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ABSTRACT  

 

Multidrug resistance (MDR) to antibiotics presents a serious therapeutic problem in the 

treatment of infections. The importance of this mechanism of resistance in clinical 

settings is reflected in the increasing number of reports of MDR isolates. The most 

common mechanisms of resistance to antibiotics in bacteria are: i) the inactivation of the 

antibiotic by bacterial enzymes; ii) mutations in the structural or regulatory genes of the 

target protein; iii) alterations in the outer membrane that will contribute to decreased drug 

permeability, being this more preponderant on Gram-negative bacteria, due to their outer 

membrane structure; and iv) extrusion of the antibiotic from the cell by the activation of 

the efflux systems. These last systems are often associated with the over-expression of 

transporters (efflux pumps) that recognize and efficiently expel from the cells a wide 

gamut of structurally unrelated compounds. These transporter proteins involved in the 

extrusion of toxic substrates are found in both Gram-positive and -negative bacteria as 

well as in eukaryotic organisms. They can be specific for one substrate or may transport a 

range of structurally distinct compounds, including antibiotics of multiple classes. There 

are five major families of efflux transporters, described until the present date, namely, 

the: (1) Major Facilitator Superfamily (MFS); (2) Small Multidrug Resistance (SMR) 

family; (3) Multidrug And Toxic compound Extrusion (MATE) family; (4) Resistance 

Nodulation Division (RND) superfamily; and (5) Adenosine Triphosphate (ATP)-

Binding Cassette (ABC) superfamily. All these systems utilize the proton motive force as 

an energy source, apart from the ABC family, which utilizes ATP hydrolysis to drive the 

export of substrates. One of the recent challenges in this area is to develop new 

compounds that inhibit these efflux systems and subsequently potentiate the activity of 

co-administered antibiotics thus extending the clinical utility of existing antibiotics. 

Unfortunately and although several efflux pump inhibitors (EPIs) have been 

characterized, none of them has yet resulted in a clinical useful compound that could be 

applied in the clinical setting to treat MDR infections. However, the search continues and 

among the distinct types of EPIs we can find a large and distinct number of compounds, 

such as: peptidomimetics; phenothiazines; a class of natural products produced by 

Streptomyces spp., the benastatins; tetracycline derivatives/homologues; compounds 
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isolated from plant extracts; quinoline and its derivatives; arylpiperidines and 

arylpiperazines; microbial-derived EPIs and a distinct group of compounds, the energy 

uncouplers. If these EPIs be used as “helper compounds” in combination with antibiotics 

to which the organism is initially resistant, then the required cure may be achieved. This 

new approach will bring back to action the re-use of various antibiotics that are affected 

by the efflux systems as well as the control of the emergence and the dissemination of 

MDR-associated efflux strains. However, we know very little about the mechanisms and 

function of these efflux systems. New methods to assess this efflux-mediated resistance 

are therefore needed. In the last few years, a series of methods have been developed and 

may contribute to the rapid screening of MDR strains. Among the commonly used 

methods, one has received particular relevance, and it is based on the efflux of ethidium 

bromide. Ethidium bromide is a common substrate of efflux pumps and due to its 

fluorescent properties, it allows the monitoring in a real time basis of the efflux systems 

that are activated on a bacterial strain. The design and improvement of this and other 

methods is therefore one important tool to screen large collections of clinical isolates 

showing an MDR phenotype. The combined approaches, i.e., screening of MDR-efflux 

mediated isolates and the search for new and effective EPIs can bring to date the control 

and treatment of MDR infectious. The future will show us the results…  
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RESUMO 

 

A resistência a várias classes de antibióticos, i.e., multi-resistência (MDR), constitui um 

dos maiores problemas a nível terapêutico, no tratamento de diversas infecções. A 

importância que este mecanismo de resistência adquiriu no contexto hospitalar, reflecte-

se no elevado número de casos relativos a multi-resistência em isolados clínicos. Os 

mecanismos de resistência mais comuns em bactérias são: i) a inactivação do antibiótico 

pelas enzimas bacterianas; ii) mutações em genes estruturais ou reguladores da proteína 

alvo; iii) alterações na membrana externa, que podem provocar um decréscimo da 

permeabilidade aos diversos compostos, sendo este caso mais relevante em bactérias 

Gram-negativas, dada a sua estrutura membranar; e iv) extrusão do antibiótico da célula 

por activação de sistemas de efluxo. Estes últimos sistemas encontram-se normalmente 

associados a uma sobre-expressão de transportadores proteicos, designados bombas de 

efluxo, que reconhecem e expelem eficientemente uma vasta gama de compostos 

estruturalmente distintos. Estes transportadores, que se encontram envolvidos na extrusão 

de substratos tóxicos, encontram-se quer em baterias Gram positivas, quer em bactérias 

Gram negativas, bem como em células eucariotas. Estes sistemas podem ser específicos 

para um substrato ou podem transportar uma série de compostos estruturalmente 

distintos, incluindo antibióticos de classes diferentes. Os sistemas de efluxo descritos até 

à presente data podem ser classificados em cinco famílias distintas, nomeadamente: (1) 

“Major Facilitator Superfamily” (MFS); (2) “Small Multi-drug Resistance (SMR) 

family”; (3) “Multidrug And Toxic compound Extrusion (MATE) family” (21); (4) 

“Resistance-Nodulation-Division (RND) superfamily”; and (5) “Adenosine Triphosphate 

(ATP)-Binding Cassette (ABC) superfamily”. Estes sistemas utilizam a força motriz de 

protões, como fonte de energia, com a excepção da família ABC, que utiliza a hidrólise 

do ATP para fazer a extrusão dos substratos. Um dos mais recentes desafios nesta área 

tem sido o desenvolvimento de novos compostos que inibam estes sistemas de efluxo e 

consequentemente possam potenciar a actividade de antibióticos que sejam co-

administrados na terapêutica, podendo desta forma dar uma nova utilidade clínica aos 

antibióticos já existentes. Infelizmente e apesar de vários inibidores de bombas de efluxo 

(aqui designados como EPIs – “efflux pump inhibitors”) terem sido sintetizados, até à 
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presente data, nenhum destes inibidores resultou num composto com utilidade clínica, 

que pudesse ser aplicado no tratamento de infecções provocadas por bactérias multi-

resistentes. No entanto, a procura continua e de entre os vários tipos de EPIs 

caracterizados, podemos encontrar uma grande e variada gama de compostos, como: 

análogos peptídicos; as fenotiazinas; um grupo de produtos naturais produzidos por 

Streptomyces spp, (“benastatins”); compostos derivados ou homólogos da tetraciclina; 

compostos isolados de extractos de plantas; a quinolina e alguns dos seus derivados; 

arilpiperidinas and arilpiperazinas; EPIs produzidos por microrganismos e um grupo 

distinto de compostos, os desacopladores de energia. Se estes EPIs puderem ser utilizados 

como “helper compounds”, em combinação com os antibióticos aos quais o 

microrganismo é resistente, então o tratamento destas infecções poderá ser bem sucedido. 

Esta nova abordagem pode permitir a re-utilização de vários antibióticos que são 

substratos de bombas de efluxo, bem como permitir o controlo do aparecimento e 

disseminação de estirpes que apresentam uma multi-resistência mediada por sistemas de 

efluxo. No entanto, ainda pouco se sabe acerca dos mecanismos e função destes sistemas. 

Desta forma, torna-se necessário desenvolver novos métodos que permitam caracterizar 

esta resistência, mediada pelos sistemas de efluxo. Nos últimos anos, uma série de 

métodos têm sido desenvolvidos com este intuito e podem contribuir para a rápida 

identificação de estirpes multi-resistentes. De entre a metodologia usualmente utilizada, o 

método que tem recebido particular destaque, tem sido o que se baseia no efluxo do 

brometo de etídeo. O brometo de etídeo é um conhecido substrato de bombas de efluxo e 

dadas as suas propriedades fluorescentes, permite a monitorização em tempo real dos 

sistemas de efluxo que se encontram activados numa dada estirpe bacteriana. A criação e 

o desenvolvimento deste e de outros métodos, torna-se portanto uma importante 

ferramenta para estudar e caracterizar grandes colecções de isolados clínicos que 

apresentam um fenótipo multi-resistente. A combinação das novas abordagens descritas 

anteriormente, i.e., a caracterização de isolados que apresentam um fenótipo multi-

resistente mediado por sistemas de efluxo, aliada à busca de novos e efectivos EPIs, pode 

contribuir para o controlo e tratamento eficaz de infecções multi-resistentes. O futuro o 

dirá… 
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1. Antibiotic resistance 

 

One of the major scientific achievements of the 20th century was the discovery and use of 

antibiotics. During the early period of antibiotic usage, bacterial infections were 

considered tamed since antibiotics were being used to cure potentially lethal infections. 

However, widespread use and misuse of antibiotics has promoted the emergence of 

antibiotic-resistant pathogens. The most common mechanisms of resistance to antibiotics 

in bacteria are: i) alteration/modification of the target site (e.g. by mutating DNA gyrase 

in fluoroquinolone resistance or by producing methicillin-resistant transpeptidase in 

methicillin-resistant Staphylococcus aureus); ii) degradation of the antibiotic molecule by 

inactivating drugs by hydrolysis (e.g. via β-lactamase) or modification (e.g. 

aminoglycoside resistance) and iii) prevent access of drugs to the target or reduce the 

effective intracellular concentration of the antibiotic. Antibiotic resistance is wide 

spreading rapidly, especially in the hospital setting, where the bacterium is exposed to a 

constant antibiotic pressure that contributes to the development and emergence of 

multidrug resistant strains. Multidrug resistance (MDR) is defined as the resistance to 

three or more distinct classes of antibiotics (Piddock, 2006a; Tenover, 2006). One 

bacterium can become resistant to several distinct classes of antibiotics by genetic or 

physiologic mechanisms. In the last years, efflux-mediated resistance has been 

extensively studied and in many cases is attributable to the synergy between reduced drug 

uptake (mainly due to changes in outer membrane permeability) and active drug export 

(via efflux pumps) (Kumar and Schweizer, 2005; Langton et al., 2005; Ryan et al., 2001). 

The next sections will be focused on the relevance of the efflux systems on the resistance 

to antibiotics in MDR bacteria. 

 

2. Components that prevent antibiotic from reaching their target 

 

Some bacteria are unusually successful in surviving in the presence of toxic compounds 

due to the combining of several mechanisms of resistance. Some of the first components 

that prevent toxic compounds, such as antibiotics, from reaching their targets, involve: i) 

the down-regulation of porins; ii) efflux systems; or iii) increase of the 
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lipopolysaccharide component of the cell envelop.  

 

2.1. The outer membrane permeability barrier of Gram-negative bacteria 

 

Intrinsic resistance of Gram-negative bacteria has often been attributed entirely to the 

presence of the outer membrane barrier. The outer membrane, located outside the 

cytoplasmic membrane and the periplasm (Figure 1) is known to serve as a general 

permeability barrier that slows down the diffusion of various types of solutes, including 

drugs. This barrier contributes to the intrinsic drug resistance that is found on these 

bacteria (Nikaido, 1998c). Hydrophilic drugs cross the outer membrane barrier through 

water-filled channels of pore-forming proteins, called porins. The porin channels, 

however, impose several restrictions for the influx of various solutes (Nikaido, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Outer membrane permeability barrier in Gram-negative bacteria. Drugs 

penetrate across the outer membrane, the more hydrophilic passing through the narrow porin channel with 

difficulty, and the more lipophilic penetrating through the lipid bilayer domain slowly because the outer 

leaflet, consisting entirely of lipopolysaccharides, has low fluidity due to the absence of unsaturated fatty 

acids (wavy lines). Once in the periplasm, amphiphilic drugs partition spontaneously into the cytoplasmic 

membrane; are captured by a transporter and pumped back into the medium by a multi-subunit complex 

containing a periplasmic accessory protein and an outer membrane channel (source: Nikaido, 2001).  
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One of the major porins described to date in Escherichia coli is an outer membrane 

protein, OmpF that contains a channel with the size of 8 × 10 Å at its narrowest point. If 

we consider that the length of a single C-C bond is 1.54 Å, we can understand that 

antimicrobial agents can barely go through this channel, and that even the penetration of 

small agents such as fluoroquinolones or chloramphenicol occurs only slowly (Nikaido, 

1998a). In other Gram-negative bacteria, such as Pseudomonas aeruginosa, which lack 

the OmpF-like porins, only a very slow influx of solutes through extremely inefficient 

porins is possible (Nikaido, 1996; Sen and Nikaido, 1991). Lipophilic drugs, in contrast, 

should be able to dissolve into the hydrocarbon interior of the lipid bilayer domains of the 

outer membrane, and traverse the membrane by redissolving into the aqueous phase on 

the other side. However, even this mechanism is made difficult, because the outer half of 

bilayer is made of unusual lipids, lipopolysaccharides, which do not allow the easy entry 

of extraneous lipophilic molecules (Nikaido and Rosenberg, 1981). Several studies 

suggest that very lipophilic molecules, such as steroids, traverse the bilayers of the outer 

membrane at rates that are about two orders of magnitude lower than the rates at which 

they traverse the usual cytoplasmic membranes (Nikaido, 1998c; Nikaido and Rosenberg, 

1981; Thanassi et al., 1995).  

 

What are the mechanisms involved in bestowing bacteria with intrinsic resistance to 

antibiotics and what are the mechanisms that account for MDR of bacteria? Are they the 

same for both types of resistance? These questions will be discussed on the next sections. 

 

2.2. Efflux systems 

 

In the mid-1970s, P-glycoprotein (P-gp), the transporter protein of an efflux pump of 

mammalian cells, was implicated as the cause for the MDR phenotype on cancer cells 

(Kumar and Schweizer, 2005). A similar efflux system that accounted for resistance of 

some bacteria to tetracycline was recognized by Stuart Levy and his associates in the 

1980’s (Levy and McMurry, 1978), and is now known as a major mechanism of 

tetracycline resistance in bacteria (Nikaido, 1998a,c). Since these studies, efflux-mediated 

resistance to a wide range of antibacterial agents, including antibiotics, biocides and 
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solvents, has been reported in many bacteria (Levy, 2002; McBain et al., 2002; Piddock, 

2006a,b; Poole, 2002, 2005, 2007; Russell, 2002, 2003; Schweizer, 2003). Although 

some of these efflux systems are drug-specific, some can be considered to be non-specific 

since they recognise a large gamut of structurally unrelated drugs. These latter efflux 

systems contribute significantly to intrinsic and acquired MDR of bacteria (Kumar and 

Schweizer, 2005).  

 

Efflux systems are found in Gram-negative and Gram-positive bacteria, however, efflux 

mediated resistance in Gram-negative bacteria is a more complex problem due to the 

molecular architecture of the cell envelope (Kumar and Schweizer, 2005; Nikaido, 

1998a,b,c). 

 

2.2.1 Classes of bacterial MDR efflux systems 

 

Efflux pumps have a marked role in the resistance of bacteria since these systems pump 

out a broad range of chemically and structurally unrelated noxious compounds from the 

bacteria, in an energy-dependent manner, without drug alteration or degradation (Webber 

and Piddock, 2003). It is important to note that an antibiotic is a noxious substance to 

bacteria and of no special significance to the bacterium other than its noxious quality. 

Analysis of several available bacterial genome sequences has shown that known and 

putative drug efflux transporters constitute from 6 to 18% of all transporters found in any 

given bacterial cell (Kumar and Schweizer, 2005). Efflux pumps can be classified into 

single- or multi-component pumps. Single-component pumps transport their substrates 

across the cytoplasmic membrane. Multi-component pumps, found in Gram-negative 

bacteria, consist of three proteins: a fusion protein which attaches the transporter protein 

to the surface of the lipid component of the plasma membrane; the transporter protein 

which recognizes a substrate present in the periplasmic space or cytoplasm immediately 

below the internal margin of the plasma membrane, and TolC, a tribarrel protein that is 

contiguous with the transporter protein and provides a channel that traverses the cell 

envelop through which the substrate reaches the outside (Nikaido, 1998a) (Figure 2).    
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Figure 2. Diagrammatic representation of the membrane topology of single- or 

multi-component proton-driven pumps in Gram-negative bacteria. The three classes of 

antiporters shown are: SMR, RND, MFS. These transporters are shown utilizing the proton motive force 

generated by respiration to expel antibiotics and other drugs into the periplasmic space between the inner 

and outer membranes. SMR, Small Multidrug Resistance; RND, Resistance-Nodulation-Division 

superfamily; MFS, Major Facilitator Superfamily (reproduced from Borges-Walmsley et al., 2003).  

 

Single-component efflux pumps are also found in Gram-positive bacteria. The cell 

envelope of Gram-positive bacteria is a structure that contains a single-component efflux 

pumps in the cytoplasmic membrane (Marquez, 2005; Piddock, 2006a). These bacteria 

possess drug-specific and multidrug efflux pumps that also contribute to drug resistance 

(Kumar and Schweizer, 2005).  
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Bacterial drug efflux transporters are currently classified into five families, the: (1) Major 

Facilitator Superfamily (MFS); (2) Small Multidrug Resistance (SMR) family; (3) 

Multidrug And Toxic compound Extrusion (MATE) family; (4) Resistance-Nodulation-

Division (RND) superfamily; and (5) Adenosine Triphosphate (ATP)-Binding Cassette 

(ABC) superfamily (Kumar and Schweizer, 2005; Piddock, 2006b) (Figure 3). Of these, 

the ABC and MFS superfamilies are very large and the other three are smaller families 

(Kumar and Schweizer, 2005). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic illustration of the main types of bacterial drug efflux pumps. 

Illustrated are Staphylococcus aureus NorA, a member of the MFS; Escherichia coli EmrE, a member of 

the SMR superfamily; Vibrio parahaemolyticus NorM, a member of the MATE superfamily; E. coli 

AcrAB–TolC, a member of the RND superfamily; and Lactococcus lactis LmrA, a member of the ABC 

superfamily (reproduced from Kumar and Schweizer, 2005). 

 

2.2.1.1 Major Facilitator Superfamily (MFS) 

 

The major facilitator superfamily (MFS) of transporters is an ancient superfamily that 

probably dates back through evolutionary time of more than three billion years (Kumar 

and Schweizer, 2005). This large and diverse superfamily consists of more than 300 

sequenced proteins that fall into seventeen recognized, distantly related families that are 

specific for a different type of solute (Saier et al., 1998). These families either catalyze 

uniport, solute/cation (H+ or Na+) symport, solute/H+ antiport or solute/solute antiport 
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(Kumar and Schweizer, 2005) and include four families specific for various types of 

sugars, a fifth that catalyzes uptake of phosphorylated glycolytic intermediates, a sixth 

that catalyzes uptake of Krebs cycle intermediates and other metabolites, two families 

that catalyze drug efflux, and several that transport organic and inorganic anions (Saier et 

al., 1998). These transporters usually function as single-component pumps, e.g., NorA of 

Staphylococcus aureus. However, in some Gram-negative bacteria they function with 

membrane fusion proteins (MFP) and OMP components, e.g., EmrAB–TolC of E. coli 

(Kumar and Schweizer, 2005). MFS transporters are typically composed of 

approximately 400 amino acids that are putatively arranged into twelve membrane-

spanning helices (domains) (Figure 4A), with a large cytoplasmic loop between helices 

six and seven (Borges-Walmsley et al., 2003). It is most likely that this structure has 

arisen by gene duplication, as the two halves of the transporter usually have related 

sequences. A smaller number of these transporters have a putative fourteen membrane-

spanning domains topology (Figure 4B); however, MFS transporters of this type tend to 

have a much smaller cytoplasmic loop (Borges-Walmsley et al., 2003; Saier et al., 1998).  

 

 

 

 

 

 

 

 

Figure 4. Structural model for the 12-transmembrane segment (A) and the 14- 

transmembrane segment (B) drug efflux pumps of the MFS. TMS, transmembrane 

segment (reproduced from Saier et al., 1998). 

 

The MFS proteins that catalyze drug efflux are from three subfamilies: i) DHA1 that are 

drug/H+ antiporters (e.g., Bmr of Bacillus subtilis); ii) DHA2 (e.g., QacA of S. aureus 

and iii) DHA3 (e.g., MefA of Streptococcus pyogenes) (Kumar and Schweizer, 2005). 

The DHA1 and DHA2 family of proteins are ubiquitous among prokaryotes and 
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eukaryotes, and are known to efflux a very broad range of structurally distinct drugs. 

Members of the DHA1 family export sugars, polyamines, uncouplers, monoamines, 

acetylcholine, paraquat and methylglyoxal. In contrast, members belonging to the DHA2 

family exhibit more restricted substrate specificity, and transported substrates include bile 

salts and dyes. Members of the DHA3 family are only found in prokaryotes, and are 

known to efflux antibiotics, including macrolides and tetracycline. Tetracycline efflux 

pumps constitute some of the best-characterized members of the MFS family. These 

pumps are found in both Gram-negative and Gram-positive bacteria. Most of them confer 

resistance to tetracycline, but not to minocycline or glycylcyclines. However, some 

Gram-negative tetracycline proteins confer resistance to both tetracycline and 

minocycline, but not to glycylcyclines (Kumar and Schweizer, 2005). 

 

2.2.1.2 Small Multidrug Resistance (SMR) family 

 

SMR transporters are the smallest of the known bacterial efflux pumps, and it is difficult 

to imagine how a single SMR protein could comprise a functional drug transporter unit. 

SMR transporters are much smaller than those belonging to the MFS and RND families 

(Borges-Walmsley et al., 2003). SMR family transporters are normally composed of 

approximately 110 amino acid residues putatively arranged into four domains (Figure 5) 

and are energized by the proton motive force (Saier et al., 1998).  

 

 

 

 

 

 

 

 

 

Figure 5. Structural model for members of the SMR family (reproduced from Saier et al., 

1998). 

 



The role played by efflux systems on the resistance to antibiotics 

 9 

The SMR family consists of two phylogenetic subfamilies. Members of one subfamily 

confer multidrug resistance and catalyze drug efflux via a drug:H+/antiport mechanism, 

as do the corresponding MFS drug resistance proteins (Rotem and Schuldiner, 2004) 

However, members of the other subfamily apparently do not confer drug resistance or 

catalyze drug:H+/ antiport (Kumar and Schweizer, 2005). Subdivision of the SMR family 

into two phylogenetic clusters and the observation that the members of only one of these 

clusters apparently catalyze drug extrusion argue strongly that, for the SMR family, drug 

resistance permeases arose only once during its evolutionary history (Saier et al., 1998). 

Some of the well characterized pumps of this family include the Smr pump of S. aureus 

and the EmrE pump of E. coli, which efflux dyes, drugs and cations (Kumar and 

Schweizer, 2005). EmrE from E. coli is a multidrug transporter that contributes to 

resistance to ethidium bromide and methyl viologen (Yelin et al., 1999; Yerushalmi et 

al., 1995). Another SMR efflux pump from P. aeruginosa with close identity with EmrE 

has also been characterized and is shown to play an important role in the intrinsic 

resistance of P. aeruginosa to ethidium bromide, acriflavine and aminoglycoside 

antibiotics (Li et al., 2003).  

 

2.2.1.3 Multidrug And Toxic compound Extrusion (MATE) family  

 

It is important to stress that in prokaryotes, even though H+-driven antiport is the major 

mechanism of drug efflux, other important transport mechanisms have also been 

described, like those described for a group of transport proteins, the MATE family. 

Previously thought to be members of the MFS, the proteins belonging to the MATE 

family are now recognized as a separate family of transporters because, despite similar 

membrane topology, they show no sequence homology to MFS proteins (Kumar and 

Schweizer, 2005). Since they are a relatively new family among bacterial drug 

transporters they are the least well characterized. However, this situation is changing 

rapidly, especially because they appear to play an important role in drug resistance to 

clinically relevant antibiotics in pathogenic organisms. The common premise shared by 

this group of proteins is that drug efflux is coupled to Na+ influx (Kumar and Schweizer, 

2005). MATE transporters are similar in size to the MFS transporters, and are typically 
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composed of approximately 450 amino acid residues in length which are putatively 

arranged into twelve predicted transmembrane segments (Omote et al., 2006). Proteins 

belonging to this family use the Na+ gradient as the energy source to efflux cationic dyes 

and fluoroquinolones (Burse et al., 2004) (Figure 6). Examples of proteins belonging to 

this family include NorM, a multidrug Na+-antiporter from of Vibrio parahaemolyticus 

which confers resistance to dyes, fluoroquinolones and aminoglycosides (Otsuka et al., 

2005). Homologues of NorM have been found and characterized in E. coli, Neisseria 

gonorrhoeae and Neisseria meningitidis (Long et al., 2008; Rouquette-Loughlin et al., 

2003; Yang et al., 2003). In E. coli, YdhE, was shown to confer resistance to cationic 

antimicrobials (Long et al., 2008) and in Neisseria gonorrhoeae and Neisseria 

meningitidis deletions of these pumps resulted in an increased susceptibility to cationic 

compounds (Rouquette-Loughlin et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Diagrammatic comparison of the five families of efflux pumps and the 

specificity of the substrates extruded from the cell. The RND and ABC families are involved 

on the extrusion of multiple drugs. The MATE family extrudes mainly aminoglycosides, fluoroquinolones 

and cationic drugs. The MFS and SMR families are involved on the extrusion of more specific substrates, 

such as acriflavine, benzalkonium and cetrimide (reproduced from Piddock, 2006a).  
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2.2.1.4 Resistance Nodulation Division (RND) superfamily 

 

It was originally thought that proteins from the RND superfamily were exclusively found 

in eubacteria (Kumar and Schweizer, 2005). However, several studies have also reported 

their presence in eukaryotes and archaea (Paulsen et al., 1996a; Tseng et al., 1999). RND 

transporters are typically encoded by chromosomal genes (Kumar and Schweizer, 2005), 

but a plasmid-encoded RND drug transporter has already been reported (Hansen et al., 

2004, 2007). Like the SMR family, the RND family is a small, bacterial-specific family. 

However, RND transporters are much larger than MFS transporters, being composed 

typically of approximately 1000 amino acid residues (Saier et al., 1998). Even with this 

obvious disparity in size, they are predicted to adopt a similar twelve-helical structure. 

However, unlike MFS transporters, they possess large periplasmic or extra-cytoplasmic 

domains between helices 1 and 2 and between helices 7 and 8 (Borges-Walmsley et al., 

2003; Saier et al., 1998). They possess an unusual putative topology characteristic of the 

family (Figure 7).  

 

 

 

 

 

 

 

 

 

 

Figure 7. Structural model for representative members of the RND family (reproduced 

from Saier et al., 1998). 

 

At the amino-terminal end of each protein, the polypeptide chain probably traverses the 

cytoplasmic membrane once from cytoplasm to periplasm, and this spanner is followed 

by a large water soluble domain localized to the periplasmic or extra-cytoplasmic space. 
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The polypeptide chain then spans the membrane six more times before it again emerges 

into the periplasm as another water-soluble domain of the same size as the first one. The 

carboxyl-terminal end of the permease is again embedded in the membrane with five 

additional spanners. Thus, each permease has twelve putative spanners as well as two 

large, presumably extra-cytoplasmic domains (Figure 7) (Saier et al., 1998). Phylogenetic 

studies performed on members of the RND family revealed that these proteins fall into 

three subfamilies. Members of one subfamily are specific for divalent heavy metal ions; 

those of the second are probably specific for lipooligosaccharides (example, a single 

putative three-component transporter), and those of the third subfamily all catalyze efflux 

of multiple drugs (Paulsen et al., 1996b; Saier et al., 1994). All members characterized to 

date catalyze substrate efflux via a substrate/H+ antiport mechanism. RND pumps play an 

important role in acquired and intrinsic resistance of Gram-negative bacteria to a variety 

of antimicrobials and all RND pumps studied to date are multidrug transporters (Kumar 

and Schweizer, 2005). In Gram-negative bacteria, RND pumps function by forming 

complexes consisting of an RND membrane transport protein with twelve transmembrane 

segments, a membrane fusion protein and an outer membrane protein (Figure 8). A 

characteristic feature of RND transporter topology is the presence of 2 large periplasmic 

loops between transmembrane segment 1 and 2 and transmembrane segment 7 and 8. The 

N-terminal halves of RND family proteins are homologous to the C terminal halves and, 

as such, these proteins are believed to have arisen from an gene duplication event that 

occurred before the divergence of the family members (Borges-Walmsley et al., 2003). 

There is, however, one example of an RND homologue from Mycobacterium jannaschii 

that has only six transmembrane segments and no internal duplication (Kumar and 

Schweizer, 2005). It is possible that this protein functions either as a homodimer or as a 

heterodimer, or by association with another protein. The best-studied members of RND 

pumps are the AcrAB–TolC system of E. coli (Elkins and Nikaido, 2002, 2003a,b; 

Zgurskaya and Nikaido, 1999, 2000) and the MexAB–OprM system of Pseudomonas 

aeruginosa (Evans et al., 1998; Köhler et al., 1997; Li et al., 1995; Masuda et al., 1999; 

Nakae et al., 1999) that are known to efflux antibiotics, heavy metals, dyes, detergents, 

solvents, plus many other substrates (Kumar and Schweizer, 2005).  
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Figure 8. Model of a tripartite efflux pump. This hypotetical model of an efflux pump 

belonging to the RND family is based on the open-state model of TolC (represented in red) forming a 

minimal contact interface with the six hairpins at the apex of AcrB (represented in green). A ring of nine 

MexA molecules (represented in blue) is modelled to form a sheath around AcrB and the α-barrel of TolC. 

IM, inner membrane; OM, outer membrane (reproduced from Piddock, 2006a). 

 

2.2.1.5 ATP-Binding Cassette (ABC) superfamily  

 

The ABC transporters superfamily are ubiquitous membrane systems (Marquez, 2005), 

that shows both uptake and efflux transport systems and consists of numerous families, 

each specific for one of a tremendous variety of substrates (Davidson and Chen, 2004). 

These substrates include small molecules that may be taken up or expelled from the cell, 

depending on the transporters, and also macromolecules such as proteins and complex 

carbohydrates that are synthesized in the cytoplasm and secreted to the cell envelope or 

the external milieu (Davidson and Maloney, 2007; Marquez, 2005). For all bacterial ABC 

transport systems, ATP provides the source of protons that drives transport. Members of 

this superfamily use energy derived from ATP hydrolysis to transport this variety of 

substances (Davidson and Chen, 2004; Davidson and Maloney, 2007). Transporters of 
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the ABC-type are multi-protein complexes consisting of: 1) integral membrane proteins 

(presumably forming a transport pore through the cytoplasmic membrane and 2) energy-

coupling cytoplasmic proteins with ATPase activity (Kumar and Schweizer, 2005). 

Bacterial ABC permeases generally contain 6 transmembrane segments each and 

associate in the membrane in pairs as either homo- or hetero-dimers. Two ATPase 

subunits associate with the permeases on the cytoplasmic face of the inner membrane to 

form functional transporters (Davidson and Maloney, 2007) (Figure 9). 

 

 

 

 

 

 

 

 

 

Figure 9. Generalized structural model for ATP binding cassette-2 (ABC-2) family 

permeases (reproduced from Saier et al., 1998). 

 

Drug efflux pumps belonging to the ABC superfamily are rare in bacteria, however, a 

few have been identified, namely, the LmrA, multidrug transporter from Lactococcus 

lactis (Poelarend et al., 2000); the DrrAB, doxorubicin/daunorubicin transporter from the 

anthracycline-producing actinomycete Streptomyces peucetius (Gandlur et al., 2004), 

EfrAB of Enterococcus faecalis (Lee et al., 2003), and the MacB transporter from E. coli 

that is involved in the efflux of macrolides (Kobayashi et al., 2001). From all these, 

probably the LmrA pump of Lactococcus lactis being the most studied system (Borges-

Walmsley, et al., 2003; Poelarend et al., 2000). In contrast with prokaryotes, the major 

mechanism of efflux in eukaryotes is dependent on proteins that belong to the ABC 

superfamily of membrane transporters. Members of this family include the clinically 

significant MDR pump, P-gp (Davidson and Maloney, 2007; Marquez, 2005) and 

multidrug resistance protein (MRP) (Borges-Walmsley, et al., 2003), both of which 
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confer resistance to anticancer drugs. Related transporters are also found in a number of 

pathogenic fungi and parasitic protozoa, where they confer resistance to antimicrobial 

drugs. One of these examples is P-gpA, a MRP homologue, which is an arsenic/antimony 

pump that is responsible for resistance to the antimonial drug Pentostam in Leishmania 

(Borges-Walmsley, et al., 2003; Légaré et al., 2001). Although most ABC transporters 

were discovered as drug transporters, they frequently transport a wide range of substrates, 

including dyes, ionophoric peptides, lipids and steroids (Borges-Walmsley, et al., 2003). 

Phylogenetic studies of the families of the ABC superfamily showed that members of the 

ABC-2 family include proteins that catalyze the export of cell surface carbohydrates 

synthesized within the bacterial cell. It seems that substrate specificity has been a well 

conserved trait during evolution of the ABC-2 family. Moreover, drug resistance 

apparently evolved only once during the early evolution of this ABC subfamily, and all 

members of the family that catalyze drug resistance were therefore probably derived from 

a single primordial permease (Davidson and Maloney, 2007). Whether these ABC-2 drug 

resistance pumps are drug-specific or capable of transporting multiple drugs has not been 

tested.  

 

In summary, the efflux systems previously described contribute to the increased 

resistance of some bacterial strains. Some of these systems are specific for a single drug 

or substrate while others are capable of transporting multiple and unrelated compounds 

(Piddock, 2006a,b; Poole 2007). The over-expression of these systems results in sub-

therapeutic intracellular concentrations of antibiotics and the subsequent therapeutic 

failure. The wide variety of efflux systems and their plasticity to extrude antimicrobials 

increases the bacterial intrinsic resistance to a wide spectrum of structurally and 

functionally unrelated antibiotics and is undoubtedly a major problem in the treatment of 

multidrug resistant infections (Rouveix, 2007). In clinical isolates the resistance-mediated 

by enhanced efflux is increasing and this will have an impact on the therapeutic choices 

that are available (Rouveix, 2007; Webber and Piddock, 2003). By this manner, these 

efflux systems need to be identified as early as possible as drug resistance develops in a 

patient under treatment in order to adjust the therapeutic strategies and minimize the 

selection of genetically resistant variants. The inappropriate use of antibiotics will 
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increase the risk of selecting genetically resistant bacteria, since sub-therapeutic drug 

levels may only suppress bacteria, but not eliminate them.  

 

3. Clinical relevance of MDR efflux pumps 

 

Since one of the causes that contribute to the MDR in clinical isolates is the over-

expression of bacterial efflux pumps, the assessment of these systems on a clinical isolate 

has been the subject of intense research on the last few years (Giske et al., 2008; Kern et 

al., 2006; Kriengkauykiat et al., 2005; Pannek et al., 2006; Piddock, 2006a). The creation 

of new agents which have the capacity to inhibit the MDR efflux pumps and hence render 

the organism susceptible to the antibiotic(s) to which it was once resistant is one of the 

main goals of research (Kamicker et al., 2008; Lomosvskaya and Watkins, 2001a,b; 

Lomovskaya et al., 2001; Mahamoud et al., 2007; Nguyen and Thompson, 2006). 

However, prior to the evaluation of an efflux pump inhibitor (EPI), the existence of an 

efflux pump responsible for a MDR phenotype of a clinical isolate must first be shown 

(Piddock, 2006b; Poole, 2007). In the clinical setting, there are some particular species 

that show an increasing predisposition towards resistance to drugs, being considered 

among the most infectious organisms (Piddock, 2006b; Webber and Piddock, 2003). 

Some of the efflux systems present on these bacteria will be the subject of discussion in 

the next sections. 

 

3.1 Gram-positive bacteria 

 

The cell envelope of Gram-positive organisms shows a relatively simple structure when 

compared to that of Gram-negative organisms in that the cytoplasmic membrane is 

surrounded by a single thick layer of peptidoglycan (Marquez, 2005; Piddock, 2006a). 

Drug-specific and multidrug efflux pumps have been described in Gram-positive bacteria, 

some of which make important contributions to drug resistance, especially to macrolides 

and fluoroquinolones (Kumar and Schweizer, 2005). Some of the more clinically 

important Gram-positive drug efflux pumps will therefore be briefly discussed in the 

following paragraphs.  
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3.1.1 Staphylococcus aureus 

 

Staphylococcus aureus is a major cause of hospital-acquired infections (Moreillon, 2008; 

Shorr, 2007). Efflux pumps characterized in this organism include QacA (MFS family) 

(Paulsen et al., 1996b), Smr (SMR family) and NorA (MFS family) (Piddock, 2006a). 

QacA and Smr are examples of plasmid-encoded efflux pumps, while NorA is 

chromosomally encoded. QacA has been shown to efflux acriflavine, crystal violet, 

diamidines, ethidium bromide and quaternary ammonium compounds (Brown and 

Skurray, 2001; DeMarco et al., 2007). The NorA efflux pump has been shown to be 

responsible for moderate fluoroquinolones resistance of S. aureus (Sabatini et al., 2008), 

due to a weakly expressed norA gene (Piddock, 2006a). This pump is responsible for 

resistance of S. aureus to hydrophilic fluoroquinolones only and does not extrude 

lipophilic substrates (Kumar and Schweizer, 2005). NorA is present in both methicillin-

sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). The agents used 

to treat infections by MSSA include flucloxacillin, nafcillin, and ciprofloxacin. The 

agents used to treat MRSA include ciprofloxacin (where the MRSA strain has been 

shown to be susceptible), vancomycin, and linezolid (Piddock, 2006a). It has been shown 

that the minimum inhibitory concentration (MIC) of nafcillin and vancomycin are 

unaffected by the over-expression of NorA (Kaatz et al., 2003). Other efflux pump genes 

are also present on the S. aureus genome and have been investigated. Over-expression of 

NorB confers decreased susceptibility to fluoroquinolones, tetracycline, disinfectants, and 

dyes (Truong-Bolduc et al., 2005). Over-expression of Tet38 confers resistance to 

tetracycline only (Truong-Bolduc et al., 2006). Over-expression of MepA confers 

resistance to fluoroquinolones and biocides (DeMarco et al., 2007; Li and Nikaido, 

2004). Further studies are needed on other putative transporters to see if other 

transporters are also involved in antimicrobial resistance in S. aureus. In addition, any 

clinical relevance of these new transporters has yet to be defined. S. aureus NorA has 

been shown to have 44% amino acid identity and 67% similarity with Bmr. Bmr and 

NorA are structurally similar to the plasmid-encoded efflux proteins TetA, TetB, and 

TetC, with 24 to 25% sequence identity with these proteins (Piddock, 2006a). Plasmid-

encoded over-expression of both Bmr and NorA confers MDR to fluoroquinolones, 
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chloramphenicol, antiseptics, dyes, and disinfectants (Kaatz and Seo, 1997, 2004; Kaatz 

et al., 1993; Neyfakh et al., 1993; Piddock, 2006a). 

 

3.1.2 Streptococcus pneumoniae 

 

Over the last decade, considerable effort has been expended by pharmaceutical 

companies to develop anti-pneumococcal agents, so there has been considerable focus on 

Streptococcus pneumoniae and the presence of efflux pump proteins that could confer 

MDR, including to new agents (Piddock, 2006a). S. pneumoniae is a major cause of 

respiratory tract infections. Some isolates are resistant to a wide range of antibiotics that 

include β-lactams, macrolides, quinolones and tetracycline (Li and Nikaido, 2004; 

Piddock, 2006a). Efflux mechanisms have been shown to play a role in quinolone 

resistance of this organism, though target mutations are believed to be the main 

contributors to this resistance (Kumar and Schweizer, 2005). In 1999, Gill et al. identified 

PmrA (Gill et al., 1999). This protein has 43% amino acid similarity with NorA and 42% 

similarity with Bmr (Piddock, 2006a) and its expression causes a 2- to 4-fold increase in 

resistance to several fluoroquinolones. PmrA knockouts do not exhibit changes in 

antibiotic susceptibility patterns, suggesting that this pump is not expressed in wild-type 

strains (Brenwald et al., 2003). Macrolide resistance in S. pneumoniae is conferred by the 

MefE pump of the MFS family (Klaassen and Mouton, 2005). MefE is 90% identical to 

MefA of S. pyogenes, and together these two pumps are referred to as Mef(A) (Tait-

Kamradt et al., 1997). They have been shown to efflux both 14- and 15-membered 

macrolides and are responsible for approximately 70% of the macrolide resistance of S. 

pneumoniae observed in the United States (Zhong and Shortridge, 2000). The mef(A) 

gene of S. pneumoniae is part of a mobile element that is transferable by transformation 

(Kumar and Schweizer, 2005). 

 

3.1.3 Bacillus subtilis 

 

Two different MFS-type efflux pumps have been identified and characterized in B. 

subtilis: Bmr and Blt (Kumar and Schweizer, 2005). There is little clinical significance of 
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the Bmr efflux pump in human and veterinary medicine, but  it has been shown that the 

NorA pump of S. aureus and PmrA of S. pneumoniae have significant similarity and 

identity at the DNA and amino acid levels (Piddock, 2006b). Therefore, a considerable 

number of analogies have been made between the properties of Bmr and of NorA and 

PmrA (Piddock, 2006a). Despite the fact that B. subtilis is not a clinically important 

organism, these two pumps (Bmr and PmrA) provide an excellent model system for 

mechanistic studies of MFS-type multidrug efflux systems. Substrates for these two 

pumps include fluoroquinolones, ethidium bromide and energy inhibitors (Kumar and 

Schweizer, 2005; Piddock, 2006a). 

 

3.1.4 Mycobacteria 

 

Mycobacteria, among which are the important human pathogens Mycobacterium 

tuberculosis and Mycobacterium leprae, are Gram-variable bacteria, often considered as 

Gram-positive, that display marked intrinsic resistance to a variety of antimicrobial 

agents, and this property is caused by their unique cell wall structure, which is rich in 

long-chain fatty acids such as C60 to C90 mycolic acids (Brennan, 2003). Mycolic acids 

are covalently linked to the peptidoglycan-associated polysaccharide arabinogalactan. 

Moreover, mycobacterial porins, the water-filled channel proteins which form the 

hydrophilic diffusion pathways through the cell wall, are sparse (Brennan and Nikaido, 

1995; Draper, 1998). A major porin of Mycobacterium smegmatis, MspA, forms a 

tetrameric complex with a single central pore, but the density of this protein is 50-fold 

lower than that of porins of Gram-negative bacteria (Hillmann et al., 2007). Thus, the 

mycobacterial cell wall functions as an even more efficient protective barrier than the 

outer membrane of Gram-negative bacteria and limits the access of drug molecules to 

their cellular targets (Nguyen and Thompson, 2006). The cell wall barrier alone, 

however, is not sufficient to explain the intrinsic drug resistance of these bacteria. Drug 

efflux, is now known to contribute to intrinsic or acquired resistance in mycobacteria (Li 

et al., 2004; Viveiros et al., 2003). Several efflux pumps of different classes have been 

described for Mycobacterium tuberculosis and/or M. smegmatis (Danilchanka et al., 

2008; De Rossi et al., 2002, 2006; Escribano et al., 2007; Gupta et al., 2006; Jiang et al., 
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2008; Li et al., 2004; Montero et al., 2001). All of the five classes of drug efflux 

transporters can be identified in the genome sequences of several mycobacteria, including 

M. tuberculosis (http://www.sanger.ac.uk/Projects/M_tuberculosis). Indeed, drug efflux 

pumps have been described in several mycobacteria to date. For example, M. smegmatis 

LfrA, an MFS transporter homologous to the QacA multidrug pump of S. aureus, was the 

first multi-drug efflux pump reported for mycobacteria (Liu et al., 1996; Takiff et al., 

1996). Since then, several other mycobacterial drug efflux pumps have been reported. 

When expressed on a plasmid, LfrA mediates low-level resistance to fluoroquinolones 

and other toxic compounds such as ethidium bromide (Liu et al., 1996). EfpA, Tap, and 

P55 are three other MFS pumps reported for several mycobacterial species, and of these 

pumps, Tap and P55 are known to produce low-level resistance to aminoglycosides and 

tetracyclines when introduced on multi-copy plasmids (Aínsa et al., 1998). In addition to 

the MFS pumps, Mmr (an SMR pump) and DrrAB (an ABC exporter) were reported in 

M. tuberculosis (Choudhuri et al., 2002; De Rossi et al., 1998). Despite the presence of a 

large number of putative drug efflux genes in the genomes of M. tuberculosis, M. bovis, 

and M. smegmatis, the role of these drug exporters in intrinsic drug resistance of 

mycobacteria remains largely unknown, except for the study of lfrA gene disruption strain 

in M. smegmatis (Sander et al., 2000). Several other pumps have also been shown to be 

involved in the transport of several different antibiotics, including fluoroquinolones, 

aminoglycosides, tetracycline, rifampin, and possibly isoniazid and ethambutol. 

However, it is not completely clear which of these are associated with antibiotic 

resistance in mycobacterial clinical isolates (Piddock, 2006b). 

 

3.2 Gram-negative bacteria 

 

Although Gram-negative bacteria contain efflux pumps representing the five 

superfamilies, RND pumps are the most prominent (Poole, 2007). They not only play a 

major role in both intrinsic and acquired resistance of many Gram-negative bacteria to a 

variety of clinically significant antibiotics, but also export biocides, dyes, detergents and 

organic solvents (Denyer and Maillard, 2002; Kumar and Schweizer; 2005; Piddock, 

2006b). These tripartite pumps span the entire Gram-negative cell envelope and are thus 
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uniquely suited to synergize with reduced outer membrane permeability to impart drug 

resistance. This may be the main reason why fewer non-RND family MDR efflux 

systems promote resistance to clinically relevant antibiotics. Notable exceptions may be 

the following: NorA (MFS) in Bacteroides fragilis (Miyamae et al., 1998); MdfA (MFS) 

(Adler and Bibi, 2002), MacAB–TolC (ABC) (Kobayashi et al., 2001) in E. coli; NorM 

(MATE) in Vibrio parahaemolyticus (Morita et al., 1998); BcrA (MFS) in Burkholderia 

cepacia (Wigfield et al., 2002); NorM (MATE) in Burkholderia vietnamensis (Fehlner-

Gardiner and Valvano, 2002); and VcmA (MATE) in Vibrio cholerae (Huda et al., 2001). 

One of the major problems of multi-resistance in Gram-negative bacteria is that most of 

these bacteria are among the most naturally resistant (intrinsically resistant) organisms 

even in the absence of antimicrobial selective pressure. P. aeruginosa, Acinetobacter 

baumanni and Stenotrophomonas maltophilia are three examples of important pathogens 

that are resistant to many commonly used antibiotics (Kumar and Schweizer, 2005). 

Moreover, in the presence of selective pressure they can emerge resistant to even the 

relatively few antibiotics that have activity (Rice, 2006). It is worthwhile to consider the 

common characteristics of these and other clinically representative Gram-negative 

bacteria in the following sections. 

 

3.2.1 Pseudomonas aeruginosa  

 

Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in 

patients who suffer from burn or cystic fibrosis. It shows a high level of intrinsic 

resistance to a very large number of antimicrobial agents (Rouveix, 2007). This resistance 

has historically been attributed to the presence in this organism of an outer membrane of 

low permeability (Mesaros et al., 2007), but it is increasingly clear that resistance owes 

much to the operation of broadly specific, so-called multidrug efflux systems (Poole, 

2007; Schweizer, 2003) that work synergistically with limited outer membrane 

permeability (Nehme et al, 2004). Several multi-drug efflux systems have been described 

to date (Chuanchuen et al., 2002; Hirakata et al., 2002; Hocquet et al., 2007; Quale et al., 

2006), although the major system contributing to intrinsic MDR is encoded by the 

mexAB-oprM operon (Lim et al., 2002). MexAB-OprM accommodates a broad range of 
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structurally diverse antimicrobials, including dyes, detergents, inhibitors of fatty acid 

biosynthesis, organic solvents, disinfectants, and clinically relevant antibiotics (Poole, 

2001; Schweizer, 2003), and is implicated in the export of homoserine lactones involved 

in quorum sensing (Evans et al., 1998; Poole, 2001) and, possibly, virulence factors 

(Hirakata et al., 2002). In addition to the MexAB-OprM system, other RND efflux pumps 

have also been characterized: MexXY-OprM, MexCDOprJ, and MexEF-OprN (Linares 

et al., 2005; Wolter et al., 2004), but either are not expressed at high levels in wild-type 

strains or show only a limited substrate range (Babayan and Nikaido, 2004). Like the 

MexAB-OprM system, MexXY-OprM is constitutively expressed in wild-type cells and 

confers intrinsic MDR. However, MexCD-OprJ and MexEF-OprN are inducible by some 

of their substrates. In addition to exporting fluoroquinolones, tetracyline, 

chloramphenicol, and some β-lactams, these pumps also export ethidium bromide, 

acriflavine, sodium dodecyl sulphate, triclosan, organic solvents, and acylated 

homoserine lactones involved in quorum sensing. Infections by P. aeruginosa are usually 

treated with ceftazidime, ciprofloxacin, imipenem, gentamicin, tobramycin, ticarcillin-

clavulanate, or piperacillin-tazobactam in combination or alone. Some of these agents are 

substrates of the Mex efflux pumps. However, despite the increase in MIC when these 

pumps are over-expressed, for agents such as ciprofloxacin the increase may not take the 

MIC above the recommended breakpoint concentration (Piddock, 2006a; Poole, 2001). 

Recently, a MATE transporter, PmpM has also been described (He et al., 2004). PmpM 

transports fluoroquinolones, benzalkonium chloride, ethidium bromide, acriflavine, and 

tetraphenylphosphonium chloride. This system uses hydrogen ions, but not sodium ions, 

as an energy source (Piddock, 2006a). 

 

3.2.2 Escherichia coli 

 

Analysis of the E. coli genome has revealed the presence of many RND transporters 

(Piddock, 2006b). To date, some of these have been functionally characterized and 

confirmed to participate in drug efflux, such as: AcrAB, AcrEF, AcrD, YhiUV and 

MdtABC (Piddock, 2006a; Poole, 2007). All E. coli RND pumps studied so far have been 

found to be associated with the TolC outer membrane protein channel. The AcrAB-TolC 
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system in E. coli has been identified as the predominant drug efflux pump of this 

organism (Piddock, 2006a) and is the more studied and described MDR mechanism 

(Elkins and Nikaido, 2002). The two genes of this system, acrA and acrB, encode a MFP 

and a cytoplasmic membrane efflux pump of the RND family, respectively. They confer 

resistance in E. coli to a variety of lipophilic and amphiphilic drugs, dyes, and detergent 

molecules that include tetracycline, chloramphenicol, fluoroquinolones, β-lactams, 

erythromycin, fusidic acid, ethidium bromide, crystal violet, sodium dodecyl sulphate 

(SDS), and bile acids. Genetic studies showed that both genes were required for this 

resistance (Piddock, 2006a). Further mutational analysis suggested that this process also 

required TolC and therefore that the system probably functions as a tripartite complex: 

the AcrAB-TolC (Elkins and Nikaido, 2002) (Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Structural organization of the tripartite efflux system, AcrAB-TolC from 

E. coli. The AcrAB-TolC is the major, constitutively expressed, tripartite multidrug efflux system in E. 

coli that recognizes various structurally unrelated molecules, including many antibiotics, dyes, and steroids. 

The AcrB inner membrane pump portion is thought to bind substrates at multiple sites, suggesting that 

particular substrate may compete for efflux by interfering with the binding site (reproduced from 

www.mpexpharma.com/efflux.html). 
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This tripartite complex is highly homologous to the MexAB-OprM RND system in P. 

aeruginosa (Borges-Walmsley, et al., 2003; Piddock, 2006a; Poole, 2007). AcrA is a 

397-amino-acid protein that interacts with AcrB, a much larger protein that contains 

1,048 amino acids. TolC, a 506-amino-acid protein, is also associated with AcrA 

(Piddock, 2006a). AcrB is thought to capture its substrates preferentially from within the 

outer leaflet of the cytoplasmic membrane (Sennhauser et al., 2007; Tikhonova and 

Zgurskaya, 2004; Yu et al., 2003). The drugs are extruded across the periplasmic space 

and the outer membrane via the combined action of AcrA and the TolC channel. This 

system is advantageous over simple cytoplasmic membrane pumps because it can extrude 

drugs directly into the extracellular medium (Elkins and Nikaido, 2002). The AcrAB–

TolC system demonstrates a very broad substrate specificity that includes: 

chloramphenicol, lipophilic β-lactams, fluoroquinolones, tetracycline, rifampin, 

novobiocin, fusidic acid, nalidixic acid, ethidium bromide, acriflavine, bile salts, short-

chain fatty acids, SDS, Triton X-100 and triclosan (Piddock, 2006a; Poole, 2007). Not all 

MDR efflux pumps export exclusively lipophilic and amphiphilic substrates. In E. coli, 

acrD and the acrEF operon also encode efflux pumps. The AcrD pump was originally 

believed to function as a single component pump for the efflux of a variety of 

aminoglycosides, a very hydrophilic class of drugs, and its gene does not form an operon 

with a membrane fusion protein gene (Nishino and Yamaguchi, 2001; Piddock, 2006a). 

Several studies showed that it actually requires AcrA and TolC to efflux bile salts, 

novobiocin and aminoglycosides (Rosenberg et al., 2003) and can also mediate resistance 

to a limited range of amphiphilic compounds such as SDS, deoxycholate, and novobiocin 

(Elkins and Nikaido, 2002). The AcrEF pump is not expressed in wild-type cells, but is 

expressed in fluoroquinolone-resistant mutants that lack the AcrAB pump (Jellen-Ritter 

and Kern, 2001). AcrE and AcrF are 80 and 88% similar to AcrA and AcrB, respectively 

(Piddock, 2006a). This could predict a similar role for these pumps; however, knockout 

experiments with AcrEF, YhiUV and MdtABCD did not change drug susceptibilities of 

the wild-type strain of E. coli, suggesting that these pumps do not play a significant role 

in the antimicrobial resistance of this organism (Elkins and Nikaido, 2003). However it is 

known that this system confers resistance to solvents (Ramos et al., 2002). Interestingly, 

the AcrF protein was shown to function with AcrA and TolC for solvent efflux (Elkins 
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and Nikaido, 2003), suggesting the components of the RND complex may be 

interchangeable. When over-expressed, the YhiUV pump is responsible for resistance to 

doxorubicin, erythromycin, deoxycholate and crystal violet, while the MdtABC system 

confers resistance to bile salts and novobiocin (Piddock, 2006a). The MdtABC system 

contains two different RND transporters, MdtB and MdtC and both are required for drug 

extrusion. An MFS transporter-encoding gene, mdtD, has been found downstream of the 

mdtABC operon, but does not appear to play a role in antibiotic resistance (Elkins and 

Nikaido, 2003). While recognized as a commensal organism, E. coli is also the most 

common cause of urinary tract infections, and treatment is usually with a 

fluoroquinolone, trimoxazole or nitrofurantoin. Enteropathogenic and enterotoxigenic E. 

coli are a common cause of diarrhoea in developing countries and for travellers to these 

locations, and if antimicrobial therapy is indicated, the same agents are often used as for 

the treatment of urinary tract infections. In children and in immunocompromised 

individuals, E. coli can cause more serious infections, associated with higher morbidity 

and mortality (Campos et al., 2004). For these groups, antimicrobial therapy is required; 

treatment may be with a broad-spectrum cephalosporin (e.g., ceftriaxone) or a 

fluoroquinolone (Marcos and DuPont, 2007). While some of these agents are substrates 

of the AcrAB-TolC system, over-expression alone is unlikely to give rise to clinical 

levels of resistance. For fluoroquinolones, a mutation(s) in a topoisomerase gene is also 

unlikely to give rise to clinical levels of resistance; however, when combined with 

enhanced efflux, such isolates are resistant to the breakpoint concentration of 

ciprofloxacin (Piddock, 2006a,b). Of current concern is the increasing number of E. coli 

isolates expressing an extended spectrum β-lactamases. Infections with such E. coli 

isolates are often treated with second- and third-line agents, which are often substrates of 

efflux pumps; therefore, the selective pressure on this species toward selection of highly 

MDR strains is increasing (Coque et al., 2008; Piddock, 2006b). 

 

3.2.3 Salmonella enterica 

 

Another area in which MDR efflux pumps are thought to play an important role is in the 

antibiotic resistance of food-borne pathogens. Over the last two decades there has been an 
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increase in the numbers of antibiotic-resistant bacteria isolated, both from humans and 

from animals (Baucheron et al., 2004; Piddock, 2006a,b). Particular concern has been 

expressed about antibiotic-resistant foodborne zoonoses such as Campylobacter jejuni 

and various serovars of S. enterica (Baucheron et al., 2004; Ge et al., 2005). For both of 

these species, poultry meat consumption is a significant route of transmission of these 

bacteria to humans. Bacteria isolated from both animals and humans have been shown to 

be cross resistant to antibiotics used both in veterinary and human medicine (Piddock, 

2006a; Thorrold et al., 2007). Agents used in treating infections in poultry include 

fluoroquinolones, β-lactams, macrolides and tetracycline. All of these agents are 

substrates for MDR efflux pumps. S. enterica serovar Typhimurium AcrA and AcrB are 

very similar to AcrA (94%) and AcrB (97%), respectively, of E. coli (Eaves et al., 2004). 

Mutants of S. enterica serovar Typhimurium lacking AcrB were shown to be hyper-

susceptible to quinolones, tetracycline, chloramphenicol, bile salts, SDS, Triton-X100, 

acriflavine, ethidium bromide, cetyltrimethylammonium bromide, and triclosan (Webber 

et al., 2008). Over-expression of AcrB has also been associated with MDR in human 

clinical and veterinary isolates (and laboratory mutants) of S. enterica serovar 

Typhimurium (Piddock, 2006a). Two other RND efflux pumps AcrD and AcrF, are 

present on the genome of S. enterica. Genomic analysis reveals that S. enterica serovar 

Typhimurium LT2 AcrF is 88% similar to E. coli AcrF. Furthermore, E. coli AcrB is 

90% similar to S. enterica AcrF. S. enterica serovar Typhimurium LT2 AcrD is 79 and 

78% similar to S. enterica serovar Typhimurium AcrB and AcrF, respectively (Eaves et 

al., 2004). Deletion of acrD or acrF from S. enterica serovar Typhimurium had little 

effect on the MIC of clinically relevant antibiotics (Eaves et al., 2004; Piddock, 2006a). 

However, it was shown that when either of these genes was deleted, AcrB expression was 

increased (Eaves et al., 2004); likewise, when acrB was deleted, expression of acrD or 

acrF increased (Eaves et al., 2004; Ricci et al., 2006). It may be that the bacterium can 

compensate for the lack of AcrD or AcrF, and consequently there is no effect on the MIC. 

However, a double-knockout mutant lacking AcrB and AcrF was no more hyper-

susceptible than a construct lacking AcrB alone (Eaves et al., 2004). These data suggest 

that the major efflux pump protein in S. enterica serovar Typhimurium, and probably all 

serovars of S. enterica, is the AcrAB-TolC pump. 
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3.2.4 Campylobacter spp.  

 

It has been shown that CmeABC mediated efflux in C. jejuni conferred MDR (Pumbwe 

et al., 2005). CmeA and CmeB have some similarity to AcrA (51%) and MexA (49%) 

and to AcrB (63%) and MexB (62%), respectively, of E. coli and P. aeruginosa. Deletion 

of cmeB revealed that the substrates of CmeABC include ciprofloxacin and erythromycin, 

both common first-line agents used to treat a human campylobacter infection. In addition, 

over-expression of CmeB confers resistance to ciprofloxacin, ampicillin, tetracycline, and 

chloramphenicol and decreased susceptibility to triclosan, bile salts, SDS, and Triton X-

100 (Piddock, 2006a). A second efflux pump system, CmeDEF, has also been identified, 

but this system does not appear to confer resistance to ciprofloxacin or erythromycin 

(Pumbwe et al., 2005). 

 

3.2.5 Acinetobacter baumannii 

 

A. baumannii is a multidrug resistant bacillus that is causing increasing problems in the 

nosocomial setting, particularly on the intensive care units (Giamarellou et al., 2008). 

This MDR is commonly due to chromosomally mediated fluoroquinolone resistance (due 

to mutations in gyrA) and a species-specific cephalosporinase. It can also possess 

plasmid- or transposon-encoded genes encoding β-lactamases and aminoglycoside 

inactivating enzymes. In addition to these mechanisms of resistance, an RND MDR 

tripartite efflux pump, AdeABC, has been described (Vila et al., 2007). AdeA and AdeB 

have some similarity to AcrA (55%) and MexA (58%) and to AcrB (68%) and MexB 

(67%), respectively, of E. coli and P. aeruginosa. When adeB was deleted in a clinical 

isolate, BM4454, the organism became susceptible to gentamicin, ofloxacin, cefotaxime, 

and tetracycline, with MIC below the recommended breakpoint concentration (Piddock, 

2006a). Over-expression of AdeABC confers resistance to aminoglycosides and 

decreased susceptibility to fluoroquinolones, tetracycline, chloramphenicol, 

erythromycin, trimethoprim, and ethidium bromide, as well as to netilmicin and 

meropenem (Bratu et al., 2008). Treatment of A. baumannii infection typically includes 

aminoglycosides, such as gentamicin, in combination with a β-lactamase-stable β-lactam, 
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such as piperacillin or imipenem. An alternative therapy would be another β-lactam, a 

fluoroquinolone, rifampin, or colistin, but these alternative therapies are relatively new 

and have not been supported by much clinical data (Giamarellou et al., 2008). By this 

manner, over-expression of the AdeABC efflux pump reduces the therapeutic options. 

 

3.2.6 Neisseria gonorrhoeae 

 

MtrCDE mediates MDR and resistance to certain antimicrobial peptides produced at the 

host mucosal surfaces. Compared with homologies between other RND pump systems, 

MtrC has low similarity with E. coli AcrA and P. aeruginosa MexA (47% and 49%, 

respectively), whereas similarity of MtrD with E. coli AcrB and MexB is higher (67% 

and 68%, respectively). MtrE corresponds to TolC. In penicillin- resistant strains, it has 

been shown that the MtrCDE efflux pump interacts synergistically with other 

mechanisms of β-lactam resistance, including porins (penB) and low-affinity penicillin 

binding proteins (Veal et al., 2002). Increased expression of MtrCDE alone does not 

increase the MIC of antimicrobial agents sufficiently to be resistant to the recommended 

breakpoint concentration. Ciprofloxacin is an alternative agent for the treatment of 

gonorrhoea, and this agent is not a substrate of the Mtr system (Piddock, 2006b). 

 

3.2.7 Other Gram-negative bacteria 

 

Homologues of the RND Mex and Acr efflux systems associated with MDR have also 

been found in other Enterobacteriaceae, including Enterobacter aerogenes, Klebsiella 

spp., Proteus mirabilis, Serratia marcescens, Morganella morganii, Haemophilus 

influenzae, and Helicobacter pylori (Piddock, 2006a). MDR pumps of the MATE family 

have been described for several Gram-negative bacteria: V. parahaemolyticus (NorM), B. 

thetaiotaomicron (BexA), V. cholerae (VcmA, VcrM), Brucella melitensis (NorMI), N. 

gonorrhoeae (NorM), H. influenzae (HmrM), and P. aeruginosa (PmpM) (Saier and 

Paulsen, 2001). The substrate profile typically includes a fluoroquinolone (norfloxacin 

and ciprofloxacin), DNA intercalating dyes, and detergents. However, the clinical 

relevance of these systems has not been completely established (Piddock, 2006b). 
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4. Strategies to reduce/inhibit efflux 

 

Given the significance of efflux mechanisms, particularly MDR efflux mechanisms, as 

regards antimicrobial resistance in important human pathogens there is a need to address 

efflux in the design and development of new antimicrobials and in using existing agents.  

 

In order to address the problem of efflux pumps and their consequences on decreasing the 

intracellular active concentration of antibiotics, it is necessary to search for and develop 

new molecules to circumvent efflux activity (Mahamoud et al., 2007; Poole, 2007). 

Different strategies could be adopted to reach this objective, such as: i) by-passing efflux 

activity through the improvement of the molecular design of old antibiotics to reduce 

their efflux; ii) direct action on the permeability of the bacterial cell envelope: decreasing 

the efficacy of the membrane barrier; iii) blocking the efflux capacity of bacterial cell: 

alteration of pump function (see Figure 11) (Mahamoud et al., 2007; Webber and 

Piddock, 2003). This last approach will be discussed in more detail in the next sections. 

 

 

 

 

 

 

 

 

 

 

Figure 11. Strategy to inhibit the efflux capacity of a bacterial cell by alteration of 

the efflux pumps function. Blocking the efflux capacity of a bacterial cell will cause the alteration of 

the pump function and the antibiotic will be entrapped and accumulated inside (sources: Carryn et al., 

2003; Martins et al., 2008). 
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The development of novel molecules that overcome the resistance mechanisms involving 

enzymes, mutations or efflux appear to be a suitable strategy to bypass the restricted 

number of new antibiotics. By this manner, the efflux activity and pump components are 

putative targets for the development of new molecules (Mahamoud et al., 2007; Marquez, 

2005; Piddock, 2006b). To specifically block the activity of drug efflux pumps, several 

approaches could be developed: i) create a jam in the outer membrane channel; ii) inhibit 

the interactions of different components of a multi-component pump; iii) inhibit the drug 

binding to the inner membrane pumps generating competition in the inner membrane 

pump; iii) alter the pump assembly; iv) target the energy source of pumps by collapsing 

the energy component of the mechanism; or v) target the regulatory networks that control 

the expression of the efflux pumps (Mahamoud et al., 2007). The demonstration of drug 

capture in the periplasm and outer-membrane pumping out, termed “periport”, by 

Lomovskaya and Totrov (Lomovskaya and Trotov, 2005; Lomovskaya et al., 2007) 

offers the possibility to use periplasmic transit blockers to obstruct the AcrB-pump 

central cavity. From the structural data, few amino acid residues are involved in 

interactions with the transported substrate and these strategic sites are well preserved in 

the various efflux pumps belonging to the AcrB family. This multiplicity of sites might 

be the basis for the difference observed in the efflux rate of drugs. To date, the inhibitory 

activities of several structurally unrelated compounds have been assessed on diverse 

actively effluxing drug resistant Gram-negative bacteria, including E. coli, Enterobacter 

aerogenes, K. pneumoniae, C. jejuni, P. aeruginosa and S. enterica (Lomovskaya et al., 

2007; Mahamoud et al., 2007; Piddock, 2006a; Poole, 2007). To address the effect of 

efflux pumps inhibition and its consequence on decreasing the intracellular active 

concentration of antibiotics, it is necessary to search and develop new molecules that can 

circumvent this efflux activity. This provides strong support for research and 

development of new compounds; namely, efflux pumps inhibitors (EPIs) that by 

inhibiting the efflux systems contribute to preserve antibacterial potency of antibiotics. 
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4.1 Efflux pumps inhibitors (EPIs) 

 

There are compounds that are used for the therapy of non-infectious pathogens and that 

have antimicrobial properties, having been termed “non-antibiotics” (Kristiansen et al., 

2007; Martins et al., 2008). Due to their potential for the therapy of some MDR 

infections, they may eventually achieve an antimicrobial status (Hendricks et al., 2003). 

The group of the so called “non-antibiotics” can be further divided into two subgroups: i) 

antimicrobial non-antibiotics and ii) “helper compounds”. Each of these subgroups has 

distinct modes of action. The antimicrobial non-antibiotics have direct antimicrobial 

activity while the “helper compounds” are known to alter the permeability of the 

microorganism to a given antibiotic (Kristiansen et al., 2007; Martins et al., 2008). Over 

the past decade, a series of EPIs have been identified. However, only a few number of 

new and effective molecules obtained the Food and Drugs Administration (FDA) 

approval and few antibacterial are in pre- or clinical developments (Mesaros et al., 2007).  

When discussing this subject several questions arise: what is an EPI? How many types of 

EPIs are known to date? This will be discussed in the next sections. 

 

4.1.1 Peptidomimetics 

 

The first broad-spectrum RND pump inhibitor identified was phenylalanyl arginyl-β-

naphthylamide (PAβN). This EPI enhanced the activity of levofloxacin against wild-type 

P. aeruginosa 8-fold and against a MexAB–OprM over-expressing strain 64-fold 

(Lomovskaya and Bostian, 2006). Several improved EPIs exhibited antibiotic 

potentiation activity for P. aeruginosa strains expressing MexAB–OprM, MexCD–OprJ 

and MexEF–OprN, and for E. coli expressing AcrAB–TolC (Mahamoud et al., 2007). 

Importantly, EPIs dramatically reduced the emergence of spontaneously levofloxacin-

resistant bacteria and were effective in animal models of P. aeruginosa infections. 

Similar compounds have been shown to inhibit efflux pumps in Enterobacter aerogenes 

and Campylobacter (Lomovskaya and Bostian, 2006; Mahamoud et al., 2007). It is 

believed that these compounds act by inhibiting the specific binding sites of antibiotics 

within the pump molecule (Poole, 2007). These molecules significantly and rapidly 
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increase the intracellular accumulation of different efflux sensitive drugs, such as 

quinolones, chloramphenicol or macrolides, in clinical isolates expressing different levels 

of efflux pumps, without affecting the integrity of the membrane under the conditions 

used (Piddock, 2006b). However, some EPIs, such as PAβN, can affect the membrane 

integrity when used at high concentrations (Lomovskaya et al., 2007). This point is of 

special interest because it might induce the emergence of resistance profiles, such as 

those described for certain cationic antimicrobial peptides or polymyxines (modification 

of the lipopolysaccharide structure inducing a change in drug penetration). In the case of 

PAβN the analyses of the inhibitory mechanism demonstrated that this EPI is a substrate 

of efflux pumps that may act as a competitive inhibitor. Some derivatives of this 

compound, such as pyridopyrimidines, have also being developed as EPIs for P. 

aeruginosa. However, the disadvantage of the members of this EPI family is their toxic 

properties, which prevent their clinical applications (Mahamoud et al., 2007). 

 

4.1.2 Phenothiazines 

 

The work of Paul Ehrlich, in the 19th century, demonstrated the antimicrobial activity of 

methylene blue, shown to obviate the mobility of microorganisms and the increased 

interest on its properties lead to the synthesis of a group of heterocyclic compounds 

called phenothiazines (Martins et al., 2008) (Figure 12). These compounds demonstrate a 

wide gamut of antibacterial activities (Amaral et al., 2004;  Bettencourt-Viveiros and 

Amaral, 2001; Hendricks et al., 2005; Kaatz et al., 2003; Kawase et al., 2001; 

Thanacoody, 2007; Vitale et al., 2007). However, with few exceptions the concentrations 

of these agents needed to inhibit in vitro growth of the bacteria are well beyond those that 

can be clinically achievable (Amaral and Kristiansen, 2001; Amaral et al., 2004; 

Kristiansen and Amaral, 1997). Because antibiotic resistance, especially MDR, has 

become common, a number of investigators turned their interest to chlorpromazine (CPZ) 

and other derived phenothiazines as potential agents against MDR infections, acting as 

“helper compounds” (Amaral and Kristiansen, 2000; Amaral et al., 2001, 2006; Crowle 

et al., 1992; Hendricks et al., 2005; Kristiansen and Amaral, 1997; Kristiansen et al., 

2007; Ordway et al., 2002). 
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Figure 12. Structure of phenothiazines and its derivatives. Phenothiazines are a group of 

heterocyclic compounds characterized by a three-ring structure in which two benzene rings are joined by a 

sulfur and nitrogen atom at nonadjacent positions (reproduced from Martins et al., 2008). 

 

Phenothiazines have been shown to reverse MDR phenotypes of bacteria and therefore 

render these bacteria susceptible to antibiotics to which they were initially resistant 

(Kristiansen and Amaral, 1997; Kristiansen et al., 2007). Phenothiazines are known to 

inhibit the transport of calcium (Ca2+) by preventing its binding to Ca2+-binding proteins 

such as calmodulin (Bhatnagar and Singh, 2003, 2004; Dhople, 1999; Sinha and Dick, 

2004). By this manner, enzyme systems which are dependent upon Ca2+, such as those 

involved in generating cellular energy from hydrolysis of ATP, could also be inhibited 

(Bhatnagar and Singh, 2003). Because MDR is due to the over-expression of efflux 

pumps and these efflux systems are driven by energy provided by the proton-motive force 

which is dependent upon Ca2+-dependent enzyme systems, the inhibition of Ca2+ binding 

to Ca2+-dependent enzymes will render the bacterium susceptible to that which they were 

initially resistant (Bhatnagar and Singh, 2003, 2004; Dhople, 1999; Sinha and Dick, 

2004).  
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4.1.3 Benastatins 

 

Benastatins obtained from fermentation of an actinomycete are another group of 

compounds that were found to be active against P. aeruginosa expressing MexAB–OprM 

(Fronko et al., 2000; Qureshi et al., 2001). EPIs have been identified for other bacteria 

and from other sources. 2,8-Dimethyl-4-(2V-pyrrolidinoethyl)-oxyquinolone, an 

alkoxyquinolone derivative, was shown to inhibit efflux pumps in E. aerogenes and K. 

pneumoniae. This EPI potentiated the efficacy of chloramphenicol, norfloxacin, 

tetracycline and cefepime by up to 8-fold (Chevalier et al., 2004).  

 

4.1.4 Tetracycline derivatives/homologues 

 

For specific efflux pumps, many putative inhibitors that share tetracycline-analogue 

structural properties have been screened to inhibit the tetracycline efflux mechanism 

(Chopra, 2002). Several tetracycline derivatives were described that inhibit the TetB 

efflux pump. Some of them demonstrate an interesting reversal capacity and these studies 

indicate that tetracycline derivatives, identified by their ability to block the Tet(B) efflux 

protein, can restore tetracycline activity against resistant bacteria bearing either of the two 

known resistance mechanisms, namely, efflux and a ribosomal-protection mechanism 

(Sudano et al., 2004). The most potent of these is a derivative of doxycycline, 13-

cyclopentylthio-5-OH tetracycline (13-CPTC) (Dean et al., 2003). Contrary to the EPIs 

described above, 13-CPTC has antibacterial properties of its own against 

lipopolysaccharide-deficient E. coli and S. aureus. Combination of 13-CPTC with 

doxycycline resulted in reduction of MIC values for doxycyline by 4- to 10-fold (Nelson 

and Levy, 1999). Blocking specific drug efflux and increasing intracellular drug 

concentrations constitute an effective approach to reverse tetracycline resistance in Gram-

negative bacteria (Piddock, 2006a,b). Various antibiotic analogues have also been 

developed and among them are tetracycline analogues which were first described by 

Levy and McMurry (Levy and McMurry, 1978). Initially focused on S. aureus and 

tetracyclines, these molecules have been tested with other antibiotics and several bacterial 

pathogens. One of the main problems with this class of modified antibiotics is its high 
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structural similarity with the true antibiotic molecules and its residual activity on bacterial 

targets; an adverse consequence of these properties is the reinforcement of the selection 

of resistance mechanisms directed against the antibiotic (Mahamoud et al., 2007). 

 

4.1.5 Compounds isolated from plant extracts 

 

Plant extracts constitute one of the major sources of compounds with antibacterial 

activity (Marquez, 2005). One of these examples is the antihypertensive plant alkaloid, 

reserpine (Figure 13). This indole alkaloid was first isolated from the roots of Rauwolfia 

vomitoria Afz (Poisson et al., 1954). Its EPI activity was originally demonstrated against 

the Bmr efflux pump, which mediates tetracycline efflux in Bacillus subtilis. It also 

potentiates the activity of fluoroquinolones on MDR Gram-positive bacteria and of 

tetracycline on MRSA strains (Piddock, 2006a). Neyfakh et al. showed that reserpine 

inhibited NorA (Neyfakh et al., 1993), while Kaatz and Seo showed that reserpine 

potentiated the activity of norfloxacin for S. aureus (Kaatz and Seo, 1997). It has been 

also described that decreases the emergence of MDR S. aureus and S. pneumoniae strains 

in vitro (Marquez, 2005) and its inhibition of the P-gp is largely known (Piddock, 2006a). 

Unfortunately, reserpine cannot be used in combination with antibiotics for the treatment 

of staphylococcal infections, since the concentrations required for the treatment are 

neurotoxic (Michalet et al., 2007). The natural products isolated from Berberis plants 

have been identified as inhibitors of bacterial efflux pumps (Michalet et al., 2007). 

Interestingly, they potentiate the antibacterial activity of berberine, an alkaloid isolated 

from Berberis fremontii, what may suggest that plants have evolved to produce weak 

antibacterial compounds associated with EPIs, to enhance their activity (Marquez, 2005; 

Michalet et al., 2007; Stavri et al., 2007). Studies conducted with berberine showed that 

this compounds has weak antibacterial activity (MIC = 256 mg/L) against a wild-type 

strain of S. aureus. However, the isolation of the flavonolignan 50-methoxyhydnocarpin-

D (50-MHC-D) and a synergistic study between these two compounds led to a 16-fold 

increase in the antibacterial activity of this alkaloid (MIC =16 mg/L). 50-MHC-D also 

had a synergistic effect with several other NorA substrates, including norfloxacin. 
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Figure 13. Structure of EPIs obtained from plant extracts (sources: Marquez, 2005; 

Stermitz et al., 2000). 

 

There have also been a number of methoxylated flavones and isoflavones described as 

putative inhibitors of the MDR pump NorA in the presence of sub-inhibitory 

concentrations of berberine and norfloxacin (Stavri et al., 2007). However, one important 

aspect that should be carefully looked at when interpreting results is to ensure that the 

activity of these compounds is solely due to potentiation of the compounds and not by 

direct inhibition of the bacterial growth. 

 

A group of phenolic metabolites that have provided interest are the catechin gallates. It 

has been shown that these compounds are able to reverse the methicillin resistance in 

MRSA (Stavri et al., 2007). 
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Many other plants and herbs have been tested for their EPI activity on the last few years. 

Among these are the abietane diterpenes carnosic acid and carnosol, isolated from 

Rosemary (Rosmarinus officinalis) (Oluwatuyi et al., 2004). These diterpenes were 

identified as potentiators of tetracycline and erythromycin against S. aureus strains 

possessing the Tet(K) and Msr(A) efflux pumps, respectively (Smith et al., 2007). 

Several projects have been developed in the last years to obtain natural compounds with 

modulatory activity. One of such example is an extract of Lycopus europaeus 

(Lamiaceae). The lipophilic extract of L. europaeus, commonly known as Gipsywort in 

Britain, was shown to potentiate the activity of tetracycline and erythromycin against 

strains of S. aureus possessing the MDR efflux pumps Tet(K) and Msr(A) (Stavri et al., 

2007). 

 

A biological evaluation of grapefruit oil, isolated from Citrus paradisi, has highlighted 

some of the components as potential modulators of efflux pumps in MRSA strains. 

Fractionation of the grapefruit oil led to the characterization of a coumarin derivative, a 

bergamottin epoxide derivative and a coumarin epoxide derivative able to enhance the 

activity of ethidium bromide and norfloxacin (Abulrob et al., 2004). Work on plants 

belonging to the family Euphorbiaceae has resulted in the isolation of inhibitors of the P-

gp, including a jatrophane diterpene that caused a 2-fold greater inhibition of daunomycin 

efflux, with respect to cyclosporin A, at a concentration of 5 µM (Marquez et al., 2005). 

Piperine, a major plant alkaloid within the family Piperaceae including black pepper 

(Piper nigrum) and long pepper (Piper longum), has been reported to enhance the 

accumulation of ciprofloxacin by S. aureus (Stavri et al., 2007). This compound is a 

substrate of NorA and therefore it is plausible that piperine acts as an inhibitor of this 

transporter (Kumar et al., 2008). 

 

When conducting a more extensive analysis, some studies reveal that a common feature 

of these compounds is that they are highly lipophilic, suggesting that this characteristic 

could be exploited for the development of clinically useful inhibitors of MDR efflux 

pumps of Gram-positive bacteria (Stavri et al., 2007). 
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Members of the plant family Aizoaceae, considered as one of southern Africa’s most 

diverse and abundant plant families, but also the least studied in terms of its medicinal 

potential (van der Watt and Pretorius, 2001) also contain alkaloids known to have 

narcotic-anxiolytic properties and strong synergism with psychomimetics (Smith et al., 

1996). These properties are consistent with those presented by other neuro-active 

compounds whose activities reside primarily at the level of the plasma membrane 

(Williams et al., 2001). Although some of these alkaloids have been reported to have 

anticancer properties as well (Smith et al., 1996), they have received little attention, 

perhaps due to their reported toxicity. One such member of the Aizoaceae family is 

Carpobrotus edulis a plant that besides been found in southern Africa (van der Watt and 

Pretorius, 2001) is also found along the coast of Portugal and that is so prolific that it is 

considered a nuisance (Ordway et al., 2003). Due to the antimicrobial activity of this 

family, C. edulis has also become the subject of research for antimicrobial activity 

(Ordway et al., 2003; van der Watt and Pretorius, 2001).  

 

An interesting compound found in the ripe seeds of the African plants Strophanthus 

gratus and Acokanthera ouabaio, is ouabain. It is used extensively worldwide for in vitro 

studies to block the Na+ pump (Na+/K+-ATPase) (Clausen, 2003). The blockage of this 

pump is associated with high concentrations of the compound that are attainable in vitro 

whereas low concentrations stimulate the Na+/K+-ATPase (Gao et al., 2004). 

Interestingly, this compound was also identified in the human, as an endogenous 

hormone (Schoner and Scheiner-Bobis, 2005), being probably an isomer in the 

hypothalamus, that is augmented in conditions of oxygen deficiency. However, its exact 

mode of action and physiological significance is not yet determined (Schoner and 

Scheiner-Bobis, 2007). In France and Germany, ouabain has a long history in the 

treatment of heart failure, and some continue to advocate its use in angina pectoris and 

myocardial infarction (Gao et al., 2004). Some phenols, present in green tea extracts, also 

possess numerous biological activities, including antimicrobial activity (Bandyopadhyay 

et al., 2005; Marquez, 2005), reversal of methicillin resistance in MRSA strains 

(Michalet et al., 2007) or inhibition of P-gp (Marquez, 2005; Michalet et al., 2007).  
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4.1.6 Quinoline and its derivatives 

 

Various quinolines, which block drug efflux in MDR clinical isolates, have also being 

pursued for application as an EPI. This is a novel class of compounds that was discovered 

by using several screening procedures with Enterobacter aerogenes strains (Chevalier et 

al., 2001; Mahamoud et al., 2006). Several studies demonstrate the potential of these 

compounds, and several quinoline derivatives are being considered as broad-spectrum 

EPIs for rendering antibiotic-resistant Enterobacter aerogenes and K. pneumoniae 

susceptible to chloramphenicol, tetracycline and norfloxacin. Their ability to increase the 

accumulation of the antibiotic has been compared to that resulting from the addition of 

carbonyl cyanide-m-chlorophenylhydrazone (CCCP) or PAβN to the culture (Chevalier 

et al., 2004). These compounds affect the electrochemical gradient across the membrane 

used by some efflux pumps as a source of energy, thus inhibiting efflux (Ramón-García 

et al., 2006). However, in this class of EPIs, additional studies are needed to define the 

role of pharmacophoric groups and their reactivity with the affinity pockets reported in 

AcrB. Alkylamino-, alkoxy-, thioalkoxy-, chloro-quinoline derivatives present two 

advantages: their similarity with the quinolone family, which greatly argues for an 

efficient pharmacokinetic profile and a negligible intrinsic activity, and no additional 

side-effect (permeabilization or alteration) on the membrane. However, studies, such as 

toxicity assays and pharmacodynamics tests are still needed to determine the therapeutic 

potency of these compounds (Kumar et al., 2008; Mahamoud et al., 2007). 

 

4.1.7 Arylpiperidines and arylpiperazines  

 

Several compounds belonging to these two families have been tested as potential EPIs 

(Kern et al., 2006). Among arylpiperidines, some derivatives are able to restore linezolid 

susceptibility and accumulation in E. coli. In the case of arylpiperazine, screening of a 

limited library of low-molecular-weight N-heterocyclic compounds in E. coli has led to 

the discovery of several arylpiperazines with potency to reverse MDR in cells over-

expressing RND-type efflux pumps (Thorarensen et al., 2001). The mechanism of action 

of these and related compounds has not been completely elucidated. Unlike PAβN, the 
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low intrinsic antibacterial activity of these compounds and its cellular accumulation are 

not enhanced in cells with inactivated efflux pumps. One of the main disadvantages is 

that these compounds show serotonin agonist properties that most likely will be toxic for 

use in man and animals (Mahamoud et al., 2007) 

 

4.1.8 Microbial-derived EPIs 

 

EPIs derived from microbial sources have been relatively scarce to date. The ability of 

microorganisms to produce antimicrobial compounds as part of their “chemical arsenal” 

needs to be combated by susceptible microbes through the evolution of drug resistance 

(Stavri et al., 2007). MDR pumps are an example, with an ability to extrude a number of 

chemically diverse antibiotics with the expression of just a single efflux mechanism 

(Rouveix, 2007). It would therefore seem logical that, as is the case with plants, 

microorganisms would evolve to produce a second compound that could nullify the effect 

of MDR pumps in a competing microorganism resulting in the accumulation of the 

antimicrobial compound to a level that would be static or cidal. Screening of microbial 

fermentations has resulted in the characterization of new natural EPIs. The MDR 

inhibitors were isolated from Streptomyces MF-EA-371-NS1, which is a new strain 

closely related to Streptomyces vellosus. EA-371a and EA-371d (Qureshi et al., 2001) 

inhibited the MDR pump MexAB-OprM of P. aeruginosa PAM1032, which over-

expresses this pump. At a concentration of 0.625 mg/L both compounds caused a 4-fold 

reduction in the MIC of levofloxacin. An 8-fold reduction of this fluoroquinolone was 

effected at 1.25 and 2.5 mg/L of EA-371d and EA-371a, respectively (Stavri et al., 2007).  

 

4.2 Energy uncouplers 

 

Most efflux pump systems, except for the ABC family, which utilizes ATP hydrolysis, 

utilize the proton motive force as an energy source to drive the export of substrates 

(Piddock, 2006a,b; Poole, 2007). Compounds that seriously affect the energy level of the 

bacterial membrane such as CCCP and dinitrophenol (DNP) dissipate the proton motive 

force, thereby inhibiting efflux (Mahamoud et al., 2007). However, these compounds are 
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not considered inhibitors of efflux systems. These compounds reduce the viability of the 

bacterium and cause cell death via the dissipation of the proton motive force of the 

membrane (Pagès et al., 2005). Consequently, there is always the question of whether it 

is their effect on the efflux pump that is the cause of an increase in the penetration of the 

antibiotic, or whether it is due to the alteration of the cell envelope itself that results in the 

death of the bacterium (Marquez, 2005; Pagès et al., 2005). In addition, some uncouplers, 

like CCCP, are recognized as highly noxious and cytotoxic and are also substrates of 

bacterial efflux pumps. Neyfakh et al. showed that efflux-mediated MDR in B. subtilis 

had some similarities with that of P-gP of mammalian cells (Neyfakh, 1992), in that 

MDR was reversed in the presence of reserpine and verapamil, known inhibitors of the P-

gP (Mahamoud et al., 2007). Several other EPIs have been reported, such as globomycin, 

an inhibitor of lipoprotein-precursor-processing enzyme (Malléa et al., 2002). Despite all 

the studies on this area, no molecule belonging to the energy-blocker family has been 

developed for clinical use or has been patented until this date (Mahamoud et al., 2007).  

 

In summary, EPIs clearly show promising for developing combination therapies with 

existing antimicrobials to restore their antibacterial activity against resistant bacteria. 

However, this approach presents its own challenges because of the potential undesirable 

effects on eukaryotic cells, for example toxicity and inhibition of eukaryotic transporters 

that are structurally and functionally similar. Bypassing efflux pumps may be an available 

alternative to EPIs. This could be achieved by development of newer drugs that are poor 

substrates for these pumps. Indeed, some of the newer fluoroquinolones seem to be poor 

substrates for certain pumps found in Gram-positive bacteria (Mahamoud et al., 2007). 

However, it is not yet clear if the increased activity is due to higher affinity for the target 

or lower affinity for these pumps. As mentioned before, there is always the risk of 

inducing an alternate pump in response to exposure to an antibiotic that is a poor 

substrate for a particular pump. The glycylcycline tigecycline (GRA-936) is an example 

of a substrate that is a poorer substrate for tetracycline pumps (Felmingham, 2005). 

However, glycylcyclines are substrates for RND pumps of many Gram-negative bacteria, 

including P. aeruginosa, K. pneumoniae, P. mirabilis and Morganella morganii, which 

render them ineffective against Gram-negative pathogens (Chopra, 2002). 
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4.3 The use of EPIs in conjunction with antibiotics – the “helper compounds” 

approach  

 

The search for compounds that have been shown to be EPIs have being extensively 

studied on the last few years, as previously demonstrated (Mahamoud et al., 2007; Pagès 

et al., 2005; Piddock, 2006a,b; Poole, 2007). If these compounds are to be used in 

combination with antibiotics to which a given bacteria is initially resistant, they may 

increase the susceptibility of this bacteria to the given antibiotic and be used as “helper 

compounds”.  

 

It has been demonstrated that exposing an antibiotic-sensitive bacteria to increasing 

concentrations of a given antibiotic will induce an increased resistance to this same 

antibiotic (Martins et al., 2007; Viveiros et al., 2002, 2005, 2007). Exposure of E. coli to 

increasing concentrations of tetracycline results in significantly increased activity of 

genes that regulate genes coding for transporters of the RND superfamily efflux pumps 

(Viveiros et al., 2005, 2007). However, concomitantly and accompanying this induced 

resistance are increases in resistance to other distinct classes of antibiotics (Viveiros et 

al., 2005, 2007). This induced resistance can be reversed with the transfer of the 

bacterium to a drug-free medium or by exposure of the bacterium to an EPI, such as 

PAβN, phenothiazines, reserpine, or to proton un-couplers, such as CCCP, etc. (Kern et 

al., 2006; Mahamoud et al., 2007; Pagès et al., 2005; Piddock, 2006a). By this manner, 

exposing a given bacteria to an antibiotic at concentrations that do not completely inhibit 

its replication induce the bacterium to withstand the action of the antibiotic even though 

its concentration has been increased. This poses the question if the development of a 

MDR infection in patients treated with sub-inhibitory doses of the antibiotic occurs via 

the same mechanism.  
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Among the commonest Gram-negative bacteria involved in nosocomial respiratory and 

urinary tract infections are Enterobacter aerogenes and Klebsiella pneumoniae (Pagès et 

al., 2005; Piddock, 2006a) that show a marked decrease in antibiotic susceptibility. These 

modifications of the envelope permeability contribute to a high level of resistance for 

structurally unrelated molecules such as β-lactams, quinolones, macrolides, tetracyclines 

and chloramphenicol (Poole, 2007). In various clinical isolates, the MDR phenotype is 

strongly associated with a marked decrease in the synthesis of non-specific porins and the 

overproduction of active drug efflux systems (Webber and Piddock, 2003). Since this 

MDR phenotype involves over-expression of efflux pumps and down regulation of 

porins, both systems work together to reduce the permeability of the organism to that 

antibiotic as well as to other unrelated antibiotics (Piddock, 2006; Thanassi et al., 1995). 

Because the MDR efflux pump can be inhibited by a variety of agents, the use of EPIs as 

“helper compounds” to the antibiotic mode of action to which the bacterium is initially 

resistant has become a focus of interest and intensive research (Amaral et al., 2001; Kern 

et al., 2006; Kristiansen et al., 2006; Mahamoud et al., 2007; Martins et al., 2008; Pagès 

et al., 2005; Piddock, 2006). The synthesis and characterization of new compounds that 

are capable of circumventing efflux activity and restore the internal concentration of 

common antibiotics that are substrates of efflux pumps is one of the main challenges that 

man is facing. An additional aspect that should be considered is that these compounds 

must be devoid of any intrinsic antibacterial activity at the concentration commonly used.  

 

4.4 Practical applications and feasibility of EPIs in the clinical context 

 

The ability of the “helper compounds” to reduce or reverse the resistance of the 

bacterium to a given antibiotic is of grateful application, since these compounds could be 

used as adjuvant with the conventional antibiotic to which the bacterium is resistant. This 

would be an important achievement since that if these “helper compounds” reach the 

clinical use many antibiotics that have fallen by the wayside due to MDR phenotypes of 

clinically relevant bacteria may again be used. But what is the implication in the clinical 

setting?  
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4.4.1 The establishment of MIC breakpoints and the interpretation of the in vitro 

susceptibility assays 

 

The need to know whether an organism is likely to respond to antimicrobial therapy is as 

old as chemotherapy itself. All methods used attempt to integrate the pattern of 

susceptibility of a population of bacteria with the pharmacokinetics of the antimicrobial 

and then, possibly, to review this relationship in the light of clinical experience. All have 

many problems in common (MacGowan and Wise, 2001; Piddock, 2006a). These 

include: (i) the need for antimicrobial group testing; namely, can just one agent be taken 

as representative of others? Commercially and scientifically this is a difficult problem; 

(ii) how to take into account the changing dosing regimens (for example, penicillin and 

ampicillin dosing for pneumococci with intermediate susceptibility); (iii) infections at 

specific sites, including the urinary tract, and the possible need for site-specific 

breakpoints; (iv) the role of the intermediate category between susceptible and resistant 

populations; (v) how to integrate the newly emerging knowledge on pharmacodynamics 

with breakpoint determination; (vi) how to deal with organism–antimicrobial 

combinations where a substantial proportion of the distribution of susceptibility straddles 

the pharmacological breakpoint (MacGowan and Wise, 2001). Different countries should 

produce guidance on methodology and breakpoints that reflect clinical and laboratory 

practice in that country (Webber and Piddock, 2003). The primary function of in vitro 

antimicrobial susceptibility testing in clinical laboratories is to provide information to 

clinicians on the choice of appropriate chemotherapy, whether it is for therapy or 

prophylaxis in specific patients, or to help in antimicrobial policy formulation. 

Increasingly, routine susceptibility testing is also seen as having public health 

significance, in that the data generated can be used to track the occurrence and prevalence 

of antimicrobial resistance in the geographical area served by the laboratory (Tenover, 

2006). The definition of a strain according to the susceptibility profile is as follows: i) 

susceptible: when a infection due to the bacteria tested will probably respond to the 

antibiotic; ii) intermediate, when indeterminate or uncertain response is likely given 

standard dosing (in some circumstances increased doses would be effective); and iii) 

resistant when the infection due to bacteria tested will probably not respond to the 
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antibiotic. To categorize strains as susceptible, intermediate or resistant, breakpoint 

antibiotic concentrations are used. Breakpoints are discriminatory antimicrobial 

concentrations that are used in the interpretation of results of susceptibility testing to 

define isolates (MacGowan and Wise, 2001). However, clinical, pharmacological and 

microbiological considerations are important in setting breakpoints, and the ideal mixture 

of these factors is unknown. Three features of both antimicrobial and pathogen must be 

considered when deciding upon a breakpoint: (i) the distribution of the profile of 

susceptibilities of the bacterial population; (ii) pharmacological properties of the 

antimicrobial; and (iii) clinical outcome data. Some times there are difficulties than can 

arise when trying to reconcile these three parameters (Tenover, 2006). 

 

Until now, the MIC continues to be considered the gold standard for assessing an 

antibiotic’s potency, however, one must keep in mind that it is a crude measure with 

several limitations. However, all other susceptibility test methods should be validated 

against an MIC determined by a standard methodology. Breakpoints that fall in the 

troughs of bimodal or polymodal MIC distribution are most likely to yield a reproducible 

categorization of susceptible, intermediate or resistant. In the opposite, those breakpoints 

that lie in the middle of a continuous distribution will result in poor reproducibility 

(MacGowan and Wise, 2001). In some cases it may be necessary to shift breakpoints or 

to introduce two breakpoints to help diminish the impact of this problem. Different 

species differ in their MIC distributions, and therefore it may be necessary to choose 

breakpoints that relate to the more common and/or important organisms (Piddock, 

2006a,b). The choose of breakpoints considering the majority of clinical isolates may 

result in a classification of “susceptible” for organisms with specific resistance 

mechanisms that affect clinical outcomes. It may consequently be necessary to shift 

breakpoints to reduce this problem. 
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In most cases, the distribution of susceptibilities (or distribution of MIC) for a bacterial 

population to an antimicrobial can be considered: i) unimodal, when the bacteria are 

innately susceptible or resistant (Figure 14A); or ii) bimodal, when two populations are 

obtained, for instance, a susceptible population and a population possessing a mechanism 

or mechanisms of resistance (Figure 14B) (MacGowan and Wise, 2001). 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Unimodal and bimodal MIC distribution (Adapted from MacGowan and Wise, 

2001). 

 

However, it must be understood that for certain drug-pathogen interactions that have the 

susceptibility profile distributed over a wide range of MIC values it can be difficult, and 

sometimes almost impossible, to choose a meaningful breakpoint that will yield 

consistent results in an acceptably high proportion of tests. For example, Klebsiella and 

Serratia spp. are less susceptible than other Enterobacteriaceae to some fluoroquinolones, 

but may well respond to therapy, while “wrongly” being reported as resistant relative to 

breakpoints that have been optimized for other Enterobacteriaceae (MacGowan and Wise, 

2001; Piddock, 2006a). Vancomycin resistance in S. aureus is another example, where 

changes may need to be made in the future. 
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Implicit in choosing a breakpoint is the assumption that the concentration of an 

antimicrobial at the site of infection is one of the important features likely to determine 

the outcome of therapy. For these reasons serum concentrations are used as surrogates for 

those in tissue. A feature of certain antimicrobials, particularly some of the macrolide 

group, is their high tissue concentrations yet low serum levels (MacGowan and Wise, 

2001). A feature not yet addressed is the impact that a particular choice of a breakpoint 

might have upon the emergence of resistance among pathogens to a particular 

antimicrobial. There is increasing evidence that the use of an antimicrobial when MIC for 

infecting organisms are very close to the MIC breakpoint may be associated with the 

emergence of resistance. It is possible that this should be factored into future breakpoint 

determinations. 

 

4.4.2 Clinical issues and the necessity to establish a breakpoint 

 

Determining a breakpoint implies that an organism designated as “susceptible” should 

respond to the standard dose of the agent. A “resistant” organism should not respond and 

an “intermediate” may or may not respond to standard doses, yet would have an increased 

chance of responding to a greater dose if the infection is at a site where the antimicrobial 

is actively concentrated (MacGowan and Wise, 2001; Tenover, 2006). Usually, the MIC 

ant its distribution for a relevant number of pathogens is determined and according with 

the guidelines of each country or societies it is considered acceptable a limits established 

between <5% and <1%, believing that false-resistant reporting to be of lesser clinical 

consequence than false susceptible. Occasionally it is found that certain groups of 

pathogens and antimicrobials (for example P. aeruginosa and the fluoroquinolones) give 

consistently high rates of false reporting (Wise and Andrews, 1999). By this manner, the 

use of one agent to represent a family of closely related compounds is not a consensual 

subject. If one chooses one antibiotic that is the least active representative of the family 

of compounds, increased “false resistance” reports to a more active member can emerge. 

This is of less clinical danger than predicting the susceptibility of a less active agent 

based upon information obtained by susceptibility testing of a more active compound. 

However, if a particular agent in a group is used locally, that agent should be tested. 
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There can be some exceptions as is the case of the “third-generation cephalosporins”, 

where the least active compound may not be the best indicator of resistance for that 

particular class (MacGowan and Wise, 2001). 

 

4.4.3 The clinical relevance of the MIC reduction  

 

Using an EPI to reduce or reverse the resistance to a given antibiotic continues to be a 

subject of intense discussion and research (Amaral et al., 1992, 2007; Kern et al., 2006; 

Kristiansen et al., 2006; Mahamoud et al., 2007; Martins et al., 2008; Pagès et al., 2005; 

Piddock, 2006). To be considered clinically relevant an EPI should reduce the MIC of a 

strain to a given antibiotic, in order to change the susceptibility profile of the strain. For 

example, an EPI can reduce the MIC of a given strain but it only has a clinical impact if 

the MIC of the isolate identifies that strain as “susceptible” (Webber and Piddock, 2003). 

Hundreds of studies have been published with results on the MIC reduction of a given 

strain to several antibiotics; however, not always the change of the susceptibility profile 

according to the breakpoint for that strain is discussed. For example, for an AcrB-

overexpressing strain of Salmonella enterica serovar Typhimurium the MIC of nalidixic 

acid, tetracycline, and chloramphenicol are above the recommended breakpoint 

concentrations (Piddock et al., 1993). The MIC of ciprofloxacin is usually 0.5 mg/L for 

an AcrB-overexpressing strain, i.e., below the Clinical and Laboratory Standards Institute 

(CLSI) and the British Society of Antimicrobial Chemotherapy (BSAC) recommended 

breakpoint concentrations for this agent and for this organism. However, serovars of S. 

enterica with mutations in gyrA are inhibited by 0.25 mg/L, but such strains have been 

shown to fail therapy with a fluoroquinolone (Piddock et al., 1993; Ricci et al., 2006). 

There has been considerable discussion in the literature that the recommended breakpoint 

concentration of ciprofloxacin should be lowered to 0.25 mg/L. If this were the 

recommended value, then the MIC of ciprofloxacin for an AcrB-overexpressing strain 

would be above this concentration and so would be deemed clinically resistant. 
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When using an EPI as a “helper compound” to test the effect on the resistance to a given 

antibiotic, several results can be obtained, namely, the EPI: i) shows no effect (full 

growth is obtained); ii) reduces the resistance of the strain to that antibiotic (partial 

growth is observed); or iii) reverses the resistance to the antibiotic (no growth is 

observed). This reduction or reversal of resistance can be confirmed by a new MIC 

determination in the presence of the EPI. If the MIC is reduced to the same level of an 

ATCC strain (considered “susceptible”), then, one can consider that the resistance of the 

strain to that particular antibiotic was reversed, to a level considered clinically 

significative. This demonstrates the relevance of using an antibiotic in conjunction with a 

“helper compound” that contributes to the reversal of resistance to a given antibiotic of 

the tested strain. Therefore, new methods that can rapidly and eficiently detect efflux 

activity on MDR clinical isolates are needed. 

 

5.  Methods to access efflux pump activity in bacteria 

 

Assessment of efflux pump has been primarily conducted by the use of ethidium bromide 

as the extruded substrate of the efflux pumps and its increased retention by the bacterium 

after an uncoupler of the proton motive force has been added (Kamicker et al., 2008). 

The baseline of ethidium bromide associated with the bacteria (retained) prior to the 

addition of the uncoupler and the increase of ethidium bromide retained after the 

uncoupler has been added is determined with the use of specialised and expensive 

fluorometric instrumentation that are not readily found in a clinical bacteriology 

laboratory (Viveiros et al., 2008). These fluorometry assays are based on the movement 

of ethidium bromide through the cell. Ethidium bromide traverses the bacterial cell 

envelope via porin channels and once inside, it is concentrated to a point where it 

fluoresces when excited by U.V. light. This substrate is recognized by efflux pumps of 

MDR bacteria and is extruded to the medium as long as its concentration in the medium 

does not overcome the capacity of the pump. Therefore, the loading of bacteria with 

ethidium bromide at a concentration that is well below that which inhibits replication can 

be continuously recorded under defined conditions, such as time, temperature and 

contents of the medium (Jernaes and Steen, 1994). The activity of an efflux pump is 
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controlled by energy provided from calcium dependent enzymes and hence, it is 

temperature dependent (Moreau et al., 2005). Although efflux of ethidium bromide can 

be readily shown by the use of a standard fluorometer or cytometer (Jernaes and Steen, 

1994; Looser et al., 2005) when efflux is due to over-expressed efflux pumps, it cannot 

be easily shown when efflux is due to intrinsic efflux activity (Viveiros et al., 2007). The 

current fluorometric systems used to access efflux pumps activity are non-physiological; 

usually the control of the temperature is restricted, are cumbersome and do not yield data 

that can be subjected to standardization for intra-laboratory comparison. Moreover, not 

one single aspect of these assays have been standardised due to variety of 

instrumentation, reagents, media, etc., used by the many laboratories active in this area 

(Kamicker et al., 2008). There is thus a strong and obvious need to establish new and 

optimized assays for the assessment of efflux pumps of distinct bacteria, especially those 

of clinical origin. These assays should be reproducible from laboratory to laboratory, 

yielding a value that can be used for establishing reference ranges of efflux pump activity 

that can be used by a clinical laboratory and does not need any specialised 

instrumentation for its conductance. Assessment of efflux pumps activity of MDR 

bacteria can therefore establish the basis by which agents can be examined for their 

ability to inhibit efflux pumps activity rendering the organism susceptible to one, if not 

all of the antibiotics to which it was initially resistant (Piddock, 2006a,b). If and when 

such agents are available for patient use, it would be expected that the assay would have 

extensive use within the clinical laboratory and provide much of the guidance needed for 

the administration of the agent to patients presenting with the MDR bacterial infection. If 

such agents are eventually available and implemented in therapeutic regimens, one can 

see how this would result in the opportunity to use those outdated, inexpensive and safe 

antibiotics that had fallen by the wayside as a consequence of MDR bacteria. If the 

activity of an EPI is to be firmly described, the method by which that activity is defined 

and quantified must be one that lends itself to standardization.  
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Concluding remarks 

 

It is now well established that bacterial resistance to antibiotics has become a serious 

problem of public health. The role that efflux pumps play in antibiotic resistance in MDR 

bacteria is an important subject that has been extensively discussed on the last years. 

Although high-level resistance may not occur as a result of MDR efflux pumps alone, the 

association of over-expression of specific genes among highly resistant clinical isolates 

cannot be mistreated. Therefore, one should not forget that the intrinsic antibiotic 

resistance of some isolates may be largely due to efflux systems. Synergic increases in 

resistance seen with over-expression of efflux systems, as well as target site mutations 

can lead to highly resistant bacteria that are difficult to treat with the antibiotics that are 

currently available. The contribution of efflux pumps to the resistance of clinical strains 

needs to be considered in the design of future antibiotics or other compounds. Alterations 

on the structure of a given antibiotic should be made to reduce the ability of that same 

antibiotic to be extruded from the bacterial cell, without compromising its activity. 

Another approach could be the use of EPIs that can improve and potentiate the activity of 

antibiotics. The development of inhibitors that can reduce the impact of efflux pumps on 

the activity of some antibiotics will be of clinical interest and of great impact on the 

clinical setting. Since many efflux systems share a structural homology, one main goal is 

to discover an EPI that will be active against a range of distinct efflux pumps from 

different bacterial species. Among the current collection of EPIs, only a few compounds 

have been studied taking into account the structure–activity relationships and the 

spectrum of activity in terms of antibiotics, pumps and bacteria. Therefore, there is an 

acute need for new active agents in order to overcome this emergence of MDR infections. 

When tested in conjunction with an antibiotic, these EPIs, used as “helper compounds” 

could contribute to the reduction of the MIC to the antibiotic at a clinical significant 

level, i.e., rendering the bacteria susceptible to the tested antibiotic. If this approach is 

successful, the group of “helper compounds” can constitute an important alternative in 

the therapy of some of the most serious MDR infections (Martins et al., 2008). 
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Glossary 

 

• Adenosine Triphosphate (ATP)-Binding Cassette (also called ABC) 

superfamily: group of proteins which bind and hydrolyse ATP to transport 

substances across membranes. They are prevalent in bacteria but are also present 

in humans, being involved in tumour resistance, cystic fibrosis, bacterial 

multidrug resistance and a range of inherited human diseases. ABC proteins have 

two nucleotide binding domains (areas where ATP binds to the protein and are 

hydrolysed to ADP) and two transmembrane domains (parts of the protein which 

span the membrane through which the substrate that's to be transported passes, the 

substrate translocation pathway). 

 

• Aryl: any functional group or substituent derived from a simple aromatic ring, 

such as, phenyl, thiophenyl, indolyl, etc.  

 

• Arylpiperazines: organic compounds that present an aryl group and that consists 

of a six-membered ring containing two opposing nitrogen atoms. The piperazines 

exist as small alkaline deliquescent crystals with a saline taste and are a broad 

class of chemical compounds, many with important pharmacological properties, 

which contain a core piperazine functional group. They also bind to serotonin 

receptors with moderate to high affinity. 

 

• Arylpiperidines: piperidine is an organic compound with the molecular formula 

(CH2)5NH that presents an aryl group. This heterocyclic amine consists of a six-

membered ring containing five methylene units and one nitrogen atom. It is a 

colorless fuming liquid with an odor described as ammoniacal, pepper-like, or 

similar to strong pungent cheese. Piperidine is a widely used building block in the 

synthesis of organic compounds, including pharmaceuticals.  

 

• Benastatins: class of polyketide natural products that are produced by 

Streptomyces spp. They are a structurally and functionally diverse group of long-

chain polyphenols.  
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• Cassette: a gene cassette is a DNA sequence encoding one or more genes for a 

single biochemical function. 
 

• Domain: an independently folded unit within a protein, often joined by a flexible 

segment of the polypeptide chain. It can also be defined as a region of special 

biological interest within a single protein chain. This term also has been used with 

many different meanings; in particular, it has been used to characterize a region 

within the three-dimensional structure of a protein that may encompass regions of 

several distinct protein chains. 

 

• Efflux pump inhibitor: compound that inhibit one or multiple bacterial efflux 

pumps and that can reverse efflux-mediated resistance to many classes of 

antibiotics in bacteria. In combination with an antibiotic this compound can 

increase the antibacterial potency against clinical isolates of some bacteria. 

 

• Efflux pumps: transporters proteins involved in the extrusion of toxic substrates 

(including virtually all classes of clinically relevant antibiotics) from within cells 

into the external environment. These proteins are found in the membrane of both 

Gram-positive and -negative bacteria as well as in eukaryotic organisms. 

 

• Efflux systems: function via an energy-dependent mechanism (active transport) 

to pump out unwanted toxic substances through specific efflux pumps. Some 

efflux systems are drug-specific while others may accommodate multiple drugs, 

and thus contribute to bacterial multidrug resistance. 

 

• Efflux: mechanism responsible for extrusion of toxic substances and antibiotics 

outside the cell, being considered a vital part of the xenobiotic metabolism. This 

mechanism can contribute to bacterial antibiotic resistance. 
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• Energy uncouplers: chemical agents that uncouple oxidation from 

phosphorylation in the metabolic cycle so that ATP synthesis does not occur. 

These compounds usually are ionophores that disrupt the electron transfer by 

short-circuiting the proton gradient across the membranes, blocking the energy 

involved in the efflux process. Ex: carbonyl cyanide m-chlorophenylhydrazone 

(CCCP), dinitrophenol, etc. 
 

• Family: group of evolutionarily related proteins. Proteins belonging to the same 

family descend from a common ancestor and typically have similar three-

dimensional structures, functions, and significant sequence similarity. 

 

• “Helper compounds”: non-antibiotic compounds that have antimicrobial 

properties and which alter the permeability of a microorganism to a given 

antibiotic. If co-administered with conventional antibiotics to which an organism 

is initially resistant they can reverse or reduce its resistance. 

 

• Major Facilitator Superfamily (also called MFS): Group of secondary carriers 

proteins that transport small solutes in response to chemiosmotic ion gradients. 

 

• Membrane fusion protein: membrane proteins which cause more than one 

membrane to combine. 

 

• Microbial-derived EPIs: compounds derived from microbial sources and that act 

as efflux pump inhibitors. 
 

• Multidrug And Toxic compound Extrusion (also called MATE) family: 

Multidrug And Toxic compound Extrusion family. Family of bacterial drug 

transporters that play an important role in drug resistance to clinically relevant 

antibiotics in pathogenic organisms. On this group of proteins efflux is coupled to 

Na+ influx. They are present in bacteria as well as in mammalian cells. 
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• Multi-drug resistance: condition that defines a bacterium resistant to three or 

more distinct classes of antibiotics, except in Mycobacteria where resistance to 

two or more classes is considered. 

 

• Outer membrane proteins (also called OMP): family of proteins that form 

trimeric channels that allow the export of a variety of substrates in Gram-negative 

bacteria. Each member of this family is composed of two repeats. The trimeric 

channel is composed of a 12 stranded all beta sheet barrel that spans the outer 

membrane, and a long all helical barrel that spans the periplasm. 
 

• Peptidomimetics: compounds which mimic the biological activity of peptides 

while offering the advantages of increased bioavailability, biostability, 

bioefficiency, and bioselectivity against the natural biological target of the parent 

peptide. Examples are compounds isolated as natural products, synthesized as 

libraries from novel subunits, and designed on the basis of X-ray crystallographic 

studies and through an intricate knowledge of the biological mode of action of 

natural peptides. They offer challenging synthetic targets and are increasingly 

important medicinal agents and biological probes. 
 

• Phenothiazine:  it is a three-ring structure compound in which two benzene rings 

are joined by a sulfur and nitrogen atom at nonadjacent positions. It is obtained by 

fusing diphenylamine with sulfur. It can be also called dibenzothiazine or 

thiodiphenylamine since it is a benzo derivative of thiazine, although thiazine 

itself is not used as a starting point in the manufacturing of this molecule. It is 

commonly used as an intermediate chemical in the manufacture of various 

antipsychotic neuroleptic psychotropic drugs. 

 

• Porins: beta barrel proteins that cross a cellular membrane and act as a pore 

through which molecules can diffuse. Unlike other membrane transport proteins, 

porins are large enough to allow passive diffusion, acting as channels that are 

specific to different types of molecules. They are present in the outer membrane 

of Gram-negative bacteria, the mitochondria, and the chloroplast. 
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• Quinoline: is a heterocyclic aromatic organic compound, also known as 1-

azanaphthalene, 1-benzazine, or benzo[b]pyridine. It is mainly used as a building 

block to other specialty chemicals. Its principal use is as a precursor to 8-

hydroxyquinoline, which is a chelating agent and precursor to pesticides. Its 2- 

and 4-methylderivatives are precursors of cyanine dyes. 

 

• Resistance-Nodulation-Division (also called RND) superfamily: Group of 

secondary membrane transporters that use energy derived from electrochemical 

gradients across the cell membrane. 

 

• Small Multidrug Resistance (also called SMR) family: Group of bacterial 

multidrug membrane transporters composed of four transmembrane alpha-helices 

of approximately 100-140 amino acids in length.  

 

• Superfamily: term introduced in 1974 by Margaret O. Dayhoff. Originally 

defined as a group of evolutionarily related proteins, it has also been used in the 

published literature to refer to a group of structurally or functionally related 

proteins not necessarily of common evolutionary origin. 

 

• Transmembrane domain: single transmembrane alpha helix of a transmembrane 

protein. 

 


