases we 

performed a protein structure prevision. The online program I-TASSER was used to obtain 

automated three-dimensional protein structure from the input of the amino acid sequence, 

through multiple threading alignments and iterative structural assembly simulations.  

B. subtilis MsmX, like other ABC ATPases most likely will hydrolyse ATP as a homodimer, 

and analysing the prevision of the 3-D structure of the recombinant MsmX-His6 (Figure 3.16, B) 

it is possible to infer that the conformation of the 6xHis residues added to the C-terminal may 

be affecting the interface of the two monomers through steric effects, preventing the dimer to 

hydrolyse the ATP molecules and consequently not transmitting the conformational changes to 

the transmembrane domains. This conclusion is supported by the comparison with the available 

structures of the MalK dimer captured in different conformations (Figure 3.17). This analysis is 

further supported by comparison with the prevision of the 3-D structure of another recombinant 

ATPase MsmX (Figure 3.16, A) constructed by Ferreira and Sá-Nogueira (unpublished work), 

from the B. subtilis IQB622 strain, where two additional amino acids, Leucine and a Glutamic 

acid (LE) were inserted upstream of the 6xHis tail. In this structure it is visible a different 

conformation of the LE6xHis terminal end, with a torsion due to the addition of the two amino 

acids and possibly by the polar nature of the glutamic acid. In this situation the ATPase works 

normally because the B. subtilis IQB622 strain is able to grow in arabinotriose as the sole carbon 

and energy source as the wild-type ISN1.  
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Figure 3.16 – Representation of MsmX-His6 and MsmX-LEHis6 3-D structure model.  The 

structures were drawn in Pymol with the data obtained from the online program I-TASSER. A) Model of 
MsmX-LEHis6 protein from the strain IQB622 (Ferreira and Sá-Nogueira, unpublished data); (B) Model of 
MsmX-His6 protein from the strain ISN2; The N-terminal, the seven conserved domains and the C-terminal 
tag are highlighted with the following colours scheme: N-terminal (Brown), Walker A (blue), Q-loop 
(magenta), Signature (red), Walker B (green), D-loop (orange), H-loop (yellow) and the C-terminal tag 
(cyan), which is highlighted by a white arrow. 

 

 

 

Figure 3.17 - Ribbon representation of the MalK dimer. A) inward-facing conformation in the 

absence of ATP. B) outward-facing conformation with ATP in the active site of the NBDs. The NBD dimer 

interface is indicated by an orange circle and the NBDs C-terminal region is indicated by a black arrow, 

which highlights the increased dimer proximity between conformations. NBDs MalK are coloured in green 

and red; the TMDs MalG and MalF are coloured in yellow and blue, respectively (only displayed a small 

region, including the coupling helix). The nucleotides are displayed in ball-and-stick models. Adapted from 

Chen, 2013. 
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B. subtilis ISN5 (UgpC-His6) and ISN7 (YurJ-His6) strains exhibited an extreme change in 

the kinetic growth, relatively to the behaviour of the strains IQB678 and IQB642 respectively, 

carrying the wild-type proteins. Analysing the predicted structure of the two ATPases UgpC-His6 

and YurJ-His6 (Figure 3.18, A) and B) respectively) in similar manner to that observed with MsmX-

His6 (ISN2 strain; Figure 3.16, B), and we infer that the tail conformation may be causing steric 

effects in the junction of the homodimers, thus completely abolishing the role of the two 

ATPases in providing energy to the transport system. With the ATPases MsmK-His6 and 

HD73_RS21400-His6 we did not observe significant changes in their function upon the His-tag 

addition, since the kinetic growth of the respective strains ISN3 and ISN4, respectively, is very 

similar to the strains ISN8 and IQB677 with the wild-type proteins, respectively, which suggests 

that in these cases the conformation of the tail does not affect the dimerization process. The 

ATPase MalK remained non-functional upon the His-tag addition, since ISN6 strain with the 

recombinant protein exhibit non-growth phenotype like ISN9 strain with the wild-type protein. 

Therefore, MsmK-His6, HD73_RS21400-His6 and MalK-His6 3-D structure models are not relevant 

here for the discussion and are shown in the Annexes 6.64, 6.65, and 6.66. 

 

Figure 3.18 – Representation of UgpC-His6 and YurJ-His6 3-D structure model.  The structures 

were drawn in Pymol with the data obtained from the online program I-TASSER. A) Model of UgpC-His6 
protein from the strain ISN5; (B) Model of YurJ-His6 protein from the strain ISN7.; The N-terminal, the 
seven conserved domains and the C-terminal tag were highlighted with the following colours scheme: N-
terminal (brown), Walker A (blue), Q-loop (magenta), Signature (red), Walker B (green), D-loop (orange), 
H-loop (yellow) and the C-terminal tag (cyan), which is highlighted by a white arrow. 
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3.1.5.  Redesigning the genetic system for functional analysis 

The predicted models of the modified ATPases (His-tag) together with the observation 

made by Ferreira and Sá-Nogueira (B. subtilis IQB622) that the addition of two extra amino acids 

upstream of the 6xHis does not affect the function of recombinant MsmX, we decided to 

redesigned the genetic system by adding the same amino acids, Leucine and Glutamic acid, 

before the C-terminal 6xHis-tag. A schematic illustration of the modifications made in the 

genetic system and the new strains constructed are represented in Figures 3.19 and 3.20, 

respectively. 

 

Figure 3.19 – Schematic representation of the modifications made in the genetic system. A) 
Representation of the translated protein MsmX (green rectangle with stripes) and the translated MsmX 
homologs (rectangles with different colours for each homolog). MsmX protein’s C- and N-terminal are 
represented in the homologs by small green squares with stripes; the C-terminal LEH6-tag is represented   

B) 

A) 
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in all proteins with a small white rectangle with stripes. Protein sequence and the respective DNA 
sequence of all ATPases here studied are shown in Appendices 6.68 to 6.74. B) The msmX gene is 
represented by a green arrow and the promotor of the transcriptional unit is depicted by a grey arrow 
and a black box. Above is displayed the sequence of the 5’ and 3’-end of the msmX gene. The ribosome-
binding site, RBS, is underlined and the restriction sites, NheI (5´-end) and BglII (3´-end) are both double 
underlined. The system was redesigned through the insertion of the two amino acids Leu (L) and Glu (E), 
which are represented in bold, before the C-terminal H6-tag (3´-end) that is underlined in bold. 

ISN10 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-LEHis6) 

 

 

ISN11 (ΔmsmX::cat ΔamyE::Pspank(hy)-HD73_RS21400-LEHis6) 

 

 
ISN12 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-LEHis6) 

 

 
ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-LEHis6) 

 

 
ISN14 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-LEHis6) 

 

 
ISN15 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6) 

 

 

ISN17 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV-LEHis6) 

Figure 3.20 – Schematic representation of the amyE locus and the yxkf-msmX operon in the chromosome 
of several B. subtilis strains, constructed with the redesigned genetic system, used in the work (not drawn 
to scale).  
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3.1.5.1 Functional studies  

 
Growth kinetic parameters of the seven new strains in minimal medium using arabinose 

(MsmX independent uptake) and arabionotriose (MsmX dependent uptake) as the sole carbon 

and energy source, were determined and the results are summarized in Tables 3.7 and 3.8. The 

growth kinetics of the strains in arabinose remained unchanged in the three genetic systems 

used because the transport of this sugar is independent of MsmX and MsmX homologs. Thus, 

the analysis will focus on the growth kinetics of the strains in the presence of arabionotriose, 

which uptake is MsmX-dependent. 

 

Table 3.7 – Growth of different B. subtilis strains IQB676, ISN10, ISN13 and ISN15 in the presence 

of distinct saccharides as sole carbon and energy source. 

Carbon Source 

Doubling Time (minutes)* 

IQB676 
(ΔmsmX::cat 

ΔamyE::Pspank(hy)-
msmX(Glu3Ser, 

Ile364Ser)) 

ISN10 
( ΔmsmX::cat 

ΔamyE::Pspank(hy)- 
msmX-LEHis6) 

ISN13 
(ΔmsmX::cat 

ΔamyE::Pspank(
hy)-ugpC-LEHis6 

[S. aureus]) 

ISN15 
(ΔmsmX::cat 

ΔamyE::Pspank(
hy)-yurJ-LEHis6 

[B. subtilis]) 

Arabinose 0.1% 70.48±5.70 69.02±2.96 69.10±2.31 71.05±2.43 

Arabinose 0.1%    
+ IPTG 1mM 

74.15 69.85±3.42 69.51±2.17 71.39±0.43 

Arabinotriose 
0.1% 

No Growth No Growth No Growth No Growth 

Arabinotriose 
0.1% + IPTG 1mM 

110.57±2.26 115.98±9.05 373.72±45.76 211.54±12.83 

*Cells were grown in CSK medium (see Materials and Methods). Growth kinetics parameters were 
determined and the results represent the average of three independent experiments, except the growth 
in the presence of arabinose strain IQB676 with IPTG, which was performed once (see Annexes for the 
complete data used to determine the doubling time). The results of strain IQB676 are the same presented 
in table 6 (except the arabinose growth with IPTG) and are shown here to facilitate comparison.  

 

B. subtilis ISN10 (Figure 3.20), which harbours the msmX gene with the C-terminal LEH6-

tag, grown in arabionotriose and with the inducer ITPG displays a doubling time similar to that 

of strain IQB676 (msmX gene) (Table 3.7; Figure 3.21). The recombinant ATPase YurJ-LEH6 was 

able to partially complement MsmX function in AraNPQ transport system, as observed by the 

significant value of the growth rate of the strain ISN15 (Figure 3.20, Figure 3.23; Table 3.7) when 

compared to the inability to growth in the presence of arabinotriose displayed by strain ISN7 

(YurJ-His6) (Table 3.6). B. subtilis ISN13 (Figure 3.20), with the ATPase UgpC-LEH6, exhibit growth 
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although the doubling time is elevated (Table 3.7; Figure 3.22). Nevertheless, is an improvement 

when compared to strain ISN5 (UgpC-His6, Table 3.6).  

 

 

Figure 3.21 - Growth of B. subtilis ISN10 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-LEHis6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 

 

 

Figure 3.22 - Growth of B. subtilis ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-LEHis6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 
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Figure 3.23 - Growth of B. subtilis ISN15 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 

 

Growth kinetic parameters of the strains ISN11, ISN12, ISN14 and ISN17 in minimal 

medium using arabinose and arabionotriose as the sole carbon and energy source are 

summarized in the Table 3.8. 

 

Table 3.8 – Growth of different B. subtilis strains ISN11, ISN12, ISN14 and ISN17 in the presence 

of distinct saccharides as sole carbon and energy source. 

Carbon Source 

Doubling Time (minutes)* 

ISN11 
 (ΔmsmX::cat 

ΔamyE::Pspank(hy)- 
HD73_RS21400-

LEHis6 [B. 
thuringiensis] 

ISN12 
( ΔmsmX::cat 

ΔamyE::Pspank(hy)- 
msmK-LEHis6 [S. 
pneumoniae]) 

ISN14 
(ΔmsmX::cat 

ΔamyE::Pspank(
hy)-malK-LEHis6 

[E. coli]) 

ISN17 
(ΔmsmX::cat 

ΔamyE::Pspank(
hy)-ycjV-LEHis6   

[E. coli]) 

Arabinose 0.1% 72.80±5.33 71.01±8.99 71.40±5.43 68.51±5.69 

Arabinose 0.1%    
+ IPTG 1mM 

72.88±2.39 70.57±8.92 72.48±5.99 68.35±2.99 

Arabinotriose 
0.1% 

No Growth No Growth No Growth No Growth 

Arabinotriose 
0.1% + IPTG 1mM 

113.81±6.19 148.81±2.58 No Growth No Growth 

*Cells were grown in CSK medium (see Materials and Methods). Growth kinetics parameters were 
determined and the results represent the average of three independent experiments (see Annexes for 
the complete data used to determine the doubling time).  
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The ATPases HD73_RS21400-LEH6 and MsmK-LEH6 were able to complement MsmX 

function with the same degree as the previous proteins construction, since the doubling time 

values of the strains ISN11 (Figure 3.24) and ISN12 (Figure 3.25), respectively, presented in Table 

3.8 (construction of the strains are depicted in Figure 3.20), are very similar to the values of the 

strains ISN4 and ISN3, respectively (Table 3.6). The MalK-LEH6, strain ISN14 (Figure 3.20), was 

not able to complement the MsmX deficiency (Table 3.8; Figure 3.26), as previously observed 

with MalK-His6 (strain ISN6, Table 3.6). The ATPase YcjV was only designed with LEH6-tag and is 

produced in the B. subtilis ISN17 strain (Figure 3.20), which displays inability to growth in the 

medium with arabionotriose and ITPG (Table 3.8; Figure 3.27), the same result was observed 

with the B. subtilis ISN16 strain (wild-type protein; Table 3.4), indicating that the ATPase remains 

non-functional. 

 

 

Figure 3.24 - Growth of B. subtilis ISN11 (ΔmsmX::cat ΔamyE::Pspank(hy)-HD73_RS21400-

LEHis6) in CSK medium using arabinose and arabionotriose as the sole carbon and energy source. 
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Figure 3.25 - Growth of B. subtilis ISN12 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-LEHis6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 
 

 

Figure 3.26 - Growth of B. subtilis ISN14 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-LEHis6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source. 
 

 

Figure 3.27 - Growth of B. subtilis ISN17 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV-LEHis6) in CSK 
medium using arabinose and arabionotriose as the sole carbon and energy source.  
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3.1.5.2 Analysis of the 3-D structure models 

 
The results of the growth kinetic assays support the analysis of the predicted 3-D protein 

structures and the comparison with the protein structures from the previous construction. 

MsmX ATPase structure differences were already analysed above (3.1.4 subsection) (Figure 

3.16), and corroborate the normalization observed in the doubling time of the strain ISN10 with 

the redesigned genetic system. In the ATPase YurJ-LEH6 model (from strain ISN15; Figure 3.28, 

B) the structure of the improved tail is spatially more close to the protein in comparison with 

the structure of the tail (H6) in the ATPase YurJ-H6 model (strain ISN7; Figure 3.28, A), and 

therefore may allow the formation of the homodimer, improving the hydrolyse of the ATP 

molecules and consequently the transmission of the conformational changes to the 

transmembrane domains that permit the entrance of arabionotriose into the cell (ter Beek et al, 

2014). 

 

Figure 3.28 – Representation of YurJ-H6 and YurJ-LEH6 3-D structure model.  The structures were 

drawn in Pymol with the data obtained from the online program I-TASSER. A) Model of YurJ-H6 protein 

from the strain ISN7; (B) Model of YurJ-LEH6 protein from the strain ISN15; The N-terminal, the seven 

conserved domains and the C-terminal tag were highlighted with the following colours scheme: N-

terminal (brown), Walker A (blue), Q-loop (magenta), Signature (red), Walker B (green), D-loop (orange), 

H-loop (yellow) and the C-terminal tag (cyan), ), which is highlighted by a white arrow. 

 

  

A) B) 
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The B. subtilis ISN13 strain (UgpC-LEH6) shown the ability to grown, with arabionotriose 

in the medium and the inducer ITPG, although displaying a very high value of doubling time. This 

result is supported with the analysis of the 3-D structure of the ATPase with the improved tail 

(UgpC-LEH6; Figure 3.29, B) versus the first recombinant ATPase (UgpC-H6 from strain ISN5; 

Figure 3.29, A), where it is visible a change in the position of the tail, relatively to the protein. 

However, the improvement of the ATPase function was not that significant as it was observed 

for the ATPase YurJ, and even in this case the improvement is not ideal (wild-type protein). These 

observations may indicate that the tail construction needs further modifications or that the 

translation initiation rate is in fact interfering with the number of protein copies in the cell 

(discussed in 3.1.3.2 subsection) or that the mRNA structure may be less stable. The 

recombinant ATPase YcjV-LEH6 is non-functional like the wild-type ATPase YcjV since the 

respective strains ISN17 and ISN16 display a non-growth phenotype, therefore YcjV-LEH6 3-D 

structure model is not relevant here for the discussion and is shown in the Appendix 6.67. 

 

 

Figure 3.29 – Representation of UgpC-H6 and UgpC-LEH6 3-D structure model.  The structures 

were drawn in Pymol with the data obtained from the online program I-TASSER. A) Model of UgpC-H6 

protein from the strain ISN5; (B) Model of UgpC-LEH6 protein from the strain ISN13; The N-terminal, the 

seven conserved domains and the C-terminal tag were highlighted with the following colours scheme: N-

terminal (brown), Walker A (blue), Q-loop (magenta), Signature (red), Walker B (green), D-loop (orange), 

H-loop (yellow) and the C-terminal tag (cyan), which is highlighted by a white arrow. 

 

  

A) B) 
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3.2. Detection of the in vivo accumulation of the recombinant ATPases 

in the cells. 

 
 To confirm the production of the different recombinant ATPases in the B. subtilis strains 

ISN10-15 and ISN17, constructed with the redesigned system (LEH6), cell extracts were prepared 

from these strains grown in minimal medium supplemented with arabinose or arabinotriose and 

in the presence or absence of the inducer IPTG, and analysed by Western-blot using an anti-His6-

specific antibody. Purified MsmX-LEHis6 was used as a positive control.  The results of western-

blot analysis (films and the respective transference membrane) are shown in Figures 3.30-3.33. 

In the experiment to detect the accumulation of ATPase in cells grown in the presence of 

arabinose and the inducer IPTG it is visible the presence of a single band in wells 2 to 8, with a 

position that corresponds to molecular weight between 40 kDa and 48 kDa. 

A)                                                                  B) 

 

Figure 3.30–Western-Blot analysis of B. subtilis cell extracts, obtained from CSK medium with 
arabinose 0.1% in inducing conditions. A) Nitrocelulose membrane with the fractionated proteins 

transferred from the gel of SDS-PAGE (12.5%) (10 μg of total extract, except 20 μg of total extract of 
IQB622, and 0.6 μg of purified MsmX-LEHis6 were loaded); B) Autoradiography plate after His-tag 
detection using an anti-His6-specific antibody (3 min exposure). LMW represents the Low Molecular 
Weight Protein Marker (NZYTech). 1) total extract of IQB622 (msmX-His6 cat); 2) total extract of ISN10 
(ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-LEHis6); 3) total extract of ISN11 (ΔmsmX::cat ΔamyE::Pspank(hy)-

HD73_RS21400-LEHis6); 4) total extract of ISN12 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-LEHis6); 5) total extract 
of ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-LEHis6); 6) total extract of ISN15 (ΔmsmX::cat ΔamyE::Pspank(hy)-

yurJ-LEHis6); 7) total extract of ISN17 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV-LEHis6); 8) total extract of ISN14 
(ΔmsmX::cat ΔamyE::Pspank(hy)-malK-LEHis6); 9) purified MsmX-LEHis6. The position of the purified MsmX-
LEHis6 (MW= 42.431 kDa) is indicated with a blue triangle. 
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Those bands correspond to the different ATPases in study, which predicted molecular 

weight is displayed in Appendix 6.75, when compared to the 42.431 kDa band of the purified 

MsmX-LEHis6 protein detected in well 9. The MsmX-LEHis6 from B. subtilis IQB622 strain was 

detected in previous experiments in the same minimal medium with arabinose (without IPTG) 

by Ferreira and Sá-Nogueira (unpublished work), however in this experiment we failed to detect 

the band corresponding to the protein (well 1). The transference process of the proteins from 

the gel to the membrane was successful, as is indicated by the membrane revealed with Ponceau 

(Figure 3.30, A). The different intensity of the signal may correspond to distinct concentration 

of ATPases in the cell and/or better exposition to the His-tag to the antibody.  

 

A)                                                              B)  

 
 

Figure 3.31–Western-Blot analysis of B. subtilis cell extracts, obtained from CSK medium with 
arabinose 0.1% in non-inducing conditions. A) Nitrocelulose membrane with the fractionated 

proteins transferred from the gel of SDS-PAGE (12.5%) (10 μg of total extract and 0.6 μg of purified MsmX-
LEHis6 were loaded); B) Autoradiography plate after His-tag detection using an anti-His6-specific antibody 
(4 min exposure). LMW represents the Low Molecular Weight Protein Marker (NZYTech). 1) Empty; 2) 
total extract of ISN10 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-LEHis6); 3) total extract of ISN11 (ΔmsmX::cat 

ΔamyE::Pspank(hy)-HD73_RS21400-LEHis6); 4) total extract of ISN12 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-

LEHis6); 5) total extract of ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-LEHis6); 6) total extract of ISN15 
(ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6); 7) total extract of ISN17 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV-

LEHis6); 8) total extract of ISN14 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-LEHis6); 9) purified MsmX-LEHis6. The 
position of the purified MsmX-LEHis6 (MW= 42.431 kDa) is indicated with a blue triangle. 

 

In non-inducing conditions (absence of IPTG) the ATPases are not produced (Figure 3.31, 

B), since the only band observed corresponds to the purified MsmX-LEHis6 protein (42.431 kDa). 

Again, the transference process was successful as observed by the coloured bands in the 

membrane after staining with Ponceau (Figure 3.31, A). These results demonstrate the 

effectiveness of the control by the inducer over the expression and production of the ATPases 

in this genetic system.   

kDa 

LMW  1      2       3     4     5      6       7      8     9 LMW     1      2      3      4      5      6      7      8     9 

48 

96 
66 

40 

32 
26 
 

18.5 



Chapter 3 – Results and Discussion 

66 

The uptake of arabionotriose through the AraNPQ transport is dependent of the multitask 

MsmX (Ferreira and Sá-Nogueira, 2010), and the same is valid to MsmX homologs 

HD73_RS21400, MsmK, UgpC and YurJ, which are able to complement in vivo the MsmX 

function. However, the homologs MalK and YcjV are not able to complement MsmX function, 

neither one of the recombinant forms of YurJ and UgpC (YurJ-His6 and UgpC-His6, respectively; 

see previous sections). Therefore, is essential to verify the present of the ATPases in the cells in 

order to clarify this aspect and for this purpose western-blot analysis was also performed with 

extracts of cells grown in the presence of arabinotriose with (Figure 3.32) or without IPTG (Figure 

3.33).  

 

A)                                                                       B) 

 

 

Figure 3.32–Western-Blot analysis of B. subtilis cell extracts, obtained from CSK medium with 
arabinotriose 0.1% in inducing conditions. A) Nitrocelulose membrane with the fractionated proteins 

transferred from the gel of SDS-PAGE (12.5%) (10 μg of total extract and 0.6 μg of purified MsmX-LEHis6 
were loaded); B) Autoradiography plate after His-tag detection using an anti-His6-specific antibody (30 sec 
exposure). LMW represents the Low Molecular Weight Protein Marker (NZYTech). 1) total extract of 
IQB622 (msmX-His6 cat); 2) total extract of ISN10 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-LEHis6); 3) total 
extract of ISN11 (ΔmsmX::cat ΔamyE::Pspank(hy)-HD73_RS21400-LEHis6); 4) total extract of ISN12 (ΔmsmX::cat 

ΔamyE::Pspank(hy)-msmK-LEHis6); 5) total extract of ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-LEHis6); 6) total 
extract of ISN15 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6); 7) total extract of ISN17 (ΔmsmX::cat 

ΔamyE::Pspank(hy)-ycjV-LEHis6); 8) total extract of ISN14 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-LEHis6); 9) 
purified MsmX-LEHis6. The position of the purified MsmX-LEHis6 (MW= 42.431 kDa) is indicated with a blue 
triangle. 

 

In the presence of arabinotriose and IPTG the western-blot film (figure 3.32, B)) presents 

a single band that corresponds to a molecular mass between 40 kDa and 48 kDa in well 2 to 6 

and well 8, which parallel to all the different ATPases studied in this work thereby demonstrating 

the presence of the proteins in the respective strains. The band corresponding to YcjV-LEHis6 is 

not visible is this film (well 7), however after increasing the exposure to 3 min it is possible to 

visualize a discreet signal (data not shown). The results are supported by the positive control   
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(purified MsmX-LEHis6) detected in well 9 with a corresponding molecular weight of 42.431 kDa. 

The MsmX-LEH6 from IQB622 (grown in non-induction conditions) also displays a band in well 1, 

although with low intensity. The transference process of the proteins from the gel to the 

membrane was successful, as is indicated by staining with Ponceau (Figure 3.32, A)). As 

discussed above the differences in the intensity of the signal may correspond to distinct 

concentration of ATPases in the cell and/or better exposition to the His-tag to the antibody.  

 

A)                                                                                 B) 

 

Figure 3.33–Western-Blot analysis of B. subtilis cell extracts, obtained from CSK medium with 
arabinotriose 0.1% in non-inducing conditions. A) Nitrocelulose membrane with the fractionated 

proteins transferred from the gel of SDS-PAGE (12.5%) (10 μg of total extract and 0.6 μg of purified MsmX-
His were loaded); B) Autoradiography plate after His-tag detection using an anti-His6-specific antibody 
(30 sec exposure). LMW represents the Low Molecular Weight Protein Marker (NZYTech). 1) total extract 
of ISN10 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-LEHis6); 2) total extract of ISN11 (ΔmsmX::cat 

ΔamyE::Pspank(hy)-HD73_RS21400-LEHis6); 3) total extract of ISN12 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-

LEHis6); 4) total extract of ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-LEHis6); 5) total extract of ISN15 
(ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6); 6) total extract of ISN17 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV-

LEHis6); 7) total extract of ISN14 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-LEHis6); 8) Empty; 9) purified MsmX-
LEHis6. The position of the purified MsmX-LEHis6 (MW= 42.431 kDa) is indicated with a blue triangle. 

 

In non-inducing conditions the B. subtilis strains ISN10-15 and ISN17 do not accumulate 

the respective recombinant ATPases (Figure 3.33, B)) as observed by the absence of bands 

corresponding to the different ATPases. The positive control (MsmX-LEHis6 purified) is visible in 

well 9 with a MW = 42.431 kDa, demonstrating that the technique was successful. The 

transference process of the proteins from the gel to the membrane was also successful, as seen 

by the bands revealed with Ponceau (Figure 3.33, A)). 

These results obtained in this section need to be validate by repeating the experiments. 
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4. Concluding Remarks and Future Perspectives 

 
The discovery of antibiotics and its fabrication constitute a great accomplishment in the 

field of medicine, by providing the necessary tools to patients that fight infections caused by 

pathogenic microbes. However, pathogenic bacteria remains a constant concern to the 

population due to the antibiotic resistance of this organisms through constant mutations in their 

genome,  leading to a pressing need in the research for new anti-infective strategies.  

Bacterial metabolism has been closely related with virulence of pathogenic strains, 

namely in Salmonella Typhimurium, Vibrio cholera, Helicobacter pylori, etc (Rohmer et al, 2011). 

Within the metabolic components, ABC importers constitute an attractive target for vaccine or 

therapy strategies since they are exclusive to prokaryotes (few exceptions in plants). A 

therapeutic approach could be the use of ABC transporters as a novel drug delivery specific 

system through the recognition and bound of the transporters to engineered antimicrobials or, 

another approach, could be the direct disruption of the transport system. A protein-based 

vaccine with transporter components is a strong candidate in providing a selective pressure in 

the medium to eliminate strains with the target transporter (Buckwalter et al, 2015).  

In this work we have studied the functionality of distinct ATPases from pathogenic species 

through their ability to complement MsmX ATPase function in the AraNPQ ABC-type importer, 

in a B. subtilis msmX-null mutant. The results indicated that an ATPase from B. thuringiensis was 

able to fulfill the role of MsmX in its absence, while the YurJ ATPase from B. subtilis displayed 

only a partial degree of complementation. In addition to intra- and interspecies 

interchangeability of Bacillus ATPases, we show the existence of different genera 

interchangeability through the ability of the ATPases from Streptococcus pneumoniae and 

Staphylococcus aureus to complement to a certain degree the B. subtilis MsmX function in vivo. 

This phenomenon was observed only with ATPases from Gram-positive bacteria since the two 

ATPases from the Gram-negative bacterium Escherichia coli were not functional in B. subtilis. 

Western-blot experiments showed that all the different ATPases were present in the samples of 

the respective B. subtilis strains, which indicates that the proteins are being translated in the 

cells. In summary, our study shows that B. subtilis can be use as model for the study of bacterial 

multitask ATPases.  
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Here, we have redesigned a genetic system that provides a tool for the characterization 

of interspecies interchangeability in bacterial carbohydrate transport and particularly in 

bacterial pathogens. However, it is still possible to further improve the genetic system and hence 

the results. Two ATPases, YurJ from B. subtilis and UgpC from S. aureus, exhibited significantly 

different results when comparing the wild-type form to the recombinant form. In order to clarify 

this aspect, different genetic systems could be constructed to isolate and study each of the 

variables that were introduced in the actual genetic system: C- and N-terminal modifications, 

RBS and terminator of the msmX gene, and the His-tag construction.  

Regarding the non-functional ATPases from E. coli, we have noticed in the multiple 

sequence alignments an absence of five amino acids in a specific region of only these two 

proteins. In order to determine the importance of this region to the function of the protein 

function, site-directed mutagenesis experiments may be conducted in order to add the 

nucleotides of the msmX gene that correspond to that five amino acids, and see if the protein 

became functional in B. subtilis, in particular YcjV, which displays high amino acid identity to 

MsmX. We may also evaluate the complementation degree of these two ATPases from the 

Gram-negative bacteria E.coli, in another sugar ABC transporter energized by MsmX ATPase in 

B. subtilis. Additionally, we may also test ATPases from other Gram-negative bacteria rather than 

E. coli. Furthermore, crystallographic studies of the MsmX currently in progress will allow new 

insight into the molecular mechanism of this type of transport and versatile ATPases, together 

with future mutagenic and protein-protein interaction studies. 
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6. Appendices 

Appendix 6.1 – Map of pDR111 (gift from David Rudner, Harvard University). 

 

Appendix 6.2 – Map of pSN74 (Sá-Nogueira, unpublished). Primers ARA411, ARA442 and ARA430 

were used for DNA sequencing. 
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Appendix 6.3 – Map of pSN75. Insertion of a 1112bp fragment containing msmK gene from pAM7 

(amplified with primers ARA773 and ARA774, and digested with NheI and BglII) between the NheI and 

BglII sites of pSN74 (Sá-Nogueira, unpublished). Primers ARA442 and ARA430 were used for DNA 

sequencing. 

 

 

Appendix 6.4 – Map of pPS1. Insertion of a 1082bp fragment containing HD73_RS21400 gene, from B. 

thuringiensis serovar kurstaki str. HD73 (amplified with primers ARA851 and ARA852, and digested with 
NheI and BglII) between the NheI and BglII sites of pSN74. Primers ARA411, ARA442 and ARA430 were 
used for DNA sequencing.  
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Appendix 6.5 – Map of pPS2. Insertion of a 1079bp fragment containing ugpC gene from S. aureus 

subsp. aureus ST398 (amplified with primers ARA843 and ARA844, and digested with NheI and BglII) 
between the NheI and BglII sites of pSN74. Primers ARA411, ARA442 and ARA430 were used for DNA 
sequencing. 

 
 

Appendix 6.6 – Map of pPS3. Insertion of a 1097bp fragment containing malK gene from E. coli K-12 

(amplified with primers ARA847 and ARA848, and digested with NheI and BglII) between the NheI and 
BglII sites of pSN74. Primers ARA411, ARA442 and ARA430 were used for DNA sequencing. 
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Appendix 6.7 – Map of pPS4. Insertion of a 1085bp fragment containing yurJ gene from B. subtilis 

168T+, (amplified with primers ARA837 and ARA838, and digested with NheI and BglII) between the NheI 

and BglII sites of pSN74. Primers ARA411, ARA442 and ARA430 were used for DNA sequencing. 

 

 

Appendix 6.8 – Map of pPS5. Insertion of a 1241bp fragment containing msmK gene (amplified from 

pAM7 with primers ARA855 and ARA749, and digested with SalI and SphI) between the SalI and SphI sites 

of pDR111. Primers ARA442 and ARA430 were used for DNA sequencing. 
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Appendix 6.9 – Map of pPS6. Insertion of a 1220bp fragment containing malK gene from E. coli K-12 

(amplified with primers ARA858 and ARA859, and digested with HindIII and SphI) between the HindIII and 

SphI sites of pDR111. Primers ARA442 and ARA430 were used for DNA sequencing. 

 

 

Appendix 6.10 – Map of pPS7. Insertion of a 1452bp fragment, containing LacI gene and the terminal 

part of msmX gene with two novel amino acids Leu and Glu followed by the C-terminal His-tag (amplified 

from pPS74 with primers ARA854 and ARA632, and digested with BglII and BamHI), between the BglII 
and BamHI sites of pSN74. Primers ARA662 and ARA841 were used for DNA sequencing. 
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Appendix 6.11 – Map of pPS8. Insertion of a 1082bp fragment containing HD73_RS21400 gene, from 

B. thuringiensis serovar kurstaki str. HD7 (amplified with primers ARA851 and ARA852, and digested with 

NheI and BglII) between the NheI and BglII sites of pPS7. Primers ARA442 and ARA430 were used for DNA 

sequencing. 

 
 

Appendix 6.12 – Map of pPS9. Insertion of a 1112bp fragment containing msmK gene from pAM7 

(amplified with primers ARA773 and ARA774, and digested with NheI and BglII) between the NheI and 
BglII sites of pPS7. Primers ARA442 and ARA430 were used for DNA sequencing. 
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Appendix 6.13 – Map of pPS10. Insertion of a 1079bp fragment containing ugpC gene from S. aureus 

subsp. aureus ST398 (amplified with primers ARA843 and ARA844, and digested with NheI and BglII) 

between the NheI and BglII sites of pPS7. Primers ARA442 and ARA430 were used for DNA sequencing. 

 

 

Appendix 6.14 – Map of pPS11. Insertion of a 1097bp fragment containing malK gene from E. coli K-

12 (amplified with primers ARA847 and ARA848, and digested with NheI and BglII) between the NheI and 
BglII sites of pPS7. Primers ARA442 and ARA430 were used for DNA sequencing. 
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Appendix 6.15 – Map of pPS12. Insertion of a 1085bp fragment containing yurJ gene from B. subtilis 

168T+ (amplified with primers ARA837 and ARA838, and digested with NheI and BglII) between the NheI 
and BglII sites of pPS7. Primers ARA442, ARA741 and ARA430 were used for DNA sequencing. 

 

 

Appendix 6.16 – Map of pPS13. The fragment (1191bp) containing ycjV gene, obtained from E. coli K-

12 through site-directed mutagenesis by overlapping PCR (amplified with the internal mutagenic 
primers ARA862 and ARA863, and the flanking primers ARA860 and ARA861), was digested with HindIII 
and SphI and subsequently cloned in pDR111 HindIII-SphI. Primers ARA442 and ARA430 were used for 
DNA sequencing. 
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Appendix 6.17 – Map of pPS14. The fragment (1064bp) containing ycjV gene, obtained from E. coli K-

12 through site-directed mutagenesis by overlapping PCR (amplified with the internal mutagenic primers 

ARA862 and ARA863, and the flanking primers ARA845 and ARA846), was digested with NheI and BglII 

and subsequently cloned in pPS7 NheI-BglII. Primers ARA442 and ARA430 were used for DNA sequencing. 
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Appendix 6.18 –MsmX and MsmX homologs (wild-type form) sequence alignment. The amino 

acid sequences of MsmX, YurJ (from B. subtilis) HD73_RS21400 (from B. thuringiensis), UgpC (from S. 

aureus), MsmK (from S. pneumoniae), MalK and YcjV (both from E.coli) were aligned using ClustalOmega 

(Sievers et al, 2011). Identical amino acids are marked with an asterisk, while substitutions with residues 

displaying the same properties are marked with “:” and semi-conservative substitutions are marked with 

a “.”. Gaps in the amino acid sequence are represented by a “-“. The conserved motifs are labelled in 

colors. The red bar indicates the region of the proteins predicted to interact with the TMDs of AraPQ. 

  

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis  
S. aureus 
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis  
S aureus 
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis  
S. aureus 
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis  
S. aureus 
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis  
S. aureus 
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis  
S. aureus 
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis  
S. aureus 
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

H-loop 

Q-loop 

Signature Walker B D-loop 

Walker A 
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Appendix 6.19 –MsmX and MsmX homologs (recombinant form) sequence alignment. The 

amino acid sequences of MsmX-LEH6, YurJ-LEH6 (from B. subtilis) HD73_RS21400-LEH6 (from B. 

thuringiensis), UgpC-LEH6 (from S. aureus), MsmK-LEH6 (from S. pneumoniae), MalK-LEH6 and YcjV-LEH6 

(both from E.coli) were aligned using ClustalOmega (Sievers et al, 2011). Identical amino acids are marked 

with an asterisk, while substitutions with residues displaying the same properties are marked with “:” and 

semi-conservative substitutions are marked with a “.”. Gaps in the amino acid sequence are represented 

by a “-“. The conserved motifs are labelled in colors. The red bar indicates the region of the proteins 

predicted to interact with the TMDs of AraPQ. 

  

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis 
S. aureus  
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

Walker A 

Q-loop 

Signature Walker B D-loop 

H-loop 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis 
S. aureus  
S. pneumoniae  
E. coli (MalK) 
E. coli (YcjV) 

B. subtilis (MsmX) 
B. subtilis (YurJ) 
B. thuringiensis 
S. aureus  
S. pneumoniae  
E. coli (MalK) 
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Appendix 6.20 – Genomic context of HD73_RS21400 from Bacillus thuringiensis. The arrows 

denote the genes present in the HD73_RS21400 gene region. Below each arrow is indicated the putative 
function of encoded protein based on BLAST results. 

 

 

 

Appendix 6.21 – Genomic context of SAPIG_RS01080 (or ugpC) from Staphylococcus aureus. 
The arrows denote the genes present in the SAPIG_RS01080 gene region. Below each arrow is indicated 
the putative function of encoded protein based on BLAST results. 

 

 

 

Appendix 6.22 – Genomic context of msmK from Streptococcus pneumoniae. The arrows denote 

the genes present in the msmK gene region. Below each arrow is indicated the putative function of 
encoded protein based on BLAST results. 
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Appendix 6.23 – Genomic context of malK from Escherichia coli. The arrows denote the genes 

present in the malK gene region. Below each arrow is indicated the putative function of encoded protein 
based on BLAST results. 

 

 

 

Appendix 6.24 – Genomic context of yurJ from Bacillus subtilis. The arrows denote the genes 

present in the yurJ gene region. Below each arrow is indicated the putative function of encoded protein 
based on BLAST results. 

 

 

Appendix 6.25 – Genomic context of ycjV from Escherichia coli. The arrows denote the genes 

present in the ycjV gene region, which belongs in a large operon that is not displayed in full. Below each 
arrow is indicated the putative function of encoded protein based on BLAST results. 
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Appendix 6.26 - Growth assays of B.subtilis ISN1 (ΔamyE::Pspank(hy) -spec) using arabinose 
0.1% (w/v). OD600nm plotted vs. time(h). 

 
 

Appendix 6.27 - Growth assays of B.subtilis ISN1 (ΔamyE::Pspank(hy) -spec) using arabinotriose 
(A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 
 

Appendix 6.28 - Growth assays of B.subtilis IQB672 (ΔmsmX::cat ΔamyE::Pspank(hy)) using 
arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 
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Appendix 6.29 - Growth assays of B.subtilis IQB672 (ΔmsmX::cat ΔamyE::Pspank(hy)) using 
arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.30 - Growth assays of B. subtilis IQB676 (ΔmsmX::cat ΔamyE::Pspank(hy)-
msmX(Glu3Ser, Ile364Ser)) using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.31 - Growth assays of B. subtilis IQB676 (ΔmsmX::cat ΔamyE::Pspank(hy)-
msmX(Glu3Ser, Ile364Ser)) using arabinotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted 
vs. time(h). 
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Appendix 6.32 - Growth assays of B. subtilis ISN2 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-His6) 
using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.33 - Growth assays of B. subtilis ISN2 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-His6)  
using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.34 - Growth assays of B. subtilis ISN3 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-His6) 
using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 
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Appendix 6.35 - Growth assays of B. subtilis ISN3 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-His6) 
using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.36 - Growth assays of B. subtilis ISN4 (ΔmsmX::cat ΔamyE::Pspank(hy)- 

HD73_RS21400-His6) using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.37 - Growth assays of B. subtilis ISN4 (ΔmsmX::cat ΔamyE::Pspank(hy)- 
HD73_RS21400-His6) using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. 
time(h). 
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Appendix 6.38 - Growth assays of B. subtilis ISN5 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-His6) 
using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.39 - Growth assays of B. subtilis ISN5 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-His6) 
using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.40 - Growth assays of B. subtilis ISN6 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-His6) 
using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 
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Appendix 6.41 - Growth assays of B. subtilis ISN6 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-His6) 
using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.42 - Growth assays of B. subtilis ISN7 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-His6) 
using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.43 - Growth assays of B. subtilis ISN7 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-His6) 
using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 
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Appendix 6.44 - Growth assays of B. subtilis ISN8 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK) using 
arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.45 - Growth assays of B. subtilis ISN8 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK) using 
arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.46 - Growth assays of B. subtilis ISN9 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK) using 
arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 
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Appendix 6.47 - Growth assays of B. subtilis ISN9 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK) using 
arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.48 - Growth assays of B. subtilis ISN10 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-
LEHis6) using arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.49 - Growth assays of B. subtilis ISN10 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmX-
LEHis6) using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 
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Appendix 6.50 - Growth assays of B. subtilis ISN11 (ΔmsmX::cat ΔamyE::Pspank(hy)-
HD73_RS21400-LEHis6) using arabinose 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.51 - Growth assays of B. subtilis ISN11 (ΔmsmX::cat ΔamyE::Pspank(hy)-
HD73_RS21400-LEHis6) using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. 
time(h). 

 

 

Appendix 6.52 - Growth assays of B. subtilis ISN12 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-
LEHis6) using arabinose 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 
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Appendix 6.53 - Growth assays of B. subtilis ISN12 (ΔmsmX::cat ΔamyE::Pspank(hy)-msmK-
LEHis6) using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.54 - Growth assays of B. subtilis ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-
LEHis6) using arabinose 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.55 - Growth assays of B. subtilis ISN13 (ΔmsmX::cat ΔamyE::Pspank(hy)-ugpC-
LEHis6) using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 
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Appendix 6.56 - Growth assays of B. subtilis ISN14 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-
LEHis6) using arabinose 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.57 - Growth assays of B. subtilis ISN14 (ΔmsmX::cat ΔamyE::Pspank(hy)-malK-
LEHis6) using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.58 - Growth assays of B. subtilis ISN15 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6) 
using arabinose 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 
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Appendix 6.59 - Growth assays of B. subtilis ISN15 (ΔmsmX::cat ΔamyE::Pspank(hy)-yurJ-LEHis6) 
using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.60 - Growth assays of B. subtilis ISN16 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV) using 
arabinose 0.1% (w/v). OD600nm plotted vs. time(h). 

 

 

Appendix 6.61 - Growth assays of B. subtilis ISN16 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV) using 
arabionotriose (A3) 0.1% (w/v). OD600nm plotted vs. time(h). 

  

0.01

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

O
D

6
0

0
n

m

Time (h)

A3 0.1% (1)

A3 0.1% + ITPG (1)

A3 0.1% (2)

A3 0.1% + ITPG (2)

A3 0.1% (3)

A3 0.1% + ITPG (3)

0.01

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

O
D

6
0

0
n

m

Time (h)

Arabinose 0.1% (1)

Arabinose 0.1% (2)

Arabinose 0.1% (3)

0.01

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

O
D

6
0

0
n

m

Time (h)

A3 0.1% (1)

A3 0.1% + ITPG (1)

A3 0.1% (2)

A3 0.1% + ITPG (2)

A3 0.1% (3)

A3 0.1% + ITPG (3)



Chapter 6  – Appendices 

112 

Appendix 6.62 - Growth assays of B. subtilis ISN17 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV-LEHis6) 
using arabinose 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 

 

 

Appendix 6.63 - Growth assays of B. subtilis ISN17 (ΔmsmX::cat ΔamyE::Pspank(hy)-ycjV-LEHis6) 
using arabionotriose (A3) 0.1% (w/v) and IPTG 1mM. OD600nm plotted vs. time(h). 
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Appendix 6.64 – Representation of MsmK-His6 and MsmK-LEHis6 3-D structure model. The 

structures were drawn in Pymol with the data obtained from the online program I-TASSER. A) Model of 
MsmK-His6 protein from the strain ISN3; (B) Model of MsmK-LEHis6 protein from the strain ISN12.; The N-
terminal, the seven conserved domains and the C-terminal tag were highlighted with the following colours 
scheme: N-terminal (brown), Walker A (blue), Q-loop (magenta), Signature (red), Walker B (green), D-loop 
(orange), H-loop (yellow) and the C-terminal tag (cyan), which is highlighted by a white arrow. 

 
A)                                                                                           B)  

 

 

Appendix 6.65 – Representation of HD73_RS2140-His6 and HD73_RS21400-LEHis6 3-D 
structure model. The structures were drawn in Pymol with the data obtained from the online program 

I-TASSER. A) Model of HD73_RS21400-His6 protein from the strain ISN4; (B) Model of HD73_RS21400-
LEHis6 protein from the strain ISN11; The N-terminal, the seven conserved domains and the C-terminal 
tag were highlighted with the following colours scheme: N-terminal (brown), Walker A (blue), Q-loop 
(magenta), Signature (red), Walker B (green), D-loop (orange), H-loop (yellow) and the C-terminal tag 
(cyan), which is highlighted by a white arrow. 

 
A)                                                                                           B) 

  



Chapter 6  – Appendices 

114 

Appendix 6.66 – Representation of MalK-His6 and MalK-LEHis6 3-D structure model. The 

structures were drawn in Pymol with the data obtained from the online program I-TASSER. A) Model of 
MalK-His6 protein from the strain ISN6; (B) Model of MalK-LEHis6 protein from the strain ISN14; The N-
terminal, the seven conserved domains and the C-terminal tag were highlighted with the following colours 
scheme: N-terminal (brown), Walker A (blue), Q-loop (magenta), Signature (red), Walker B (green), D-loop 
(orange), H-loop (yellow) and the C-terminal tag (cyan), which is highlighted by a white arrow. 

 
A)                                                                                                B) 

 
 
 

Appendix 6.67 – Representation of YcjV-LEHis6 3-D structure model. The structure was drawn in 

Pymol with the data obtained from the online program I-TASSER. Model of YcjV-LEHis6 protein from the 
strain ISN17. The N-terminal, the seven conserved domains and the C-terminal tag were highlighted with 
the following colours scheme: N-terminal (brown), Walker A (blue), Q-loop (magenta), Signature (red), 
Walker B (green), D-loop (orange), H-loop (yellow) and the C-terminal tag (cyan), which is highlighted by 
a white arrow. 
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Appendix 6.68 –MsmX-LEHis6 protein sequence and the respective DNA sequence, from B. 
subtilis (Bioinformatic tool “Show Translation”). The protein sequence is shown in blue and the DNA 

sequence is shown in black; the modified amino acids (and respective codons) are highlighted with a green 
arrow and box. 
 

 
 
 
  



Chapter 6  – Appendices 

116 

Appendix 6.69 –HD73_RS21400-LEHis6 protein sequence with the respective DNA sequence, 
B. thuringiensis (Bioinformatic tool “Show Translation”). The protein sequence is shown in blue 

and the DNA sequence is shown in black; the modified amino acids (and respective codons) are highlighted 
with a green arrow and box. 
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Appendix 6.70 –MsmK-LEHis6 protein sequence with the respective DNA sequence, S. 
pneumoniae (Bioinformatic tool “Show Translation”). The protein sequence is shown in blue and 

the DNA sequence is shown in black; the modified amino acids (and respective codons) are highlighted 
with green boxs. 
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Appendix 6.71 –UgpC-LEHis6 protein sequence with the respective DNA sequence, S. aureus 
(Bioinformatic tool “Show Translation”). The protein sequence is shown in blue and the DNA 

sequence is shown in black; the modified amino acids (and respective codons) are highlighted with a green 
arrow and box. 
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Appendix 6.72 –YurJ-LEHis6 protein sequence with the respective DNA sequence, B. subtilis 
(Bioinformatic tool “Show Translation”). The protein sequence is shown in blue and the DNA 

sequence is shown in black; the modified amino acids (and respective codons) are highlighted with a green 
box. 
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Appendix 6.73 –MalK-LEHis6 protein sequence with the respective DNA sequence, E. coli 
(Bioinformatic tool “Show Translation”). The protein sequence is shown in blue and the DNA 

sequence is shown in black; the modified amino acids (and respective codons) are highlighted with a green 
box. 
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Appendix 6.74 –YcjV-LEHis6 protein sequence with the respective DNA sequence, E. coli 
(Bioinformatic tool “Show Translation”). The protein sequence is shown in blue and the DNA 

sequence is shown in black; the modified amino acids (and respective codons) are highlighted with a green 
box and arrow. 
 

 
 
  



Chapter 6  – Appendices 

122 

 
Appendix 6.75 –Molecular weight of the recombinant proteins calculated with the 
bioinformatic tool ProtParam from ExPASy. 
 

Proteins Number of amino acids Molecular weight (Da) 

MsmX-LEHis6 373 42362.96 

HD73_RS21400-LEHis6 374 42432.83 

MsmK-LEHis6 384 42838.09 

UgpC-LEHis6 373 42370.83 

YurJ-LEHis6 375 42482.78 

MalK-LEHis6 379 42201.72 

YcjV-LEHis6 368 41229.61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


