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“I used to think that top environmental problems were biodiversity loss, ecosystem collapse 

and climate change. I thought that thirty years of good science could address these problems. I 

was wrong. 

The top environmental problems are selfishness, greed and apathy, and to deal with these we 

need a cultural and spiritual transformation. 

And we scientists don’t know how to do that.” 

James Gustave Speth 
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RESUMO 

A contaminação química e as alterações climáticas constituem dois dos maiores problemas 

ambientais relacionados com o aumento das actividades antropogénicas. Apesar de ambos 

desencadearem isoladamente impactos negativos nos ecossistemas marinhos e na segurança do 

pescado, pouco se sabe sobre as potenciais consequências da sua interação. Neste contexto, esta 

tese de doutoramento pretendeu avaliar os efeitos do aquecimento e/ou acidificação da água do 

mar na bioacumulação de diversos contaminantes químicos emergentes (ECCs; MeHg, iAs, DCF, 

VFX, TCS, Decs, TBBPA, PFOS e PFOA) e nas respostas ecotoxicológicas de dois grupos 

taxonómicos marinhos (peixes e bivalves). Em geral, o aquecimento facilitou a bioacumulação 

de compostos lipofílicos e persistentes (ex. MeHg, Decs e TBBPA), sugerindo que os riscos de 

exposição humana a estes compostos através do consumo de pescado serão maiores no futuro. 

Por outro lado, o aquecimento e/ou acidificação resultaram numa menor bioacumulação de 

compostos ionizáveis e menos persistentes (ex. iAs, VFX e TCS). Este decréscimo não significa 

necessariamente que os riscos para a saúde humana sejam menores, podendo implicar uma maior 

biotransformação de compostos na sua forma parental e, consequentemente, concentrações mais 

elevadas de metabolitos cujos efeitos toxicológicos (para animais e humanos) são ainda 

desconhecidos. Relativamente aos efeitos ecotoxicologicos, a exposição simultânea aos ECCs, 

aquecimento e acidificação traduziu-se, geralmente, em respostas mais severas (ao nível 

bioquímico, bem como na condição e comportamento animal) comparativamente às induzidas 

quando cada fator de stress atuou de forma isolada. Estes resultados sugerem que a exposição a 

ECCs num contexto de alterações climáticas irá, muito possivelmente, colocar à prova a 

resiliência dos organismos marinhos, nomeadamente daqueles que habitam zonas costeiras. 

Assim, as alterações climáticas irão representar um grande desafio à sustentabilidade e gestão das 

pescas e da aquacultura, sendo urgente desenvolver medidas de regulação, mitigação e adaptação 

à escala global.  

 

Palavras-chave: contaminantes químicos emergentes; alterações climáticas; mecanismos de 

bioacumulação; ecotoxicologia; segurança do pescado. 
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ABSTRACT 

Chemical contamination and climate change constitute two of the greatest environmental 

problems related with the increase of anthropogenic activities. Despite both factors acting alone 

can have negative effects at different levels of biological organization, as well as in seafood safety, 

the underlying interactions between them are still poorly understood. In this context, this PhD 

thesis aimed to assess the combined effects of seawater warming and/or acidification on the 

bioaccumulation of different emerging chemical contaminants (ECCs; MeHg, iAs, DCF, VFX, 

TCS, Decs, TBBPA, PFOS e PFOA) and ecotoxicological responses of two marine taxonomic 

groups (fish and bivalves). Overall, warming promoted the bioaccumulation of lipophilic and 

persistent ECCs (e.g. MeHg, Decs and TBBPA), suggesting increased risks of human exposure 

to these compounds through the consumption of contaminated seafood in tomorrow’s ocean. 

Conversely, warming and/or acidification elicited lower bioaccumulation of ionisable and/or less 

persistent compounds (e.g. iAs, VFX and TCS). Yet, this trend may not necessarily represent 

lower human risks, as it may be associated with enhanced biotransformation of parental ECCs, 

potentially representing increased levels of metabolites for which the toxicological attributes (to 

both biota and humans) are still unknown. Regarding the ecotoxicological effects, overall, the 

simultaneous exposure to ECCs, warming and acidification promoted more severe responses (at 

the biochemical, animal condition and behavioural levels) than the ones elicited when each 

stressor acted in isolation. Such results reveal that the exposure to ECCs in a climate change 

context will likely defy the resilience of marine organisms, particularly those inhabiting coastal 

areas. Hence, climate change will greatly challenge the sustainability and management of fisheries 

and aquaculture resources, thus, calling for urgent regulatory, mitigation and/or adaptive actions 

at a global scale.  

 

Keywords: emerging chemical contaminants; climate change; bioaccumulation mechanisms; 

ecotoxicology; seafood safety. 
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CHAPTER 1. 

3 

1.1. Climate change: Causes, trends and projected impacts 

The Industrial Revolution constituted a major turning point in History, in which “Man labour” 

typically used during agrarian times was replaced by “mechanical work”, thus, changing forever 

Man’s role in society. Although it represented great progresses in the fields of technology, 

medicine, economy, education and culture, among others, it also dramatically contributed to the 

increase of the human footprint on the planet, due to an exhaustive exploitation of natural 

resources, combustion of fossil fuels, like coal, petroleum (and other oils) and natural gases, and 

release of pollutants into the environment (IPCC, 2014). Hence, since the late 18th century, human 

activities have continuously increased the production and emission of greenhouse gases (GHG; 

e.g. water vapour, carbon dioxide, methane, nitrous oxide and ozone) that absorb and trap solar 

energy in the form of heat, giving rise to the phenomenon known as “Greenhouse Effect” (Figure 

1.1.).  

 

 

Figure 1.1. Earth’s energy budget. Source: Reid (2016). 
 

According to the latest report of the Intergovernmental Panel on Climate Change (IPCC, 

2014), GHG emissions have reached unprecedented levels in the last 50 years, unequivocally 

causing the warming of the planet, with most of the energy produced in the form of heat being 

stored in the ocean (only ~1% of the total energy produced within the climate system is stored in 

the atmosphere; Solomon et al., 2007; IPCC, 2014; Reid et al., 2016). Hence, the average seawater 

surface temperature (SST) has consistently increased about 0.1 ºC per decade since pre-Industrial 

times (Hansen et al., 2010), and is expected to become warmer, particularly in the Northern 

Hemisphere (i.e. Northern Atlantic Ocean), reaching up to +5 ºC in temperate coastal areas of the 

Atlantic ocean by 2100, in an uncontrolled GHG emissions scenario (Figure 1.2.; Collins et al., 

2013; IPCC, 2014). Within this “global warming” context, a huge set of climate-related effects, 

which can already be felt in some regions of the planet, are also expected to worsen in a 50-100 

year timeframe, including increased seawater stratification, diminished snow cover and rising sea 
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level with consequent changes in seawater salinity, increased number of “low or dead oxygen 

zones”, as well as alterations of wind and precipitation patterns/intensity and increased frequency, 

duration (chronicity) and intensity of extreme events, such as heat waves (drastic temperature 

increases that last, at least, five days in a row), droughts and floods (IPCC, 2014). 

 

 

Figure 1.2. Expected seawater surface temperature and pH in the planet by the end of twenty 
first century (projections according to RCP8.5 of the IPCC Fifth Report Assessment, 2014). 
Adapted from Ciais et al. (2013) and IPCC (2014).  

 

In addition, the increasing release of GHG has also resulted in a higher oceanic uptake of CO2 

(i.e. increased CO2 partial pressure, pCO2), leading to the drop of the average seawater pH at a 

global scale, i.e. to the so called “ocean acidification” (IPCC, 2014; McNeil and Sasse, 2016). In 

fact, despite having exhibited relatively stable values for more than 800 million years, it has been 

recently estimated that the average seawater surface pH has dropped approximately 0.1 units in 
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relation to pre-industrial times, therefore, representing a 26% increase in ocean acidity (IPCC, 

2014). Globally, acidification rate is estimated to be ~50% faster in Northern regions than in 

subtropical and tropical ones (FAO, 2018a). At a global scale, and even if efforts are made to 

keep GHG emissions at today’s rates, recent projections indicate that, by the end of this century, 

seawater pCO2 levels will still rise up to +1000 µatm, corresponding to a drop of ~0.4 pH units, 

in temperate coastal areas of the Atlantic ocean (Figure 1.2.; Ciais et al., 2013; IPCC 2014; 

McNeil and Sasse, 2016).  

Depending on the region, each of the above mentioned climate change effect can occur in 

isolation or, in worst-cases, combined with other climate-related or non-climate-related stressors 

(e.g. pollution), promoting a cascade sequence of events that can result in an overall exacerbation 

of the impacts (IPCC, 2014; FAO, 2018a). For instance, both warming and salinity (or both) can 

promote water stratification, due to either the enhanced formation of pycnoclines (i.e. layer in a 

water mass with higher density, due to salinity and temperature increase), or to lower surface 

salinity (e.g. from increased freshwater run-off; e.g. Diaz and Rosenberg, 2008). On the other 

hand, increased stratification may result in lower oxygen diffusion from the upper part of the 

water column to the lower part, translating into an increased number of hypoxic events or dead 

zones in bottom waters (Breitburg et al., 2018).  

Regardless of acting alone or combined, climate change effects will certainly have an impact 

on marine biota, affecting their fitness, metabolism, reproduction, recruitment and distribution, 

among other ecological features (Rosa et al., 2014, 2016; FAO, 2018a), raising the need for 

species to adapt to the new prevailing environmental conditions or, in most extreme cases, leading 

to their extinction. Marine species inhabiting estuaries and coastal areas are thought to be 

particularly sensible to climate change impacts, since these shallow water ecosystems usually 

have a weaker hydrodynamic activity (compared to the “open ocean”) and, thus, naturally exhibit 

pronounced monthly or even daily shifts of abiotic conditions due to the influence of season 

and/or tides, among other factors (Barbosa, 2010; Madeira et al., 2015, 2016; Rodrigues et al., 

2017; FAO, 2018a). In addition, since estuaries and coastal areas not only are shelter ecosystems 

to many bivalve, crustacean and fish species during their early and most vulnerable life stages 

(i.e. they are important spawning and nursery areas), but also house many aquaculture facilities, 

climate change effects are expected to strongly affect these areas, likely causing biodiversity 

reduction and economic losses associated with the fisheries and aquaculture sectors. On the other 

hand, new opportunities may also emerge from climate change, such as the exploitation of new 

wild/farmed marine resources. 

Seafood constitutes an important source of protein and essential nutrients (vitamins, minerals 

and omega-3 fatty acid), and is one of the most globally traded food commodities, assuring the 

livelihood of millions of people (FAO, 2018a). Yet, by constituting an additional challenge to the 

ecological success of marine species, climate change effects can certainly have a negative impact 
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in the fisheries sector, by altering the primary production, biodiversity (Barbosa, 2010), species’ 

distribution and population structure of marine ecosystems (Barbosa, 2010; FAO, 2018a). In 

addition, climate change effects, particularly warming, are also foreseen to increase the incidence 

and severity of pathogens (e.g. bacteria, virus, parasites, toxins from harmful algal blooms) and 

to exacerbate water pollution (Marcogliese, 2008; Noyes et al., 2009; Marques et al., 2010; Rosa 

et al., 2012; Manciocco et al., 2014). Such risks can not only compromise the resilience of seafood 

species, but also rise many seafood safety concerns. Changes in fisheries productivity are already 

visible worldwide and will become even more evident in the coming 100 years. For instance, 

reaching a drop of the total catches up to 15% in Portugal’s mainland (and slightly higher losses 

in the Portuguese islands of Madeira and Azores), according to the scenario RCP8.5 of the IPCC 

(IPCC, 2014; FAO, 2018a). Over the last years, aquaculture has been significantly contributing 

to meet the global demand for seafood products, enabling a stronger nutritional and socio-

economic development of many countries. Despite this sector has experienced a slower growth 

rate since the 1990’s, aquaculture is expected to increase its contribution to the global seafood 

production in the future, in order to continue fulfilling the nutritional needs of a growing world 

population (FAO, 2018a). Still, due to climate change, major challenges will be also expected for 

aquaculture, mostly as a result of: i) the reduced availability of wild seeds; ii) species’ altered 

thresholds of physiological tolerance (e.g. altered thermal window), which may force the 

replacement of formerly cultured species by new and more resilient ones (Rosa et al., 2012; 

Madeira et al., 2015); iii) increased occurrence and incidence of pathogens, harmfull algal blooms 

and parasites, and exacerbation of water pollution (particularly, in extensive and semi-intensive 

rearing systems), therefore, compromising seafood safety (Marcogliese, 2008; Noyes et al., 2009; 

Marques et al., 2010; Rosa et al., 2012; Manciocco et al., 2014); and iv) limitation of water 

resources in regions, associated with reduced precipitation or increased number of drought and 

heat-wave events (Rosa et al., 2012; FAO, 2018a). 

 

1.2. Emerging chemical contaminants (ECCs) 

In the marine environment, abiotic variations (including climate change-related ones) are not 

the only stressors that compromise the resilience of marine organisms. In fact, chemical 

contamination constitutes another consequence of the increasing “human footprint” on the planet, 

being one of the greatest environmental concerns from our time. Marine ecosystems, especially 

those close to highly urbanized areas, such as estuaries and coastal lagoons, are known to be 

particularly prone to chemical contamination (e.g. Bollman et al., 2012; Maulvault et al., 2015), 

as they constitute the ultimate destination for several pollutants that are carried over through 

riverine and atmospheric processes, or directly discharged via domestic, industrial, agricultural 

and hospital effluents (Huerta et al., 2012; Santos et al., 2013). Once in the environment, chemical 
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contaminants can persist for many years and be uptaken by marine biota, promoting multiple 

adverse effects, not only to these species but also to humans through the ingestion of contaminated 

seafood (Marques et al., 2010). 

Several efforts were made to assure the sustainability of the marine environment and its natural 

resources. In 2008, the European Commission (EC) released the Marine Strategy Framework 

Directive (MSFD), which constituted the first piece of legislation in the field of marine 

environmental policy and a formal commitment of the Member States to reduce or cease marine 

polycyclic aromatic hydrocarbons (PAHs), polybrominated biphenylethers (PBDEs) and toxic 

metals (i.e. mercury, Hg, cadmium, Cd, and lead, Pb; Directive 2008/56; EC, 2008). From the 

human health perspective, and at the European level, maximum permissible limits (MPLs) for the 

occurrence of some chemical contaminants in seafood products were also established (Directive 

1881/2006; EC, 2006a). 

Yet, in addition to the well-known chemical contaminants mentioned above, and whose 

presence in the environment (and seafood species) is already regulated and regularly monitored, 

new chemical substances not historically recognized as pollutants are also increasingly more 

present in the marine environment (e.g. Feo et al., 2012; Cunha et al., 2015; Marques et al., 2015; 

Vandermeersch et al., 2015). These "emerging chemical contaminants" (ECCs) comprise a wide 

variety of substances with distinct physical and chemical properties and modes of actions that 

share the lack of regulation and the urgent need for a deep understanding of the risks that they 

may pose to the environment and humans. Substances defined as ECCs are mostly man-made 

(e.g. flame retardants, FRs, perfluorinated compounds, PFCs, and pharmaceutical and personal 

care products, PPCPs), though some may also occur naturally (e.g. inorganic arsenic, iAs, and 

methylmercury, MeHg; e.g. Bollman et al., 2012; Feo et al., 2012; Maulvault et al., 2015; 

Vandermeersch et al., 2015). 

In light of the limited scientific knowledge, in 2015, the EC has created the so called “Watch 

List” of non-regulated ECCs for which further monitoring and toxicological data is urgently 

needed, in order to accurately estimate their ecological risks and decide, in the future, whether or 

not they should be included in the MSFD, as well as in seafood regulations (EC Decision 

2015/495; EC, 2015). Despite the “Watch List” constitutes a great progress towards the regulation 

of ECCs in the environment, so far, it only includes ten hazardous substances (most of them 

belonging to the PPCPs group), thus, leaving out a wide number of compounds for which the 

ecotoxicological impacts are still unknown.  

Table 1.1. presents a brief description of the ECCs addressed in this PhD thesis, including 

their physical and chemical properties, occurrence in aquatic biota and toxicity (whenever 

available). 
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Table 1.1. Summary of ECCs’ physical-chemical properties and toxicity.  
 

Compound Methylmercury (MeHg) 
Inorganic arsenic 

(iAs, i.e. sum of AsIII or AsV) 
Diclofenac 

(DCF) 
Venlafaxine 

(VFX) 
Triclosan 

(TCS) 

ECC category Toxic metal species Toxic metal species PPCP  PPCP  PPCP  

Main commercial use 
None (formerly used in 
pesticide formulation) 

None (formerly used in pesticide 
formulation) 

Non-steroidal anti-
inflammatory drug (human 

and veterinary use) 

Antidepressant drug (human 
use) 

Antibacterial and antimicotic 
compound (human use) 

Sources Natural and synthetic Natural and synthetic Synthetic Synthetic Synthetic 

Occurrence in aquatic 
biota 

up to 20 mg kg-1 ww in 
predatory fish 

up to 50 mg kg-1 ww in bivalves 
and macroalgae up to 9 ng g-1 dw in fish up to 36 ng g-1 dw in bivalves up to 507 ng g-1 dw in fish 

Molecular formula CH3Hg+ As3+ or As5+ species (e.g. 
H3AsO4) 

C14H11Cl2NO2 C17H27NO2  C12H7Cl3O2 

Molecular weight 215.6 g mol-1 
Varies according to species (e.g. 

H3AsO4: 185.9 g mol-1) 296.1 g mol-1 277.4 g mol-1 289.5 g mol-1 

Water Solubility 
(WS at 20 ºC) 

 100 mg L-1 Varies according to species (e.g. 
for H3AsO4, WS = 5900 g L-1 4.82 mg L-1 572 g L-1 1.2 g L-1 

Biotransformation 
products 

demethylated in Hg2+ As5+ reduced to As3+ 
4’-Hidroxydiclofenac, 5’-

Hidroxydiclofenac and 
diclofenac glucuronide 

O-desmethylvenlafaxine, N-
desmethylvenlafaxine, NO-

didesmethylvenlafaxine, NN-
didesmethyl-O-

desmethylvenlfaxine 

 Glucuronide- and sulfate- 
TCS conjugates 

pKa na Varies according to species (e.g. 
H3AsO4: between 2.2 and 13.4) 4.1 9.6 8.1 

Log KoW 0.62 na 4.51 3.20 4.76 

Estimated half-life in 
humans 

~80 days ~4 days ~2 hours ~5 hours ~21 hours 

Toxicity in marine 
biota 

NOEC: 1.5-4.0 µg L-1 NOEC: 0.5  µg L-1; 
LOEC: 1.0 µg L-1 NOEC: 320-1000 µg L-1 LOEC: 31.3 µg L-1 NOEC: 34.1 mg L-1; 

LOEC: 71.3 mg L-1 
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Table 1.1. (continuation) Summary of ECCs’ physical-chemical properties and toxicity. Abbreviations: ECC, emerging chemical contaminant; PPCP, 
pharmaceutical and personal care product; FR, flame retardant; PFC, perfluorinated compound; na, not available; NOEC, no observed effect concentration; 
LOEC, lowest observed effect concentration; Log KoW, logarithm of the octanol-water partition coefficient; pKa, acid dissociation constant; dw, dry weight; 
ww, wet weight; lw, lipid weight. 

Compound 
Dechlorane 602 

(Dec 602) 

Dechlorane 603 

(Dec 603) 

Dechlorane 604 

(Dec 604) 

Tetrabromobisphenol A 

(TBBPA) 

Perfluorooctanesulfonic acid 

(PFOS) 

Perfluorooctanoic acid 

(PFOA) 

ECC category FR FR FR FR PFC PFC 

Main commercial use 

Production of 
fibreglass-

reinforced nylon 
na 

Production of 
commercial 

greases 

Production of fire-resistant 
polycarbonates 

Production of stain-resistant carpets, 
textiles, electronic devices, 

photolithographic film, fire-fighting foams, 
and surfactants 

Production of 
polytetrafluoroethylene 

(PTFE, i.e. Teflon), as well 
as fire-fighting foams, 

wetting agents and cleaners 

Sources Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic 

Occurrence in 
aquatic biota 

up to 34 ng g-1  lw 
in fish  

up to 0.55 ng g-1  
lw in fish  

up to 1.3 ng g-1  lw 
in fish  up to 245 ng g-1 lw in fish  500 ng g-1  ww in predatory fish between 1.8 and 2.4 ng g-1  

ww in fish 

Molecular formula C14H4Cl12O C17H8Cl12 C13H4Br4C6 C15H12Br4O2 C8HF17O3S C8HF15O2 

Molecular weight 613.6 g mol-1 637.7 g mol-1 692.5 g mol-1 543.9 g mol-1 500.1 g mol-1 414.1 g mol-1 

Water Solubility 
(WS at 20 ºC) 

8.49 ng L-1 0.3 ng L-1 2.21 ng L-1 0.063 mg L-1 0.52  mg L-1 3.4 mg L-1 

Biotransformation 
products 

na na na 

Conjugated metabolites (i.e. 
sulfate-, glucuronide- and 
mixed glucuronidesulfate- 

TBBPA conjugates) 

na na 

pKa na na na 7.5 < 1.0 1.3 

Log KoW 7.10 8.50 8.50 5.90 na (not measurable) na (not measurable) 

Estimated half-life in 

humans 
na na na ~13 hours ~5 years ~4 years 

Toxicity in marine 
biota 

na na na NOEC: 0.017 mg L-1; 
LOEC: 0.032 mg L-1 

NOEC: 0.3 mg L-1; 

LOEC: 0.6 mg L-1 NOEC: 24 mg L-1 

References used in this Table: US National Research Council (2000); Orvos et al. (2002); Scheytt et al. (2005); Sandborgh-Englund et al. (2006); Schauer et al. (2006); 
EFSA (2008); Singh et al. (2008); Giesi et al. (2010); Feo et al. (2012); Huerta et al. (2013); Memmert et al. (2013); Álvarez-Muñoz et al. (2015); The Danish Environmental 
Protection Agency (2015); Dhillon et al. (2015); Fong et al. (2015); Gutu et al. (2015); Jo et al. (2015); Vandermeersch et al. (2015); Lee et al. (2017); DrugBank (2018); 
Pittinger and Pecquet (2018); PubChem (2018a,b,c).
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1.2.1. Toxic metals (MeHg and iAs) 

Toxic elements, such as Hg, Cd, Pb and arsenic (As) are elements with no known biological 

function in living organisms that can occur in marine ecosystems due to both natural or 

anthropogenic causes. They have been long known to bioaccumulate in marine biota (e.g. 

Maulvault et al., 2015), causing several adverse effects in these species, as well as in seafood 

consumers (EFSA, 2009a,b, 2010, 2012a). Although toxic elements can be present in different 

molecular forms (e.g. Hg can be found in its elemental, Hg0, inorganic, Hg2+ and Hg2
2+, or organic 

forms, e.g. CH3Hg), or even alternate between forms according to the surrounding abiotic 

conditions, for many years elemental speciation in the environment was not thoroughly monitored 

nor it is still considered in the current regulations regarding the presence of contaminants in 

seafood (regulation No 1881/2006; EC, 2006a). Yet, assessing elemental speciation is highly 

relevant from an ecological and food safety point of view, as some toxic elements, like Hg and 

As, are known to predominantly occur in their most toxic forms in seafood species (Muñoz et al., 

2000; Maulvault et al., 2015). Hence, a risk assessment not taking into account the distinct 

contributions of each molecular form to the total toxic element burden can lead to unrealistic 

estimations of the health risks related to toxic elements’ dietary exposure (e.g. Maulvault et al., 

2014). 

Methylmercury is the most toxic Hg species and the predominant one in marine organisms, 

particularly in predatory fish species with long life cycles (Afonso et al., 2006; Maulvault et al., 

2011, 2015). In contrast, the most toxic As forms are the inorganic ones (iAs, i.e. the sum of all 

AsIII and AsV molecular forms) that predominate in seawater and marine sediments (Francesconi 

and Edmonds, 1996), often reaching high concentrations in bivalve and macroalgae species (see 

Table 1.1.; Maulvault et al., 2015). So far, only a few studies investigated the speciation of these 

elements in seafood species (e.g. Maulvault et al., 2015), and the assessment of human dietary 

exposure to MeHg or iAs has been mostly based on extrapolations from the total element contents 

(i.e. total Hg and total As) found in food matrices (e.g. EFSA, 2009b, 2012a). For this reason, 

worldwide, food safety authorities have recently adverted that further research and monitoring 

programs should be undertaken in order to increase the available data on the presence of MeHg 

and iAs in all food groups to enable a more accurate and reliable exposure risk assessment (e.g. 

EFSA, 2009b, 2012a). 

Regarding the toxicity of these elements to aquatic biota, a recent study on MeHg toxicity 

reported no observed effect concentrations (NOECs) of 1.5 µg L-1 and 4.0 µg L-1 in rotifer 

Brachionus koreanus and copepod Paracyclopina nanafor species, respectively (Lee et al., 2017). 

It should be noted, though, that since the majority of the studies performed so far only assessed 

the acute and chronic toxicity of MeHg water exposure, NOECs for dietary exposure are still 

unavailable, despite MeHg is mostly uptaken through dietary sources and is subsequently 



CHAPTER 1. 

11 

transferred along the food chain (Miniero et al., 2013). As for iAs, Gutu et al. (2015) reported a 

NOEC of 0.5 µg L-1, as well as a lowest observed effect concentration (LOEC) of 1.0 µg L-1 in 

Artemia salina. 

 

1.2.2. Pharmaceuticals and personal care products (PPCPs) 

Pharmaceuticals and personal care products comprise a wide diversity of compounds, 

including human and veterinary pharmaceuticals, cosmetics, preservatives, detergents, among 

others. Their presence in marine ecosystems has become a great environmental concern in the last 

years, as PPCPs are often discharged into rivers, estuaries and seas, due to their rather limited 

elimination during conventional wastewater treatments (Huerta et al., 2012). Domestic, hospital 

and cosmetic industry effluents, as well as agriculture and aquaculture activities are the main 

sources of PPCPs contamination in coastal environments (Santos et al., 2013). These compounds 

are considered pseudo-persistent contaminants, as the rate at which they are introduced in the 

aquatic environment often exceeds their rate of degradation.  

Diclofenac (DFC), carbamazepine, citalopram, venlafaxine (VFX), diazepam, sotalol and 

sulphamethoxazole are some of the pharmaceutical active compounds (PhACs) most commonly 

found in the marine environment (e.g. Beretta et al., 2014; Vandermeersch et al., 2015; 

Rodriguez-Mozaz et al., 2017). On the other hand, triclosan (TCS) and methylparaben are two 

compounds often used as additives of various personal care products, therefore, also being 

frequently detected in seawater and marine biota (e.g. Vandermeersch et al., 2015). Despite the 

occurrence of PPCPs in seafood is still poorly monitored, recent data revealed that these 

compounds can bioaccumulate in marine organisms (Huerta et al., 2012; Vandermeersch et al., 

2015; Serra-Compte et al., 2018), promoting several adverse effects at the biochemical, cellular 

and behavioural levels (e.g. Bisesi Jr. et al., 2014; Gonzalez-Rey and Bebianno, 2014; Rowett et 

al., 2016). NOECs and LOECs for DCF, VFX and TCS, which are target compounds in this PhD 

thesis, are presented in Table 1.1. Furthermore, there is a growing body of evidence that some 

PPCPs (e.g. TCS and DCF) can also interfere with the neuroendocrine system of marine biota 

(e.g. Gonzalez-Rey and Bebianno, 2014), as well as of mammals (e.g. Feng et al., 2016) and, thus, 

they are also classified as endocrine disrupting compounds. 

Although the presence of PPCPs in both the environment and seafood is still not regulated in 

the EU, some compounds (e.g. DCF, 17α-ethynylestradiol, 17β-estradiol) have been recently 

included in the “Watch List” of emerging non-regulated aquatic pollutants. Yet, recent data 

suggests that, apart from the 33 substances already prioritized by the MSFD (2008/56/EC) and 

the 10 substances placed under the EC “Watch List” (EC Decision 2015/495) there is a huge set 

of PPCPs that could potentially be classified as “priority substances” and, perhaps, regulated in 

the future (Álvarez-Muñoz et al., 2015; Vandermeersch et al., 2015). 
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1.2.3.  Flame retardants (FRs) 

Flame retardants are mixtures of man-made chemicals added to several industrial and 

household products (e.g. plastics, textiles, and electrical/electronic equipment) to make them less 

flammable. This group includes various compounds from different categories, including 

polybrominated diphenyl ethers (PBDEs), chlorinated substances (Mirex, dechloranes), 

tetrabromobisphenol A (TBBPA), hexabromobenzene (HBB), and organophosphorous 

compounds (e.g. tris 2-butoxyethyl phosphate – TBEP). Since most FRs are extremely 

hydrophobic, these substances can be highly persistent in the environment, particularly 

accumulating in marine sediments and biota (e.g. Álvarez-Muñoz et al., 2015; Vandermeersch et 

al., 2015). FRs’ concentrations in seawater are usually bellow detection or within the pg L-1 range 

(Bollmann et al., 2012; Satín et al., 2013; Poma et al., 2014), whereas in marine sediments and 

biota their concentrations are in the ng g-1 and µg g-1 ranges (Satín et al., 2013; Poma et al., 2014).  

TBBPA is one of the most relevant and widely used FRs, being frequently found in river and 

estuarine sediments, and reaching concentrations up to 245 ng g-1 lipid weight (lw) in marine biota 

(EFSA, 2011; Vandermeersch et al., 2015). Although distinct toxicological effects have been 

observed in marine organisms acutely or chronically exposed to different TBBPA concentrations, 

the most sensitive endpoint was attributed to blue mussel Mytilus edulis shell growth following 

70 days of exposure (i.e. estimated NOEC: 0.017 mg L-1; estimated LOEC: 0.032 mg L-1; Pittinger 

and Pecquet, 2018). 

After the Stockholm Convention, some compounds intensively used in the past (e.g. PBDEs, 

Mirex) were banned or restricted in the EU (Council Decision 2006/507/EC; EC, 2006b), being 

subsequently replaced by new substances, like HBB, TBEP and dechloranes (Decs 602, 603 and 

604; Feo et al., 2012) for which the hazards to the environmental and human health are still 

unknown. Even though data regarding the environmental occurrence of these “emerging FRs” is 

extremely limited, recent studies have reported Decs’ total concentrations up to 3.7 ng g-1 dw in 

sediments and up to 27.0 ng g-1 lw in biota (Giulivo et al., 2017). Based on the limited available 

data, particularly in what concerns “emerging FRs”, in 2009, the European Food Safety Authority 

(EFSA) has drawn a recommendation to further monitor the presence of these contaminants in 

food items, including seafood (EFSA, 2012b). 

 

1.2.4. Perfluorinated compounds (PFCs) 

Perfluorinated compounds (e.g. perfluorooctanesulfonic acid, PFOS, and perfluorooctanoic 

acid, PFOA) are molecules composed by carbon chains strongly bound to fluorine atoms, which 

are widely used in various industrial and consumer activities (e.g. stain-resistant coatings for 

fabrics and carpets, fire-fighting foams and floor polishes, among others). Their strong 
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carbon:fluorine bounds make them extremely resistant to degradation and, therefore, persistent 

over time in biological compartments. In aquatic environments, PFCs concentrations can vary 

from non-detectable values up to 9 ng L-1 in coastal areas, and reach over 70 ng L-1 in wastewater 

treatment plants (WWTPs; Flores et al., 2013). Despite variations according to species and 

location (i.e. between polluted or clean areas), PFCs concentrations can range from 0.1 ng g-1 in 

molluscs to over 500 ng g-1 in predatory fish species and, therefore, seafood has been pointed out 

as an important pathway for human exposure to PFCs (EFSA, 2008; Vandermeersch et al., 2015). 

In what concerns toxicological data, PFOS’s NOEC and LOEC in aquatic organisms have 

been set at 0.30 mg L-1 and 0.60 mg L-1, respectively, whereas lower toxicity has been attributed 

to PFOA (values estimated for fathead minnow, Pimephales promelas; Giesi et al., 2010). Based 

on their frequent detection in seafood species, EFSA published a Scientific Opinion of the Panel 

on Contaminants in the Food Chain stating that there is a clear need to improve the dataset to 

enable the accurate assessment of the potential risks associated with the human exposure to PFCs 

(EFSA, 2008).  

 

1.3. Linking climate change and ECCs: What do we know so far?  

Chemical contaminants’ speciation, transfer among biological compartments and 

bioavailability in marine sediments/water column are strongly influenced by environmental 

drivers, such as temperature, pH, salinity, upwelling and stratification events (e.g. Noyes et al., 

2009; Marques et al., 2010). On the other hand, abiotic conditions also play a key role on marine 

organisms’ physiology and ecological success (e.g. Rosa et al., 2014, 2016; Madeira et al., 2015, 

2016), conditioning the way these species cope with the simultaneous occurrence of other 

environmental stressors, such as chemical contamination. Thus, by altering species physiological 

status and, at the same time, exacerbating many forms of water pollution, climate change effects 

can potentially hinder marine species to cope with the presence of chemical contaminants in the 

same way as they did before (e.g. Marques et al., 2010; Freitas et al., 2016; Rowett et al., 2016; 

Sampaio et al., 2016), therefore, rising several concerns from both the ecological and seafood 

safety perspectives. Yet, understanding the potential interactions between climate change-related 

stressors and pollution is a topic that only recently raised attention within the scientific community 

and, therefore, further research efforts, particularly focusing on the non-regulated and poorly 

studied ECCs, are urgently required to better forecast the ecotoxicological implications of climate 

change. 

The following sub-chapters provide an overview of the state of the art regarding the potential 

interactions between climate change effects and ECCs’ bioavailability in the marine environment 

(sub-chapter 1.3.1) and toxicity to marine biota (sub-chapter 1.3.2).  
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1.3.1. ECCs’ fate and bioavailability in tomorrow’s ocean 

Starting with organic compounds (OC), including pesticides, polychlorinated biphenyl 

(PCBs), FRs, PFCs, dioxins, polycyclic aromatic hydrocarbons (PAHs), among others, 

temperature is one of the most relevant factors influencing their distribution, half–life in 

biological compartments, volatilisation, re-emission (Gouin and Wania, 2007; Teran et al., 2012), 

and altering their partitioning into the different phases (solid, liquid and gas) (Macdonald et al., 

2002). For instance, increased temperatures can enhance OCs’ volatilisation and, consequently, 

enhance exchanges between the ocean and atmosphere, which can result in reductions in 

contaminant exposure to marine biota (Armitage et al., 2011; Nadal et al., 2015). Organic 

pollutants that evaporate can form contaminated gases in temperate and tropical areas, being 

subsequently transported to higher latitudes in hop events, i.e. in quick jumps that occur 

seasonally in the course of natural climate fluctuations. In such cases, less pronounced 

temperature gradients between different regions of the globe may remarkably alter OCs’ 

atmospheric partitioning, affecting their fate and distribution (Beyer et al., 2002). On the other 

hand, warming along with increased precipitation, can also exacerbate contaminant degradation, 

translating into a diminished volatilization into the atmosphere and, consequently, reduced 

transport of the contaminant to higher latitudes (Dalla Valle et al., 2007; Nadal et al., 2015). 

In a cascade sequence of events, increased snow melting and the consequent sea level rising 

that are closely linked to global warming may facilitate OCs’ exchanges between the air and water 

compartments (Macdonald et al., 2005). Depending on the geographic area, both projected 

climate change outcomes will directly influence salinity levels in aquatic systems. On one hand, 

seawater level rise due to climate change can promote the intrusion of saltwater in previous 

freshwater environments, particularly in subtropical areas, estuaries and coastal ecosystems 

(IPCC, 2014). Since OC’s are less soluble in saltwater, enhanced bioavailability and toxicity can 

be expected in these areas (Noyes et al., 2009). Conversely, in other regions of the planet, 

increased precipitation and snow/ice melting will result in higher input of freshwater into the 

ocean promoting lower salinity levels (IPCC, 2014) and leading to opposite effects in OCs’ 

bioavailability. 

Toxic metals (e.g. Hg, Pb, Cd and As) solubility and speciation is largely dependent on 

seawater temperature and pH and, as such, environmental variations associated to climate change 

will certainly have preponderant effects on metals’ availability and concentration in the marine 

environment. This will alter metals’ behaviour and transfer from sediments into the water column 

and vice-versa, as well as their toxicity (Marques et al., 2010). Additionally, since metal inputs 

into aquatic systems are strongly linked to climate events, such as snow melting and precipitation, 

alterations in elemental profiles, distribution and concentrations are likely expected due to climate 

change (Marques et al., 2010; Hoffmann et al., 2012). As discussed above for OCs, if the climate 
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continues changing, great alterations of salinity regimes will occur due to sea level rise, increased 

snow melting and occurrence of extreme events, like storms, floods and droughts.  Metals’ ability 

to precipitate, bind or release from sediments are largely determined by environmental 

characteristics, such as pH, cation exchange capacity, organic matter content, redox conditions 

and chloride content. Therefore, varying salinities can likely affect metal mobility in intertidal 

sediments, influencing bioavailability and toxicity to biota, as demonstrated in previous studies 

(Hatje et al, 2003; Du Laing et al., 2002, 2008). For instance, Du Laing et al. (2007) reported a 

reduction of metal accumulation in sediments of intertidal reed beds along the Scheldt river with 

increased salinities. The same author also assessed the effect of flood water on heavy metals’ 

mobility in intertidal sediments (Scheldt estuary, Belgium), revealing that higher salinity levels 

enhanced metal mobility, particularly Cd (Du Laing et al., 2008). Following changes in seawater 

temperature and salinity, which can lead to stratification, low dissolved oxygen levels (hypoxia) 

can also facilitate the release of metals from sediments to the water column (Schiedek et al., 2007). 

Apart from changes in bioavailability and mobility, increased seawater temperatures can also have 

a prevalent role in elements’ speciation and, consequently, in their toxicity to biota (Marques et 

al., 2010; Hoffmann et al., 2012). For instance, warmer temperatures, as well as reduced oxygen 

levels (or even anoxia) facilitate Hg methylation by bacteria, thus increasing the uptake of this 

element along the food chain in its most toxic and persistent form, i.e. MeHg (Booth and Zeller, 

2005). 

Until now, PPCPs are by far one of the less studied groups of ECCs, especially within a climate 

change context. Despite being relatively new pollutants, for which the available data is still 

limited, recent studies suggest that environmental conditions play a key role in the chemical 

behaviour, degradation and metabolization of this type of pollutants, emphasizing the need to 

further assess the potential effects of climate change when investigating the toxicological risks of 

PPCPs (e.g. Azzouz and Ballesteros, 2013). Since most substances are extremely sensitive to 

light, heat and surrounding pH conditions (Moreno et al., 2009; Welankiwar et al., 2013; Gul et 

al., 2015), the expected warming, increased UV radiation due to a depleted ozone layer, and 

acidification can likely exacerbate PPCPs’ degradation in the aquatic environment, depending on 

the stability degree of each compound, likely enhancing their toxicity to biota (Macdonald et al., 

2005; Schiedek, 2007; Azzouz and Ballesteros, 2013). 

Finally, when establishing possible interactions between climate change and the fate, 

distribution and bioavailability of some particular compounds, namely PPCPs and pesticides, 

various indirect effects also need to be taken into account. As previously mentioned, the projected 

changes in climate, such as warming, which will subsequently alter species distribution and result 

in diminished physiological condition of other species, will also have a preponderant role on the 

occurrence, distribution, toxicity and virulence of pathogenic organisms, including parasites, 

bacteria, virus and microalgae (Dale et al., 2006; Marcogliese, 2008; Donavaro et al., 2011). Thus, 
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the growing incidence and broader distribution of diseases and plagues, which affect humans and 

animals (particularly farmed), will certainly promote utilization of pharmaceuticals and plague 

controlling products, leading to enhanced environmental contamination, especially in coastal 

marine ecosystems close to highly urbanized areas or in the vicinities of farming facilities 

(Marcogliese, 2008; De Silva and Soto, 2009; IPCC, 2014). This clearly raises the need not only 

to better understand the ecotoxicological implications of increased PPCPs exposure under climate 

change context, but also to assess animal immune responses to diseases.  

 

1.3.2. Coping with ECCs in tomorrow’s ocean: carry-over and toxicity to aquatic biota 

Environmental variables not only directly influence chemical contaminants’ availability and 

environmental distribution, but also indirectly alter compounds’ toxicological aspects (Noyes et 

al., 2009). In this sense, when assessing the effects of climate change, from an ecotoxicological 

point of view, two aspects should be taken into account: i) bioaccumulation and ii) toxicity. 

In aquatic animals, the bioaccumulation of chemical contaminants occurs primarily at the 

respiratory and gastrointestinal epithelia, which are tissues biologically designed for a rapid and 

efficient uptake. Once uptaken, chemical contaminants are then distributed to different target 

organs via blood, alone or in association with transporter proteins. In order to deal with the 

presence of toxicants, a series of biological mechanisms takes place, involving compound 

biotransformation and detoxification through the enzymatic machinery (e.g. cytochrome P450, 

GST), followed by its subsequent excretion (Tierney et al., 2014). Among other ecological factors 

(e.g. origin, age, nutritional status), the ability of an organism to cope with the presence of 

contaminants and to detoxify them is largely dependent on its fitness, physiological status and 

metabolic rates which, then again, are greatly influenced by the surrounding environmental 

conditions (Figure 1.3.; Dijkstra et al., 2013; Freitas et al., 2016; Anacleto et al., 2018).  

Because adapting to one set of environmental stressors implies great physiologic efforts and, 

therefore, increased susceptibility to other existing stressors, the interactions between climate 

change and chemical contaminants can be looked from two different angles. On one side, by 

affecting biota’s metabolism, climate changes can result in altered bioaccumulation/detoxification 

mechanisms and toxicological responses to contaminant exposure (e.g. Noyes et al., 2009; 

Marques et al., 2010; Dijkstra et al., 2013; Anacleto et al., 2018). On the other side, organisms 

already living on the edge of their physiological capacities due to constant inputs of pollutants 

will certainly exhibit lower tolerance to environmental changes and will struggle to adapt to the 

new prevailing conditions (e.g. Noyes et al., 2009; Marques et al., 2010; Manciocco et al., 2014). 
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Figure 1.3. Interaction between climate change effects and chemical contaminants. 

 

In this context, the following sections present an overview of the available data, gathered from 

recent field and laboratory studies concerning the ecotoxicological responses of marine species 

subjected to the combination of climate change effects and pollution. Despite a wide variety of 

environmental factors, acting alone or combined with other stressors, would also worth attention, 

the impacts of ocean warming and acidification on contaminants’ toxicity will be addressed in 

these sections due to the prevalence of these variables in the current state of the art with respect 

to climate change effects on marine ecosystems, as well as the aims of the present PhD thesis (i.e. 

to focus on the effects interactive effects of ocean warming and acidification). 

 

Ocean warming  

Out of the environmental variables affected by climate change, to date, temperature is one of 

the best documented parameter from a marine and ecological point of view (e.g. Madeira et al., 

2015, 2016; Anacleto et al., 2018). Since most marine species are ectothermic, temperature is a 

crucial variable to their physiological functioning. Though many organisms have evolved to cope 

with daily or seasonal temperature variations, when multiple environmental stressors take place 

concurrently, species resilience to temperature peak events or drastic seasonal changes may be 

surpassed, thus compromising its survival (e.g. Madeira et al., 2012). In addition, despite genetic 

adaptation may enable some species or populations to persist and overcome natural selection 

pressures induced by changing environmental temperatures, such adaptations can also lead to 

reduced genetic diversity and, therefore, from an evolutionary perspective, this could be looked 

at as a downside (Jager et al., 2016). Noteworthy, the physiological stress and genetic adaptation 

promoted by such changes are expected to have even more pronounced ecological consequences 
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in tropical species, which are already living near their thermal tolerance threshold, thus, being 

generally more susceptible to temperature variations than their temperate counterparts (Rosa et 

al., 2016). Such is the case of tropical coral reefs that typically live in symbiosis with 

dinoflagellates. Because temperature increase promotes the release of these organisms from 

corals, seawater warming for extended periods may compromise the stability of such symbiotic 

interactions, resulting in coral bleaching, diminished growth, increased susceptibility to pollutants 

and diseases, mortality and, ultimately, higher probability of extinction (Hoegh-Guldberg et al., 

2007). 

In marine biota, both reproduction and stress response mechanisms are regulated by the 

endocrine system, together with the nervous system. Thus, in the presence of endocrine disrupting 

pollutants (e.g. triclosan, 17α-ethynylestradiol, 17β-estradiol, phthalates, and PCBs), deleterious 

effects have been reported in marine organisms including, among others, the induction or 

depression of vitellogenin-like protein synthesis (i.e. egg-yolk precursors) (Matozzo et al., 2012; 

Dias et al., 2014), abnormal embryonic development (Hwang et al., 2014), impairment of 

the  thyroid endocrine system (Zhai et al., 2014), loss of reflex action (Hedrick-Hopper, et al., 

2015) and increased stress-hormone (e.g. cortisol) levels (Teles et al., 2016). The last two 

responses being closely linked to increased animal stress. On the other hand, because spawning 

events are, in many cases, strongly influenced by temperature, seawater warming is expected to 

have a preponderant effect on species’ fecundity timing and success (Przeslawski et al., 2008). 

Thus, taking into consideration the direct effects of endocrine disrupting pollutants and seawater 

temperature acting in isolation, it can then be hypothesized that synergetic interactions may take 

place if these two environmental stressors occur simultaneously. Yet, given the current lack of 

empirical and consistent data supporting this hypothesis (Brown et al., 2015; Hedrick-Hopper et 

al., 2015), whether global warming can potentiate or not the deleterious impacts of endocrine 

disrupting pollutants on species reproduction and stress response is a matter that deserves to be 

further investigated.    

When it comes to ocean warming, the metabolic changes induced by thermal stress are one of 

the most studied physiological responses in marine biota (e.g. Neuheimer et al., 2011; Holt and 

Jørgensen, 2015; Madeira et al., 2016; Anacleto et al., 2018). In general, organisms subjected to 

warmer temperatures exhibit enhanced metabolism, accompanied by increased ventilation and 

feeding rates in response to higher metabolic demands. Such changes can translate into higher 

contaminant bioaccumulation (contaminants dissolved in the water column, i.e. via respiration, 

or present in feeds or natural preys, i.e. via ingestion) and elimination rates (i.e. contaminant 

metabolization and excretion) (e.g. Dijkstra et al., 2013; Sampaio et al., 2016). Yet, to adequately 

assess the relation between warming and contaminants’ bioaccumulation/elimination patterns, 

animal growth efficiency is a parameter that deserves careful consideration when interpreting data 
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because: i) an enhanced metabolism also implies higher energetic costs to biota, often leading to 

lower animal condition and fitness (Johnston and Dunn, 1987; Stauber et al., 2016); and ii) animal 

feeding rates cannot be seen as directly proportional to its metabolic demands, since the amount 

of ingested food is largely determined not only by prey/feed availability, but also by predator 

behaviour (Dijkstra et al., 2013). In addition to changes in contaminant bioaccumulation patterns, 

alterations in animal metabolism and condition induced by warming can also exacerbate 

compound toxicity, lowering the ability of an organism to successfully respond to contaminants 

and/or to detoxify them, or increasing their biotransformation into more toxic compounds (e.g. 

Marques et al., 2010; Manciocco et al., 2014; Stauber et al., 2016). 

Finally, it should be further stressed that, given the previously described ambivalence in 

climate change and contaminant interactions, with the first potentiating impacts of the second or 

vice-versa, the sole exposure to contaminants can also influence an organism’s thermal tolerance, 

i.e. species critical thermal maximum (CTmax; Stauber et al., 2016). 

 

Ocean acidification  

Ocean acidification has the potential to directly or indirectly influence marine species 

physiology, welfare and survival (Rosa et al., 2017). At a first glance, the effects of ocean 

acidification seem to be more noticeable and dramatic to calcified organisms, to which the 

development and growth are intrinsically dependent on the equilibrium of the calcium carbonate 

cycle. For this reason, over the years, great research efforts have been channelled towards the 

assessment of potential ecological threats of ocean acidification to marine invertebrates, where 

most studies have been focused on coral reefs, followed by bivalves and crustaceans (e.g. Kleypas 

et al., 2006; Hoegh-Guldberg et al., 2007; Cohen and Holcomb, 2009). Nevertheless, despite fish 

species are known to be relatively tolerant to pH variations, since they are capable of adjusting 

their internal pH according to the surrounding levels (Fabry et al., 2008), recent studies have 

revealed that hypercapnia can lead to the development of body malformations, as well as changes 

in buoyancy and loss of spatial orientation (Gutowska et al., 2010; Pimentel et al., 2014).  

As previously discussed, contaminants’ chemical properties are largely influenced by 

environmental conditions, with metals and other ionic compounds being particularly affected by 

the surrounding seawater pH levels. Such is the case of the PPCP TCS that becomes increasingly 

protonated and loses its negative charge as pH decreases, which, on the other hand, translates into 

enhanced compound availability and toxicity to biota (Orvos et al., 2002; Rowett et al., 2016). 

Indeed, the recent study of Rowett et al. (2016), using the freshwater amphipod Gammarus pulex 

as model organism, evidenced increased TCS toxicity under lower pH levels. As argued by these 

authors, such trend is explained by the fact that lipid membranes are generally impermeable to 

ionised molecular forms, and that TCS requires a pH value around 8.0 pH units to become ionized 
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(i.e. in its less toxic form; Lyndall et al., 2010; Rowett et al., 2016). Similarly, two recent studies 

using marine bivalves (i.e. peppery furrow shell clam Scrobicularia plana, Freitas et al., 2016; 

Japanese carpet shell clam Ruditapes philippinarum, Munari et al., 2016), also reported 

synergistic interactions between the surrounding pH level and the PPCPs carbamazepine and 

diclofenac, with specimens exhibiting higher mortality and oxidative stress when exposed to the 

combination of acidification plus PPCPs, than those exposed to each stressor in isolation. Another 

study performed on the immune system of the Korean mussel Mytilus coruscus exposed to low 

pH conditions and titanium dioxide nano-particles (nano-TiO2), which are new substances with a 

growing interest in ecotoxicology, revealed interactive and carry-over effects, i.e. reduction of 

total haemocyte counts, phagocytosis, esterase, and lysosomal content, as well as, increased 

haemocyte mortality and formation of reactive oxygen species (ROS; Huang et al., 2016).  

When addressing the toxicological impacts of acidification, it is also worthwhile to consider 

its effects on biota’s behaviour. Such effects are mostly attributed to the fact that hypercapnia 

disrupts the ionic balance in proton-based neurotransmitter receptors, such as the γ-aminobutyric 

acid receptor (GABAA) neurotransmitter, translating into increased animal anxiety and boldness 

(Hamilton et al., 2014; Munday et al., 2014; Sampaio et al., 2016; Lai et al., 2017). 

Furthermore, recent studies have evidenced that, given the high conservation of the nervous 

system throughout evolution within vertebrates, marine pollutants that are neurotoxic to humans 

(e.g. MeHg) or were designed to modulate specific human behaviours (i.e. psycho-active drugs, 

such as antidepressants, anxiolytics, anticonvulsants), may also promote similar responses in fish 

(Valenti et al., 2012; Brooks, 2014; Fong and Ford, 2014; Sampaio et al., 2016). Despite the recent 

findings consistently pointing out ocean acidification to potentially promote neurotoxicological 

aspects of these contaminants (Bisesi Jr. et al., 2014; Sampaio et al., 2016), further research on 

this topic should be carried out to accurately explore different fish behavioural cues, neurological 

functioning and the ecotoxicological impacts of climate change. 

Finally, as described in the recent review of Nikinmaa (2013) and considering the ambivalence 

of such interactions, it should be highlighted that pollutants by themselves can also indirectly 

contribute to ocean acidification, by affecting animal abundance and survival in three ways: i) 

high levels of chemical contaminants (including ionic metals, that are essential at some levels, 

but can become toxic at high concentrations) compromise the primary production, by reducing 

the abundance of photosynthetic organisms in relation to the number of heterotrophic organisms, 

thereby, disrupting the CO2 equilibrium in the ocean (i.e. the ratio between what is produced and 

what is consumed); ii) the elevated mortality of calcified organisms caused by the exposure to 

pollutants can induce calcium carbonate sinking to the bottom of the ocean, impairing the natural 

carbon cycle (e.g. Cohen and Holcomb, 2009); and iii) seawater eutrophication can lead to 

increased aerobic respiration rates (i.e. enhanced CO2 production), but the presence of pollutants 
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may decrease photosynthesis inducing an overall acidification in some areas of the planet 

(Nikinmaa, 2013).  
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1.4. Thesis aims, experimental approach and layout 

1.4.1. Research questions and experimental approach 

The increased human footprint on the planet since the beginning of the Industrial Revolution 

has resulted in two of the greatest environmental concerns of our time: remarkable chemical 

contamination and climate change. Both environmental stressors strongly threaten the resilience 

of marine ecosystems and are expected to worsen in the future, compromising both marine 

species’ ecological success and seafood safety. Yet, as this research topic only started to raise 

attention among the scientific community in the last years, information regarding the potential 

interactions between climate change and chemical contamination is still extremely limited, 

particularly in what concerns non-regulated ECCs for which even less toxicological data is 

currently available. Hence, this calls for the urgent need to research and gather a sufficient amount 

of data enlightening the most appropriate directions for future environmental management, ECCs’ 

regulation and mitigation of climate change impacts in an integrated and multi-disciplinary way. 

Within this context, the present PhD thesis aimed to provide an important contribution to this 

innovative and poorly studied research area, by particularly addressing the interactive effects of 

warming and acidification on ECCs’ bioaccumulation and ecotoxicological responses in marine 

invertebrate and vertebrate species. Hence, this PhD dissertation poses the following three 

specific research questions:  

1. Will warming and/or acidification affect ECCs’ bioaccumulation and elimination 

mechanisms in marine biota? 

2. If so, will seafood consumers be at a greater risk in tomorrow’s ocean? 

3. Will warming and/or acidification affect marine species’ ecotoxicological responses to 

ECCs? 

To address these questions, thirteen non-regulated ECCs from different chemical groups and 

with distinct modes of action were selected, including toxic element species (MeHg and iAs), 

PPCPs (DCF, VFX and TCS), FRs (Decs 602, 603 and 604 and TBBPA) and PFCs (PFOS and 

PFOA). Although ECCs can be uptaken by marine biota through water (via inhalation) and diet 

(throughout the food chain) and, sometimes, one exposure pathway can predominate over the 

other one depending on compound’s chemical behaviour, dietary exposure was prioritized in this 

PhD thesis (i.e. only two trials tackled ECCs water exposure; see Chapters 4. and 6.), since 

studies assessing ECCs exposure through trophic transfer are currently extremely limited. 

Regarding the experimental approach for the exposure to climate change-related stressors, as 

described in following chapters (Chapters 2.-6.), seawater warming and/or acidification were 

simulated, in all cases, according to the most recent projections of the Intergovernmental Panel 
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for Climate Change (IPCC) for the worst-case scenario of climate change effects, i.e. scenario 

RCP8.5 (ΔTemperature = +4-5 ºC and ΔpCO2 = ~+1000 µatm, equivalent to ΔpH = -0.4 units; 

IPCC, 2014; McNeil and Sasse, 2016). A full cross-factorial experimental setup was carried out 

in all trials, in order to explore all potential interactive effects between variables/stressors.  

Four independent trials (i.e. one per each studied compound) were carried out for MeHg, DCF, 

VFX and TCS using juvenile fish species (i.e. European seabass, Dicentrarchus labrax for MeHg 

and DCF, meagre Argyrosomus regius for VFX and white seabream Diplodus sargus for TCS) as 

biological models (the choice of fish species was based on the criteria described in sub-Chapter 

1.4.2., as well as in species’ availability at the time of the trial). In these four trials, both compound 

bioaccumulation/elimination and toxicity to juvenile fish were investigated (see Parts 1. and 2. 

of Chapters 2.-5.). The first trial performed within this PhD program was focused solely on the 

effect of warming on MeHg bioaccumulation/elimination and toxicity (see Chapter 2., Parts 1. 

and 2.), and constituted a pilot study that allowed to optimize the incorporation of ECCs in 

commercial fish feeds, as well as the functioning of the recirculation aquaculture system (RAS) 

used to simulate climate change effects. Once these key points were optimized and adjusted to 

the experimental needs, seawater acidification was also introduced as a variable, i.e. warming and 

acidification were simulated, acting alone or combined, in all subsequent trials (see Chapters 3.-

5.).  

Finally, with the specific purpose of complying with one of the main objectives of the FP7 

project ECsafeSEAFOOD (supporter of the work performed during this PhD program), a fifth 

trial simulating both warming and acidification was also carried out, this time focusing on relevant 

ECCs mixtures (including iAs, Dec 602, Dec 603 Dec 604, TBBPA, PFOS and PFOA) and using 

commercial marine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum) as 

biological models (see Chapter 6.). Considering the logistic limitations (i.e. the number of 

available tanks in the RAS used in these trials) which did not allow to study the effect of these 

ECCs acting alone (i.e. in a non-mixture context), this trial was only devoted to the assessment of 

ECCs’ bioaccumulation/elimination mechanisms. 

 

1.4.2. Marine fish and bivalves species as biological models to assess the interactive effects 

of climate change and ECCs  

To address to three main research questions of this PhD thesis, three juvenile marine fish (D. 

labrax, A. regius and D. sargus) and two bivalves species (M. galloprovincialis and R. 

philippinarum) were selected as biological models. Table 1.2. presents a summary of the 

ecological features, optimal rearing conditions and commercial importance of the selected 

biological models. Such selection was based on the following criteria: 
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1. Species typically inhabiting coastal areas (e.g. estuaries and coastal lagoons) because, as 

previously described (Chapter 1.1.), these ecosystems (and the species inhabiting them) can be 

particularly sensible to climate change impacts. Even though marine biota inhabiting these 

unstable environments have developed different ecological strategies to cope with great daily or 

monthly amplitudes of abiotic conditions, recent evidence suggested that these species are 

extremely vulnerable to climate change effects, as they already live close to their physiological 

thresholds and have limited acclimation plasticity (e.g. Madeira et al., 2012, 2015). On the other 

hand, the conservation, biodiversity and economic value of estuaries and coastal lagoons is also 

greatly compromised by the presence of chemical contaminants, since these ecosystems are often 

located near highly urbanized and industrialized areas and, therefore, are constantly exposed to 

discharges of domestic, agricultural and industrial effluents (Barbosa, 2010; Maulvault et al., 

2015; Rodrigues et al., 2017). 

2. Species likely to bioaccumulate high levels of ECCs, such as predatory fish that are 

particularly susceptible to ECCs dietary exposure (trophic transfer) through the ingestion of 

contaminated preys, and bivalve species that are sedentary and benthic filter-feeding organisms, 

thus being susceptible to ECCs present in both the water column and contaminated sediments 

(Álvarez-Muñoz et al., 2015; Maulvault et al., 2015; Vandermeersch et al., 2015).  

3. Species with high commercial value, to link bioaccumulation data with the potential 

impacts of climate change in seafood safety, as well as in the fisheries and aquaculture sectors. 

4. Specifically for fish species, specimens at the juvenile stage were preferred because early 

life stage organisms often exhibit higher sensitivity to environmental stressors than adult ones. In 

addition, changes in the fitness and ecotoxicological responses of juvenile organisms can 

potentially affect species’ recruitment and overall ecological success, thus negatively impacting 

the fisheries and aquaculture sectors. 
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Table 1.2. Summary of the ecological features and commercial importance of the marine fish 
and bivalve species selected as biological models of this PhD thesis. 

 

 
References used in this Table: Kaschner et al., 2010; Okaniwa et al., 2010; Dülger et al., 2012; Lee et al., 2012; 

Fountoulaki et al., 2017; FAO, 2018b,c,d,e,f; IUCN, 2018.
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1.4.3. Thesis layout 

This thesis comprises eight chapters, with the first chapter presenting an overview of the state 

of the art regarding climate change and ECCs sources and impacts, as well as the potential 

interactive effects between these stressors. The information gathered during the conception of 

Chapter 1. allowed to prepare a book chapter entitled “Chemical Contaminants in a Changing 

Ocean” that will be included in the book “Ecotoxicology of Marine Organisms” edited by 

Science Publishers (see Annex 1.). Chapters 2.-6. are devoted to each of the target ECCs of this 

PhD thesis, i.e.: 

Chapter 2. – The biomagnifying and potent neurotoxicant methylmercury (MeHg). This 

chapter is divided in Part 1., dedicated to compound bioaccumulation and elimination in D. 

labrax subjected to warming, and Part 2., dedicated to the D. labrax ecotoxicological responses 

(i.e. animal fitness indexes, antioxidant and heat shock responses, and neurotoxicity). Each part 

led to one separate published manuscript (see Annex 1.).   

Chapter 3. – The non-steroidal anti-inflammatory drug diclofenac (DCF). This chapter is also 

divided in two parts, with Part 1. presenting an integrated multi-biomarker approach (including 

animal fitness indexes, haematological parameters, antioxidant responses, protein chaperoning 

and degradation, endocrine disruption and neurotoxicity) to assess the interactive effects of 

warming, acidification and DCF exposure on D. labrax ecotoxicological responses 

(corresponding to the third published manuscript; see Annex 1.). Due to limitations (and 

weaknesses) of the experimental design, as well as of the analytical methodology used to quantify 

DCF, this compound was not detected in any tissue samples collected throughout this trial, 

therefore, not allowing the preparation of a manuscript devoted to DCF bioaccumulation and 

elimination. Still, it was decided to include a second part in this chapter in order to discuss the 

potential causes for such unexpected absence of positive results (see Part 2.).  

Chapter 4. – The antidepressant drug venlafaxine (VFX). This chapter is structured in a 

similar way to the previous ones (i.e. Part 1. VFX bioaccumulation and elimination using A, 

regius, i.e. published manuscript 4, and Part 2. A. regius ecotoxicological responses, integrating 

fish antioxidant responses, protein chaperoning and degradation, endocrine disruption and 

neurotoxicity, i.e. published manuscript 5; see Annex 1.). Yet, it also includes a third part devoted 

to fish behaviour (i.e. published manuscript 6), given the psychotropic mode of action of this 

particular compound (see Part 3.). In addition, considering the fact that pharmaceutical active 

drugs are assumed to be mostly uptaken by marine biota via water and, thus, studies concerning 

other possible compound exposure pathways are extremely limited, differences between water 
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and feed exposure routes (in terms of bioaccumulation, ecotoxicological and behavioural effects) 

are also discussed throughout this chapter.   

Chapter 5. – The antimicrobial and anti-mycotic triclosan (TCS), previously associated with 

endocrine disruption in both biota and humans. In this chapter, both compound bioaccumulation 

(Part 1.) and ecotoxicological responses in D. sargus (including animal fitness indexes, 

antioxidant responses, protein chaperoning and degradation, endocrine disruption and 

neurotoxicity; Part 2.) are presented, with these two parts being merged in a single manuscript 

devoted to TCS (published manuscript 7; see Annex 1.). 

Chapter 6. – ECCs mixtures, including inorganic arsenic (iAs), dechloranes (Dec 602, Dec 

603 and Dec 604), tetrabromobisphenol A (TBBPA), perfluorooctanesulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA). As previously mentioned, due to logistic limitations, it was not 

possible to assess the ecotoxicological responses of ECCs mixtures. Hence, this chapter is only 

dedicated to the effects of climate change on ECCs’ bioaccumulation and elimination mechanisms 

in marine bivalves (M. galloprovincialis and R. philippinarum), following water or dietary 

exposure, according to the chemical behaviour of each compound (i.e. published manuscript 8; 

see Annex 1.). Yet, the relevance of further addressing this subject is later discussed in Chapter 

8. 

Then, in Chapter 7. General Discussion the research questions initially raised in this PhD 

thesis (Chapter 1.4.1.) are clearly addressed, by discussing the results presented in Chapters 2.-

6. in an integrated way.  

Finally, the main take-home messages, as well as a critical analysis of the methodologies and 

results obtained during the preparation of this PhD thesis are presented in Chapter 8., “leaving 

the door opened” for future research topics that could contribute to a deeper and wider 

understanding of the impacts of climate change, as well as to the sustainable management of 

marine ecosystems in tomorrow’s ocean.  
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Abstract 

Warming is an expected impact of climate change that will affect coastal areas in the future. 

These areas are also subjected to strong anthropogenic pressures leading to chemical 

contamination. Yet, the consequences of both factors for marine ecosystems, biota and consumers 

are still unknown. The present work aims to investigate, for the first time, the effect of temperature 

increase on bioaccumulation and elimination of mercury [(total mercury (T-Hg) and 

methylmercury (MeHg)] in three tissues (muscle, liver, and brain) of a commercially important 

seafood species – European seabass (Dicentrarchus labrax). Fish were exposed to the ambient 

temperature currently used in seabass rearing (18 °C) and to the expected ocean warming (+4 °C, 

i.e. 22 °C), as well as dietary MeHg during 28 days, followed by a depuration period of 28 days 

fed with a control diet. In both temperature exposures, higher MeHg contents were observed in 

the brain, followed by the muscle and liver. Liver registered the highest elimination percentages 

(EF; up to 64% in the liver, 20% in the brain, and 3% in the muscle). Overall, the results clearly 

indicate that a warming environment promotes MeHg bioaccumulation in all tissues (e.g. highest 

levels in brain: 8.1 mg kg-1 ww at 22 °C against 6.2 mg kg-1 ww at 18 °C after 28 days of MeHg 

exposure) and hampers MeHg elimination (e.g. liver EF decreases after 28 days of depuration: 

from 64.2% at 18 °C to 50.3% at 22 °C). These findings suggest that seafood safety may be 

compromised in a warming context, particularly for seafood species with contaminant 

concentrations close to the current regulatory levels. Hence, results point out the need to 

strengthen research in this area and to revise and/or adapt the current recommendations regarding 

human exposure to chemical contaminants through seafood consumption, in order to integrate the 

expected effects of climate change. 

 

Keywords: Seawater warming, European seabass, Methylmercury, Bioaccumulation, 

Elimination.  
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1. Introduction 

Climate change and expected impacts on coastal ecosystems is a widely debated theme, raising 

several environment, animal welfare and human health related concerns. Despite this research 

topic is still taking its first steps, and uncertainties are often raised when projecting possible causes 

and consequences of climate change, by the end of the 21st century,  it is expected, with a high 

degree of confidence, the increase in frequency and severity of extreme temperature events (heat 

waves) (IPCC, 2014). Seawater temperature has increased during the last three decades, 

particularly in the Northern hemisphere, and is expected to become warmer, increasing the global 

mean sea surface temperature (SST) between 2.6 to 4.8 ºC, in a 50 to 100 years’ timeframe (IPCC, 

2014). Coastal areas, lagoons and estuaries will be particularly affected by climate change since 

they are subjected to a wide range of environmental drivers and anthropogenic activities (e.g. 

industrial, agricultural and domestic pollution), likely negatively affecting the performance and 

survival of marine biota inhabiting these vulnerable ecosystems (Rosa et al., 2014) and promoting 

alterations at molecular, physiological and behavioural levels (e.g. Anacleto et al., 2014a,b; 

Pimentel et al., 2014).  

The enhancement of chemical contaminants toxicity to marine organisms and its potential 

negative effects on seafood safety is also a noteworthy aspect of ocean warming. Indeed, 

alterations of hydrographical conditions such as seawater temperature increase may, on one hand, 

directly influence  contaminants bioavailability in the water column and sediments (e.g. facilitate 

the methylation of Hg in aquatic systems since the methylation rates are temperature dependent; 

Downs et al., 1998), and, on the other hand, affect the metabolism of biota, thus, likely affecting 

contaminants uptake/elimination rates (e.g. Marques et al., 2010; Dijkstra et al., 2013; Rosa et al., 

2014; Manciocco et al., 2014). Since seafood plays an important role in the human diet at a global 

scale, and especially to coastal populations, possible changes in contaminants 

bioaccumulation/elimination mechanisms in these species may imply great health related 

concerns. So far, limited studies investigated the way marine organisms will cope with chemical 

contaminants in a climate change context, and even fewer assessed seafood safety aspects in the 

oceans of tomorrow (Marques et al., 2010). 

European seabass (Dicentrarchus labrax) is a commercially important fishery resource and 

one of the most relevant farmed fish species in Europe (reaching over 70,000 tonnes in 2012) 

(FEAP, 2013; FAO, 2014). As top-predatory species, wild juveniles feed on small invertebrates 

(shrimps and benthic organisms, such as bivalves, gastropods and polichaetes), whereas adults 

are mostly piscivorous (FAO, 2015), thus likely accumulating higher levels of biomagnifying 

chemical contaminants, such as methylmercury (MeHg) (e.g. Miniero et al., 2013). Furthermore, 

by inhabiting areas particularly vulnerable to hydrographic alterations (i.e. coastal waters, 

estuaries and river mouths in the wild, or often reared in offshore aquaculture systems), climate 
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change effects may certainly represent great ecological and toxicological challenges to this fish 

species (Marques et al., 2010; Rosa et al., 2012).  

In this context, the aim of this study is to investigate the effect of environmental warming on 

Hg accumulation and elimination in European seabass (Dicentrarchus labrax) juveniles. Special 

emphasis was put on the most toxic and predominant Hg form in seafood species, i.e. MeHg, for 

which maximum permissible concentrations (MPC’s) have not yet been established.  

 

2. Materials and methods 

2.1. Control and MeHg-enriched diets 

Non-contaminated (control) and contaminated dry inert pellets (MeHg-enriched) with the 

same nutritional composition were manufactured by a specialized feed producing company 

(SPAROS Lda, Olhão, Portugal), considering the nutritional requirements for juvenile seabass 

(detailed feed composition can be consulted in Annex 2, Table A.2.1.). Ingredients were ground 

(below 250 µm) in a micropulverizer hammer mill (model SH1, Hosokawa-Alpine, Germany). 

Powdered ingredients were then mixed according to the target formulation in a double-helix mixer 

(model 500L, TGC Extrusion, France). No oils were incorporated at this stage. Pellets (size: 3.0 

mm) were produced in a twin-screw extruder (model BC45, Clextral, France) with a screw 

diameter of 55.5 mm and temperature ranging 105-109 °C, followed by drying in a vibrating fluid 

bed dryer (model DR100, TGC Extrusion, France). After cooling, oils were added by vacuum 

coating to the extruded pellets (model PG-10VCLAB, Dinnisen, The Netherlands). For the 

MeHg-enriched diet, MeHg(II) chloride (CH3ClHg, 99.8%, Sigma-Aldrich) was dissolved in a 

small volume of ethanol (< 6 mL, 100% v/v) and then mixed with the oils before pellets extrusion. 

Diets were maintained at 4 °C, and MeHg stability in the diets was evaluated throughout the 

experiment. Methylmercury concentration in control and MeHg-enriched diets were, in dry 

weight (dw), 0.60 ± 0.01 mg kg-1 and 8.02 ± 0.14 mg kg-1 (mean ± standard deviation, n = 3; see 

also Annex 2, Table A.2.2.), respectively. Both selected concentrations were considered to be 

ecologically relevant and representative of the low [~0.12 mg kg-1  wet weight (ww)] and high 

(~1.6 mg kg-1 ww) levels of Hg contamination encountered in species inhabiting contaminated 

coastal areas, susceptible to accumulate Hg, and that are natural preys of juvenile seabass (e.g. 

Cardoso et al., 2014). Proximate chemical composition of the diets was determined according to 

the following procedures: dry matter by drying at 105 °C for 24 h; ash by combustion at 550 °C 

for 12 h; crude protein by a flash combustion technique, followed by a gas chromatographic 

separation and thermal conductivity detection (nitrogen analyser FP428, LECO, USA), using a 

nitrogen conversion factor of 6.25; lipid content was determined by the Soxhlet method, as 

described by the Association of Official Analytical Chemists (AOAC, 2005). 
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2.2. Organisms and acclimation 

European seabass (Dicentrarchus labrax) with similar biometric characteristics were reared 

until juvenile stage (12.8 ± 0.7 cm total length; 19.2 ± 4.0 g total weight; Table 2.1.1) at the 

aquaculture pilot station of the Portuguese Institute of the Atmosphere and the Sea (IPMA, Olhão, 

Portugal) using routine hatchery conditions. Afterwards, organisms were transported to the 

aquaculture facilities of Laboratório Marítimo da Guia (Cascais, Portugal), where they were 

randomly and equitably distributed in 12 rectangular shaped glass tanks (100 L), each with 

independent recirculating systems. Each system was equipped with independent temperature 

(Frimar, Fernando Ribeiro Lda, Portugal) and pH control (adjusted automatically with a Profilux 

controlling system connected to individual pH probes that monitor the pH values every 2 s; 

Kaiserslautern, Germany), protein skimmer (Reef SkimPro, TMC Iberia, Portugal), UV 

sterilization (Vecton 300, TMC Iberia, Portugal), biological filtration (FSBF 1500, TMC Iberia, 

Portugal) and chemical filtration (active charcoal). To avoid physiological stress, fish load was 

kept below 5 g body weight L-1 in each tank. On a daily basis, dead fish and faeces were removed 

and 10% of the water volume was exchanged in each incubation tank. Ammonia (NH3/NH4
+), 

nitrite (NO2
-) and nitrate (NO3

-) concentrations were daily checked (Tropic Marin, USA), and 

kept below detectable levels (i.e. NH3/NH4
+ < 0.25 mg L-1 and NO2

- < 0.10 mg L-1), with the 

exception of nitrates, which were kept below 2.0 mg L-1. Specimens were acclimated for a period 

of 30 days and kept under the following conditions: dissolved oxygen > 5 mg L-1; temperature = 

18 ± 0.5 °C; pH = 8.00 ± 0.05, salinity = 35 ± 1 ‰ and photoperiod of 12 hours light and 12 hours 

dark (12L:12D). Five days before initiating the exposure phase, seawater temperature was slowly 

raised (1 ºC per day) until reaching 22 ± 0.5 ºC in tanks simulating seawater warming conditions 

(i.e. treatments 22_control and 22_MeHg-enriched; description of treatments is provided in 

section 2.3.), to allow specimens to acclimate to this temperature. Fish were fed with 2% of the 

average animal body weight at least three times a day with the control diet, i.e. total feed provided 

was daily adjusted accounting both mortalities and biometric variations throughout time in each 

tank. Mortality during acclimation was below 1%. 

 

2.3. MeHg exposure/elimination experiment 

Four treatments were carried out, each comprising three tanks or replicates (n = 20 animals 

per tank; Figure 2.1.1.): treatment 1: 18_control (control conditions), i.e. seawater temperature 

set at 18 °C (i.e. average seawater temperature currently used in juvenile seabass rearing in Iberian 

Peninsula) and animals fed with the control diet; treatment 2: 18_MeHg-enriched, i.e. seawater 

temperature set at 18 °C and animals fed with the MeHg-enriched diet; treatment 3: 22_control, 

i.e. seawater temperature set at 22 °C (i.e. simulating seawater warming, Δ = 4 °C according to 
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IPCC projections; IPCC, 2014) and animals fed with the control diet; treatment 4: 22_MeHg-

enriched, i.e. seawater temperature set at 22 °C and animals fed with the MeHg-enriched diet. 

During the exposure phase, juvenile seabass specimens were fed with the respective diets (control 

or MeHg-enriched) during 28 days, following the procedure described in section 2.2. Afterwards, 

an elimination phase was carried out for 28 days by daily feeding animals from all treatments 

with the control diet. Seawater physical-chemical parameters were daily checked and adjusted at 

optimum levels whenever needed as previously described (section 2.2.). No mortality was 

observed during the experimental trial. Six animals were randomly sampled from each treatment 

(two fish per tank/replicate) on days 0, 7, 14, 28, 35, 42 and 56. Fish trials were approved by the 

Ethical Committee of the Faculty of Sciences of the Lisbon University and conducted according 

to legal regulations (EU Directive 2010/63). Fish were euthanized by cervical sectioning and 

dissected to remove brain, liver and muscle tissues. Fish biometric data were recorded (Table 

2.1.1.), and tissue samples were immediately frozen at -80 °C and freeze-dried at −50 °C, 10-1 

atm of vacuum pressure for 48 h (Power Dry LL3000, Heto, Czech Republic), homogenized and 

kept at -80 °C until further analysis. Water samples (n = 3) were also collected from each tank in 

the sampling day and kept at 4 °C until the analysis of mercury levels. 

 

 

Figure 2.1.1. Experimental design scheme.



Ana Luísa Maulvault 

 

48 
 

 

 

 

 

Table 2.1.1. MeHg content in non-contaminated fish (mean ± standard deviation; mg kg-1), as well as total length (mean ± standard deviation, cm) and 
weight (mean ± standard deviation, g) of specimens from all treatments (n = 6). In each column, different letters indicate significant differences between 
sampling days (p < 0.05; df = 15). Abbreviations: 18_control – seawater temperature set at 18 °C and animals fed with control diet; 18_MeHg-enriched 
– seawater temperature set at 18 °C and animals fed with MeHg-enriched diet; 22_control – seawater temperature set at 22 °C and animals fed with control 
diet; 22_MeHg-enriched – seawater temperature set at 22 °C and animals fed with MeHg-enriched diet. 

 

 

MeHg content (mg kg -1) Length Weight

18_control 22_control
18_control

18_MeHg-
enriched

22_control
22_MeHg-
enriched

18_control
18_MeHg-
enriched

22_control
22_MeHg-
enrichedMuscle Liver Brain Muscle Liver Brain

Day 0 0.22±0.10 0.04±0.00 0.04±0.00 - .- - 12.8±0.7 - - - 19.2±4.0b - - -
Day 7 0.28±0.15 0.05±0.01 0.04±0.01 0.26±0.07 0.04±0.01 0.05±0.01 12.2±1.5 13.2±1.2 13.3±1.0 13.2±0.6 21.3±11.7ab 20.3±9.7ab 25.1±8.1b 24.6±4.2c

Day 14 0.22±0.06 0.04±0.00 0.05±0.01 0.22±0.02 0.05±0.00 0.03±0.01 13.2±1.9 14.2±1.7 14.3±1.1 12.8±1.8 27.5±13.7ab 25.5±10.7ab 34.6±7.8ab 24.4±9.1bc

Day 28 0.23±0.02 0.08±0.01 0.06±0.02 0.23±0.00 0.06±0.01 0.06±0.02 12.5±1.1 13.5±0.9 14.0±1.2 14.1±1.1 19.5±4.8ab 20.5±5.2b 32.1±8.3ab 34.0±11.1abc

Day 35 0.19±0.04 0.07±0.00 0.08±0.01 0.19±0.02 0.07±0.00 0.07±0.01 13.1±1.6 12.1±1.4 14.2±1.3 15.3±0.7 28.3±11.4ab 25.4±9.3ab 35.7±11.0ab 44.4±4.0a

Day 42 0.20±0.05 0.04±0.01 0.06±0.02 0.19±0.02 0.04±0.01 0.06±0.02 14.3±2.4 14.5±2.2 14.3±1.3 14.7±1.5 39.0±15.3a 32.9±10.3ab 36.9±9.9ab 39.6±12.3abc

Day 56 0.20±0.03 0.05±0.01 0.08±0.00 0.20±0.01 0.05±0.01 0.09±0.00 13.7±0.7 13.0±0.5 14.9±1.1 15.0±1.2 33.0±4.1a 34.2±5.1a 39.8±6.3a 42.0±10.5ab
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2.3. Total mercury and organic mercury  

Total and organic mercury (T-Hg and MeHg) contents were analysed in each specimen muscle 

and liver tissues, as well as in seawater samples (to eliminate the possibility of Hg exposure via 

water; results were always below the detection limits; see also Annex 2, Table A.2.2.), whereas 

pooled samples were used for brain tissue (3 pools per sampling point, n = 2 per pool) due to the 

insufficient amount of sample to undertake analysis per specimen. Methylmercury contents were 

also determined in the feeds (control and MeHg-enriched) throughout the experiment revealing 

stable levels (results given in Annex 2, Table A.2.2.). Methylmercury was extracted from the 

samples (fish and feeds) as described by Scerbo and Barghigiani (1998), i.e. freeze-dried samples 

(approximately, 200 mg) were hydrolyzed in 10 ml of hydrobromic acid (47% w/w, Merck), 

followed by MeHg extraction with 35 mL toluene (99.8% w/w, Merck) and toluene removal with 

6 ml cysteine aqueous solution (1% L-cysteinium chloride in 12.5% anhydrous sodium sulfate 

and 0.775% sodium acetate; Merck). Then, total Hg and MeHg were determined in samples (10-

15 mg for solids or 100-200 µL for liquids) by atomic absorption spectrometry (AAS), following 

the method 7473 of the US EPA (2007), using an automatic Hg analyser (AMA 254, LECO, 

USA). Mercury concentrations were calculated from linear calibration (using, at least, five 

different standard concentrations), with a Hg(II) nitrate standard solution (1000 mg L-1, Merck) 

dissolved in nitric acid (0.5 mol L−1, Merck), and the detection limit was 0.005 mg kg-1, wet 

weight (ww). Accuracy was checked through the analysis of the certified reference material 

DORM-4 (fish protein certified reference material for trace metals, National Research Council 

Canada, Canada), and results obtained in the present study were within the certified range of 

values (T-Hg: certified value = 0.410 ± 0.055 mg kg-1, value obtained in the present work = 0.390 

± 0.025 mg kg-1; MeHg: certified value = 0.354 ± 0.031 mg kg-1, value obtained in the present 

work = 0.353 ± 0.062 mg kg-1). A minimum of three measurements (replicates) were performed 

per sample, and results were reported as mg kg-1 ww, according to sample moisture content 

(results shown in Annex 2, Table A.2.3.). Blanks were always tested in the same conditions as 

the samples. Prior to utilization, all laboratory ware was cleaned with nitric acid (20% v/v) for 

24h and rinsed with ultrapure water to avoid contamination. All standards and reagents were of 

analytical (pro analysi) or superior grade. 

 

2.5. Data analysis 

The percentage of MeHg lost during the elimination phase of the experiment, i.e. the 

elimination factor (EF) was calculated according to the equation: EF(%) = 100 – [(Cend / Cinitial) x 

100], where Cend is the average concentration (mg kg-1) in specimens from each treatment sampled 

at days 35, 42 and 56, and Cinitial is the average concentration (mg kg-1) in specimens by the end 

of the exposure phase, i.e. day 28 (Jebali et al., 2014). The EF was considered to be 0 whenever 
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Cend was higher than Cinitial. Differences between experimental treatments (biometric data, MeHg 

contents, %MeHg and EF) or tissues (MeHg contents and %MeHg) were examined using the 

analysis of variance one-way nested ANOVA. Data were transformed, whenever necessary, to 

comply with the assumptions of normality (Kolmogorov–Smirnov’s test) and homogeneity of 

variances (Levene’s test) required to perform this analysis. Subsequently, the post-hoc Tukey 

HSD test was carried out to spot significant differences. Additionally, two-way ANOVA was 

performed in order to detect significant differences in MeHg contents and %MeHg between 

sampling days and treatments. Statistical analyses were performed at a significance level of 0.05, 

using STATISTICATM software (Version 7.0, StatSoft Inc., Tulsa, Oklahoma, USA). 

 

3. Results and Discussion 

3.1. Starting point and control treatments 

In the beginning of the experiment (day 0), higher MeHg contents were observed in juvenile 

seabass muscle tissues compared to those found in brain and liver (muscle: 0.22 ± 0.10 mg kg-1; 

brain and liver: 0.04 ± 0.00 mg kg-1; statistical differences shown in Table 2.1.2.). Methylmercury 

was the predominant form of Hg in the muscle (i.e. 81.1 ± 0.1 %) whereas lower MeHg 

percentages in relation to T-Hg (%MeHg) were observed in the remaining tissues (liver: 61.7 ± 

1.8 %; brain: 21.8 ± 0.1 %; statistical differences shown in Table 2.1.2.). 

In the following days of the experiment (days 7-56) MeHg contents and %MeHg in muscle 

tissues of control specimens (18_control and 22_control) remained similar to those found in day 

0, despite the significant increase in animal weight during the experiment (Figure 2.1.2.; Table 

2.1.1.; p < 0.05). In contrast, a slight increase in MeHg content was found in brain and liver, as 

well as in %MeHg (maximum values, i.e. 36.4% and 65.8% at day 35, in brain and liver, 

respectively; Figures 2.1.2.D,E,F). Apart from intraspecific variability between specimens, a 

possible explanation for such MeHg increase in brain and liver tissues could be related to the 

small, but not negligible, amount of MeHg in the control diet (see also section 2.1.) due to the 

incorporation of fish meals and oils in the feed. Therefore, a low-level exposure to MeHg, even 

at trace concentrations existed during the acclimation, exposure and elimination phases. A similar 

trend was also observed in a study performed with neotropical fish Hoplias malabaricus exposed 

to dietary MeHg, i.e. a very low, but chronic exposure to MeHg before initiating the experiment, 

resulting in MeHg bioaccumulation in fish liver and kidneys from the non-contaminated group 

(Mela et al., 2007). Despite the different trends of each sampled tissue, throughout time, MeHg 

contents and %MeHg in fish exposed to low levels of MeHg contamination (equivalent to 

approximately 0.1 mg kg-1 ww)  were not significantly different within temperature exposures in 

control treatments (i.e. 18_control and 22_control; Figure 2.1.2.). 
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3.2. Temperature exposure and MeHg bioaccumulation (MeHg-enriched treatments)  

During the exposure phase (sampling days 7 to 28), MeHg contents were significantly affected 

by the sampling day and treatment (two-way ANOVA, F = 1.33, p = 0.23, p < 0.001; Figure 

2.1.2.; Table 2.1.3.), revealing a significant interaction between these variables in all tissues. In 

fact, significant differences between control specimens (18_control and 22_control) and 

contaminated ones (i.e. 18_MeHg-enriched and 22_MeHg-enriched) were observed in MeHg 

contents immediately after day 7 (p < 0.05; Figures 2.1.2.A,B,C).  

Fish exposed to a warmer temperature (i.e. 22_MeHg-enriched) exhibited, in general, higher 

MeHg contents in the three tissues than fish exposed to the lower temperature (18 ºC; 18_MeHg-

enriched), even though the same amount of feed was ingested. These results seem to agree with 

the fact that environmental and body temperatures can affect the entry of chemical contaminants 

in the body, as well as contaminant detoxification mechanisms, thus promoting changes in 

contaminant bioaccumulation patterns (Gordon, 2003, Siscar et al., 2014). A recent field study 

performed with an estuarine fish (Fundulus heteroclitus) also revealed higher MeHg levels in fish 

naturally exposed to elevated temperatures (Dijkstra et al., 2013), likely as a consequence of an 

increase in organisms metabolism. 
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Table 2.1.2. Statistical comparisons (one-way ANOVA and post-hoc Tukey test) between muscle, liver and brain (MeHg contents and %MeHg) during 

the experiment. Asterisks indicate significant differences (p < 0.05; df = 15) Abbreviations: %MeHg - 18_control – seawater temperature set at 18 °C and 
animals fed with control diet; 18_MeHg-enriched – seawater temperature set at 18 °C and animals fed with MeHg-enriched diet; 22_control – seawater 
temperature set at 22 °C and animals fed with control diet; 22_MeHg-enriched – seawater temperature set at 22 °C and animals fed with MeHg-enriched 
diet. 

 

 

Day 0 Day 7 Day 14 Day 28 Day 35 Day 42 Day 56

MeHg content

One-way ANOVA
MS = 0.0032;

F = 7.94; p = 0.0404*
MS = 0.0842;

F = 1.04; p = 0.3654
MS = 0.5797;

F = 2.89; p = 0.0817
MS = 8.68;

F = 9.51; p = 0.015*
MS = 12.86;

F = 8.38; p = 0.0024*
MS = 5.80;

F = 10.42; p < 0.001*
MS = 10.00;

F = 15.83; p = 0.01*
Muscle x Liver 0.0337* 0.9785 0.8241 0.4158 0.986 0.1431 0.0015*
Muscle x Brain 0.0329* 0.3986 0.1506 0.0062* 0.0111* 0.0512 0.5501
Liver x Brain 0.9301 0.3237 0.3257 0.0559 0.0147* 0.0017* 0.0009*

%MeHg

One-way ANOVA
MS = 2020.8;

F = 308.7; p < 0.001*
MS = 1162.5;

F = 67.18; p < 0.001*
MS = 740.9;

F = 20.51; p < 0.001*
MS = 102.1;

F = 5.89; p = 0.0108*
MS = 1082.2;

F = 52.65; p < 0.001*
MS = 928.9;

F = 125.2; p < 0.001*
MS = 740.9;

F = 20.51; p < 0.001*
Muscle x Liver 0.0005* 0.0001* 0.0001* 0.0457* 0.0001* 0.0001* 0.0002*
Muscle x Brain 0.0003* 0.0744 0.4778 0.8251 0.6935 0.0049* 0.3816
Liver x Brain 0.0056* 0.0002* 0.0002* 0.0361* 0.0002* 0.0001* 0.0142*
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Figure 2.1.2. Methylmercury (MeHg) concentrations (mg kg-1 of wet weight) and %MeHg 
(%) in three tissues (muscle, liver and brain) of juvenile seabass (mean ± standard deviation; n = 
6) sampled from each treatment, during the trials. Different letters indicate significant differences 
between sampling days (p < 0.05; df = 15). Abbreviations: 18_control – seawater temperature set 
at 18 °C and animals fed with control diet; 18_MeHg-enriched – seawater temperature set at 18 
°C and animals fed with MeHg-enriched diet; 22_control – seawater temperature set at 22 °C and 
animals fed with control diet; 22_MeHg-enriched – seawater temperature set at 22 °C and animals 
fed with MeHg-enriched diet. 

 

Despite the overall MeHg increase in fish from treatment 22_MeHg-enriched, different MeHg 

accumulation trends were observed between the three tissues (Figure 2.1.2.), most likely due to 

distinct metabolism and blood supplies of each fish organ (Becket et al., 2007; Siscar et al., 2014). 

For instance, in the muscle tissue (Figure 2.1.2.A), significant differences between 18_MeHg-

enriched and 22_MeHg-enriched were only registered at day 28 (p < 0.05), whereas in liver and 

brain statistical significance between these treatments was obtained immediately at day 7 

(Figures 2.1.2.B,C). Noteworthy and contrasting the other two tissues, in the liver tissue 

statistical differences between 18_MeHg-enriched and 22_MeHg-enriched were not observed at 

day 28 (Figure 2.1.2B).  

Comparing MeHg levels in tissues of MeHg-enriched fish (Figures 2.1.2.A,B,C; Table 

2.1.2.), brain registered the highest MeHg contents (4.89 ± 0.06 mg kg-1 ww and 7.36 ± 0.42 mg 
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kg-1 ww at day 28 in 18_MeHg-enriched and 22_MeHg-enriched, respectively), followed by liver 

(4.42 ± 1.83 mg kg-1 and 4.46 ± 1.25 mg kg-1, respectively) and muscle (3.35 ± 0.29 mg kg-1 and 

4.10 ± 0.36 mg kg-1, respectively). Previous research on dietary MeHg exposure in fish has also 

reported higher accumulation in the brain compared to liver and muscle (e.g. Korbas et al., 2012; 

Amlund et al., 2015), likely because the blood–brain barrier is a tissue relatively permeable to 

MeHg, thus, emphasising MeHg potential for neurotoxicity (e.g. Korbas et al., 2012).  

 

Table 2.1.3. Results of two-way ANOVA evaluating the effects of time (sampling days 7, 14, 
28, 35, 42 and 56) and treatment (18_control – seawater temperature set at 18 °C and animals fed 
with control diet; 18_MeHg-enriched – seawater temperature set at 18 °C and animals fed with 
MeHg-enriched diet; 22_control – seawater temperature set at 22 °C and animals fed with control 
diet; 22_MeHg-enriched – seawater temperature set at 22 °C and animals fed with MeHg-
enriched diet) on MeHg contents and percentages in relation to T-Hg contents (i.e. %MeHg) in 
seabass muscle, liver and brain. Asterisks indicate significant differences (p < 0.05; df = 15). 

 

 

3.3. Temperature exposure and MeHg elimination (MeHg-enriched treatments) 

In fish, MeHg is eliminated from the body mainly through the kidney, liver and possibly by 

the gills (Renfro et al., 1974). The process of MeHg elimination/detoxification was investigated 

Parameters MS F p

Muscle MeHg content

Time 15.35 26.04 < 0.001*
Treatment 118.07 200.33 < 0.001*
Time x Treatment 5.64 9.57 < 0.001*

Muscle %MeHg

Time 42.38 6.96 < 0.001*
Treatment 318.50 52.32 < 0.001*
Time x Treatment 16.04 2.64 0.003*

Liver MeHg content

Time 9.94 8.54 < 0.001*
Treatment 84.1 72.25 < 0.001*
Time x Treatment 3.9 3.35 0.0015*

Liver %MeHg

Time 516.38 12.88 < 0.001*
Treatment 396.11 9.88 < 0.001*
Time x Treatment 53.32 1.33 0.23

Brain MeHg contente

Time 44.64 53.35 < 0.001*
Treatment 414.62 495.47 < 0.001*
Time x Treatment 9.3 11.11 < 0.001*

Brain %MeHg 

Time 689.72 44.83 < 0.001*
Treatment 8587.75 558.64 < 0.001*
Time x Treatment 143.26 9.31 < 0.001*
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at two temperatures (18_MeHg-enriched and 22_MeHg-enriched; Figures 2.1.2. and 2.1.3.; 

Table 2.1.2.). Different elimination patterns were observed in the three tissues. Overall, even 

though fish from contaminated treatments were fed with the control diet during the elimination 

phase, higher MeHg contents were registered at day 35 in the muscle and brain compared to those 

observed in the last exposure day, i.e. in day 28 (MeHg contents in 18_MeHg-enriched and 

22_MeHg-enriched at day 35 were, respectively, in brain: 6.20 ± 0.72 mg kg-1 and 8.13 ± 0.94 

mg kg-1; muscle: 3.85 ± 0.88 mg kg-1 and 4.80 ± 0.45 mg kg-1; Figures 2.1.2.A,C), which might 

be related to a redistribution of MeHg from the liver and kidneys to the other organs (Branco et 

al., 2011). Conversely, the liver presented a decrease in MeHg content straight after the first days 

of elimination (Figure 2.1.2.B), thus showing higher MeHg percentages of elimination (i.e. EF) 

during the clearance period (up to 50.3 ± 3.1% and 64.2 ± 4.5% in 18_MeHg-enriched and 

22_MeHg-enriched, respectively; Figure 2.1.3.B), regardless of temperature exposure, most 

likely due to the fact that liver is a primary organ of contaminant redistribution to other tissues, 

elimination, detoxification and transformation (Yamashita et al., 2005; Wang et al., 2013). Yet, 

lower EFs were obtained in this tissue at the highest temperature exposure compared to the lowest 

one. Literature is still extremely scarce in what concerns the effect of temperature in metal 

elimination, limiting comparisons with previous findings, but a recent study suggested that 

warmer temperatures may favour the hepato-biliary route for metal excretion in teleosts, rather 

than the renal one (Siscar et al., 2014). 

On the other hand, muscle revealed the lowest EFs (2.7 ± 0.2% and 2.0 ± 0.2% at day 56, in 

18_MeHg-enriched and 22_MeHg-enriched, respectively; Figure 2.1.3.A), in agreement with the 

fact that this tissue usually exhibits extremely low MeHg elimination rates (e.g. Wang et al., 2013; 

Amlund et al., 2015). A recent study with zebra fish (Danio rerio) revealed a significant reduction 

of MeHg levels in the muscle only after 4 weeks of elimination and, even then, values were still 

above those of the control group of specimens (Amlund et al., 2015).  

Finally, contrasting muscle and liver, brain of juvenile seabass subjected to a higher 

temperature revealed significantly higher EFs at day 42 (13.8% against 3.5% in 18_MeHg-

enriched and 22_MeHg-enriched, respectively), but not at day 56 (near 20% in both temperature 

exposures; Figure 2.1.3.C). Such variation between days 42 and 56 could be due to the biphasic 

characteristic of Hg elimination from the brain, usually evidencing an initial rapid phase in which 

the decline in the body burden is associated with high levels of Hg being cleared from this tissue, 

followed by a slower phase of Hg clearance (Takahata et al., 1970).  
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Figure 2.1.3. Percentages of eliminated MeHg (EF; %; n = 6) during the elimination phase 
(28 days) in contaminated specimens exposed to 18 ºC and 22 ºC, sampled from each treatment, 
during the trials. Different letters indicate significant differences between sampling days (p < 
0.05; df = 12). Abbreviations: 18_MeHg-enriched – seawater temperature set at 18 °C and animals 
fed with MeHg-enriched diet; 22_MeHg-enriched – seawater temperature set at 22 °C and 
animals fed with MeHg-enriched diet. 

 

3.4. Temperature exposure and relation between MeHg and T-Hg during the experiment 

(MeHg-enriched treatments) 

Mercury speciation in biota, particularly in fish, is a process which still remains unclear and 

controversial. Under control seawater temperature conditions, some studies on Hg dietary 

exposure reported the conversion of inorganic Hg into MeHg (methylation) but not an evident 

demethylation of Hg (e.g. Wang et al., 2013), while others have suggested the occurrence of Hg 

demethylation at the liver and/or inter-organ transportation of Hg species (Collin et al., 2009; 

Huang et al., 2012; Wang et al., 2013). In what concerns the percentages of MeHg with respect 
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to T-Hg (%MeHg) in the present study, results were again very variable within the three tissues 

(Figures 2.1.2.D,E,F). 

Even though fish were exposed to Hg in the MeHg form, during the exposure phase the 

increase in fish muscle MeHg content was proportionally accompanied by an increase of other 

forms of Hg (i.e. T-Hg), as the %MeHg in this tissue were only significantly higher than those in 

the beginning of the experiment at day 35 (only in treatment 22_MeHg-enriched, i.e. 89.2 ± 3.9%; 

Figure 2.1.2D). Furthermore, in this tissue significant differences between 18_MeHg-enriched 

and 22_MeHg-enriched were only observed at day 56 (p < 0.05). Following the increase in MeHg 

contents during the elimination phase (values at day 35 were higher than those at day 28; see 

section 3.2.), %MeHg have not significantly diminished despite fish were fed control diets in this 

period. 

On the other hand, brain %MeHg significantly increased straight after the first days of 

exposure, reaching a value up to 4 times higher than the level found at the trial starting point, in 

both temperature exposures (18_MeHg-enriched: 85.2 ± 3.8%; 22_MeHg-enriched: 85.7 ± 6.5%; 

Figure 2.1.2F), suggesting that the brain is a potential primary target organ for MeHg 

bioaccumulation in fish (Pereira et al., 2014). Such potential can be related to the selectively 

permeable blood–brain barrier to contaminants in some fish species, hindering the transport of 

some (e.g. inorganic mercury) from the blood into the brain extracellular fluid, while being 

relatively permeable to others, such as MeHg (e.g. Korbas et al., 2012). Significant differences 

between %MeHg of 18_MeHg-enriched and 22_MeHg-enriched were only observed at day 7 

(Figure 2.1.2.F). Contrasting the muscle, by the end of the elimination phase, the brain revealed 

a %MeHg decrease of about 4% and 2% in fish exposed to 18 ºC and 22 ºC, respectively, yet 

statistical significance between days 28 and 56 was only observed in treatment 18_MeHg-

enriched (p < 0.05).  

Finally, a different pattern was observed in the liver (Figure 2.1.2.E), i.e. %MeHg decreased 

in the first day of exposure and significantly increased only at day 28 in treatment 22_MeHg-

enriched and at day 35 in treatment 18_MeHg-enriched. Such decrease could reflect the fact that  

a fraction of ingested MeHg was transformed into other Hg species and/or transported to organs 

such as muscle and brain until a threshold was reached in the liver, as previously discussed (Collin 

et al., 2009; Wang et al., 2013). By the end of the elimination phase, the higher discrepancy 

between MeHg and T-Hg contents in specimens from 22_MeHg-enriched promoted a significant 

decrease of %MeHg in this treatment (i.e. 82.1 ± 4.2% and 71.4 ± 4.0% in days 28 and 56, 

respectively), but not in 18_MeHg-enriched (i.e. %MeHg remained around 75%). Such 

differences could be related to temperature-induced alterations in the MeHg transformation 

process, as well as the following transportation of other forms of Hg from the liver to other organs 

(e.g. Huang et al., 2012.Wang et al., 2013). Hence, despite fish species are, to some extent, able 

to adapt to temperature variations, these results point out the importance of acquiring further 
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understanding of contaminants metabolization, speciation and kinetics considering environmental 

variations, such as those promoted by the expected climate change effects.  

 

3.5. Linking climate change and potential impacts on seafood safety 

Although little is known about the effect of global warming on the bioaccumulation of MeHg 

by marine species, the current findings indicate that higher seawater temperatures may increase 

MeHg bioaccumulation in biota’s tissues and, on the other hand, it will also compromise their 

ability to eliminate contaminants. Such alterations in the way organisms cope with the presence 

of contaminants can lead to an increased human exposure to this contaminant through seafood 

consumption in a warming context, which will certainly raise concerns about consumers’ safety 

and public health. Despite the fact that the presence of MeHg in seafood still remains unregulated 

(limits only set for T-Hg, i.e. 1 µg g-1 ww for predatory species and 0.5 µg g-1 ww for non-

predatory species; EC, 2006), several reference values for MeHg exposure have been 

recommended by international bodies, such as the provisional tolerable weekly intake (PTWI) 

from FAO/WHO Expert Committee On Food Additives (FAO/WHO, 2003) of 1.6 µg of MeHg / 

kg body weight / week and the recent tolerable weekly intake (TWI) set by the European Food 

Safety Agency EFSA (2012) at 1.3 µg of MeHg / kg of body weight /week. Taking as example 

the present results, and selecting MeHg levels in seabass muscle from the worst-case result 

observed, i.e. the highest accumulation levels at 18 ºC and 22 ºC in day 35 (18_MeHg-enriched: 

3.9 mg kg-1 ww and 22_MeHg-enriched: 4.8 mg kg-1 ww), the consumption of seafood exposed 

to a warmer seawater would increase human exposure to MeHg by about 20%. In other words, 

consumers would have a higher probability of exceeding the reference MeHg PTWIs or TWIs 

through seafood consumption in an ocean warming scenario, especially when consuming seafood 

species with MeHg concentrations close to regulated limits (T-Hg) and/or tolerable intakes 

(MeHg; e.g. top-predatory fish species). This perspective may be of particular concern in 

countries and/or populations where the per capita seafood consumption is high. Such expected 

increase of human health risks in a climate change context points out the need to allocate further 

research efforts in this area, addressing various chemical contaminants, as well as to revise and 

adapt the current recommendations/regulations for the presence of chemical contaminants in 

seafood. 

 

4. Conclusions 

This work evidenced how a variation of 4 ºC in seawater temperature may lead to significant 

changes in MeHg bioaccumulation and elimination processes in marine fish species, as well as 

its partitioning in different tissues like muscle, liver and brain tissues. Overall, temperature 
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increase triggered higher MeHg accumulation. In all treatments, the brain was the primary organ 

for MeHg bioaccumulation, emphasizing the neurotoxic characteristics of this contaminant, 

followed by liver and muscle. Considering EFs, liver’s ability to eliminate this element was 

reduced in a warmer environment. In conclusion, the welfare and survival of marine organisms 

inhabiting contaminated areas may be highly affected under ocean warming, so further research 

on species ecophysiological responses to such stress synergisms (i.e. climate change and chemical 

contamination) should be undertaken. Preliminary insights on seafood safety in a warming 

environmental context were also obtained with this study, pointing out that, if the average 

seawater temperature keeps rising as forecasted, consumers might face higher risks of exposure 

to MeHg through seafood consumption. Thus, further research should target other chemical 

contaminants and the influence of climate change on consumer safety, so that consumption 

recommendations and legislation on the presence of contaminants in seafood are adapted to the 

ocean of tomorrow.    
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Abstract 

The ecotoxicological effects of methylmercury (MeHg) exposure have been intensively 

described in literature. Yet, it is still unclear how marine biota will respond to the presence of 

MeHg under climate change, namely ocean warming. The present study aimed to investigate, for 

the first time, fish condition [Fulton’s K index (K), hepatosomatic index (HSI) and brain-to-body 

mass ratio (BBratio)] and several stress-related responses in an ecologically and commercially 

important fish species (Dicentrachus labrax) exposed for 28 days to dietary MeHg (8.0 mg kg-1 

dw) and temperature increase (+4 ºC). Results showed significant impairments on fish condition, 

i.e. up to 34% decrease on K, >100% increase on HSI and 44% decrease on BBratio, compared to 

control conditions. Significant changes on tissue biochemical responses were observed in fish 

exposed to both stressors, acting alone or combined, evidencing the relevance of assessing 

possible interactions between different environmental stressors in ecotoxicological studies. For 

instance, muscle showed to be the least affected tissue, only revealing significant alterations in 

GST activity of MeHg-enriched fish.  On the other hand, liver exhibited a significant induction 

of GST (>100%) and CAT (up to 74%) in MeHg-enriched fish, regardless of temperature 

exposure, as well as decreased SOD activity (19%) and increased HSP70/HSC70 content (87%) 

in fish exposed to warming alone. Brain showed to be affected by temperature (69% of GST 

inhibition and >100% of increased CAT activity), MeHg (>100% of increased CAT activity, 47% 

of SOD inhibition and 55% of AChE inhibition), as well as by the combination of both (GST, 

SOD and AChE inhibition, 17%, 48% and 53%, respectively). Hence, our data provides evidence 

that the toxicological aspects of MeHg can be potentiated by warmer temperatures, thus, 

evidencing the need for further research combining contaminants exposure and climate change 

effects, to better forecast ecological impacts in the ocean of tomorrow. 

 

Keywords: dietary MeHg, seawater warming, animal condition, oxidative stress, heat shock, 

neurotoxicity. 
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1. Introduction 

Anthropogenic derived impacts, such as the cumulative emissions of greenhouse gases and the 

introduction of pollutants in the environment, have resulted in remarkable contamination and 

unequivocally contributed to warming at a global scale (IPCC, 2014). Coastal environments are 

particularly vulnerable to climate change and anthropogenic pollution, once they are naturally and 

frequently exposed to a wide range of environmental stressors (e.g. tidal changes, salinity and 

temperature fluctuations), as well as subjected to constant inputs of industrial, agricultural and 

domestic chemical wastes (Boldt et al., 2014).  

Over the last 30 years, an increase of the sea surface temperature (SST) has been globally 

observed, with particular emphasis in the Northern hemisphere, and the most up-to-date 

projections indicating an average SST increase of 3.7 ºC by the year 2100 (scenario RCP8.5, 

IPCC, 2014). Increased temperatures may lead to deleterious effects over marine organisms, for 

instance, promoting metabolic depression (Aurelio et al., 2013), as well as, notorious changes in 

tissues’ heat shock response (e.g. HSP70/HSC70) and antioxidant machinery (e.g. CAT, SOD, 

GST), which play a key role in cell defence against the formation of reactive oxygen species 

(ROS) induced by stress (Madeira et al., 2013). Thus, the ability of marine species to acclimate 

or even adapt (or not) to rising temperatures will pose major challenges at a species, community 

and population level (Schiedek et al., 2007; Pörtner and Knust, 2007). 

On the other hand, environmental warming may also result in higher availability and toxicity 

of marine pollutants, not only by facilitating their release from sediments and altering their 

chemistry, but also by affecting contaminants uptake/detoxification rates, as well as the metabolic 

rates and enzymatic activity of marine organisms (e.g. Schiedek et al., 2007; Noyes et al., 2009; 

Marques et al., 2010). Although literature is still limited, recent studies provide empirical proof 

to sustain that marine species’ propensity to accumulate chemical contaminants might be 

exacerbated in a warmer environment (Dijkstra et al., 2013; Siscar et al., 2014; Maulvault et al., 

2016). Such trend was evidenced in our recent work performed with Dicentrarchus labrax 

juveniles exposed to methylmercury (MeHg) through dietary sources, with specimens exposed to 

warmer temperatures exhibiting higher contents of MeHg in muscle, liver and brain, along with 

diminished ability to eliminate this element at the liver level (Maulvault et al., 2016). Despite 

being a contaminant of priority concern, up until now, little attention has been paid to the 

toxicological aspects and ecological implications of dietary MeHg exposure. Furthermore, the 

way marine vertebrate species will cope with its presence while dealing also with other 

environmental stressors, such as climate change effects, is still unclear. Therefore, it is of 

paramount importance to undertake research in this innovative and poorly understood field. 

European seabass (D. labrax) is as top-predatory species, thus, being susceptible to accumulate 

high levels of biomagnifying pollutants, such MeHg (e.g. Miniero et al., 2013). Additionally, by 
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inhabiting coastal areas (wild specimens) or often being reared in offshore aquaculture systems 

(farmed specimens), which are particularly vulnerable to hydrographic alterations, it is expected 

that climate change effects may pose great ecological and toxicological challenges to this fish 

species (Marques et al., 2010; Rosa et al., 2012). These ecological features along with the great 

economical value of D. labrax, both wild or farmed (FEAP, 2013; FAO, 2014), make this species 

a suitable biological model to assess the possible impacts of climate change and chemical 

contamination in marine ecosystems.   

In this context, our work aimed to assess the effects of increased temperature (+4 ºC) and 

MeHg dietary exposure (8.0 mg kg-1), when acting alone or in combination, on the 

ecophysiological responses (fish condition, hepatosomatic index and brain-to-body mass ratio, 

antioxidant enzymes activities – GST, CAT and SOD, heat shock protein concentration and AChE 

activity) of juvenile seabass D. labrax (brain, muscle and liver). 

 

2. Materials and methods 

2.1. Control and MeHg-enriched diets 

Non-contaminated (control) and MeHg-enriched diets with the same nutritional composition 

were manufactured by a specialized feed producing company (SPAROS Lda, Olhão, Portugal), 

considering the nutritional requirements of juvenile seabass (detailed feed composition can be 

consulted in Annex 3, Table A.3.1.; adapted from Maulvault et al., 2016). Feed preparation, as 

well as the methodologies used to determine its proximate chemical composition were performed 

as previously described in detail in Maulvault et al. (2016). For the MeHg-enriched diet, MeHg(II) 

chloride (CH3ClHg, 99.8%, Sigma-Aldrich) was dissolved in a small volume of ethanol (< 6 mL, 

100% v/v) and then mixed with the oils before pellets extrusion. Diets were maintained at 4 °C, 

and MeHg stability in the diets was evaluated throughout the experiment, by quantification of 

total and MeHg contents in the two feeds, using an automatic Hg analyser (AMA 254, LECO, 

USA), as described in detail in Maulvault et al. (2016). Methylmercury concentration in control 

and MeHg-enriched diets were, in dry weight (dw), 0.60 ± 0.01 mg kg-1 and 8.02 ± 0.14 mg kg-1 

(mean ± standard deviation, n = 3; see also Annex 3, Table A.3.2., adapted from Maulvault et 

al., 2016), respectively, with the control diet representing a low Hg level [~0.12 mg kg-1 wet 

weight (ww)] and the MeHg-enriched diet representing a high Hg level (~1.6 mg kg-1 ww), 

commonly found in species inhabiting contaminated coastal areas, susceptible to accumulate Hg, 

and that are natural preys of juvenile seabass (e.g. Cardoso et al., 2014).  
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 2.2. Experimental design and biological sampling 

 D. labrax specimens with similar biometric characteristics were reared until juvenile stage 

(12.8 ± 0.7 cm total length; 19.2 ± 4.0 g total weight; Table 2.2.1.) at the aquaculture pilot station 

of the Portuguese Institute for the Sea and Atmosphere (EPPO-IPMA, Olhão, Portugal) using 

routine hatchery conditions. Subsequently, fish were transported to the aquatic facilities of 

“Laboratório Maritimo da Guia (MARE-FCUL, Cascais, Portugal)”, where they were randomly 

and equitably distributed in 12 rectangular shaped incubating glass tanks (100 L each, total 

volume), within independent recirculating aquaculture systems. As previously described in 

Maulvault et al. (2016), each system was equipped with independent and automatic temperature 

(Frimar, Fernando Ribeiro Lda, Portugal) and pH control (model Profilux 3.1 N, GHL, Germany), 

protein skimmer (Reef SkimPro, TMC Iberia, Portugal), UV disinfection (Vecton 300, TMC 

Iberia, Portugal), biological filtration (model FSBF 1500, TMC Iberia, Portugal) and chemical 

filtration (activated carbon, Fernando Ribeiro Lda, Portugal). In order to avoid physiological 

stress related to high animal density, fish density was kept below 5 g body weight L-1, within each 

incubation tank. On a daily basis, dead fish and faeces were removed and a 10% seawater renewal 

was performed in each incubation tank. Ammonia, nitrite and nitrate levels were daily checked, 

by means of colorimetric tests (Tropic Marin, USA), and kept below detectable levels, with the 

exception of nitrates, which were kept below 2.0 mg L-1. Specimens were initially acclimated to 

laboratory conditions, during 30 days, being fed with the non-contaminated (control) diet (2% of 

average body weight, bw) and kept under the following abiotic conditions: i) dissolved oxygen 

(DO) > 5 mg L-1; ii) temperature (T⁰C) = 18 ± 0.5 °C; iii) pH = 8.00 ± 0.10; iv) salinity = 35 ± 1 

‰ and v) photoperiod =  12L:12D (12 hours light:12 hours dark). Five days before initiating 

MeHg exposure, seawater temperature was slowly raised (1 ºC per day), until it reached 22 ºC in 

tanks simulating warming conditions (i.e. treatments 22_control and 22_MeHg-enriched, section 

2.3.).  

After the acclimation period, four treatments were carried out, each comprising three tanks or 

replicates (n = 20 animals per replicate/tank, i.e. 60 animals per treatment): i) 18_control (control 

conditions), i.e. seawater temperature set at 18 °C (i.e. average seawater temperature currently 

used in juvenile seabass rearing in the Iberian Peninsula) and animals fed with the control diet; ii) 

18_MeHg-enriched, i.e. seawater temperature set at 18 °C and animals fed with the MeHg-

enriched diet; iii) 22_control, i.e. seawater temperature set at 22 °C (i.e. simulating seawater 

warming, Δ = 4 °C according to IPCC projections scenario RCP8.5; IPCC, 2014) and animals fed 

with the control diet; iv) 22_MeHg-enriched, i.e. seawater temperature set at 22 °C and animals 

fed with the MeHg-enriched diet. Specimens were 3x daily fed (2% bw), with the respective 

experimental feeds (control or MeHg-enriched), for a time period of 28 days. No mortality was 
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observed during the experimental trial. Seawater abiotic parameters were daily checked and 

adjusted to adequate levels whenever needed, as previously described. 

After 28 days of dietary MeHg exposure, nine animals (three fish per tank/replicate) were 

randomly sampled from each of the 4 treatments (i.e. 36 animals collected in total). Fish trials 

were approved by the Ethical Committee of the Faculty of Sciences of the Lisbon University and 

conducted according to legal regulations (EU Directive 2010/63). Fish were euthanized by 

cervical sectioning, measured (±0.1 cm), weighted (±0.1 g), and dissected in order to remove 

brain, liver and muscle tissues. Fish tissues (approximately 200 mg of muscle and liver, and about 

50 mg of brain) were sampled from each specimen, homogenized in ice-cold conditions with 1 

mL of phosphate buffered saline (PBS; 140 mM NaCl, 3mM KCl, 10 mM KH2PO4, pH = 7.40 ± 

0.02; reagents from Sigma-Aldrich, Germany), using an Ultra-Turrax® device (T25 digital, Ika, 

Germany). Afterwards, crude homogenates were centrifuged in 1.5 ml microtubes for 15 minutes 

at 10.000 x g and 4 ºC, supernatants were transferred to new microtubes, immediately frozen and 

kept at -80 ºC until further analyses. All analyses were, at least, performed in triplicate and using 

reagents of pro analysis grade or higher. 

 

2.3. Biochemical analyses 

2.3.1. Total protein content  

Bradford assay (Bradford, 1976) was carried out in 96-well microplates (Nunc-Roskilde, 

Denmark) as to quantify total protein levels in each sample, and so that the subsequent biomarker 

results could then be normalized (i.e. given in mg of protein). Absorbance was read at 595 nm in 

a microplate reader (BioRad, Benchmark, USA). A calibration curve was generated using bovine 

serum albumin (BSA; Sigma Aldrich, Germany) at different dilutions (at least 7 different 

concentrations, ranging from 0 to 2 mg mL-1) as standard.   

 

2.3.2. Oxidative stress  

Catalase (CAT)  

Catalase activity (EC 1.11.1.6) was carried out following the procedure described by 

Johansson and Borg (1988), and adapted to 96-well microplates. A calibration curve was built 

using formaldehyde standards, with concentrations ranging from 5 to 75 µM of formaldehyde 

(Sigma Aldrich, Germany). Standard bovine catalase solution of 1523.6 U·mL−1 (Sigma Aldrich, 

Germany) was used as positive control. Enzyme activity was calculated considering that one unit 

of catalase is defined as the amount that will cause the formation of 1.0 nmol of formaldehyde 

per minute at 25 °C. Absorbance was read at 530 nm and results were presented as µM min-1 mg 

protein-1. 
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Glutathione S-transferases (GST)  

Glutathione S-transferases activity (EC 2.5.1.18) was determined essentially according to a 

method described by Habig et al. (1974) and adapted to 96-well microplates, using (1-Chloro-

2,4-dinitrobenzene; 100 mM; Sigma-Aldrich, Germany) as substrate. Equine liver GST (Sigma-

Aldrich, Germany) was used as standard and positive control. Absorbance was read at 340 nm 

every minute during 6 minutes, with the increase in absorbance being directly proportional to 

GST activity. Reaction rate was determined considering the molar CDNB extinction coefficient 

of 0.0053εmM, and results were expressed as nmol min-1 mg protein-1.  

Superoxide dismutase (SOD)  

Superoxide dismutase activity (EC 1.15.1.1) was carried out as described by Sun et al. (1988), 

using nitroblue tetrazolium (NBT) and xanthine oxidase (XOD) (both from Sigma-Aldrich, 

Germany). Superoxide dismutase from bovine erythrocytes (Sigma-Aldrich, Germany) was used 

as standard and positive control. Samples absorbance was read at 550 nm, and results were 

presented as the percentage of enzyme inhibition, using the following equation: 

% inhibition = (Abs560/min of negative control – Abs560/min of sample) / (Abs560/min of 

negative control) x 100 

 

2.3.3. Heat shock response 

Heat Shock Protein 70 (HSP70/HSC70) was quantified using an indirect Enzyme Linked 

Immunosorbent Assay (ELISA) based on a protocol from Njemini et al. (2005). The primary and 

secondary antibodies used in this assay were anti-Hsp70/Hsc70 (Acris, USA; diluted to 1.0 μg 

mL-1 in a 1% BSA solution) and anti-mouse IgG, fab specific, alkaline phosphatase conjugate 

(Sigma-Aldrich, Germany; also diluted to 1.0 μg mL-1 in 1% BSA), respectively. A calibration 

curve was performed using serial dilutions (at least 7 different concentrations) of purified HSP70 

active protein (Acris, USA), ranging from 0 to 2 μg·mL−1 of protein. Absorbance was read at 405 

nm and results were expressed in µg mg-1 protein. 

 

2.3.4. Acetylcholinesterase (AChE) activity 

Acetylcholinesterase (EC 3.1.1.7) activity was assessed in brain tissues, following the 

methodology first described by Ellman et al. (1961) and adapted to 96-well microplates.  Samples 

absorbance was read at 412 nm, every minute during 10 minutes, and AChE activity was 

measured considering that one unit of enzyme is responsible for the formation of 1.0 µmol of 

thiocholine per minute. Results were expressed as nmol min−1 mg protein−1. 
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2.4. Animal fitness 

The Fulton’s K index was directly calculated from the biometric data to determine fish 

condition, according to the formula:  

K = 100W / TL3 

where W is the fish total weight (g) and TL is the total length (cm) (Ricker, 1975). The 

relationship between fish total weight and the respective organ weight was calculated for the liver 

(i.e. hepatosomatic index, HSI) and the brain (.i.e. brain-to-body mass ratio, BBratio), as to provide 

information on liver and brain condition, using the following equations:  

HSI = liver weight / total fish weight x 100 

and, 

BBratio = brain weight / total fish weight x100 

 

2.5. Data analysis 

Differences in biomarker levels were examined using the analysis of variance three-way 

ANOVA, using temperature exposure (18 ºC or 22 ºC), feed type (control or MeHg-enriched) and 

tissues (muscle, liver or brain) as variables. Significant differences in animal fitness indexes (K, 

HSI and BBratio), as well as, AChE levels (only assessed in the brain) were assessed using a two-

way ANOVA instead (variables: temperature exposure and feed type). Data were Log-

transformed, whenever necessary, to comply with the assumptions of normality (Kolmogorov–

Smirnov’s test) and homogeneity of variances (Levene’s test) required for this analysis. 

Subsequently, the post-hoc Tukey HSD test was carried out to identify significant differences. 

Finally, potential correlations between biomarker levels and animal fitness indexes (K, HSI and 

BBratio) were performed by means of Pearson’s correlation analysis. Statistical analyses were 

performed at a significance level of 0.05, using STATISTICATM software (Version 7.0, StatSoft 

Inc., USA). 

 

3. Results 

Despite the generally higher size [i.e. total weight (W) and length (TL)] of fish exposed to 

warmer temperatures (i.e. 18_control: W = 19.5 ± 4.8 g and L = 12.5 ± 1.1 cm; 22_control: W = 

32.1 ± 8.3 g and L = 14.0 ± 1.2 cm; 18_MeHg-enriched: W = 20.5 ± 5.2 g and L = 13.5 ± 0.9 cm; 

22_MeHg-enriched: W = 34.0 ± 11.1 g and L = 14.1 ± 1.1 cm) after 28 days of MeHg exposure, 

no significant differences were observed in Fulton’s K index (K) between the two experimental 
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temperatures, neither for non-contaminated and contaminated treatments (p < 0.05; Figure 

2.2.1.). Yet, contaminated specimens (18_MeHg-enriched and 22_MeHg-enriched) revealed 

significantly lower K than non-contaminated fish (18_control and 22_control; Figure 2.2.1.; 

Table 2.2.1.). A similar trend was observed in BBratio but not in HSI, in which an increase of 85% 

and over 100% was observed in 22_MeHg-enriched and 18_MeHg-enriched, respectively, in 

relation to the reference conditions (i.e. 18_control; Figure 2.2.1; Table 2.2.1). A strong positive 

correlation was found between fish total weight and length (r = 0.89; p < 0.05; Table 2.2.2.), 

whereas K showed to be negatively correlated with HSI (r = -0.68; p < 0.05) but positively 

correlated with BBratio (r = 0.76; p < 0.05; Table 2.2.2.). 

 

 

 

 

Figure 2.2.1. Fulton’s condition index (K), hepatosomatic index (HSI) and brain-to-body mass 
ratio (BBratio) in D. labrax after 28 days of exposure (mean ± SD; n = 9). Different lowercase 
letters indicate significant differences in K between treatments (p < 0.05), whereas different 
uppercase letters indicate significant differences in BBratio, and different symbols (* and #) 
indicate significant differences in HSI.  Abbreviations: 18_control – seawater temperature set at 
18 °C and animals fed with the control diet; 18_MeHg-enriched – seawater temperature set at 18 
°C and animals fed with the MeHg-enriched diet; 22_control – seawater temperature set at 22 °C 
and animals fed with the control diet; 22_MeHg-enriched – seawater temperature set at 22 °C and 
animals fed with the MeHg-enriched diet. 
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Table 2.2.1. Percentages of change in fish condition (K, HSI and BBratio), antioxidant enzymes 
(GST and CAT activity, and SOD inhibition), heat shock response (HSP70/HSC70) and brain 
AChE activity, in relation to values obtained in fish collected from control conditions (i.e. 
18_Control). “↑” before the value indicates an increase compared to values found in treatment 
18_Control, whereas “↓“ indicates a decrease.  

 

Fish condition Biomarkers 

Treatment K HSI BB-ratio Tissue GST CAT SOD HSP70/HSC70 AChE 

22_Control ↓ 11% ↓ 5%  ↓ 13% 

Muscle ↑ >100% ↓ 11% ↑ 1% ↑ 37% - 
Liver ↓ 41% ↓ 13% ↑ 19% ↑ 87% - 
Brain ↓ 69% ↑ >100% ↑ 24% ↓ 6% ↑ 16% 

enriched ↓ 26%  ↑ >100% ↓ 31% 

Muscle ↑ >100% ↓ 23% ↑ 18% ↓ 1% - 

Liver ↑ >100% ↑ 47% ↑ 29% ↓ 1% - 

Brain ↑ 8% ↑ >100% ↑ 47% ↓ 10% ↓ 55% 

enriched ↓ 34%  ↑ 85% ↓ 44% 

Muscle ↑ 32% ↓ 24% ↑ 14% ↑ 26% - 

Liver ↑ 96% ↑ 74% ↑ 23% ↑ 27% - 

Brain ↓ 17% ↓ 1.5% ↑ 48% ↑ 9% ↓ 53% 
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Table 2.2.2. Pearson’s correlation coefficients between biomarker levels and animal fitness 
indexes (K, HSI and BBratio). Asterisks indicate significant correlations between variables (p < 
0.05). Abbreviations: Total length (TL), Total weight (W), Fluton’s condition index (K), 
hepatosomatic index (HSI), brain-to-body mass ratio (BBratio). 

 

 

 

  r 

TL x TW 0.89* 

K x HSI -0.68* 

K x BBratio 0.76* 

HSI x BBratio -0.88* 

Muscle  

K x HSP 0.11 

K x GST -0.02 

K x CAT -0.48 

K x SOD -0.42 

Liver  

K x HSP -0.07 

K x GST 0.20 

K x CAT -0.67* 

K x SOD 0.21 

HSI x HSP 0.30 

HSI x GST -0.44 

HSI x CAT -0.53 

HSI x SOD -0.39 

Brain  

K x HSP 0.18 

K x GST 0.14 

K x CAT -0.50 

K x SOD -0.61* 

K x AchE 0.72* 

BBratio x HSP -0.13 

BBratio x GST -0.18 

BBratio x CAT 0.40 

BBratio x SOD -0.63* 

BBratio x AchE 0.67* 
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Figure 2.2.2. Glutathione S-transferases (GST; nmol min -1 mg-1 protein) and catalase (CAT; 
µM min -1 mg-1 protein) and superoxide dismutase activity (SOD; % inhibition) in muscle (A, D, 
G), liver (B, E, H) and brain (C, F, I) in D. labrax after 28 days of exposure (mean ± SD; n = 9). 
Different letters indicate significant differences between treatments (p < 0.05), whereas different 
symbols (*, # and x) indicate significant differences between tissues in the same treatment. 
Abbreviations: 18_control – seawater temperature set at 18 °C and animals fed with the control 
diet; 18_MeHg-enriched – seawater temperature set at 18 °C and animals fed with the MeHg-
enriched diet; 22_control – seawater temperature set at 22 °C and animals fed with the control 
diet; 22_MeHg-enriched – seawater temperature set at 22 °C and animals fed with the MeHg-
enriched diet. 
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Figure 2.2.2. presents the levels of oxidative stress-related enzymes GST, CAT and SOD. In 

muscle tissues, increased temperatures induced the activity of GST in non-contaminated 

specimens (over 100%, in relation to 18_control), but decreased in MeHg-enriched fish (i.e. 230.9 

and 77.6 nmol min-1 mg protein-1 in 18_MeHg-enriched and 22_MeHg-enriched, respectively; p 

< 0.05; Figure 2.2.2.A; Table 2.2.1.). Conversely, CAT activity did not significantly vary among 

treatments, whereas differences in SOD inhibition percentages were only significant between 

22_control and 22_MeHg-enriched (p < 0.05; Figures 2.2.2.B,C). Regarding liver tissues, both 

GST and CAT as well as SOD activities were significantly affected by MeHg dietary exposure, 

regardless of temperature, evidencing an induction of GST and CAT, but the inhibition of SOD 

(p < 0.05; Figures 2.2.2.B,E,H; Table 2.2.1.). Furthermore, warmer temperatures also impaired 

the activity of GST (both control and MeHg-enriched treatments) and SOD (only control 

treatment) in this tissue (p < 0.05). GST and CAT brain activities were significantly affected by 

temperature (GST: 69% and 17% decrease, CAT: >100% increase and 1.5% decrease, in 

22_control and 22_MeHg-enriched, respectively), regardless of fish diet (Figure 2.2.2.C,F; 

Table 2.2.1.). On the other hand, significant differences in SOD activity were spotted between 

non-contaminated and MeHg-enriched specimens exposed to 18 ºC (p < 0.05), but not in those 

exposed to 22 ºC (Figure 2.2.2.I). Both GST and CAT activities were significantly different 

within fish tissues, i.e.: GST, 18_control and 22_MeHg-enriched - muscle ≠ liver ≠ brain; 

22_control – muscle ≠ liver and brain; 18_MeHg-enriched - liver ≠ muscle and brain; CAT, 

18_control - muscle ≠ liver ≠ brain; 22_control - muscle ≠ liver; 18_MeHg-enriched and 

22_MeHg-enriched - liver ≠ muscle and brain; p < 0.05; Figures 2.2.2.A-F). Moreover, 

significant correlations were found between i) CAT versus K at the liver level (r = -0.67; p < 0.05; 

Table 2.2.2.), and between ii) SOD versus BBratio (r = -0.61, p < 0.05) and SOD versus K in the 

brain (r = -0.63, p < 0.05; Table 2.2.2.). 

Heat shock response (HSP70/HSC70) did not show significant differences within treatments 

(muscle and brain; Figures 2.2.3A,C). However, in the liver, higher temperatures increased 

HSP70/HSC70 levels in non-contaminated fish (i.e. 87% increase in 22_control; Table 2.2.1.), 

but not in contaminated ones (Figure 2.2.3.B). Among tissues, significant differences were only 

found between liver and brain, concerning treatment 22_control (Figure 2.2.3.). 
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Figure 2.2.3. Heat shock protein HSP70/HSC70 concentration (µg mg-1 protein) in muscle (A), 
liver (B) and brain (C) in D. labrax after 28 days of exposure (mean ± SD; n = 9). Different letters 
indicate significant differences between treatments (p < 0.05), different symbols (* and #) indicate 
significant differences between tissues in the same treatment. Abbreviations: 18_control – seawater 
temperature set at 18 °C and animals fed with the control diet; 18_MeHg-enriched – seawater 
temperature set at 18 °C and animals fed with the MeHg-enriched diet; 22_control – seawater 
temperature set at 22 °C and animals fed with the control diet; 22_MeHg-enriched – seawater 
temperature set at 22 °C and animals fed with the MeHg-enriched diet. 
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Finally, AChE brain activity significantly decreased in MeHg dietary exposure treatments 

(over 50% at both temperature exposures; Table 2.2.1.), whereas rising temperature did not affect 

AChE activity (Figure 2.2.4.). Fish condition (K) and brain size (BBratio) were positively 

correlated with AChE (r = 0.72 and r = 0.67, respectively; p < 0.05; Table 2.2.2.). 

 

 

Figure 2.2.4. Acetylcholinesterase concentrations (AChE; nmol min-1 mg-1 protein) the brain 
tissues in D. labrax after 28 days of exposure (mean ± SD; n = 9). Different letters indicate 
significant differences between treatments (p < 0.05). Abbreviations: 18_control – seawater 
temperature set at 18 °C and animals fed with the control diet; 18_MeHg-enriched – seawater 
temperature set at 18 °C and animals fed with the MeHg-enriched diet; 22_control – seawater 
temperature set at 22 °C and animals fed with the control diet; 22_MeHg-enriched – seawater 
temperature set at 22 °C and animals fed with the MeHg-enriched diet. 
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interactions between temperature increase and MeHg exposure addressed in the current study 

showed that fish condition (K) can be negatively affected by MeHg exposure and further 
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which are responsible for contaminant biotransformation (Chen et al., 2001; Facey et al., 2005; 

Diniz et al., 2009). Such is the case of GST, which plays a key role in contaminant transformation, 

since it is a major second phase detoxification enzyme (e.g. Sheehan et al., 2001). Thus, the 

remarkably enhanced activity of this enzyme in liver tissues in MeHg-enriched specimens can be 

likely related to the intense contaminant biotransformation occurring in this organ. Increased GST 

activity following contaminant exposure has been previously reported in different fish species, 

namely in liver of Oncorhynchus mykiss (exposed to polychlorinated biphenyls commercial 

mixture; Pérez-López et al., 2002) and Oncorhynchus kisutch (exposed to Cd; Espinoza et al., 

2012). As for the temperature effect, the inhibition of GST activity in fish exposed to +4 ºC 

(except in muscle from control specimens i.e. 22_control) seems to be in contradiction with the 

fact that antioxidant enzymes and their degradation products are extremely sensitive to 

temperature variations due to the formation of ROS, which generally leads to an increased activity 

of these enzymes. Yet, the mechanisms underlying the action of antioxidant enzymes are strongly 

species-dependent, mostly due to the distinct thermal tolerance limits of each species, as recently 

pointed in a study performed with five different estuarine species (Madeira et al., 2013). 

Superoxide dismutase along with CAT, play a major defensive role against ROS that are 

induced by environmental stressors, the first converting superoxide radicals into hydrogen 

peroxide and molecular oxygen (O2), while the second converts hydrogen peroxide into oxygen 

and water (Halliwell and Gutteridge, 1985). Previous field studies conducted in temperate marine 

organisms have evidenced how temperature can strongly mediate fish antioxidant machinery (e.g. 

Malanga et al. 2007; Madeira et al., 2016), and linked increased CAT and SOD with warmer 

seawater temperature, matching the present results in D. labrax brain CAT activity. Yet, for the 

same tissue, such trend was not observed when the warmer temperature was combined with MeHg 

exposure, likely due to the inability of the antioxidant enzyme machinery to compensate for the 

presence of both stressors when acting simultaneously. In fact, as previously reported, when 

excessive substrate is produced (negative feedback) or oxidative damage occurs, enzyme activity 

can be impaired (Carvalho et al., 2012; Karadag and Firat, 2014). The same principle could also 

justify SOD inhibition in fish exposed increased temperatures (liver), MeHg exposure (liver and 

brain) and the combination of both (liver and brain). In addition, SOD activity can also be 

impaired in the presence of metals, such as MeHg, since they can also directly bind to this enzyme, 

thus, resulting in diminished protective action against ROS formation and, ultimately, lipid 

peroxidation (Liebler and Reed, 1997; Carvalho et al., 2012). Noteworthy, the fact that CAT 

activity in the muscle and liver was not significantly increased by warmer temperatures, but rather 

by MeHg exposure (in liver), suggests that a 4 ºC increase in temperature (i.e. from the optimal 

18 ºC to 22 ºC) may still fall into the thermal tolerance limits of juvenile D. labrax, thus, not being 
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sufficient to trigger CAT in both tissues, as it was also observed by, Madeira et al. (2013) in D. 

labrax muscle (i.e. CAT only significantly inducted at temperatures above 30 ºC).  

In what concerns HSPs, several studies performed with fish species have reported an induction 

of these proteins when temperature fluctuations occur (e.g. Madeira et al. 2013, 2015), as well as 

in the presence of chemical contaminants (e.g. Sanders, 1993; Vijayan et al., 1998). Nonetheless, 

it has been recently evidenced that their use as ecotoxicological biomarkers can provide rather 

inconsistent and controversial data, because: i) various biotic and abiotic factors (e.g. gender, life 

stage, season, seawater, pH and salinity), as well as, synergisms with contaminants, may influence 

HSPs expression (Mahmood et al., 2014); ii) some species and/or tissues with high baseline HSP 

contents, may not reflect a significant induction of these proteins upon thermal stress (e.g. Botton 

et al. 2006; Madeira et al. 2015). Thus, the present study also pointed out to the inconsistency of 

this biomarker, as warmer temperatures significantly induced HSP70/HSC70 synthesis in the liver 

of non-contaminated fish but not in those exposed to MeHg, nor in the muscle and brain tissues. 

Methylmercury neurotoxicological potential has been intensively described in the literature 

(e.g. Castoldi et al., 2001; Korbas et al., 2012; Amlund et al., 2015). As observed in the present 

study, one of the most notorious consequences of MeHg exposure in vertebrates is the reduction 

of the brain size, likely due to the fact that this neurotoxic contaminant can induce a significant 

decrease in the number of brain cells (Puga et al., 2016; Morccilo et al., 2016). Another effect is 

the inhibition of AChE activity (Jesus et al., 2013; Sampaio et al., 2016), due to the fact that this 

contaminant strongly binds to the AChE receptor (acetylcholine), thus blocking the electric 

signalling between neurons and the target cells. Such argument also supports the results presently 

observed in MeHg-enriched fish, regardless of temperature exposure. Changes in brain size, 

AChE activity and overall neurophysiological functioning have been associated with deleterious 

behavioural alterations in vertebrates, for instance, in terms of habitat selection, anxiety, judgment 

ability and locomotion, with dramatic ecological implications (Baatrup, 1991; Beauvais et al. 

2001; Sampaio et al., 2016). In what concerns the effect of temperature exposure, Sampaio et al. 

(2016) reported a significant increase of AChE activity with warming in Solea senegalensis 

juvenile specimens, possibly due to increased fish metabolic rates. Yet, contrasting these authors, 

in the present study, increased temperature did not seem to enhance MeHg neurotoxicity.  

 

5. Conclusions 

Despite the dissimilar abilities of each tissue to cope with environmental stressors, the present 

work evidenced that fish antioxidant machinery (GST, CAT and SOD) is altered by increased 

temperature and MeHg, acting alone or in combination. Warmer temperature, by itself, was also 

responsible for triggering HSP70/HSC70 synthesis in the liver, while MeHg exposure (alone or 

combined with +4ºC of temperature increase) did not show a clear effect in fish heat shock 
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response. On the other hand, MeHg neurotoxic potential did not seem to be enhanced by warmer 

temperature. After 28 days of exposure to the experimental conditions, the notorious alterations 

of liver and brain morphometrics, as well as the changes occurred in fish biochemical responses 

suggest that, in the long term, species welfare and survival can be affected by both studied 

stressors, particularly for those in early and more vulnerable life stages (including larvae and 

juveniles).  

To sum up, the present work provided preliminary insights on the possible impacts of climate 

change effects (rising seawater temperatures), particularly in coastal areas subjected to strong 

anthropogenic pressure and high levels of chemical contaminants, such as MeHg. Furthermore, 

the different patterns observed when fish are exposed to each stressor alone or in combination 

clearly emphasize the relevancy of assessing possible interactions between multiple stressors, 

especially when forecasting the impacts of climate change. As final take-home message, it is also 

worth noting the relevance of using a multi-biomarker approach in ecotoxicological studies, 

especially when considering the effect of multiple stressors and the interactions among them. 
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Abstract 

Pharmaceutical drugs, such as diclofenac (DCF) are frequently detected in the marine 

environment, and recent evidence have pointed out their toxicity to non-target marine biota. 

Concomitantly, altered environmental conditions associated to climate change (e.g. warming and 

acidification) can also affect marine organisms’ physiology. Yet, the underlying interactions 

between these environmental stressors (pharmaceuticals exposure and climate change-related 

stressors) still require a deeper understanding. Comprehending the influence of abiotic variables 

on chemical contaminants’ toxicological attributes provides a broader view of the ecological 

consequences of climate change. Hence, the aim of this study was to assess the ecotoxicological 

responses of juvenile seabass Dicenthrachus labrax under the co-exposure to DCF (from dietary 

sources, 500 ± 36 ng kg-1 dw), warming (ΔTºC = +5 ºC) and acidification (ΔpCO2 ~1000 µatm, 

equivalent to ΔpH = -0.4 units), using an “Integrated Biomarker Response” (IBR) approach. 

During 28 days, fish were exposed to these three stressors, acting alone or combined, in a full 

cross-factorial design, and blood, brain, liver and muscle tissues were subsequently collected in 

order to evaluate: i) animal/organ fitness; ii) haematological parameters and iii) molecular 

biomarkers. Results not only confirmed  the toxicological attributes of DCF dietary exposure to 

marine fish species at the tissue (e.g. lower HSI), cellular (e.g. increased ENAs and lower 

erythrocytes viability) and molecular levels (e.g. increased oxidative stress, protein degradation, 

AChE activity and  VTG synthesis), but also showed that such attributes are altered by warming 

and acidification. Hence, while acidification and/or warming enhanced some effects of DCF 

exposure (e.g. by further lowering erythrocytes viability, and increasing GST brain activity and 

Ub synthesis in muscle), the co-exposure to these abiotic stressors also resulted in a 

reversion/inhibition of some molecular responses (e.g. lower CAT and SOD inhibition and VTG 

synthesis). IBRs evidenced that an overall higher degree of stress (i.e. high IBR index) was 

associated to DCF and warming co-exposure, while the effects of acidification were less evident. 

The distinct responses observed when DCF acted alone or co-exposed with warming and 

acidification not only highlighted the relevance of considering the interactions between multiple 

environmental stressors in ecotoxicological studies, but also suggested that the toxicity of 

pharmaceuticals can be aggravated by climate change-related stressors (particularly, warming), 

thus, posing additional biological challenges to marine fish populations.  

 

Keywords: Diclofenac, warming, acidification, multi-biomarkers, IBR, fish. 

  



Ana Luísa Maulvault 

 

92 
 

1. Introduction 

Over the last decades, the consumption of pharmaceutical active compounds (PhACs) has 

increased drastically, reaching an average worldwide consumption of over 100,000 tons per year, 

and an average per capita consumption of 150 g per year in developed countries (Lonappan et al., 

2016). As the removal of PhACs by waste water treatment plants (WWTPs) is still limited, many 

compounds and their metabolites are continuously introduced in the aquatic environment 

(concentrations ranging from ng L-1 up to low mg L-1), potentially representing a risk to non-target 

marine species (e.g. Gros et al., 2012; Gaw et al., 2014; Mezzelani et al., 2017).  

Widely known as one of the most popular “pain-killers”, diclofenac (DCF; usually available 

in the forms of sodium or potassium salts) is a non-steroidal anti-inflammatory drug (NSAID) 

commonly prescribed to reduce inflammation and/or to relieve pain induced by different chronic 

diseases (e.g. arthritis) or injuries. Despite its intensive usage, in both humans (being in the top 

50 list of most prescribed and sold pharmaceuticals; European Medicines Agency, 2013; 

ARSLVT, 2015) and stockbreeding (i.e. bovine and pork farming; European Medicines Agency, 

2014), along with its inefficient removal at WWTPs (i.e. elimination of its parental form between 

30 and 70%, and levels in wastewater samples in the order of µg L-1; Lonappan et al., 2016), 

DCF’s presence in aquatic systems remains unregulated in the European Union. Still, the 

European Commission has recently placed DCF under the “Watch List” of emerging non-

regulated aquatic pollutants, for which further monitoring and toxicological data is needed, to 

accurately estimate their ecological risks and decide, in the future, whether their presence in the 

environment (and seafood) should be regulated or not (proposed maximum allowable DCF 

concentration of 0.1 µg L-1 and 0.01 µg L-1 in freshwater and seawater respectively; EC Decision 

2015/495). 

Although several studies have recently pointed out DCF’s toxicity to marine species 

(Gonzalez-Rey and Bebianno, 2014; Mezzelani et al., 2016; Gröner et al., 2017), the 

ecotoxicological implications of this compound are still far from being completely unveiled, 

particularly for two reasons. First, most studies carried out so far were focused on DCF exposure 

via water (e.g. Munari et al., 2016; Boisseaux et al., 2017; Gröner et al., 2017), disregarding other 

contaminant exposure pathways, such as dietary exposure (i.e. trophic transfer along the food 

chain), which can be particularly important in predatory fish species (Zenker et al., 2014). To the 

best of our knowledge, so far, only two studies have assessed the ecotoxicological implications 

of DCF dietary exposure (Guiloski et al., 2015; Ribas et al., 2016). Second, chemical pollution is 

not the sole environmental stressor that marine species are subject to, and information on the 

potential effects of other environmental stressors (e.g. seawater warming and acidification) that 

can particularly affect the bioavailability and toxicity of emerging contaminants is limited 

(Marques et al., 2010; Amiard-Triquet et al., 2015). So far, only two studies have accounted for 
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the interactive effects of abiotic stressors (both following DCF water exposure), one using the 

marine bivalve Ruditapes philippinarum under acidification (Munari et al., 2016), and the other 

using a freshwater fish species Gasterosteus aculeatus (adult individuals) under hypoxia (Lubiana 

et al., 2016). Yet, climate change effects can already be felt in some regions of the world and are 

expected to worsen in the coming 50-100 years, increasing seawater temperature as high as +5 ºC 

(i.e. ocean warming), as well as, increasing CO2 partial pressure (pCO2) up to 1000 µatm, thus, 

leading to a seawater pH drop (i.e. ocean acidification; IPCC 2014; McNeil and Sasse, 2016). 

Thus, gathering data of environmental pollutants in multi-stressors context is urgently needed, as 

it will provide a better estimation of the potential ecotoxicological implications of pollutants in 

tomorrow’s ocean. 

In the field of ecotoxicology, as well as, of climate change effects, the marine fish species 

Dicenthrachus labrax has been frequently used as a suitable model species (e.g. Hernández-

Moreno et al., 2011; Maulvault et al., 2016, 2017; Barboza et al., 2018), given its ecological 

characteristics and economical value, i.e.: i) it is a predatory fish species, inhabiting temperate 

estuaries and coastal areas and, likely accumulating high levels of chemical contaminants (FAO, 

2018) and, therefore, being a suitable bioindicator in studies following dietary exposure to 

chemical contaminants; ii) since D. labrax is a commercially valuable species, the deleterious 

effects of environmental stressors, particularly in its early life stages (including larvae and 

juveniles) can potentially affect species recruitment and overall ecological success, thus, certainly 

having negative impacts in the fisheries and aquaculture sectors.  

Hence, given the current lack of empirical data on effects of PhACs dietary exposure and the 

potential interactions of these contaminants with climate change-related stressors, this study 

aimed to assess, for the first time, different ecotoxicological responses (i.e. animal condition, 

haematological parameters, genotoxicity, oxidative stress, heat shock response, protein 

degradation, endocrine disruption and neurotoxicity) induced by DCF dietary exposure (500 ng 

kg-1 dw), seawater warming (ΔTºC = +5 ºC) and acidification (ΔpCO2 ~1000 µatm, equivalent to 

ΔpH = -0.4 units) in different tissues (brain, liver and muscle) and blood of the European seabass 

D. labrax. Since reaching a general conclusion regarding the severity of stressors can be a 

challenging process, especially when multiple endpoints and stressors’ interactive effects are at 

stake, an “Integrated Biomarker Response” approach (IBR; Guerlet et al. 2010) was used in the 

present study, as their application constitutes a practical and robust tool used in field and 

laboratory studies (e.g. Serafim et al., 2012; Ferreira et al., 2015; Madeira et al., 2016a). Such 

approach allowed to combine the different biomarker responses observed at the different 

organization levels (animal, tissue and cell), thus, providing a novel, wider and integrative 

understanding of the ecological impact of DCF in tomorrow’s ocean. 
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2. Materials and Methods 

2.1. Control and DCF-contaminated diets 

Non-contaminated feed (control, CTR feed) and DCF contaminated feed (DCF-enriched feed) 

with the same nutritional composition were manufactured by SPAROS Lda (Olhão, Portugal). 

Detailed feed composition can be consulted in Annex 4, Table A.4.1. Briefly, a control diet (CTR 

feed) was formulated to mimic a commercial fishmeal-rich formulation for juvenile marine 

seabass with 62% crude protein and 15% crude fat. All powder ingredients were grinded (<200 

micron) using a micropulverizer hammer mill (Hosokawa Micron, SH1, The Netherlands). 

Ingredients and fish oil were then mixed accordingly to the target formulation in a paddle mixer 

(Mainca RM90, Spain), and the feed mixture was further humidified with 25% deionized water 

at room temperature. The diet was extruded at 1.0 mm by means of a low-shear extruder (P55, 

Italplast, Italy). Upon extrusion, the feed pellets were dried in a vibrating fluid bed dryer (model 

DR100, TGC Extrusion, France). A 10 kg batch of CTR feed was subsequently contaminated 

with DCF (DCF-enriched feed). To do so, diclofenac sodium salt (C14H10Cl2NNaO2, >98% purity, 

Sigma-Aldrich) solubilized in ethanol was further mixed in fish oil (total volume of 150 mL), and 

this solution was top-coated to the pellets with a pressurized spraying container (standard flat-fan 

nozzle; size 250 micron; pressure 2.1 bar). Given the current lack of toxicological data on 

pharmaceuticals dietary exposure, a DCF nominal concentration of approximately 500 ng kg-1 on 

a dry weight basis (dw) was selected to assure that ecotoxicological responses were elicited during 

the timeline of the trials, corresponding to a value within the range of lowest observed effect 

concentration for dietary exposure (Guiloski et al., 2015; Ribas et al., 2016) and matching a value 

~10 times higher than the DCF concentration commonly found in marine biota inhabiting 

contaminated coastal areas (e.g. Huerta et al., 2013; Vandermeersch et al., 2015). DCF was 

subsequently quantified in both control and DCF-enriched diets, following the previously 

optimized and validated method of Cunha et al. (2017). DCF final concentration in the DCF-

enriched diet was 500 ± 36 ng kg-1, whereas DCF was not detected in the control diet (detection 

limit in feed = 0.1 ng kg-1; quantification limit in feed = 0.3 ng kg-1). 

 

2.2. Organisms and acclimation  

D. labrax specimens (n = 168) with similar biometric characteristics were reared until juvenile 

stage (total length: 6.4 ± 0.4 cm; total weight 4.4 ± 0.2 g) in the aquaculture pilot station of the 

Portuguese Institute for the Sea and Atmosphere (EPPO-IPMA, Olhão, Portugal) using routine 

hatchery conditions. Subsequently, fish were transported to the facilities of “Laboratório 

Marítimo da Guia (MARE-FCUL, Cascais, Portugal)”, where they were randomly and equitably 

distributed in 24 rectangular shaped incubating glass tanks (50 L each, total volume) within 
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independent recirculation aquaculture systems (RAS; i.e. each group of three tanks corresponded 

to one treatment, and 3 replicate tanks x 8 treatments = 24 tanks in total; Figure 3.1.1.; see the 

description of each treatment in section 2.3.). Each tank was equipped with protein skimmer (Reef 

SkimPro, TMC Iberia, Portugal), UV disinfection (Vecton 300, TMC Iberia, Portugal), biological 

filtration (model FSBF 1500, TMC Iberia, Portugal) and chemical filtration (activated carbon, 

Fernando Ribeiro Lda, Portugal) to maintain seawater quality. Dead fish and faeces were daily 

removed as well as 25% seawater renewal in each incubation tank. Ammonia, nitrite and nitrate 

levels were daily checked, by means of colorimetric tests (Tropic Marin, USA), and kept below 

detectable levels, with the exception of nitrates, which were kept below 2.0 mg L-1. Fish density 

was kept below 5 g body weight L-1 in order to avoid physiological stress related to high animal 

density. Specimens were initially acclimated to laboratory conditions, during 30 days, being fed 

with CTR feed (2% average body weight, bw) and kept under abiotic conditions as close as 

possible to those of their natural habitat: i) dissolved oxygen (DO) > 5 mg L-1; ii) temperature (T 

⁰C) = 19.0 ± 0.5 °C; iii) pH = 8.00 ± 0.10 units; iv) salinity = 35 ± 1 ‰; and v) photoperiod =  

14L:10D (14 hours light:10 hours dark). Temperature, pH, salinity and DO were daily checked 

using a multi-parameter measuring instrument (Multi 3420 SET G, WTW, Germany). 

Temperature and pH were adjusted whenever needed by means of: i) temperature - an automatic 

seawater refrigeration system (± 0.1 °C; Frimar, Fernando Ribeiro Lda, Portugal), as well as 

submerged digital thermostats (200W, V2Therm, TMC Iberia, Portugal); ii) pH - individual pH 

probes (GHL, Germany) connected to a computerized pH control system (± 0.1 pH units; Profilux 

3.1N, GHL, Germany), which monitored seawater pH in each tank every 2 s, and adjusted 

whenever need, via submerged air stones, by injecting CO2 (Air Liquide, Portugal; to decrease 

pH) or by CO2-filtered aeration (to increase pH) using air pumps (Stella 200, Aqua One Pro, Aqua 

Pacific UK Ltd, United Kingdom). Seawater total alkalinity was also measured in every tank on 

a weekly basis, following the protocol previously described elsewhere (Sarazin et al., 1999) and 

the combination of total alkalinity (AT) and pH was used to calculate carbonate system 

parameters  (average values obtained for each treatment can be consulted in Annex 4, Table 

A.4.2.). After 30 days of acclimation, 9 fish were randomly sampled in order to determine the 

baseline levels of each biomarker analyzed, following the same procedures described in sections 

2.4 and 2.5 (average basal levels can be consulted in Annex 4, Table A.4.3.). 
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Figure 3.1.1. Experimental setup. Abbreviations: DCF – Diclofenac exposure; Acid – 
simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated 
warming (i.e. T = 24 ºC). 

 

2.3. Exposure to DCF, warming and acidification 

One week before initiating DCF exposure, seawater temperature and pCO2 were slowly 

adjusted (+1 ºC and -0.1 pH unit per day), until reaching 24 ºC and ~1500 µatm pCO2 (equivalent 

to pH = 7.6 units) in tanks simulating climate change conditions (i.e. treatments Acid, Warm, 

Acid+Warm, DCF+Acid, DCF+Warm and DCF+Acid+Warm; Figure 3.1.1.), according to the 

projections of the Intergovernmental Panel for Climate Change (scenario RCP8.5 of IPCC, 2014; 

McNeil and Sasse, 2016). The remaining seawater abiotic conditions (i.e. DO, salinity and 

photoperiod) were kept as previously described in section 2.2. (i.e. as during the acclimation 

period). 

Eight treatments (4 non-contaminated and 4 contaminated; treatments randomly assigned to 

each tank) were carried out (n = 7 animals per replicate tank of treatment, i.e. a total of 21 animals 

per treatment; Figure 3.1.1.), simulating the reference temperature (i.e. 19 ºC) and pCO2 (~500 

µatm; 8.0 pH units) conditions, as well as the projected seawater warming (ΔTºC = +5 ºC) and 

acidification (ΔpCO2 ~1000 µatm; equivalent to ΔpH = -0.4 units), using a full cross-factorial 

design: i) Control treatment, i.e. fish daily fed with CTR feed (2% bw) and exposed to reference 
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temperature and pH conditions; ii) Acid treatment, i.e. fish daily fed with CTR feed (2% bw) and 

exposed to acidification (1500 µatm pCO2, equivalent to pH = 7.6 units); iii) Warm treatment, i.e. 

fish daily fed with CTR feed (2% bw) and exposed to warming (24 °C); iv) Acid+Warm, i.e. fish 

daily fed with CTR feed (2% bw) and exposed to warming and acidification (24ºC and ~1500 

µatm pCO2); v) DCF treatment, i.e. fish daily fed with DCF-enriched feed (2% bw) and exposed 

to reference temperature and pH conditions; vi) DCF+Acid treatment, i.e. fish daily fed with DCF-

enriched feed (2% bw) and exposed to acidification (1500 µatm pCO2); vii) DCF+Warm 

treatment, i.e. fish daily fed with DCF-enriched feed (2% bw) and exposed to warming (24 ºC); 

viii) DCF+Acid+Warm treatment, i.e. fish daily fed with DCF-enriched feed (2% bw) and 

exposed to acidification and warming (24ºC and ~1500 µatm pCO2). Seawater abiotic parameters 

were daily checked and adjusted to adequate levels whenever needed, as described above. No 

mortality was observed during the 28 days trial. Throughout the trial, seawater samples were 

collected from each tank (treatment; days 0, 7, 14 and 28 of the experiment), and DCF 

concentrations were determined according to the previously optimized and validated method of 

Cunha et al. (2017). Values were below the detection limit of the method (for water samples = 

0.05µg L-1) in all samples, thus, assuring that no external contamination was taking place in non-

contaminated treatments, as well as, in DCF contaminated treatments (apart from the intended 

DCF dietary exposure through feed). 

 

2.4. Samples preparation and haematological parameters 

By the end of the exposure period, 9 fish were randomly collected from each treatment (i.e. 3 

fish collected from each of the 3 replicate tanks that composed one treatment), euthanized by 

immersion in an overdosed MS222 solution (2000 mg L-1; Sigma-Aldrich, USA) buffered with 

sodium bicarbonate (1 g of NaHCO3 to 1 g of MS222 to 1 L of seawater) for 10 min. Euthanized 

fish were measured (total length, TL, and weight, W), and peripheral blood was collected by 

puncture of the caudal vein. 

A fraction of fish blood was immediately used to perform the trypan blue exclusion test of cell 

viability previously described elsewhere (Strober, 2001). In brief, a 0.4% solution of trypan blue 

(trypan blue powder reagent, ~40% dye content, Sigma-Aldrich) was prepared in PBS (pH = 7.2 

- 7.3 units) and then 100 µL of blood samples (proper diluted) were added to 100 µL trypan blue 

in 1.5 mL microtubes. Then, mixed sample was incubated (⁓ 3 min), loaded on a Neubauer 

hemocytometer (HBG, Germany) and analysed using an optical microscope (OPTIKA B-500, 

Italy) at a 400× magnification (three observations were made per individual; the average of the 

three measurements made in each sample/individual was used in statistical analysis).  

Fish blood smears were also prepared on preclean glass microscopy slides (three slides per 

individual), allowed to air-dry and then fixed for 20 min in ethanol (100%) and stained with the 
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ready to use Hemacolor staining reagent (Hemacolor® Rapid staining of blood smear, Sigma-

Aldrich) according to the instructions provided in this product, in order to subsequently count 

blood cells (erythrocytes and leukocytes), as well as to detect the presence of erythrocytes nuclear 

abnormalities (ENAs) and micronuclei, through optical microscopy. Following staining, the 

microscope glass slides were mounted with DPX (BDH, Poole, England). A minimum of 500 

cells per slide were examined under the microscope (1000× magnification; the average of the 

three slide observations made in each sample/individual was used in statistical analysis). ENAs 

and micronuclei were counted according to the following the classification described in Carrasco 

et al. (1990).  

After blood collection, fish were dissected, and fish muscle, brain and liver tissues were 

collected (approximately 100 mg of muscle and liver, and about 40 mg of brain), homogenized 

in ice-cold conditions with 1.0 mL of phosphate buffered saline (PBS; 140 mM NaCl, 3mM KCl, 

10 mM KH2PO4, pH = 7.40 ± 0.02; reagents from Sigma-Aldrich, Germany), using an Ultra-

Turrax® device (T25 digital, Ika, Germany). Crude homogenates were centrifuged in 1.5 mL 

microtubes for 15 minutes at 10.000 g and 4 ºC, supernatants were transferred to new microtubes, 

immediately frozen and kept at -80 ºC until further analyses. All biochemical analyses were 

performed in triplicate and using reagents of pro analysis grade or higher. 

 

2.5. Molecular biomarkers 

Eight molecular biomarkers (of exposure and/or effect) were selected to assess distinct 

biological effects (endpoints) induced by DCF, warming and acidification co-exposure, at the 

tissue level (Table 3.1.1.). Table 3.1.1. presents a summary of the selected biomarkers, as well 

as the different methodologies used. These molecular biomarkers have been widely used in 

ecotoxicological studies, being previously considered reliable and suitable to assess the effects of 

xenobiotics exposure (namely, DCF; e.g. Gonzalez-Rey and Bebianno, 2014), as well as of 

climate change-related effects (e.g. Rosa et al., 2016; Jesus et al., 2017; Maulvault et al., 2017). 

Thus, not only were they considered to fit the purposes of the present study, but also their use 

enabled comparisons of the present data with previous studies on the ecotoxicological effects of 

xenobiotics and/or climate change effects. Furthermore, to have a broader view of the effects of 

the studied stressors in a whole organism context, three different fish tissues (brain, liver and 

muscle) with distinct cell types and susceptibility to stressors were analysed.  
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Table 3.1.1. Summary of selected biomarkers and the corresponding methodologies used. 

 

Biomarkers Category Tested ecotoxicological response Type of methodology used Methodology references

Animal condition (K), hepatosomatic index 

(HIS) and brain to body mass ratio 

(BBratio) 

Biomarker of effect Animal fitness and/or disease Morphometric assessment Ricker (1975); Diniz et al. (2010)

Blood cell counts Biomarker of effect Immune capacity Optical microscopy Mummford et al. (2007)

Erythrocytes nuclear anomalies (ENAs) Biomarker of effect Genotoxicity Optical microscopy Carrasco et al. (1990)

Erythrocytes viability Biomarker of effect Citotoxicity Optical microscopy Strober (2001)

Catalase (CAT) activity Biomarker of effect Oxidative stress Enzymatic assay Johansson and Borg (1988); Maulvault et al. (2017)

Superoxide dismutase (SOD) activity Biomarker of effect Oxidative stress Enzymatic assay Sun et al. (1988); Maulvault et al. (2017)

Glutathione S-transferase (GST) activity Biomarker of effect
Oxidative stress and xenobiotic 

detoxification phase II
Enzymatic assay Habig et al. (1974); Maulvault et al. (2017)

Lipid peroxidation (LPO) Biomarker of effect Oxidative stress and cellular damage TBARS method Uchiyama and Mihara (1978); Madeira et al. (2016)

HSP70/HSC70 proteins content Biomarker of effect Chaperoning, heat shock response Indirect ELISA Njemini et al. (2005); Maulvault et al. (2017)

Total Ubiquitin (Ub) content Biomarker of effect Protein degradation and DNA repair Direct ELISA Madeira et al. (2014)

Acetylcholinesterase (AChE) activity
Biomarker of effect 

and exposure
Neurotoxicity Enzymatic assay Ellman et al. (1961); Maulvault et al. (2017)

Vitellogenin (VTG) content 
Biomarker of 

exposure
Endocrine disruption and 

reproduction
Direct ELISA Denslow et al. (1999); Diniz et al. (2010)
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In order to normalize the results of each biomarker (i.e. results presented in mg of protein), 

total protein levels were also quantified in each sample according to the Bradford assay (Bradford, 

1976).  All protocols used for both enzymatic and protein quantification assays were adapted to 

96-well microplates, being previously validated and described in detail in earlier reports (e.g. 

Diniz et al., 2010; Madeira et al., 2016a; Maulvault et al., 2017). In all methodologies, 96-well 

microplates from Nunc-Roskilde (Denmark) were used, as well as a microplate reader (BioRad, 

Benchmark, USA).  

 

2.6. Animal fitness indexes (K, HSI and BBratio) and Integrated Biomarker Responses 

(IBR) 

The Fulton’s K index was directly calculated from the biometric data to determine fish 

condition, according to the formula:  

� = 100 � � (	)
��(��) 

where W is the fish weight and TL is the total length (Ricker, 1975). The relationship between 

fish total weight and the respective organ weight was calculated for liver (i.e. hepatosomatic 

index, HSI) and brain (i.e. brain to body mass ratio, BBratio) to provide information on liver and 

brain condition, using the following equations:  

 

��� =  ����� ���	ℎ� (	)
� (	)  � 100 

and, 

������� =   �!�" ���	ℎ� (	)
� (	)  � 100 

 

To better understand and relate the ecotoxicological effects induced by each experimental 

treatment, biomarkers related to animal fitness in a whole organism context (i.e. K, HSI, BBratio 

and haematological parameters), as well as molecular biomarkers in the different fish tissues (i.e. 

CAT, SOD, GST, LPO and AChE activities and HSP70/HSC70, Ub and VTG contents) were 

integrated by calculating the “Integrated biomarker response” (IBR) for each treatment (and 

tissue, for molecular biomarkers), according to the methodology proposed by Beliaeff and 

Burgeot (2002), later modified by Guerlet et al. (2010) (full details regarding the IBR 

methodology are available in these earlier reports, as well as, in Serafim et al., 2012, Ferreira et 

al., 2015; Madeira et al., 2016a). As IBR compares biomarker responses of organisms exposed to 

stressors to those of animals under control conditions (or their baseline levels), in general, lower 

biomarker scores (and, thus, lower IBR index values) are indicative of a better health state (higher 
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animal fitness), whereas higher scores usually indicate that organisms are in a poorer 

physiological condition (i.e. stressed; e.g. Serafim et al., 2012; Ferreira et al., 2015; Madeira et 

al., 2016a). Star plots and IBR calculations were performed using the Microsoft Excel software.  

 

2.7. Statistical analysis 

As standard procedure, data were first tested for normality and homoscedasticity through 

Kolmogorov–Smirnov and Levene tests, respectively. Data were log-transformed or square-

rooted, whenever at least one of these assumptions of ANOVA was not verified. To evaluate the 

presence of significant differences between treatments in fish morphometric data (W and TL), 

haematological parameters (percentage of erythrocytes, leukocytes, ENAs, micronuclei and 

viable erythrocytes in relation to total blood cells or total erythrocyte counts), brain AChE activity 

and liver VTG content, one-way nested-ANOVA analysis was performed (with replicate tank as 

nesting factor), whereas for the remaining biochemical biomarkers (CAT, SOD, GST, LPO, 

HSP70/HSC70 and Ub), two-way ANOVAs were carried out instead, using tissue (brain, liver 

and muscle) and treatment (non-contaminated/DCF contamination, reference 

temperature/warming and reference pH/acidification) as variables. The existence of significant 

differences between whole organism and tissues IBR was also analysed using a simple one-way 

ANOVA. Finally, differences in animal fitness indexes were tested using an ANCOVA analysis, 

with W and TL as co-variates of K, and W as co-variate of HSI and BBratio. Post-hoc Tukey HSD 

tests were subsequently conducted to identify significant differences. Statistical analyses were 

performed at a significance level of 0.05, using STATISTICATM software (Version 7.0, StatSoft 

Inc., USA). 

 

3. Results 

3.1. Fish morphometry and condition 

Although higher TL and W were found in Control fish after 28 days of exposure compared to 

the baseline values, similar animal condition (K), hepatosomatic index (HSI) and brain to body 

mass ratio (BBratio) were observed (Table 3.1.2. and Annex 4, Table A.4.3.). Comparing with 

results observed under the reference temperature and pCO2 conditions (Control treatment), 

warming promoted a significant increase in animal TL (Table 3.1.2.; p = 0.02). On the other hand, 

fish from DCF treatment exhibited significantly lower W than those exposed to warming and/or 

acidification (i.e. p = 0.007, p = 0.002, p = 0.005, p = 0.021 and p = 0.039 in Acid, Warm, 

Acid+Warm, DCF+Acid and DCF+Warm treatments, respectively), but not compared to Control 

treatment (p = 0.115; Table 3.1.2.). Regarding K, despite the general decrease promoted by the 

three stressors (alone or combined) compared to the Control treatment, significant differences 

were only observed when warming was combined with DCF, regardless of pCO2 conditions 
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(corresponding to a 12% and 10% decrease in DCF+Warm and DCF+Acid+Warm, respectively, 

in relation to the Control treatment; p = 0.006 and p = 0.024, respectively; Table 3.1.2., as well 

as Annex 4, Table A.4.4.). Overall, DCF, warming and/or acidification decreased fish liver size, 

with fish exposed to DCF alone or to the three stressors simultaneously (i.e. DCF+Acid+Warm 

treatment) exhibiting significantly lower HSI than non-contaminated samples, regardless of 

temperature and pCO2 conditions (equivalent to a 55% and 34% decrease in relation to Control 

treatment, respectively; p = 0.001 in both cases; Table 3.1.2. and Annex 4, Table A.4.4.). 

Interestingly, DCF alone also yielded significantly lower HSI than DCF and acidification co-

exposure (i.e. treatment DCF+Acid; p = 0.005; Table 3.1.2.). All stressors acting alone or in 

combination promoted a significant reduction of the BBratio (equivalent to a decrease of 18% to 

47% in DCF+Acid+Warm and Acid treatments, respectively, compared to the Control; p = 0.003 

and p = 0.001, respectively; Table 3.1.2. and Annex 4, Table A.4.4.). In addition, non-

contaminated fish exposed to acidification (at both temperature exposures; i.e. Acid and 

Acid+Warm treatments) also revealed significantly lower BBratio than non-contaminated fish 

exposed to warming alone (i.e. Warm treatment; p = 0.008; Table 3.1.2.). 

 

Table 3.1.2. Total length (TL; cm) and weight (W; g), Fulton’s condition index (K), 
hepatosomatic index (HIS) and brain-to-body mass ratio (BBratio) in D. labrax after 28 days of 
exposure (mean ± SD; n = 9). In each column, different letters indicate significant differences (p 
< 0.05) between treatments. Abbreviations: Control – reference temperature and pH conditions 
(i.e. T = 19 ºC and pH = 8.0 units); DCF – DCF exposure; Acid – simulated acidification (i.e. pH 
= 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 

 

 

3.2. Haematological parameters 

Similar haematological parameters were found in the baseline and Control groups (Table 

3.1.3. and Annex 4, Table A.4.3.). Significantly different percentages of erythrocytes (lower; p 

= 0.047) and leukocytes (higher; p = 0.046) were found in non-contaminated fish under 

acidification and warming co-exposure compared to the remaining treatments, with the exception 

of DCF+Warm treatment (p > 0.050; Table 3.1.3.). DCF exposed fish exhibited significantly 

TL W K HSI BBratio

Control 7.7 ± 0.2bc 8.9 ± 0.7ab 1.94 ± 0.10a 2.41 ± 0.18a 1.05 ± 0.08a

Acid 8.2 ± 0.2ab 10.1 ± 0.6a 1.86 ± 0.01ab 1.97 ± 0.32ab 0.56 ± 0.05c

Warm 8.4 ± 0.2a 10.7 ± 1.5a 1.78 ± 0.15abc 2.17 ± 0.58ab 0.78 ± 0.04b

Acid+Warm 8.2 ± 0.5ab 10.3 ± 1.2a 1.88 ± 0.15a 2.03 ± 0.33ab 0.59 ± 0.01c

DCF 7.3 ± 0.6c 7.3 ± 1.5b 1.87 ± 0.11a 1.08 ± 0.42c 0.79 ± 0.13b

DCF+Acid 8.1 ± 0.4ab 9.7 ± 1.2a 1.82 ± 0.01abc 2.28 ± 0.72ab 0.74 ± 0.11b

DCF+Warm 8.2 ± 0.3ab 9.4 ± 0.8a 1.70 ± 0.07c 1.70 ± 0.53abc 0.75 ± 0.12b

DCF+Acid+Warm 8.0 ± 0.3ab 9.0 ± 1.0ab 1.75 ± 0.02bc 1.60 ± 0.19bc 0.86 ± 0.04b
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higher percentages of erythrocytes nuclear abnormalities (ENAs) compared to non-contaminated 

fish, regardless of temperature and pCO2 levels (between 27.1% and 33.7% in DCF+Acid+Warm 

and DCF treatments, respectively; p = 0.040 and p = 0.002, respectively; Table 3.1.3. and Annex 

4, Table A.4.3.). Noteworthy, in general, no micronuclei (i.e. the most severe form of ENA) were 

observed in non-contaminated fish (except in two samples of the Acid treatment, corresponding 

to an average of 1.5%), whereas up to 12.5% of micronuclei where found in contaminated fish 

(i.e. maximum number of micronuclei observed in treatment DCF; p < 0.0001; Table 3.1.3.). 

Similarly, erythrocytes’ viability was reduced by all stressors, except warming acting alone (p > 

0.050), yet, the lowest values were observed in fish under the co-exposure of DCF and 

acidification, regardless of temperature, (averages ranging from 32.9% to 39.8%; p = 0.001 in 

both cases; Table 3.1.3.). 

 

Table 3.1.3. Percentage of erythrocytes and leukocytes in relation to total cell counts, as well 
as percentage of viable erythrocytes (Viable Ery), erythrocyte nuclear abnormalities (ENAs) and 
micronuclei in relation to total erythrocyte counts (mean ± SD; n = 9). In each column, different 
letters indicate significant differences (p < 0.05) between treatments. Abbreviations: Control – 
reference temperature and pH conditions (i.e. T = 19 ºC and pH = 8.0 units); DCF – DCF 
exposure; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T 
= 24 ºC). 

 

 

3.3. Antioxidant defences and lipid peroxidation   

Basal antioxidant biomarker levels were similar to those in the Control treatment (Figures 

3.1.2.A-C and Annex 4, Table A.4.3.). Overall, different patterns were observed according to 

tissue and treatment. CAT activity significantly varied among tissues of contaminated fish (being 

higher in the liver followed by brain and muscle; p < 0.050), but not in non-contaminated tissues 

(Figures 3.1.2.A-C). In fish muscle, DCF exposure inhibited CAT’s activity (between 57 and 

80%, in DCF+Warm and DCF treatments, respectively; p = 0.046 and p = 0.007, respectively), 

regardless of temperature and pCO2 exposure Figure 3.1.2.A, as well as Annex 4, Table A.4.4.). 

In liver, although values in Control treatment were not significantly different from those in the 

Erythrocytes Leucocytes ENAs Micronuclei Viable Ery

Control 95.6 ± 1.2a 4.4 ± 1.2b 11.5 ± 6.8b 0.0 ± 0.0c 76.2 ± 3.4a

Acid 98.2 ± 0.7a 1.8 ± 0.7b 9.5 ± 1.7b 1.5 ± 2.6bc 64.5 ± 2.6b

Warm 96.9 ± 1.1a 3.1 ± 1.1b 12.1 ± 3.9b 0.0 ± 0.0c 76.4 ± 2.5a

Acid+Warm 90.3 ± 4.5b 9.7 ± 4.5a 15.1 ± 1.9b 0.0 ± 0.0c 68.0 ± 3.0b

DCF 97.0 ± 0.5a 3.0 ± 0.5b 33.7 ± 4.9a 8.0 ± 4.0a 47.7 ± 2.0c

DCF+Acid 98.2 ± 0.9a 1.8 ± 0.9b 31.3 ± 7.7a 5.0 ± 4.4ab 39.8 ± 3.3de

DCF+Warm 95.4 ± 0.6ab 4.6 ± 0.6ab 30.3 ± 5.8a 4.9 ± 3.9ab 45.4 ± 5.9cd

DCF+Acid+Warm 97.4 ± 1.5a 2.6 ± 1.5b 27.1 ± 6.4a 5.9 ± 5.2ab 32.9 ± 2.2e
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remaining treatments, DCF exposure alone resulted in significantly higher CAT activity than 

when combined with acidification (p = 0.001 and p = 0.047 in DCF+Acid and DCF+Acid+Warm 

treatments, respectively; Figure 3.1.2.B). As for the brain, no significant differences were found 

between treatments (p > 0.050; Figure 3.1.2.C). 

Concerning SOD, higher inhibition was observed in fish brain and liver (between 63.1% and 

78.5%) compared to muscle (between 39.3% and 72.1%), regardless of treatment (p < 0.05; 

Figures 3.1.2.D-F). In fish muscle, DCF exposure, warming and acidification drastically 

increased SOD inhibition, with the highest values being observed in non-contaminated acidified 

treatments, corresponding to an average increase of 58% to 67% in relation to the Control 

treatment (p < 0.0001 in Acid and Acid+Warm treatments; Figure 3.1.2.D, as well as Annex 4, 

Table A.4.4.). Noteworthy, higher SOD inhibition percentages were found in non-contaminated 

muscle (p < 0.0001; Figure 3.1.2.D). A different trend was observed in the liver, as fish exposed 

to acidification and DCF (alone or combined) showed significantly lower SOD inhibition than 

Control fish (i.e. a reduction of 9-11%; p < 0.0001 in Acid, DCF and DCF+Acid treatments; 

Figure 3.1.2.E, as well as Annex 4, Table A.4.4.). As for fish brain, overall, SOD activity did 

not vary among treatments, with the exception of DCF exposure combined with acidification (i.e. 

70.3% of SOD inhibition), which yielded significantly lower inhibition compared to DCF 

exposure alone (i.e. 75.8% of SOD inhibition; p = 0.021; Figure 3.1.2.F). 

Overall, fish liver exhibited higher GST activity than the muscle and brain, with values ranging 

between 19.0 and 51.7 nmol min-1 mg protein-1 in this tissue (p < 0.050; Figures 3.1.2.G-I). In 

fish muscle, DCF exposure combined with warming resulted in significantly higher GST activity 

compared to the other treatments (corresponding to an increase of 88% in relation to the Control 

treatment; p < 0.0001; Figure 3.1.2.G, as well as Annex 4, Table A.4.4.). Conversely, 

acidification induced the opposite effect, resulting in an average reduction of 33% in relation to 

the Control treatment (p = 0.022; Figure 3.1.2.G, as well as Annex 4, Table A.4.4.). A similar 

trend was found in fish liver, with Acid treatment also evidencing an impairment of GST activity 

in relation to the Control treatment (i.e. 24% of average reduction; p = 0.008), yet, warming alone 

was responsible for the highest induction of this enzyme (corresponding to an increase of 63% in 

Warm treatment in relation to the Control treatment; p = 0.012; Figure 3.1.2.H, as well as Annex 

4, Table A.4.4.). In the brain, with the exception of Acid treatment, all treatments induced GST 

activity compared to Control conditions, but the highest induction was observed when the three 

stressors were combined (i.e. in DCF+Acid+Warm treatment; p < 0.0001; Figure 3.1.2.I, as well 

as Annex 4, Table A.4.4.). 

Lipid peroxidation (measured as MDA concentration) in tissues from each treatment is shown 

in Figure 3.1.3. In general, higher LPO was observed in brain and muscle compared to liver (p < 

0.050; Figure 3.1.3.). As for differences among treatments, in muscle, significantly higher LPO 
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was observed in non-contaminated fish under warmer conditions (p = 0.009 in Warm and p < 

0.0001 Acid+Warm treatments, respectively), regardless of pCO2 levels, as well as in 

DCF+Warm treatment (p = 0.023; Figure 3.1.3.A and Annex 4, Table A.4.4.). On the other hand, 

DCF exposure combined with acidification (regardless of temperature) yielded lower LPO values 

than those observed in the Control treatment (equivalent to an average decrease of 30% and 48% 

in DCF+Acid and DCF+Acid+Warm treatments, respectively; p = 0.027 and p = 0.030, 

respectively; Figure 3.1.3.A and Annex 4, Table A.4.4.). In liver and brain, none of the 

treatments simulating DCF exposure, acidification and/or warming was significantly different 

from the Control treatment (Figures 3.1.3.B,C). However, in fish brain, significantly higher LPO 

was observed in Acid+Warm and DCF treatments compared to treatments simulating the stressors 

co-exposure (i.e. p = 0.042, p = 0.034 and p = 0.018 in  DCF+Acid, DCF+Warm and 

DCF+Acid+Warm treatments, respectively; Figure 3.1.3.C). 
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Figure 3.1.2. Antioxidant enzymes activity (GST, nmol min -1 mg-1 protein; CAT, µM min -1 mg-1 protein; SOD, % inhibition) in muscle (A, D, G), liver (B, 
E, H) and brain (C, F, I) of D. labrax after 28 days of exposure (mean ± SD; n = 9). Different letters indicate significant differences between treatments (p < 
0.05), whereas different symbols (*, # and /) indicate significant differences between tissues in the same treatment. Abbreviations: Control – reference 
temperature and pH conditions (i.e. T = 19 ºC and pH = 8.0 units); DCF – DCF exposure; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated 
warming (i.e. T = 24 ºC), CAT – catalase activity; SOD – superoxide dismutase inhibition; GST – glutathione S-transferases. 
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Figure 3.1.3. Lipid peroxidation (expressed as MDA concentration; nmol mg-1 protein), HSP/HSC70 concentration (µg mg-1 protein), and ubiquitin 
concentration (Ub; µg mg-1 protein) in muscle (A, D, G), liver (B, E, H) and brain (C, F, I) of D. labrax after 28 days of exposure (mean ± SD; n = 9). Different 
letters indicate significant differences between treatments (p < 0.05), whereas different symbols (*, # and /) indicate significant differences between tissues in 
the same treatment. Abbreviations: Control – reference temperature and pH conditions (i.e. T = 19 ºC and pH = 8.0 units); DCF – DCF exposure; Acid – 
simulated acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); MDA –lipid peroxidation measured as malondialdehyde concentration; 
HSP70/HSC70 – heat shock proteins; Ub – total ubiquitin.
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3.4. Chaperoning and protein degradation 

Basal HSP70/HSC70 and Ub protein contents were similar to those in the Control treatment 

(Figures 3.1.3.D-I, and Annex 4, Table A.4.3.). In general, higher concentrations of 

HSP70/HSC70 proteins were found in fish muscle and brain compared to liver (p < 0.050; 

Figures 3.1.3.D-F). In comparison with the Control treatment, significantly higher levels of these 

proteins were observed in the muscle of contaminated fish under acidification or warming alone 

(i.e. an average increase of 44% and 84% in treatments DCF+Acid and DCF+Warm, respectively; 

p = 0.033 and p < 0.0001, respectively;  Figure 3.1.3.D Annex 4, Table A.4.4.). In contrast, 

HSP70/HSC70 proteins synthesis in the muscle was impaired under acidification alone (i.e. an 

average reduction of 24% in Acid treatment in relation to the Control treatment; p = 0.038; Figure 

3.1.3.D and Annex 4, Table A.4.4.). Increased temperatures resulted in significantly higher 

HSP70/HSC70 protein concentrations in the liver of non-contaminated fish, but not in DCF 

exposed ones (equivalent to a 56% and 67% increase in Warm and Acid+Warm treatments, 

respectively; p = 0.019 and p = 0.006, respectively; Figure 3.1.3.E and Annex 4, Table A.4.4.). 

A different pattern was observed in fish brain, with HSP70/HSC70 protein concentrations being 

significantly higher in Acid, Warm and DCF+Warm treatments compared to the Control 

treatment (i.e. average increases of 28%, 50% and 33% in relation to Control, respectively; p = 

0.043, p = 0.009 and p = 0.047, respectively), but significantly lower in DCF and 

DCF+Acid+Warm treatments (i.e. average decrease of 40%; p = 0.012 and p = 0.025, 

respectively; Figure 3.1.3.F and Annex 4, Table A.4.4.).  

In general, higher Ub concentration was found in fish muscle compared to the liver and brain 

(p < 0.050; Figures 3.1.3.G-I). In comparison with the Control treatment, DCF alone or in co-

exposure with acidification promoted significantly higher Ub concentrations in the muscle (i.e. 

an average synthesis induction of 15% and 55% in DCF and DCF+Acid treatments, respectively; 

p = 0.041 and p = 0.006, respectively; Figure 3.1.3.G and Annex 4, Table A.4.4.). Conversely, 

the combination of the three stressors inhibited the synthesis of Ub in the muscle, resulting in an 

average decrease of 26% in relation to the Control treatment (i.e. in DCF+Acid+Warm treatment; 

p = 0.022; Figure 3.1.3.G and Annex 4, Table A.4.4.). In liver, while warming (with or without 

acidification) enhanced Ub concentration (48% and 34% increase in relation to Control treatment; 

p = 0.008 and p = 0.020, respectively), DCF exposure combined with acidification and/or 

warming elicited the opposite effect (a reduction of 36%, 33% and 18% in DCF+Acid, 

DCF+Warm and DCF+Acid+Warm treatments, respectively; p = 0.025, p = 0.039 and p = 0.043, 

respectively; Figure 3.1.3.H and Annex 4, Table A.4.4.). As for fish brain, acidification and 

warming acting alone increased Ub concentration (i.e. average increase of 40% and over 100% 

in Warm and Acid treatments, respectively, compared to the Control treatment; p = 0.007 and p 

< 0.0001, respectively), while the remaining treatments concentrations did not significantly 
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differed from those observed in the Control treatment (p > 0.050; Figure 3.1.3.I and Annex 4, 

Table A.4.4.). 

 

3.5. Neurotoxicity and endocrine disruption 

Basal AChE brain activity and VTG content were similar to those in the Control treatment 

(Figure 3.1.4. and Annex 4, Table A.4.3.). In non-contaminated fish, warming acting alone 

revealed a significantly higher AChE activity (i.e. in Warm treatment) compared to treatments 

simulating acidification (regardless of temperature exposure; p = 0.041 and p = 0.031 in Acid and 

Acid+Warm treatments, respectively), but not compared to the Control treatment Figure 3.1.4.A). 

In DCF exposed fish, increased AChE activity was observed under the reference temperature and 

pCO2 conditions (i.e. in DCF treatment), or when the three stressors were acting together (i.e. in 

DCF+Acid+Warm), compared to acidification and warming acting alone (i.e. p = 0.033 and p = 

0.015 in DCF+Acid and DCF+Warm treatments respectively; Figure 3.1.4.A). Noteworthy, DCF 

and DCF+Warm treatments were also significantly different from the Control treatment (17% 

higher and 13% lower, respectively, p = 0.033 and p = 0.041, respectively; Figure 3.1.4.A and 

Annex 4, Table A.4.4.). 

Concerning VTG content in liver, fish exposed to warming (regardless of pCO2 levels and 

DCF) generally revealed significantly higher VTG content than those exposed to the control 

temperature (i.e. p = 0.013, p = 0.016 and p = 0.033 in Warm, Acid+Warm, and DCF+Warm, 

respectively), whereas significantly lower values were observed under increased pCO2 levels (p 

> 0.050; Figure 3.1.4.B and Annex 4, Table A.4.4.). It is also worth noting that DCF exposure 

acting alone also significantly enhanced VTG concentration in relation to the levels found in the 

Control treatment (equivalent to 87% of increase in DCF treatment; p < 0.0001; Figure 3.1.4.B 

and Annex 4, Table A.4.4.). 
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Figure 3.1.4. Acetylcholinesterase (AChE) activity (nmol min -1 mg-1 protein; A) in brain 
tissues and vitellogenin (VTG) concentration (ng mg-1 protein; B) in liver tissues of D. labrax 
after 28 days of exposure (mean ± SD; n = 9). Different letters indicate significant differences 
between treatments (p < 0.05). Abbreviations: Control – reference temperature and pH conditions 
(i.e. T = 19 ºC and pH = 8.0 units); DCF – DCF exposure; Acid – simulated acidification (i.e. pH 
= 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); AChE – acetylcholinesterase activity; 
VTG – vitellogenin content. 

 

3.6. Integrated Biomarker Responses (IBRs) 

The starplots combining IBRs of the different biomarkers are presented in Figure 3.1.5. 

(individual biomarker scores can also be consulted in Annex 4, Table A.4.5.). Fish liver and brain 

were more responsive than muscle and whole organism (all treatments combined; One-way 

ANOVA, F = 6.1126; p = 0.0025; Figure 3.1.5.A). Furthermore, the different treatments 

promoted distinct biomarker responses in the whole organism, muscle, liver and brain levels 

(Figure 3.1.5.  and Annex 4, Table A.4.5.). In terms of biomarkers assessed from a whole 

organism perspective, the combination of DCF exposure with climate change effects, particularly 
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treatment (Figures 3.1.5.A,F-I and Annex 4, Table A.4.5.). Warming alone resulted in the 

highest IBR index value in the liver, with GST, HSP70/HSC70 and Ub yielding the most 

contributing scores (Figures 3.1.5.A,J-M and Annex 4, Table A.4.5.). Noteworthy, acidification 

(regardless of DCF exposure) revealed the lowest IBR index values in fish liver (Figures 

3.1.5.A,J-M and Annex 4, Table A.4.5.). In the brain, DCF exposure alone showed the highest 

IBR index value, predominated by the scores of CAT, SOD and AChE activities (Figures 

3.1.5.A,N-Q and Annex 4, Table A.4.5.). 
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Figure 3.1.5. Total IBR index value and mean IBR (± standard deviation; all treatments combined; A), as well as, star plots for each treatment, including the 
different biomarkers analysed in the whole organism (B – E) and in the different fish tissues (muscle: F – I; liver: J– M; brain: N – Q). In Figure 3.1.5.A, 
different letters indicate significant differences in mean IBR (p < 0.05).  
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Figure 3.1.5. (continuation) Total IBR index value and mean IBR (± standard deviation; all treatments combined; A), as well as, star plots for each treatment, 
including the different biomarkers analysed in the whole organism (B – E) and in the different fish tissues (muscle: F – I; liver: J– M; brain: N – Q). In Figure 

3.1.5.A, different letters indicate significant differences in mean IBR (p < 0.05). 
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Figure 3.1.5. (continuation) Total IBR index value and mean IBR (± standard deviation; all treatments combined; A), as well as, star plots for each treatment, 
including the different biomarkers analysed in the whole organism (B – E) and in the different fish tissues (muscle: F – I; liver: J– M; brain: N – Q). In Figure 

3.1.5.A, different letters indicate significant differences in mean IBR (p < 0.05). Abbreviations: K - Fulton’s condition index; HIS - hepatosomatic index; BBratio 
- brain-to-body mass ratio, Ery:Leu – ratio between total erythrocytes and total leukocytes counts; ENAs - erythrocytes nuclear abnormalities (including 
micronuclei); Viable Ery - viable erythrocytes; CAT – catalase; SOD – superoxide dismutase; GST – glutathione S-transferases; LPO - lipid peroxidation; 
HSP70/HSC70 - heat shock proteins; Ub - total ubiquitin; AChE – acetylcholinesterase; VTG – vitellogenin; DCF – DCF exposure; Acid – simulated 
acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 
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4. Discussion 

Studies assessing the interactions between chemical contaminants and climate change-related 

stressors are still very limited, both in field or laboratory conditions. Yet, the distinct trends 

observed according to treatment, biomarker and tissue highlighted the importance, not only of 

analysing different biomarkers/tissues to have a broader view of stressors in a whole organism 

context, but also of considering the potential interactions between multiple stressors in 

ecotoxicological studies. 

 

4.1. General animal fitness  

As observed in the present study (i.e. higher TL in Warm treatment), warmer temperatures are 

usually associated to an enhanced animal growth (e.g. Maulvault et al., 2017; Sandblom et al., 

2016). However, animal fitness can also gradually decline when temperature is beyond species 

optimal temperature range or when additional stressors take place concomitantly, implying 

additional energetic costs (Pörtner and Peck, 2010) or preventing the allocation of energy 

resources towards somatic growth (Pistevos et al., 2015; Sandblom et al., 2016; Maulvault et al., 

2017; Anacleto et al., 2018), thus, justifying the diminished animal condition (i.e. lower K) 

observed when warming was combined with DCF exposure and acidification. Despite the 

exposure to chemical contaminants has been frequently linked to liver hypertrophy and/or 

hyperplasia (Diniz et al., 2009; Sadekarpawar and Parikh, 2013; Maulvault et al., 2017), a 

different trend was observed in this study, as DCF exposure alone or the combination of the three 

studied stressors resulted in an HSI reduction. A similar result was also reported for Hoplias 

malabaricus exposed to DCF from dietary sources (Guiloski et al., 2015). Such reduction could 

be due to: i) tissue damage induced by DCF (Triebskorn et al., 2004; Pandey et al., 2017), which 

could have been reversed by warming and acidification acting separately (i.e. DCF+Acid and 

DCF+Warm); and/or ii) severe metabolic changes induced by the combination DCF, warming 

and acidification (justifying the lower K registered in this treatment), which could have interfered 

with the deposition of glycogen in the liver and with the stability of structural components, such 

as lipids and proteins, thus, affecting liver’s weight (Triebskorn et al., 2004; Anacleto et al., 2018). 

The three stressors substantially decreased brain mass in relation to body weight, probably due 

to a reduction in the number of brain cells (i.e. cell death elicited by these stressors), which can 

likely result in cognitive impairments. Acidification (alone or in co-exposure with warming) led 

to the greatest brain mass reduction, and such result could be linked to CO2 acid-base balance 

disturbances and to the osmoregulatory mechanisms that are triggered under increased pCO2 

levels (Nilsson et al., 2012; Heuer et al., 2016). Despite research on fish neurophysiology and the 

potential links with environmental stressors is still on its infancy, recent studies have 

demonstrated that both pollutants and climate change-related stressors (particularly, acidification) 
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can substantially alter fish behavior and cognition and, therefore, lead to dramatic ecological 

consequences (Nilsson et al., 2012; Lopes et al., 2016; Heuer et al., 2016; Maulvault et al., 2018). 

 

4.2. Immune capacity and genotoxicity 

Fish immune system can be either stimulated or suppressed by the exposure to xenobiotics 

(e.g. Bado-Nilles et al. 2009; Ribas et al., 2016), and hostile abiotic conditions can further 

immuno-compromise fish health (Chiaramonte et al., 2016). Moreover, the immunological and 

health-state changes induced by the environmental stressors have been previously associated to 

increased fish susceptibility to disease and, ultimately, to the decline of fish populations in the 

wild (e.g. Kennedy and Farrell, 2008; Sueiro and Palacios, 2016). Yet, contrasting the results 

reported by Saravanan et al. (2011), Ribas et al. (2016) and Mathias et al. (2018) in freshwater 

fish species Cyprinus carpio, Hoplias malabaricus and Rhamdia quelen, respectively, no 

significant alterations in erythrocytes and leukocytes counts were elicited by DCF in the present 

study. This could be related to a dose-dependent action of NSAIDs, such as DCF, or to distinct 

compound bioavailability according to the uptake pathway (i.e. water exposure in Saravanan et 

al., 2011; or trophic transfer through the ingestion of preys previously injected with DCF in Ribas 

et al., 2016). As for the effect of abiotic stressors, despite the stress induced by the combination 

of warming and acidification (i.e. Acid+Warm treatment) resulted in increased leukocyte counts, 

such immunostimulation, seemed to have been reversed by DCF (i.e. DCF+Acid+Warm 

treatment), most likely due to the anti-inflammatory action of this compound. In this way, while 

temperature changes have been previously described to have a suppressive effect on fish immune 

system (Magnadottir, 2006), further research is needed in what concerns the effects of seawater 

pH levels and the interactive effects with other stressors on fish immunity. 

All stressors, except warming acting solely, significantly decreased erythrocytes’ viability, and 

this result not only evidenced DCF’s cytotoxicity, but also suggested that DCF’s deleterious 

effects on fish immune capacity were enhanced by warming and acidification. Moreover, the 

frequency of observed ENAs, particularly, in its most severe form (i.e. micronuclei) was 

substantially increased by DCF exposure, regardless of temperature and pCO2 conditions, 

therefore, evidencing DCF’s genotoxic effects. Research on the immunological and 

genotoxicological effects of NSAIDs in marine fish species is extremely limited and, to the best 

of the authors’ knowledge, the interactive effects of these compounds with abiotic variables have 

not been previously considered, thus, hindering comparisons with the current data. Nonetheless, 

recent studies on mollusks (e.g. Dreissena polymorpha, Parolini et al., 2011; and Lymnaea 

stagnalis, Boisseaux et al., 2017) did not find remarkable cyto-genotoxic effects following short-

term exposure to DCF. Similarly, Guiloski et al. (2017) revealed no significant differences in the 

number of micronuclei between control and DCF exposed groups in the freshwater fish Rhamdia 
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quelen. As argued by Boisseaux et al. (2017), such absence of cyto-genotoxic effects in these 

studies may be due to different reasons, such as the exposure duration (short-term exposures were 

carried out in Parolini et al., 2011 and Boisseaux et al., 2017), contaminant concentration or 

exposure pathway (DCF exposure through water in Parolini et al., 2011, Boisseaux et al., 2017 

and Guiloski et al. 2017), therefore, calling for the need to further investigate the influence of 

these aspects on DCF’s modes of action. 

 

4.3. Molecular responses 

Results highlighted the importance of assessing the differential responses of fish tissues in 

ecotoxicological studies, providing a broader view on the impacts of environmental stressors, 

because different tissues not only had distinct baseline levels of molecular biomarkers, but also 

responded differently to DCF, warming and/or acidification co-exposure. In agreement with 

previous findings (e.g. Islas-Flores et al., 2013; Madeira et al., 2016a,b; Maulvault et al., 2017), 

the present data evidenced both up- and down biomarker regulations. Such distinct patterns were 

likely linked to the fact that the exposure to environmental stressors usually activates the defence 

and scavenging cell mechanisms (regardless of tissue), in order to overcome/adjust to the stress 

induced but, still, the opposite strategy (i.e. inhibition) can also occur when the stressor’s severity 

and duration leads these biological mechanisms to exhaustion (Ferreira et al., 2015; Madeira et 

al., 2016a). 

 

4.3.1.  Antioxidant defences 

In agreement with previous findings (Islas-Flores et al., 2013; Stepanova et al., 2013; Guiloski 

et al., 2015), the present results showed that DCF exposure (alone) affected fish antioxidant 

machinery in a tissue and biomarker specific way, for instance, significantly inhibiting CAT and 

SOD activity in the muscle (but not in the liver and brain) or enhancing GST activity in the brain 

(but not in muscle and liver). As for the interactive effects of temperature and pCO2 levels, 

previous studies have evidenced how these two stressors can strongly mediate fish antioxidant 

machinery (e.g. Rosa et al., 2016; Maulvault et al., 2017), generally leading to increased CAT, 

SOD and GST activities, which matches some of the current findings (e.g. increased SOD activity 

in fish liver under acidification regardless of DCF exposure, as well as increased GST activity in 

all tissues under warming and in muscle and brain of contaminated fish under acidification), but 

not all. First, 5 ºC and/or 1000 µatm pCO2 increase were not sufficient to activate CAT in any 

tissue of non-contaminated fish, while an inhibition of this enzyme was observed in contaminated 

fish muscle, thus indicating that changes in CAT activity in these treatments were mostly induced 

by DCF, rather than by temperature and pCO2 levels. As argued in an earlier work on Mytilus 

galloprovincialis exposed to ibuprofen (Gonzalez-Rey and Bebianno; 2001), CAT activity 
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inhibition in DCF exposed fish muscle could be due to an accumulation of arachidonic acid in 

cells due to the blockage of cyclooxygenase enzymes’ activity (which are responsible for the 

conversion of arachidonic acid into prostaglandin), consequently leading to an excessive 

production of H2O2. Second, warming and acidification increased SOD inhibition in non-

contaminated fish muscle (compared to contaminated samples) most likely due to ROS-mediated 

denaturation that inactivated this enzyme (Ferreira et al., 2015), but such effect was attenuated by 

DCF co-exposure. Third, acidification seemed to have compromised GST activity in muscle and 

liver, and this impairment could be due to a decreased ability to form reduced glutathione in these 

tissues, thus, resulting in less substrate amount for GST to act on (Gonzalez-Rey and Bebianno; 

2011). Despite the impairment of the antioxidant machinery under the stress conditions mentioned 

above, fish muscle was the only tissue revealing increased formation of lipid peroxides (i.e. 

increased MDA concentration), namely, under warming or in co-exposure with acidification and 

DCF, thus suggesting that the enhancement of the antioxidant defences only prevented oxidative 

stress to some extent, leading to the consequent cell damage. 

 

4.3.2. Chaperoning and protein degradation 

Corroborating some of the present findings (i.e. muscle: acidification and warming with DCF 

co-exposure; liver: warming with or without co-exposure with acidification; and brain: 

acidification and warming, with and without DCF co-exposure), the synthesis of molecular 

chaperones, such as heat shock proteins, can be induced in order to repair, refold, and/or eliminate 

damaged proteins, thus, preventing the cellular damage promoted by the exposure to both abiotic 

stressors (e.g. Pimentel et al., 2015; Madeira et al. 2016a,b) and chemical contaminants (e.g. 

Maulvault et al., 2017), including NSAIDs (Gravel, and Vijayan, 2007). On the other hand, as 

observed in fish muscle under acidification alone or in the brain of fish exposed to DCF alone or 

combined with the other two stressors, a down-regulation can also occur under severe and/or 

chronic stress conditions, due to the exhaustion of the cytoprotective systems and metabolic 

depression (Madeira et al. 2016a), with the lack of HSPs synthesis against proteotoxic stressors 

being associated with cell death (Hightower, 1991). Thus, the fact that HSP70/HSC70 synthesis 

was inhibited in the brain when DCF acted alone suggests that warming and acidification may 

have reversed the effects of DCF, but not when both stressors were combined. Previous studies 

have highlighted that the activation of chaperones is not a straightforward process, since the 

threshold for induction/repression can be influenced by several factors, including stress levels, 

interactions with chemical contaminants, species, tissue and animal hormone levels (e.g. 

Mahmood et al., 2014; Madeira et al., 2016b). 

Similar to HSPs, Ub synthesis can be induced to signal denatured proteins to be degraded by 

the proteasome, but can also be inhibited under extreme or long-lasting conditions due to 
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physiological collapse, as protein synthesis is an energy demanding cellular process, accounting 

for more than 50% of fish total oxygen consumption (e.g. Gravel, and Vijayan, 2007; Madeira et 

al., 2016a). Hence, such energetic expenditure may justify the decrease of Ub content in fish (liver 

and muscle) under the co-exposure of DCF, acidification and/or warming, as opposed to non-

contaminated treatments simulating climate change effects or to DCF-exposure alone. Moreover, 

such impaired Ub synthesis linked with the lower cell viability and increased ENAs, further 

reinforces the genotoxic potential of DCF, particularly when combined with abiotic stressors. 

 

4.3.3. Neurotoxicity and endocrine disruption 

In the brain, acetylcholinesterase (AChE) can be a target for chemical contaminants, leading 

to the inhibition of its activity and, therefore, to failed synaptic transmission and muscle 

overstimulation (Schmidel et al., 2014; Topal et al., 2017). Furthermore, the exposure to abiotic 

stressors, such as increased temperature and pCO2 levels, can alter AChE activity (Rosa et al., 

2016). Contrasting these findings, in the current study, warming and acidification (alone or 

combined) did not affect AChE brain activity. This could be related to wide thresholds of 

physiological tolerance to temperature and pCO2 changes of D. labrax, and/or to the longer 

acclimation and trial durations that could enable fish to cope with these changes. On the other 

hand, in agreement with the findings of Gonzalez-Rey and Bebianno (2014) for M. 

galloprovencialis and of Mathias et al. (2018) for Rhamdia quelen, DCF exposure alone induced 

AChE activity. Yet, this induction was counteracted by acidification and warming (i.e. no effect 

in DCF+Acid and DCF+Acid+Warm treatments, as well as, a significant inhibition in 

DCF+Warm treatment). Moreover, the changes elicited by DCF can reflect AChE activity 

modulation by the antioxidant machinery and VTG-like protein levels (i.e. estrogenic activity) in 

fish, rather than reflecting an impaired neurotransmission function (Gonzalez-Rey and Bebianno, 

2014; Oliveira et al., 2015). 

Although VTG is usually undetectable in male and immature individuals, its production can 

be elicited by the exposure to estrogenic compounds (e.g. Matozzo et al., 2008; Gonzalez-Rey 

and Bebianno, 2014). In agreement with previous findings, VTG synthesis was induced by DCF 

exposure alone or combined with warming, thus, evidencing the estrogenic potential of this 

contaminant (e.g. Gonzalez-Rey and Bebianno, 2014; Gröner et al., 2017). As for the effect of 

abiotic stressors, the enhanced VTG synthesis at warmer temperatures in both non-contaminated 

and DCF exposed fish is consistent with previous studies involving fish species co-exposed to 

endocrine disrupting compounds and increased temperatures (Chandra et al., 2012; Shappell et 

al., 2018), and likely related to enhanced fish metabolic rates and enzymatic activities. 

Interestingly, acidification seemed to have had the opposite effect, inhibiting VTG synthesis when 

acting alone, or not significantly affecting it when co-exposed with warming and/or DCF. 
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Previous studies with freshwater fish species pointed out that low seawater pH levels may have a 

preponderant role in fish endocrine regulation (e.g. modulating the synthesis of cortisol levels and 

thyroid hormones which are, in turn, linked to the VTG induction; Kwong et al., 2014; 

McCormick and Bradshaw, 2006). Yet, little is still known regarding the interactive effects of 

acidification and estrogenic contaminants co-exposure, thus, calling for the need to further 

investigate the effects of environmental stressors on fish endocrine system and reproduction.  

 

4.4. Integrating the different ecotoxicological responses  

As evidenced in the present study, drawing general conclusions based on different biomarker 

responses is not evident since: i) some biomarkers interact with each other in complex biological 

mechanisms; ii)  biomarkers can respond differently in each tissue according to their baseline 

levels; iii) an environmental stressor can elicit distinct responses when acting alone or in 

combination with other environmental stressor; and iv) a given stressor can activate biomarker 

responses to a certain extent, but also inactivate them when the degree of severity/chronicity 

exceeds the ability of an organism to cope with that stressor, thus either up or down biomarker 

regulations can indicate a lower animal fitness (Serafim et al., 2012; Ferreira et al., 2015; Madeira 

et al., 2016a). In this way, integrating the responses of different biomarkers (IBRs) can be a useful 

tool, highlighting patterns that are not evident when analysing individual biomarker responses 

and providing a general insight of the way organisms are dealing with the exposure to 

environmental stressors (Serafim et al., 2012; Ferreira et al., 2015; Madeira et al., 2016a).  

The fact that in the current study, the muscle (as well as the whole organisms) revealed lower 

mean IBR than liver and brain, is not in agreement with the trend reported by Madeira et al. 

(2016a), as higher IBR responsiveness was generally associated to aerobic tissues, such as muscle, 

gills and liver. Yet, the higher responsiveness of liver and brain observed in the present study may 

also be partially related to the number of biomarkers that were used to compute the IBR in each 

tissue (i.e. six biomarkers were used to compute the IBR in whole organism and muscle, while 

seven biomarkers were used for liver and brain), as the total IBR index value corresponds to the 

sum of all areas that connect to consecutive biomarker scores (Guerlet et al., 2010). Indeed, 

although previous literature does not propose an appropriate number of biomarkers to be used in 

IBR computations, Serafim et al. (2012), pointed out that the “relative weight” of each biomarker 

response is influenced by the number of biomarkers included in IBR calculations, therefore, 

largely affecting the final IBR value, and with a higher number of biomarkers generally yielding 

higher IBR indexes.  

Regardless of the number/type of analysed biomarkers, overall, higher IBR values have been 

associated to the exposure to both chemical contaminants (Serafim et al., 2012; Ferreira et al., 

2015; Ács et al., 2016) and increased temperatures (Kamel et al., 2014; Madeira et al., 2016a), 
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whereas no studies with biomarkers’ IBR linked to acidification were found. Indeed, DCF dietary 

exposure was, in overall, associated to higher IBR values for the whole organism, muscle and 

brain, indicating a decreased fish health condition, thus, confirming the toxicological attributes of 

this contaminant. On the other hand, warming alone resulted in higher IBR value in the liver, and 

that is likely related to increased metabolism and intense enzymatic activity induced by increased 

temperatures in this organ. 

Results pointed out that the selected biomarkers for the whole organism (i.e. K, HSI, BBratio 

and haematological parameters) were more responsive to the co-exposure of DCF and climate 

change abiotic stressors. In contrast, less consistent tissue-specific patterns were found in muscle, 

liver and brain, especially when DCF co-exposure occurred due to the high variability of 

molecular responses observed (i.e. up- or down-regulations). The overall higher IBR values 

registered in treatments simulating warming alone (in liver and brain) or in co-exposure with DCF 

(in liver and muscle) evidenced fish inability to compensate the stress induced by a 5 ºC increase. 

On the other hand, the role of acidification in lowering fish fitness/physiological condition was 

not so evident. The lower IBR values found in fish brain exposed to DCF+Acid and DCF+Warm 

treatments suggested that, despite the elicited biomarker changes, fish were able to better cope 

with stressors than those exposed to DCF, acidification and warming acting alone or to the three 

stressors simultaneously, likely due to the activation of antioxidant/detoxifying (GST) and 

chaperoning (HSP70/HSC70) mechanisms. Although the effects of warming on fish muscle, at a 

first glance, may seem to have been reversed by the co-exposure to acidification and DCF (i.e. 

lower IBR index value of DCF+Acid+Warm treatment), the IBR reduction can be explained by 

the inhibition of CAT activity and Ub synthesis in relation to the Control treatment and, therefore, 

may not be necessarily indicative of a fish better health condition. The same argument can also 

be applied to the lower liver IBR under acidification (i.e. in Acid and DCF+Acid treatments), as 

the first treatment triggered the inhibition of SOD and GST activities, as well as VTG content, 

whereas the second treatment inactivated SOD activity and Ub synthesis. Such findings highlight 

that, despite providing a broader overview of fish physiological condition, the use of IBRs has 

also limitations, as it provides a qualitative (and not quantitative) evaluation of the stress degree 

induced in fish, therefore, requiring critical interpretation and background knowledge (Serafim et 

al., 2012). 

 

5. Conclusions 

This study provided novel data and a contribution to fill a major research gap of the present:  

the interactive effects between climate change and chemical contaminants on the ecotoxicological 

responses of marine fish species. Results confirmed that the juvenile marine fish responses (i.e. 

animal fitness, immunity, cellular defence and scavenging mechanisms) to DCF dietary exposure 
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are strongly affected by increased temperature (+5 ºC) and pCO2 (+1000 µatm). Such alterations 

can correspond to either the enhancement of biomarker responses (e.g. erythrocytes viability 

further reduced, as well as, GST brain activity and Ub muscle synthesis further increased by the 

combination of DCF and acidification and/or warming) or to an inhibition (e.g. lower CAT and 

SOD inhibition when DCF was combined with acidification and/or warming, as well as lower 

VTG synthesis when DCF was combined with warming, compared to DCF acting alone). Based 

on the  integrated approach used in this study (i.e. the IBRs), which combined the different 

biomarker responses in an organism or tissue, overall, DCF exposure induced more severe stress 

responses when co-exposed with warming, compared to DCF acting alone or combined with 

acidification. Despite IBRs proved to be a helpful tool to better understand the severity of the 

three studied stressors (revealing trends that were not so clear when analysing biomarker 

responses individually), the limitations of their use were also evidenced in this study.  

Finally, to sum up, the distinct effects promoted by DCF exposure, acidification and warming 

acting alone or combined highlighted the need to consider interactions between environmental 

stressors in future ecotoxicological studies. Such knowledge will provide wider insights on the 

toxicological impacts of climate change, as environmental stressors will unlikely occur in 

isolation, nor will the alterations of environmental conditions affect marine ecosystems in the 

same way across the planet. 
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A special note regarding DCF’s bioaccumulation and elimination 

During the trial presented in Chapter 3. Part 1., fish tissue samples were also collected from 

each treatment (at days 0, 7, 14 and 28 of DCF dietary exposure, as well as at day 35 

corresponding to the last day of a 7 day clearance period, during which fish were fed with a non-

contaminated diet, i.e. CTR feed), in order to determine DCF bioaccumulation and elimination. 

DCF concentration in fish tissues was determined through high performance liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), according to the methodology 

previously optimized and described in detail by Cunha et al. (2017). Despite results evidenced 

acceptable quality control parameters, confirming the accuracy (i.e. average recovery percentage 

of 83%) and inter-day repeatability (i.e. relative standard deviations, %RSD, between 11% and 

18%) of the analytical methodology used, fish tissues from all treatments did not reveal positive 

values for DCF (i.e. values were either bellow detection, with LOD = 0.1 ng kg-1, or bellow 

quantification, with LOQ = 0.3 ng kg-1). Such absence of positive results did not allow the 

preparation of a manuscript entirely devoted to DCF’s bioaccumulation and elimination in marine 

fish species. Yet, it was decided that this matter still deserved to be discussed throughout this PhD 

thesis, in order to provide potential explanations for such unexpected results, as well as solutions 

to adequately estimate DCF’s toxicokinetics in the future (see also Chapter 8. Future 

Perspectives). 

Based on DCF’s chemical properties (i.e. relatively lipophilic, with estimated pKa = 4.1 and 

log KoW = 4.5; PubChem, 2018), as well as the available literature, reporting bioconcentration 

factors (BCF) between 4 and 10 for DCF (e.g. Schwaiger et al., 2004; Cuklev et al., 2012; 

Memmert et al., 2013; Peake et al., 2016), it was expected to observe a cumulative increase of 

DCF (even if to a low extent) in fish tissues over time. However, there are some potential 

explanations for this lack of agreement between the results obtained in this PhD thesis and those 

found in literature. First, pharmaceutical active drugs have been assumed to be mostly uptaken 

by marine biota through water and, thus, the majority (if not all) of studies performed so far on 

DCF’s bioaccumulation only focused on water exposure. Hence, in addition to the previously 

reported dose-dependency effect (e.g. Schwaiger et al., 2004; Memmert et al., 2013), DCF 

bioaccumulation in fish may also vary according to the exposure route, with dietary exposure (i.e. 

uptake via ingestion) resulting in much lower tissue burdens compared to water exposure (i.e. 

uptake via inhalation). As it is later described in Chapter 4., this trend was indeed verified in the 

trial focused on the antidepressant venlafaxine (VFX) and during which both water and dietary 

exposures were simulated (i.e. higher VFX tissue burdens following water exposure; Maulvault 

et al., 2018). Hence, this hypothesis calls for the need to further explore the differential 

bioaccumulation and ecotoxicological responses of pharmaceutical active drugs following 

distinct compound exposure pathways. Second, and somewhat in line with the previous point, by 

being an acidic compound, DCF in the form of sodium salt (the one used in the preparation of 
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contaminated fish feeds; see Chapter 3. Part 1.) is rapidly dissolved in the stomach of mammals 

(including humans), but immediately precipitates due to the low pH of the gastric fluid, therefore, 

strongly affecting the dissolution and subsequent absorption of DCF parental compound at the 

duodenum (Altman et al., 2015; Kataoka et al., 2016). Hence, even though most studies on the 

absorption of pharmaceuticals have been conducted on mammalian subjects, the physiological 

and endocrinological similarities between humans and fish suggest that the same principle may 

also apply to the last. Thus, it may be hypothesized that the absence of DCF tissue 

bioaccumulation in fish tissues could be related to the fact that this compound was administered 

via feed (as opposed to most studies on marine biota exposed to DCF), as well as to the molecular 

form of DCF used in this study (i.e. DCF-sodium salt). 

Once pharmaceuticals are ready for absorption at the duodenum, the subsequent fate of these 

compounds is largely depend on the mechanisms that an organism disposes to metabolize and/or 

excrete them. As such, another explanation for the present results and, perhaps, the most plausible 

one, is the fact that DCF in its parental form (and regardless of the salt form it is presented) has a 

very short half-life (~2 hours) as it is readily metabolized in the liver, engaging in phase I and 

phase II biotransformation processes and, later, being mostly excreted in the form of different 

DCF metabolites (i.e. 6 described in humans: 4′-hydroxy-DCF, 5′-hydroxy-DCF, 3′-hydroxy-

DCF, 4′,5-dihydroxy-DCF, 3′-OH-4′-OCH-DCF and 4′-OH-3′-OCH3-DCF) and conjugates 

(glucuronide and sulfate conjugates; Lee et al., 2012; Vieno and Sillanpää, 2014; Peake et al., 

2016). In this way, the negative results obtained in this study (that only determined fish tissue 

concentrations of DCF in its parental/unchanged form) may be attributed to the rapid 

metabolization and subsequent excretion of this compound via urine and/or faeces. Indeed, in a 

study performed with rainbow trout (Oncorhynchus mykiss) exposed to DCF (for 10 days, via 

intraperitoneal injection), apart from DCF in its parental form, two hydroxylated DCFmetabolites 

(4’‐hydroxydiclofenac and 4;5‐hydroxydiclofenac) and 6 DCF-conjugate products were also 

identified in fish bile, with acyl glucuronide conjugates being the predominant forms of this 

compound in the study (Kallio et al., 2010). Unfortunately, in our study it was not possible to 

quantify the presence of DCF metabolites and conjugates. Hence, this highlights the importance 

of further unveiling the detoxification mechanisms of pharmaceuticals (and other xenobiotics) in 

fish species, particularly focusing on the determination of metabolites that can often be more 

persistent and toxic than the parental compound itself. 
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Abstract 

The presence of antidepressants, such as venlafaxine (VFX), in marine ecosystems is 

increasing, thus, potentially posing ecological and human health risks. The inherent mechanisms 

of VFX uptake and elimination still require further understanding, particularly accounting for the 

impact of climate change-related stressors, such as warming and acidification. Hence, the present 

work aimed to investigate, for the first time, the effects of increased seawater temperature (ΔTºC 

= +5 ºC) and pCO2 levels (ΔpCO2 ~1000 µatm, equivalent to ΔpH = -0.4 units) on the uptake and 

elimination of VFX in biological tissues (muscle, liver, brain) and plasma of juvenile meagre 

(Argyrosomus regius) exposed to VFX through two different exposure pathways (via water, i.e. 

[VFX ] ~20 µg L-1, and via feed, i.e. [VFX] ~160 µg kg-1 dry weight, dw). Overall, results showed 

that VFX can be uptaken by fish through both water and diet. Fish liver exhibited the highest 

VFX concentration (126.7 ± 86.5 µg kg-1 and 6786.4 ± 1176.7 µg kg-1 via feed and water 

exposures, respectively), as well as the highest tissue:plasma concentration ratio, followed in this 

order by brain and muscle, regardless of exposure route. Both warming and acidification 

decreased VFX uptake in liver, although VFX uptake in brain was favoured under warming 

conditions. Conversely, VFX elimination in liver was impaired by both stressors, particularly 

when acting simultaneously. The distinct patterns of VFX uptake and elimination observed in the 

different scenarios calls for a better understanding of the effects of exposure route and abiotic 

conditions on emerging contaminants’ toxicokinetics. 

 

Keywords: emerging contaminants, antidepressant, venlafaxine, bioaccumulation, climate 

change, fish. 
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1. Introduction 

Over the last years, pharmaceuticals and personal care products (PPCPs) have been widely 

detected in marine ecosystems (e.g. Arpin-Pont et al., 2016; Rodriguez-Mozaz et al., 2017). The 

frequent detection of PPCPs in the marine environment can be attributed to two main reasons: i) 

increased human usage of PPCPs along with increased world population; and ii) these chemical 

contaminants are not completely eliminated at conventional wastewater treatments plants 

(WWTPs) (Gros et al., 2012) despite the constant improvements of technology. Indeed, the cost 

associated to removal of contaminants in WWTPs is so high that cities municipalities cannot 

afford to implement such novelties, and therefore PPCPs and other chemicals are still barely 

removed reaching water bodies. As emerging contaminants, PPCPs lack regular environmental 

monitoring data and their presence in seafood species is not regulated yet. Among PPCPs, the 

antidepressant venlafaxine (VFX), a serotonin-norepinephrine  selective reuptake inhibitor 

(SNRI), is one of the most commonly prescribed psychiatric drugs used to treat depression and 

anxiety disorders in humans, being frequently detected in the aquatic environment (Álvarez-

Muñoz et al., 2015; Arpin-Pont et al., 2016; Rodriguez-Mozaz et al., 2017). Recent studies have 

provided compelling evidence that antidepressants can accumulate in marine biota (e.g. Álvarez-

Muñoz et al., 2015), and promote adverse effects at the behavioural and physiological levels as 

well (e.g. Bisesi Jr. et al., 2014; Best et al., 2014; Bidel et al., 2016). Most of the studies about 

uptake and elimination mechanisms of these contaminants have focused on their exposure via 

water (e.g. Boillot et al., 2015; Huerta et al., 2016; Valdés et al., 2016; Serra-Compte et al., 2018),  

thus not considering contaminant bioaccumulation through trophic transfer (i.e. dietary exposure; 

e.g. Heynen et al., 2016; Boström et al., 2017). Yet, the later also represents a major pathway of 

contaminant exposure, particularly in predatory fish species (Brooks, 2014). Furthermore, the 

potential interactive effects between these contaminants and other environmental stressors are 

still unclear, although they can play a key role on chemical contaminants’ availability and toxicity 

to biota (e.g. Noyes et al. 2009; Marques et al., 2010; Maulvault et al., 2016). Understanding how 

marine species will cope with the presence of multiple environmental stressors represents one of 

the main ecological concerns and research challenges, since climate change-related effects, such 

as seawater warming and acidification, are already evident in many regions of the world, posing 

a great threat to marine life (IPCC, 2014). Such changes are expected to worsen in the coming 

50-100 years, for instance, increasing seawater temperature as high as 5 ºC, as well as CO2 partial 

pressures (pCO2) up to 1000 µatm which leads to a seawater pH drop, a process known as ocean 

acidification (IPCC, 2014; McNeil and Sasse, 2016). Depending on the region, each stressor can 

occur alone or in combination with other ones, representing additional challenges to the resilience 

of marine ecosystems.  



CHAPTER 4. 

143 

Seawater warming and acidification can alter contaminants’ bioavailability in sediments and 

in water as well as the marine specie’s physiological status, which may affect the way that marine 

organisms cope with the presence of chemical contaminants like compound uptake, retention and 

detoxification rates (e.g. Marques et al., 2010; Maulvault et al., 2016, 2017; Sampaio et al., 2016). 

Such alterations were clearly evidenced in a recent study on European seabass (Dicentrarchus 

labrax; e.g. Maulvault et al., 2016), which revealed enhanced bioaccumulation and impaired 

elimination of MeHg under warmer temperatures, as well as increased risks to seafood consumers. 

Therefore, it is of paramount importance to gather relevant data from environmental pollutants, 

particularly from those less well studied, such as PPCPs, enabling a better prediction of the 

potential implications of climate change at the ecotoxicological and public health levels. 

In this context, the aim of this study was to assess, for the first time, the effects of increased 

seawater temperature (ΔTºC = +5 ºC) and pCO2 levels (~1000 µatm, equivalent to ΔpH = -0.4 

units) on VFX uptake and elimination mechanisms in fish tissues (muscle, liver and brain) and 

plasma of juvenile meagre (Argyrosomus regius) exposed to the contaminant through two 

different exposure pathways (via water, i.e. [VFX ] ~20 µg L-1, and via feed, i.e. [VFX] ~160 µg 

kg-1 dry weight, dw). The selection of juvenile A. regius as model species was based on the 

following criteria: i) it is a predatory fish species, inhabiting temperate estuaries and coastal areas, 

thus, likely accumulating high levels of chemical contaminants (FAO, 2017); ii) environmental 

variations and pollution are known to be particularly deleterious to species’ early life stages 

(including larvae and juveniles), compromising their recruitment and ecological success; and iii) 

it is a commercially important species and, therefore, the data obtained can be linked to seafood 

safety. 

 

2. Materials and Methods 

2.1. Feeds (CTR and VFX-enriched) and VFX stock solutions 

Two feed batches with the same nutritional composition were manufactured by the company 

SPAROS Lda (Olhão, Portugal):  a non-contaminated feed (CTR feed) and a VFX-enriched feed. 

Both feeds were elaborated in order to mimic a commercial fishmeal-rich formulation for juvenile 

marine fish (48% crude protein and 18% crude fat; detailed feed composition is presented in 

Annex 5, Table A.5.1.). Briefly, all powder ingredients were grinded (<200 micron) in a 

micropulverizer hammer mill (Hosokawa Micron, SH1, The Netherlands), and mixed with fish 

oil in a paddle mixer (Mainca RM90, Spain). The feed mixture was further humidified with 25% 

deionized water at room temperature, and then extruded at 2.0 mm by means of a low-shear 

extruder (P55, Italplast, Italy). After extrusion, feed pellets were dried in a vibrating fluid bed 

dryer (model DR100, TGC Extrusion, France). Then, a batch of CTR feed was subsequently 

enriched with a solution of venlafaxine hydrochloride (C17H27NO2·HCl, >98%, Sigma-Aldrich) 



Ana Luísa Maulvault 

 

144 
 

dissolved in ethanol, and further diluted with deionized water (total volume of 100 mL). A VFX 

nominal concentration of approximately 160 µg kg-1 on a dry weight basis (dw) was selected for 

the VFX-enriched feed (i.e. corresponding to a concentration ~4 times higher than the VFX levels 

found in species inhabiting contaminated coastal areas, susceptible to accumulate this 

contaminant, and that are natural preys of juvenile meagre, to assure that VFX bioaccumulation 

to detectable levels was elicited during the timeline of the trials; Martínez Bueno et al., 2014; 

Álvarez-Muñoz et al., 2015). Feed enrichment was performed by top-coating the pellets with the 

VFX solution using a pressurized spraying container (standard flat-fan nozzle; size 250 micron; 

pressure 6 bar). VFX concentration was determined in VFX-enriched feed, as well as in CTR feed 

to assure that no external contamination occurred during the preparation of CTR feed (Table 

4.1.1.). 

For treatments simulating VFX exposure via water, a stock solution of VFX was prepared to 

perform the daily seawater spiking during the 28 days of exposure, by dissolving venlafaxine 

hydrochloride (C17H27NO2·HCl, >98%, Sigma-Aldrich) with deionized water (total volume of 

500 mL), in order to achieve a nominal VFX concentration of 20 µg L-1 in each incubating tank. 

Despite this value is above the concentrations usually found in seawater, the selection of VFX 

nominal concentration was mostly based on the order of magnitude of the lowest VFX 

concentration previously reported to cause significant behavioural effects in fish following short-

term VFX exposure (50 µg L-1; Bisesi Jr et al., 2014). The total volume of VFX solution used to 

perform the daily spiking was adjusted considering that the steady state of this compound was 

reached after 24h, and accounted for the possible compound losses due to the daily 25% seawater 

renewal in each tank. 

 

2.2. Fish rearing and acclimation  

Argyrosomus regius specimens were reared until juvenile stage, at the aquaculture pilot station 

of the Portuguese Institute for the Sea and Atmosphere (EPPO-IPMA, Olhão, Portugal) using 

routine hatchery conditions. Subsequently, fish with similar biometric characteristics (total 

length: 6.8 ± 0.4 cm; total weight 2.6 ± 0.5 g) were transported to the aquaculture facilities of 

Laboratório Maritimo da Guia (MARE-FCUL, Cascais, Portugal), where they were randomly and 

equitably distributed in 21 rectangular shaped incubating glass tanks (50 L each, total volume). 

The incubating tanks were organized in groups of three tanks, which corresponded to one 

treatment (i.e. 3 replicates x 7 treatments = 21 tanks in total; Figure 4.1.1.; see the description of 

each treatment in section 2.3.). 
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Figure 4.1.1. Experimental setup. Abbreviations: Acid – simulated acidification (i.e. pCO2 
~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); VFX-
water – fish exposed to venlafaxine via water; VFX-feed – fish exposed to venlafaxine via feed. 

 

Animal density was kept below 5 g body weight L-1 in each tank in order to avoid physiological 

stress related to high animal density. To maintain seawater quality, each incubating tank had 

independent functioning, being equipped with a protein skimmer (Reef SkimPro, TMC Iberia, 

Portugal), UV disinfection (Vecton 300, TMC Iberia, Portugal), biological filtration (model FSBF 

1500, TMC Iberia, Portugal) and chemical filtration (activated carbon, Fernando Ribeiro Lda, 

Portugal; except in treatments simulating VFX exposure via water; i.e. VFX-water). Dead fish 

and faeces were daily removed, and seawater was partially renewed (25% of the total tank 

volume). Ammonia, nitrite and nitrate levels were daily checked using colorimetric tests (Tropic 

Marin, USA), and kept below detectable levels, with the exception of nitrates, which were kept 

below 2.0 mg L-1. Seawater total alkalinity was also measured in each tank on a weekly basis, 

following the protocol previously described (Sarazin et al., 1999), and the combination of total 

alkalinity (AT) and pH was used to calculate carbonate system parameters (average values 

obtained for each treatment can be consulted in Annex 5, Table A.5.2.). Each tank had 

independent temperature and pH control, and daily adjustments of these parameters were 

performed by means of: i) temperature - an automatic seawater refrigeration system (± 0.1 °C; 

Frimar, Fernando Ribeiro Lda, Portugal), as well as submerged digital thermostats (200W, 

V2Therm, TMCIberia, Portugal); ii) pH - individual pH probes (GHL, Germany) connected to a 

computerized pH control system (± 0.1 pH units; Profilux 3.1N, GHL, Germany), which 

monitored seawater pH in each tank every 2 s and adjusted whenever needed, via submerged air 

stones, by injecting CO2 (Air Liquide, Portugal; to decrease pH) or CO2-filtered aeration (to 

increase pH) using air pumps (Stella 200, Aqua One Pro, Aqua Pacific UK Ltd, United Kingdom). 

n = 10

Replicate 1

n = 10

Replicate 2

n = 10

Replicate 3

Control: T = 19 ºC, pCO2 ~500 µatm

n = 10

Replicate 1

n = 10

Replicate 2

n = 10

Replicate 3

VFX-water : T = 19 ºC, pCO2 ~500 µatm

n = 10

Replicate 1

n = 10

Replicate 2

n = 10

Replicate 3

Acid+Warm+VFX-water: T = 24 ºC, pCO2 ~1500 µatm

n = 10

Replicate 1

n = 10

Replicate 2

n = 10

Replicate 3

VFX-feed: T = 19 ºC, pCO2 ~500 µatm

n = 10

Replicate 1

n = 10

Replicate 2

n = 10

Replicate 3

Acid+VFX-feed: T = 19 ºC, pCO2 ~1500 µatm

n = 10

Replicate 1

n = 10

Replicate 2

n = 10

Replicate 3

Warm+VFX-feed: T = 24 ºC, pCO2 ~500 µatm

n = 10

Replicate 1

n = 10

Replicate 2

n = 10

Replicate 3

Acid+Warm+VFX-feed : T = 24 ºC, pCO2 ~1500 µatm

• 10 fish randomly sampled from each treatment at days 28 (end

of exposure phase) and 35 (end of elimination phase)
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Prior to trials, fish were acclimated to laboratory conditions for a period of 30 days, being fed 

with CTR feed (2% of average body weight, bw) and kept under the following abiotic conditions: 

i) dissolved oxygen (DO) > 5 mg L-1; ii) temperature (T ⁰C) = 19.0 ± 0.5 °C; iii) pH = 8.00 ± 0.10; 

iv) salinity = 35 ± 1 ‰; and v) photoperiod = 12L:12D (12 hours light:12 hours dark). 

Temperature, pH, salinity and DO were daily checked using a multi-parameter measuring 

instrument (Multi 3420 SET G, WTW, Germany).  

 

2.3. VFX exposure and elimination 

The effect of warming and acidification acting together (i.e. the worst-case scenario) was 

assessed in the treatments simulating both VFX exposure routes (i.e. seawater and dietary 

exposures; Acid+Warm+VFX-water and Acid+Warm+VFX-feed). Yet, due to experimental 

limitations, only the exposure pathway through feed was selected to investigate the single effects 

of temperature and pH (i.e. Acid+VFX-feed and Warm+VFX-feed). The exposure via VFX-

enriched feed was selected for this purpose, because: a) there is currently a lack of data on 

contaminant bioaccumulation through trophic transfer (i.e. dietary sources), as most of the studies 

focus on contaminant exposure through inhalation (i.e. water exposure); b) diet can be an 

important source of contaminant exposure, particularly in predatory species, often leading to more 

notorious toxicological effects than those promoted by contaminant exposure through inhalation 

(e.g. Arnot and Gobas, 2004; Brooks, 2014). 

One week before initiating the trial, seawater temperature and pH were slowly adjusted (+1 ºC 

and -0.1 unit per day), until reaching 24 ºC and ~1500 µatm pCO2 (equivalent to pH = 7.6 units) 

in tanks simulating climate change conditions (i.e. treatments Acid+VFX-feed, Warm+VFX-feed 

and Acid+Warm+VFX-feed and Acid+Warm+VFX-water; Figure 4.1.1.), according to the 

projections of the Intergovernmental Panel for Climate Change (scenario RCP8.5; IPCC, 2014), 

as well as considering the intervals of future CO2 amplification scenarios described by McNeil 

and Sasse (2016).  

Seven treatments were carried out (n = 10 animals per replicate tank; Figure 4.1.1.), simulating 

the reference temperature (i.e. 19 ºC) and pCO2 (~500 µatm; pH = 8.0 units) conditions (i.e. 

temperature and pCO2 conditions normally used in juvenile meagre rearing), as well as the 

projected seawater warming (ΔTºC = +5 ºC) and acidification (ΔpCO2 ~1000 µatm; equivalent to 

ΔpH = -0.4 units): i) Control treatment, i.e. fish daily fed with CTR feed, and simulation of the 

reference temperature and pH conditions; ii) VFX-water treatment, i.e. fish daily fed with CTR, 

seawater daily spiked with a VFX stock solution, to achieve a VFX final concentration of 20 µg 

L-1, and simulation of the reference temperature and pH conditions; iii) Acid+Warm+VFX-water 

treatment, i.e. fish daily fed with CTR, seawater daily spiked with a VFX stock solution (nominal 

concentration = 20 µg L-1), and simulation of warming and acidification (24ºC and ~1500 µatm 
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pCO2); iv) VFX-feed treatment, i.e. fish daily fed with VFX-enriched feed, and simulation of the 

reference temperature and pH conditions; v) Acid+VFX-feed treatment, i.e. fish daily fed with 

VFX-enriched feed, and simulation of acidification (1500 µatm pCO2); vi) Warm+VFX-feed 

treatment, i.e. fish daily fed with VFX-enriched feed, and simulation of warming (24 ºC); vii) 

Acid+Warm+VFX-feed treatment, i.e. fish daily fed with VFX-enriched feed, and simulation of 

warming and acidification (24ºC and ~1500 µatm pCO2). After 28 days of exposure to VFX (day 

28), a contaminant elimination phase was also carried out for a period 7 days (until day 35), i.e. 

fish were fed with CTR feed in all VFX-feed and VFX-water treatments, and VFX seawater 

spiking was stopped in VFX-water treatments (seawater also partially renewed on a daily basis 

during this phase, i.e. 25% of the total tank volume). During the exposure and elimination phases, 

fish were daily fed with the same amount (2% bw) of the corresponding feed, and feed 

consumption was regularly monitored throughout the entire experiment, to assure that all feed 

was consumed by fish from every treatment (no reduction of fish consumption was observed).  

Seawater abiotic parameters were daily monitored and adjusted to adequate levels whenever 

needed, as described above. No mortality was observed during the 35 days of the trial. 

Ten fish were randomly sampled from each treatment (out of the 3 replicate tanks constituting 

one treatment) at days 28 and 35, and euthanized by immersion in an overdosed MS222 solution 

(2000 mg L-1; Sigma-Aldrich, USA) buffered with sodium bicarbonate (1 g of NaHCO3 and 1 g 

of MS222 per litre of seawater) for 10 min. Euthanized fish were measured (average weight, W, 

and total length, TL, are shown in Table 4.1.2.), and blood was collected by puncture of the caudal 

vein and centrifuged (4 ºC, 15 min, 10,000 g). 

Plasma samples were then collected, pooled in two composite samples (plasma of 5 individuals 

per pool, n = 2) and kept at -80 ºC until further analyses. Fish were subsequently dissected to 

collect the muscle, liver and brain tissues, and two composite samples were also performed for 

each of these three tissues (i.e. muscle, liver or brain of 5 individuals per pool, n = 2). Composite 

samples were then freeze-dried at −50 °C, 10-1 atm of vacuum pressure for 48 h (Power Dry 

LL3000, Heto, Czech Republic), homogenized and stored at -80 °C until further analysis. 

Seawater samples were also collected from each replicate tank (treatment) during the exposure 

(i.e. days 14 and 28) and elimination (i.e. day 35) phases for VFX quantification, in order to 

assure: i) a steady VFX concentration in tanks/treatments simulating VFX exposure via water 

(Table 4.1.1.); and ii) no external contamination (apart from dietary exposure) was taking place 

in tanks/treatments simulating VFX exposure via feed (Table 4.1.1.).  
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Table 4.1.1. Venlafaxine concentration (mean ± standard deviation) in feed (µg kg-1 dry 
weight) and seawater samples (µg L-1) collected from each treatment, as well as in non-
contaminated fish tissues (Control treatment). Abbreviations: CTR feed: non-contaminated 
control feed; VFX-enriched feed: venlafaxine contaminated feed; VFX-feed – fish exposed to 
venlafaxine via feed; VFX-water – fish exposed to venlafaxine via seawater; Acid – simulated 
acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated warming 
(i.e. T = 24 ºC). 

 

 

Table 4.1.2. Biometric data (mean ± standard deviation) of fish collected from each treatment 
at days 28 and 35 of the trial. Different lower case letters indicate significant differences between 
Control and VFX-feed treatments, whereas upper cases letters indicate significant differences 
between Control and VFX-water treatments (p < 0.05). Abbreviations: W – Weight; TL – total 
length; VFX-water – fish exposed to VFX via seawater; VFX-feed – fish exposed to VFX via 
feed; Acid – simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm 
– simulated warming (i.e. T = 24 ºC). 

 

VFX concentrations

Feed 

(µg kg-1, dw)

CTR feed < LOD

VFX-enriched feed 161.7 ± 17.1 

Seawater

(µg L-1)

Day 14 Day 28 Day 35

Control < LOD < LOD < LOD

VFX-feed < LOD < LOD < LOD

Acid+VFX-feed < LOD < LOD < LOD

Warm+VFX-feed < LOD < LOD < LOD

Acid+Warm+VFX-feed < LOD < LOD < LOD

VFX-water 19.7 ± 1.6 19.2 ± 1.6 16.0 ± 1.4 

Acid+Warm+VFX-water 23.2 ± 4.7 22.3 ± 2.1 15.9 ± 1.4 

Fish plasma (µg L-1) and 

tissues (µg kg-1, dw)
Control

Day 28 Day 35

Plasma < LOD < LOD

Brain 2.6 ± 2.1 < LOD

Liver 21.8 ± 0.6 23.0 ± 0.6 

Muscle < LOD < LOD

  
  W (g) TL (cm) 

  

Day 28 Control 3.7 ± 1.1b, B 7.3 ± 0.7ab, B 
 VFX-feed 2.2 ± 0.4b 6.5 ± 0.4b 
 VFX-feed+Acid 4.4 ± 2.8ab 7.9 ± 1.4ab 
 VFX-feed+Warm 6.5 ± 1.2a 8.9 ± 0.5a 
 VFX-feed+Acid+Warm 6.7 ± 2.0ab 9.0 ± 1.0a 
 VFX-water 2.9 ± 0.7B 6.8 ± 0.4B 

  VFX-water+Acid+Warm 7.1 ± 2.1A 9.3 ± 0.9A 

Day 35 

Control 2.6 ± 0.8b, B 6.8 ± 0.6c, B 

VFX-feed 2.4 ± 0.8b 6.8 ± 0.8c 

VFX-feed+Acid 2.8 ± 0.8b 7.0 ± 0.6c 

VFX-feed+Warm 5.0 ± 0.7a 8.5 ± 0.4b 

VFX-feed+Acid+Warm 7.1 ± 1.9a 9.6 ± 0.6a 

VFX-water 3.1 ± 1.0B 7.4 ± 0.7B 

VFX-water+Acid+Warm 7.6 ± 1.3A 9.8 ± 0.6A 
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2.4. Venlafaxine determination  

Seawater samples were filtered by PVDF syringe filters 0.22 µm (Merck Millipore) and VFX 

was quantified by direct injection in UPLC-QqLIT according to the methodology described by 

Gros et al. (2012). VFX levels in feed (CTR and VFX-enriched) were determined following an 

extraction method adapted from Jakimska et al. (2013), and further quantified by UPLC-QqLIT 

according to Gros et al. (2012). For the determination of VFX in the fish plasma and tissues (brain, 

liver and muscle) at day 28 and day 35 of the experiment, the following extraction protocols were 

used: i) Plasma: 50 µL of plasma were mixed with 50 µL of methanol and centrifuged (5340 g, 

10 min, 4 ºC), 60 µL of supernatant were transferred to an insert, and 0.6 µL of a 1 ng µL-1 VFX-

d6 standard solution was added before the analysis; ii) Brain, liver and muscle: 50 mg of freeze-

dried tissue (or 25 mg in the case of brain) were extracted with 1 mL methanol:water (75:25, v/v) 

in an ultrasonic bath during 15 min. Then samples were centrifuged (8000 g, 15 min, 4 ºC). This 

extraction procedure was repeated three times. All the supernatants were combined, evaporated 

until dryness under a gentle stream of nitrogen and reconstituted in 50 mL ultra-pure water with 

0.1% formic acid. A solid phase extraction (SPE) using Oasis MCX (3 cc, 60 mg) (Waters) was 

performed for sample clean-up. Briefly, cartridges were conditioned with 3 mL methanol and 3 

mL of 0.1% formic acid in ultra-pure water. Then, the reconstituted samples were percolated 

through the cartridges at a flow rate of 3 mL min-1. The cartridges were washed with 5 mL 2% 

formic acid in ultra-pure water and dried under vacuum for 5 min. Finally, VFX was eluted with 

6 mL 5% ammonia in methanol. The extracts were evaporated until dryness under a gentle stream 

of nitrogen and reconstituted in 1 mL methanol:water (50:50, v/v). Before analysis, extracts were 

filtered by PVDF syringe filters (0.22 µm) (Merck Millipore) and VFX-d6 standard solution was 

added as internal standard. The quantification of VFX in all samples was performed using the 

chromatographic method described by Gros et al. (2012). Detailed information on the validation 

parameters for the analysis of venlafaxine in feed, water, fish tissues and plasma is given in Annex 

5, Table A.5.3. 

 

2.5. Data analysis 

Venlafaxine net accumulation rates (NAR; µg kg− 1 day− 1) for each tissue and treatment were 

determined assuming that fish were exposed to steady conditions (i.e. continuous contaminant 

exposure, as well as seawater abiotic parameters) and using the following equation (Santana et 

al., 2017): 

NAR& = [VFX&+,]��../0 t  
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where, [VFXt28]tissue  is the average VFX concentration in fish tissues after 28 days of exposure. 

Furthermore, for VFX-water treatments, the bioconcentration factor (BCF) was also calculated 

after 28 days of VFX exposure using the following equation (in L kg-1; Arnot and Gobas, 2006): 

 

�23 = [VFX&+,]��../0 [VFX&+,].04��0� 

 

where, [VFXt28]seawater is the average VFX concentration in seawater samples collected from 

treatments simulating VFX exposure via water, after 28 days of exposure. To facilitate 

comparisons with previously reported data, BCF were calculated on a wet weight (ww) basis, i.e. 

for brain, liver and muscle the average moisture content (79.7%, 63.1% and 79.5%, respectively) 

was used to convert VFX concentration values. 

The percentage of VFX loss during the elimination phase (i.e. day 35), i.e. the elimination 

factor (EF; %) was calculated according to the following equation:  

 

53 (%) = 100 − 8 [VFX&9]��../0 [VFX&+,]��../0  � 100:  
 

where, [VFXt35]tissue  is the VFX concentration in fish tissues after 7 days of elimination (i.e. 

day 35; Jebali et al., 2014). EF was considered to be 0 whenever [VFXt35]tissue  was higher than 

[VFXt28]tissue. 

In what concerns statistical analysis, the ANOVA assumptions of normality and variances 

homogeneity were first investigated through the Kolmogorov–Smirnov and Levene tests, 

respectively. Data were Log-transformed or square-rooted whenever necessary to comply with 

these assumptions. Then, to assess the existence of significant differences between treatments in 

terms of VFX tissue concentrations, three-way ANOVA analyses were performed (for both 

exposure routes, i.e. VFX-water and VFX-feed treatments), using tissue (brain, liver and muscle) 

or tissue:plasma concentration ratios, sampling day (days 28 and 35) and treatment (reference 

temperature and pH, warming and/or acidification) as variables. As for biometric data (total 

weight and total length), NAR (day 28), BCF (day 28), EF (day 35) and VFX plasma, two-way 

ANOVA were used instead (for both exposure routes, i.e. VFX-water and VFX-feed treatments) 

to determine the existence of significant differences between treatments (biometric data: day and 

treatment used as variables; NAR, BCF and EF: tissue and treatment used as variables). Two-way 

ANOVA was also carried out to detect the presence of significant differences among treatments 

and sampling days in VFX plasma concentrations (results are presented in Annex 5, Table 

A.5.4.). Post-hoc Tukey HSD tests were subsequently carried out to identify significant 
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differences. Finally, Pearson correlation coefficients (r) between biometric data and NAR were 

also calculated. Statistical analyses were performed at a significance level of 0.05, using 

STATISTICATM software (Version 7.0, StatSoft Inc., USA). 

 

3. Results 

3.1. VFX levels in feed, seawater and non-contaminated fish samples 

VFX concentration in feed and seawater samples, as well as in non-contaminated fish 

throughout the 35 days of trial is shown in Table 4.1.1. An average VFX concentration of 161.7 

± 17.1 µg kg-1 was obtained in VFX-enriched feed, whereas, VFX was not detected in CTR feed 

(Table 4.1.1.). In seawater samples, detectable VFX levels were only found in VFX-water 

treatments (i.e. around 21 µg L-1 at days 14 and 28 and 16 µg L-1 at day 35; Table 4.1.1.). As for 

non-contaminated fish samples (i.e. Control treatment), despite VFX was not detected in seawater 

samples nor in CTR feed, liver and brain of control fish samples exhibited low, but still 

quantifiable levels of VFX (i.e. around 22 µg kg-1 in the liver at days 28 and 35, and around 2 µg 

kg-1 in the brain only at day 28). Thus, these values were subsequently accounted for when 

analysing data obtained in contaminated fish. 

 

3.2. VFX uptake and elimination via water 

VFX concentration in tissues of fish exposed via contaminated seawater, as well as the 

tissue:plasma concentration ratios are shown in Figure 4.1.2. and Table A.3.. VFX concentration 

significantly varied according to tissue, with liver being the primary organ for VFX uptake, 

regardless of seawater temperature and pCO2 conditions (6786.4 ± 1176.7 µg kg-1 dw, equivalent 

to an average NAR of 241.6 µg kg-1 day-1 in VFX-water treatment, and 3692.1 ± 272.9 µg kg-1 

dw equivalent to an average NAR of 131.1 µg kg-1 day-1 in Acid+Warm+VFX-water treatment; 

p < 0.05; Figures 4.1.2.A and 4.1.3.A). Furthermore, significantly higher liver:plasma 

concentration ratios were observed in fish exposed to the reference temperature a pCO2 conditions 

(5.3 ± 1.2 and 9.8 ± 2.5 at days 28 and 35, respectively; Figure 4.1.2.C). On the other hand, 

significantly lower VFX concentrations were found in the other fish tissues, particularly, in the 

muscle (423.3 ± 159.2 µg kg-1 dw equivalent to an average NAR of 15.1 µg kg-1 day-1, and 329.2 

± 44.8 µg kg-1 dw equivalent to an average NAR of 11.8 µg kg-1 day-1, in treatments VFX-water 

and Acid+Warm+VFX-water, respectively; Figures 4.1.2.A and 4.1.3.A). Furthermore, 

significant and negative correlations were found between morphometric data and VFX NARs in 

these three tissues (r ranging between -0.86 and -0.95; p < 0.05; Table 4.1.3.). 

Regarding the combined effects of abiotic variables, warming combined with acidification 

resulted in significantly higher W and TL compared to those observed in fish exposed to the 

reference temperature and pCO2 conditions (p < 0.05; Table 4.1.2.), and such increase was 
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accompanied by an overall reduction of VFX concentrations and tissue:plasma concentration 

ratios (p < 0.05; Figures 4.1.2.A,C), as well as significantly lower NARs and BCFs in plasma, 

brain and liver tissues (p < 0.05; Figures 4.1.3.A,B).  

During the elimination phase (day 35), overall, increased temperature and pCO2 facilitated 

VFX elimination in the liver and muscle tissues (i.e. EF maximum values up to 32% and 22%, 

respectively; p < 0.05; Figure 4.1.3.C). Yet, such trend was not observed in fish brain, as no 

elimination was observed in this tissue, regardless of seawater temperature and pCO2 conditions 

(Figures 4.1.2.B,C).  

 

 

Figure 4.1.2. Venlafaxine (VFX) concentrations (µg kg-1 dw) in tissues of fish exposed to 
VFX via water at day 28 (exposure phase; A) and day 35 (elimination phase; B), as well as, tissue 
to plasma VFX concentration ratio at days 28 and 35 (C). Different letters indicate significant 
differences between tissues and treatments, whereas different symbols (* or #) indicate significant 
differences between day 28 and day 35 for the same tissue (p < 0.05). Abbreviations: Acid – 
simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated 
warming (i.e. T = 24 ºC). 
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Figure 4.1.3. Venlafaxine (VFX) net accumulation rates at day 28 (NAR; µg kg-1 day-1; A), 
bioconcentration factors (BCF; L kg-1 ww; B) and VFX elimination factors at day 35 (EF; %; C) 
in VFX-water treatments. Different case letters indicate significant differences (p < 0.05). 
Abbreviations: Acid – simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 
units); Warm – simulated warming (i.e. T = 24 ºC). 

 

Table 4.1.3. Pearson correlation coefficients between biometric data and venlafaxine (VFX) 
net accumulation rate (NAR). In each column, asterisks indicate significant correlations. 
Abbreviations: W – weight; TL – total length; VFX-water – fish exposed to VFX via seawater; 
VFX-feed – fish exposed to VFX via feed. 
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3.3. VFX uptake and elimination via feed 

VFX concentration in tissues of fish exposed via feed, as well as the tissue:plasma 

concentration ratios are shown in Figure 4.1.4. and Table A.3.. Despite values in VFX-feed 

treatments were much lower than those observed in VFX-water treatments (i.e. maximum VFX 

concentration = 189 µg kg-1 dw in liver; Figures 4.1.2. and 4.1.3.), tissues’ VFX bioaccumulation 

followed a similar pattern, with the liver also being the primary organ for the bioaccumulation of 

this contaminant regardless of treatment (e.g. in VFX-feed treatment: 26.7± 86.5 µg kg-1 dw 

equivalent to an average NAR of 3.7 µg kg-1 day-1;  p < 0.05), followed by the brain, whereas 

much lower VFX concentrations were found in plasma and muscle (Figures 4.1.4.A and 4.1.5.A). 

In addition, under the reference temperature and pCO2 conditions, liver:plasma concentration 

ratio was also significantly higher than those observed in the brain and muscle at day 28 (10.7 ± 

5.3; p < 0.05; Figure 4.1.4.C). As observed in VFX-water treatments, significant and negative 

correlations were also found between biometric data and VFX NARs in fish plasma (r = -0.67 

and -0.72 for W and TL, respectively; p < 0.05), but not in the three fish tissues (Table 4.1.3.). 

As for the effects of seawater temperature and pCO2, overall, warming (with or without the 

combination of acidification) promoted a significant increase in fish W and TL compared to the 

reference temperature and pCO2 conditions (p < 0.05; Table 4.1.2.). In parallel, similar to what 

was observed in VFX-water treatments, increased temperature and pCO2 levels, acting alone or 

in combination, resulted in significantly lower VFX concentrations and NARs in the liver at day 

28 (i.e. between 55.8 and 78.2 µg kg-1 dw, equivalent to average NARs between 1.7 and 2.0 µg 

kg-1 day-1 in Acid+VFX-feed and Warm+VFX-feed treatments; p < 0.05; Figures 4.1.4.A and 

4.1.5.A). Conversely, significantly higher VFX bioaccumulation was also observed in fish brain 

when warming acted alone (80.5 ± 2.0 µg kg-1 dw, equivalent to a NAR of 2.8 µg kg-1 day-1 in 

treatment Warm+VFX-feed; p < 0.05), but not when acidification was combined (i.e. 

Acid+Warm+VFX-feed; Figures 4.1.4.A and 4.1.5.A). Furthermore, the lower VFX tissue 

concentrations along with enhanced VFX plasma concentrations under warming and acidification 

(see also Annex 5, Table A.5.4.), overall, decreased the tissue to plasma concentration ratios, 

particularly when both stressors were combined (Figure 4.1.4.C).  

After the 7 days of elimination phase, distinct patterns were observed according to fish tissue 

and treatment (Figures 4.1.4.B and 4.1.5.B). Fish exposed to warming and acidification exhibited 

lower VFX elimination in the liver, particularly when both abiotic stressors were combined (9.1 

± 3.0% in treatment Acid+Warm+VFX-feed) compared to those exposed to the reference 

conditions (p < 0.05; Figure 4.1.5.B). As for the brain and muscle, no significant differences were 

observed between treatments simulating the reference and increased seawater temperatures (i.e. 

between VFX-feed and Warm+VFX-feed and Acid+Warm+VFX-feed; p > 0.05), with EF values 

reaching up to 45.6% in the brain, and up to 100% in the muscle (Figures 4.1.4.B and 4.1.5.B). 
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Conversely, acidification alone (i.e. Acid+VFX-feed) resulted either in very low VFX elimination 

(14.7 ± 4.4% in the liver), or in no elimination at all (in the remaining tissues; p < 0.05; Figures 

4.1.4.B and 4.1.5.B). Regarding tissue:plasma concentration ratios, significant differences 

between days 28 and day 35 were only found in liver of Acid+VFX-feed and Acid+Warm+VFX-

feed treatments, as well as in muscle of VFX-feed treatment (p < 0.05; Figure 4.1.4.C). 

 

 

Figure 4.1.4. Venlafaxine (VFX) concentrations (µg kg-1 dw) in tissues of fish exposed to 
VFX via feed at day 28 (exposure phase; A) and day 35 (elimination phase; B), as well as, tissue 
to plasma VFX concentration ratio at days 28 and 35 (4C). Different letters indicate significant 
differences between tissues and treatments, whereas different symbols (* or #) indicate significant 
differences between day 28 and day 35 for the same tissue (p < 0.05). Abbreviations: Acid – 
simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated 
warming (i.e. T = 24 ºC). 
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Figure 4.1.5. Venlafaxine (VFX) net accumulation rates at day 28 (NAR; µg kg-1 day-1; A) 
and VFX elimination factors at day 35 (EF; %; B) in VFX-feed treatments. Different letters 
indicate significant differences among VFX-feed treatments (p < 0.05). Abbreviations: Acid – 
simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated 
warming (i.e. T = 24 ºC). 
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detected in CTR feed nor in seawater samples from the Control treatment, but was still quantified 

at low levels in brain and liver composite samples of non-contaminated fish samples (Table 

4.1.1.), suggesting that an external contamination might have occurred at some point, most likely 

during sample collection, processing and/or analysis due to contaminated materials (e.g. sample 

recipients, tools) and/or equipment.  

 

4.2. VFX exposure route, tissue distribution, uptake and elimination  

To the best of author’s knowledge, there are no studies available concerning other VFX 

exposure pathways apart from water (e.g. Brooks, 2014; Zenker et al., 2014). Nevertheless, uptake 

mechanisms apart from contaminant passive diffusion across the gills (i.e. inhalation) can be 

particularly important in the case of PPCPs: these compounds are highly ionisable and cover a 

wide range of molecular polarity and, therefore, other specific biochemical mechanisms (e.g. ion 

trapping, protein binding) should also be accounted in terms of compound uptake and 

bioavailability (Klosterhaus et al., 2013, Stott et al., 2015). Furthermore, dietary exposure can 

have a preponderant role on contaminants’ bioaccumulation, especially in marine predatory 

species with long life cycles, such as A. regius (Dijstra et al., 2013; Brooks et al., 2014; Zenker et 

al., 2014; Maulvault et al., 2016).  

The two exposure routes led to different VFX tissue concentrations  and NAR; i.e. NAR in 

VFX-water treatments was up to 50 times higher than in VFX-feed treatments (see Figures 4.1.2.-

4.1.5.). This discrepancy can be attributed to the different VFX concentrations that were selected 

for water and feed exposure and, as previously mentioned, such selection was based on: i) VFX 

exposure via feed: VFX levels commonly found in species inhabiting contaminated coastal areas, 

susceptible to accumulate this contaminant, and that are natural preys of juvenile meagre 

(Martínez Bueno et al., 2014; Álvarez-Muñoz et al., 2015), as well as the VFX exposure levels 

which were expected to elicit the bioaccumulation of this compound to detectable levels during 

the timeline of the trials; and ii) VFX exposure via water: the lowest VFX concentration range 

previously reported to cause significant behavioural effects following short-term VFX exposure 

(Bisesi Jr et al., 2014). Thus, it should be noted that the present results should be looked at as a 

proof of concept, since the exposure water concentration is above values usually found in water 

bodies, and that VFX uptake patterns may depend on exposure dose and time (Brooks, 2014; 

Zenker et al., 2014; Silva et al., 2016). Furthermore, the present experimental design did not allow 

to investigate other parameters (e.g. respiration and ingestion rates, compound bioavailability), 

which would be crucial to draw conclusions regarding the predominance of one exposure route 

over the other. Yet, a recent multi-trophic marine study, reported that dietary exposure did not 

have a preponderant role compared to other exposure pathways, on the uptake of the 

antidepressants sertraline and fluoxetine (also weak basic pharmaceuticals; Boström et al., 2017). 
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When it comes to contaminant uptake, the favouring of one exposure route over another can 

be closely linked to the physical-chemical properties of the compound, particularly to its octanol-

water partition coefficient (log KoW; Qiao et al., 2000). In general, compounds that have a log 

KoW < 3 have been pointed out to be mostly uptaken through inhalation, whereas those with log 

KoW > 6 are mostly uptaken through ingestion (e.g. Heath, 1995; Qiao et al., 2000). However, 

for ionisable compounds like VFX, log DoW instead of log KoW should be considered in order 

to account for the ionization of the compound in its partition. Venlafaxine has a log DoW of 1.78 

at pH 8, which is lower than its log KoW (2.74-3.30; Aryal et al., 2012), suggesting that this 

compound can rather be uptaken by inhalation than ingestion. Nevertheless, this parameter cannot 

be used alone to explain the differences observed in the bioaccumulation of the different exposure 

routes since other physical-chemical properties can affect the uptake (Huerta et al. 2016). Thus, 

the present results also point out that VFX has the potential to be biomagnified by fish, i.e. to be 

transferred from food to biota (i.e. dietary exposure through the ingestion of a contaminated prey 

or a part of it), and such biomagnifying potential, along with biochemical and behavioural 

alterations in marine biota after chronic exposure to antidepressants (e.g. Valenti et al., 2012; 

Bisesi Jr. et al., 2014; Maulvault et al., 2018a), emphasize the ecological hazards they can pose 

to marine ecosystem.  

Concerning VFX tissue partitioning, results showed that, regardless of exposure pathway, liver 

was the primary tissue for the uptake of VFX (see Figures 4.1.2.- 4.1.5.); this organ is responsible 

for the metabolization and redistribution of xenobiotics to other tissues, through the blood 

circulation (Wang et al., 2013; Maulvault et al., 2016). A similar pattern of compound partitioning 

in fish tissues and plasma (see Figures 4.1.2.- 4.1.5., as well as Annex 5, Table A.5.4.) was also 

reported in previous studies focusing on VFX exposure in fish species (i.e. VFX concentration: 

liver > brain > muscle, in brook trout, Salvelinus fontinalis; Lajeunesse et al., 2011; VFX 

concentrations: liver > brain > plasma > muscle, in rainbow trout, Oncorhynchus mykiss; 

Grabicova et al., 2014), as well as on other common antidepressants (citalopram, sertraline and 

fluoxetine: liver > brain > plasma and muscle, in rainbow trout; Grabicova et al., 2014; ). In 

general, higher BCF values were observed in the present study (water exposure; Figure 4.1.3.B) 

compared to those previously reported (Lajeunesse et al., 2011; Grabicova et al., 2014). For 

instance, in the recent study of Grabicova et al. (2014) performed on juvenile rainbow trout, the 

BCF values obtained after 13 days of exposure to VFX (330 ng L-1) were below 6 L kg-1 in fish 

muscle, and up to  63 L kg-1 in liver. Similarly, lower VFX BCFs (between 2 and 18 L kg-1) were 

also calculated in brook trout exposed to municipal wastewaters (VFX concentration ~40 ng L-1) 

for a period of 3 months (Lajeunesse et al., 2011). Yet, the BCF obtained following 28 days of 

water exposure suggest that VFX is not bioaccumulative in fish tissues, based on the thresholds 

set by regulatory authorities (i.e. BCF > 1000 L kg-1 ww; EPA, 2012; or BCF > 2000 L kg-1 ww; 
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EU, 2011), and such results are consistent with previous findings (e.g. Lajeunesse et al., 2011; 

Grabicova et al., 2014; Serra-Compte et al., 2018).  On the other hand, considering the different 

experimental conditions among studies, yielding discrepant BCF values, it can be hypothesized 

that the uptake mechanisms of antidepressants, such as VFX, may not only differ according to 

species (including possible differences between fish sizes, gender and other ecological features), 

but also be dependent on the exposure dose and time (e.g. Brooks et al., 2014; Zenker et al., 2014; 

Silva et al., 2016). Given the current lack of empirical data on this matter, further research should 

be carried out particularly considering different exposure concentrations and times, in order to 

better understand the toxicokinetics of these pharmaceuticals in the marine environment. 

When assessing the bioconcentration/bioaccumulation of chemical contaminants, animal size 

and/or lipid content are two aspects that should also be considered, as these variables are often 

correlated with contaminants’ tissue concentrations (Dijstra et al., 2013; Zenker et al., 2014; 

Maulvault et al., 2016). Indeed, the present results revealed that, after 28 days of VFX exposure 

via water, VFX bioconcentration was strongly (and negatively) correlated to animal size (except 

in fish muscle; see Table 4.1.3.), indicating that VFX concentration, in general, tends to decrease 

in fish tissues and plasma as the animal size increases, most likely due to somatic growth dilution 

(Dijstra et al., 2013). On the other hand, the absence of a significant correlation between fish size 

and tissue bioaccumulation in VFX-feed treatments (except in plasma) may be related to the 

exposure dose (i.e. the final concentration in VFX-enriched feed), as well as to the distinct 

bioavailability mechanisms of this compound according to the exposure route (Sanchez and 

Meier, 1997; Brooks et al., 2014; Gray and Hughes, 2015).      

Finally, regarding the elimination phase, the present results showed a very low persistence of 

VFX in the muscle of fish exposed via feed, partially due to the much lower bioaccumulation 

found in this tissue (see Figures 4.1.4.-4.1.5.). Furthermore, low persistence was also observed 

in the liver of VFX-feed fish, which is in agreement with the following facts that liver is a primary 

organ for contaminant metabolization and its subsequent detoxification (Aryal et al., 2012; 

Maulvault et al., 2016, 2017). In contrast, no elimination was observed in fish tissues exposed to 

VFX via water under the reference temperature and pCO2 conditions (see Figures 4.1.2.-4.1.3.). 

Such results were most likely due to the high tissue concentrations reached in this treatment (in 

line with high water exposure concentration), as well as the presence of VFX in seawater during 

the elimination phase of the trial. 

 

4.3. Effects of warming and/or acidification and the link with seafood safety 

Despite the limited information about emerging contaminants in terms of ecotoxicology and 

food safety, recent studies suggest that abiotic variables (e.g. changes in temperature, pH, light 
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and dissolved oxygen) can play a key role on PPCPs’ chemical behaviour, degradation, 

metabolization and toxicity (Farré et al., 2008;  Burke et al., 2014; Qian et al., 2015).  

In general, marine organisms subjected to warmer temperatures exhibit enhanced metabolism, 

accompanied by increased ventilation and feeding rates in response to higher metabolic demands. 

Such changes often translate into a higher uptake of contaminants dissolved in the water column 

(via respiration) or present in feeds or natural preys (via ingestion; e.g. Schiedek et al., 2007; 

Manciocco et al., 2014; Maulvault et al. 2016; Sampaio et al. 2016).  For instance, a recent study 

showed that sotalol and sulfamethoxazole bioconcentration on Mytillus galloprovincialis did 

increase with water warming, but VFX bioconcentration actually decreased in the same warming 

conditions (Serra-Compte et al., 2018). Contrasting this trend, in the present work, warming 

generally resulted in lower VFX tissue uptake (regardless of exposure route), with the exception 

of fish brain from Warm+VFX-feed treatment (see Figures 4.1.2.-4.1.5.).  Such decrease could 

be due to the fact that enhanced metabolic rates at higher temperature can also promote increased 

contaminant elimination rates, i.e. contaminant metabolization and subsequent excretion, thus 

translating in lower contaminant bioaccumulation in fish tissues (Schiedek et al., 2007; 

Manciocco et al., 2014; Maulvault et al. 2016; Sampaio et al. 2016). Noteworthy, the lower VFX 

uptake at higher temperatures (i.e. in the liver of VFX-feed and in brain and liver of VFX-water 

treatments) could also be related to the somatic growth dilution, given the higher W and TL (i.e. 

enhanced growth rates; see Table 4.1.2.) observed in treatments simulating seawater warming 

(e.g. Dijstra et al., 2013; Maulvault et al., 2016; Anacleto et al., 2018).   

Concerning VFX elimination, warming (alone or combined with acidification) led to 

diminished VFX EF in the liver (a primary organ for metabolic breakdown of xenobiotics and 

subsequent transport to other organs and/or excretion) compared to the reference temperature 

conditions (see Figure 4.1.5.B), suggesting that the physiological stress induced by +5 ºC of 

temperature increase not only affected the excretion of VFX in its parental form, but also 

compromised its transformation into different metabolites at the liver. In agreement with this, in 

a previous study on juvenile Dicenthrachus labrax exposed to MeHg, liver’s ability to detoxify 

this pollutant was also compromised under +4 ºC of temperature increase (Maulvault et al., 2016). 

Thus, the physiological and metabolic alterations elicited warming, which resulted in lower 

elimination of VFX (parent compound) in the liver, also reinforced the need to consider, in future 

studies, the effects of the surrounding abiotic conditions when assessing compound 

metabolization mechanisms.  

Seawater acidification has also the potential to directly or indirectly influence marine species’ 

physiology and metabolism, therefore, affecting the way biota cope with the presence of 

contaminants (Freitas et al. 2016; Sampaio et al., 2018). Since most PPCPs are highly ionisable, 

but cell membranes are usually very poorly permeable to charged (ionic) contaminant forms, 
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variations of the surrounding seawater pCO2 levels are likely to influence the uptake and toxicity 

of this group of chemical contaminants (e.g. Orvos et al. 2002; Rowett et al. 2016; Serra-Compte 

et al., 2018). However, in this study VFX was mostly present positively charged under both pH 

8.0 units and pH 7.6 units (VFX dissociation constant (pKa) = 9.6; Singh et al., 2008) and, 

therefore, physical-chemical properties of the compound would not be affected by pH. An 

increment in VFX bioaccumulation in brain and plasma (see Figures 4.1.4.-4.1.5. and Table A.3) 

was observed under lower pH levels (Acid+VFX-feed) compared to the reference pH conditions 

regardless of temperature (VFX-feed and Warm+VFX-feed), although a decrease in liver and 

muscle bioaccumulation was also observed. Thus, physiological alterations induced in fish 

exposed to this treatment may explain the observed variations (e.g. Rosa et al., 2016; Sampaio et 

al., 2016, 2018), as well as the possible damages elicited by hypercapnia in apical epithelial 

membranes of fish tissues, which can then facilitate contaminant penetration into cells (Freitas et 

al., 2016; Sampaio et al., 2016, 2018; Shi et al., 2016; Velez et al., 2016).  

 On the other hand, the altered physiological condition and metabolic activity promoted by 

lower pH levels may also justify the significantly lower VFX elimination in liver compared to 

reference conditions. Contrasting the present findings, Serra-Compte et al. (2018) observed an 

increment in VFX elimination in mussels under acidification conditions. 

As for the combination of warming and acidification, results showed that one abiotic variable 

may: i) enhance the effects of the other, i.e. VFX elimination in liver further decreased in 

Warm+Acid+VFX-feed fish, in relation to Acid+VFX-feed and Warm+VFX-feed; or ii) reverse 

the effects of the other, i.e. higher VFX bioaccumulation was observed in the brain of fish exposed 

via feed (Warm+VFX-feed), yet such increase at higher temperatures was counteracted by 

acidification (i.e. in Warm+Acid+VFX-feed). A recent study performed on marine bivalves 

exposed to a broad range of emerging contaminants also reported increased bioaccumulation of 

dechlorane 602 in treatments simulating warming combined with acidification, compared to 

treatments simulating a single stressor (Maulvault et al., 2018b). In contrast, this study further 

revealed that the effects of warming and acidification acting alone on TBBPA and PFOS 

bioaccumulation were reversed when these stressors were combined. Following this trend, 

Sampaio et al. (2018) reported that reduced pH also countered MeHg increased bioaccumulation 

observed in juvenile meagre A. regius exposed to warming in isolation. In VFX water exposed 

treatments an opposite trend was observed in fish liver, where VFX elimination in 

Warm+Acid+VFX-water  increased when compared to the reference temperature and pCO2 

conditions (Figures 4.1.3.- 4.1.5.). This difference suggests that: i) exposure route may have a 

stronger impact in VFX bioaccumulation and elimination mechanisms than the surrounding 

abiotic conditions; and ii) the different bioaccumulation and elimination patterns observed 

according to the exposure route may actually be dose dependent. 
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Finally, VFX has been detected in commercially important seafood species together with other 

PPCPs, although at relatively low levels (e.g. up to 36.1 ng g-1 dw in bivalve species; Álvarez-

Muñoz et al., 2015; up to 16.4 ng g-1 dw in brown trout, Salmo trutta m. fario Grabicova et al., 

2017). This raises several concerns from the human health perspective, given the potential hazards 

to seafood consumers when ingesting contaminated species. Thus, there is a reinforcement that 

these pollutants should not only be regulated in seafood species, but also be included in regular 

environmental monitoring campaigns. In addition, the risks of PPCP’s human exposure should be 

estimated considering both the present climate conditions and those foreseen for the ocean of 

tomorrow. Even though the results do not point out to increased VFX uptake in fish tissues in a 

climate change context, the trends observed in this study confirmed that seawater abiotic variables 

can have a strong influence on PPCPs’ bioaccumulation and toxicity by impairing biota’s 

mechanisms of contaminant bioaccumulation, metabolization and elimination. Such findings 

highlight that careful attention should be given to the expected effects of climate change when 

establishing maximum permissible limits for emerging environmental contaminants, such as 

PPCPs, in seafood and when defining human exposure recommendations to this group of 

contaminants.  

  

5. Conclusions 

Overall, data confirmed that VFX can be uptaken by fish species through contaminated water 

and diet. Seawater temperature and pCO2 levels can strongly affect VFX uptake and elimination 

in marine organisms, by affecting contaminant physical and chemical properties, as well as animal 

metabolism and physiological responses. In general, warming resulted in increased VFX uptake 

in brain (and plasma), most likely due to the enhanced organisms’ metabolic rates. In parallel, the 

diminished VFX uptake in liver might be attributed to enhanced VFX elimination rates at higher 

temperatures. In contrast, acidification resulted not only in lower VFX uptake in the liver 

compared to the reference pH conditions, but also in diminished elimination in all fish tissues, 

most likely due to the physiological stress induced in fish leading to impaired metabolic rates. 

The results also showed that a stressor may enhance the effects of another (e.g. VFX elimination 

in fish liver was further decreased when warming and acidification acted together), as well as 

reverse it (i.e. the higher VFX uptake in fish brain under warming alone was counteracted by 

acidification). The distinct patterns observed in the different scenarios strengthened the need to 

carry out greater research efforts to understand how multiple environmental stressors in a climate 

change context, such as warming, acidification and pollution, interact with each other, as well as 

how to integrate these variables in future regulations and recommendations regarding both the 

ecological and human health impact.  
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Abstract 

Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected 

in coastal waters and marine biota, and there is a growing body of evidence that these pollutants 

can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change 

effects (e.g. warming and acidification) can also affect marine species’ physiological fitness, 

consequently, compromising their ability to cope with the presence of pollutants. Yet, information 

regarding interactive effects between pollutants and climate change-related stressors is still 

scarce. Within this context, the present study aims to assess the differential ecotoxicological 

responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption 

and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) 

exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔTºC = +5 

ºC) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated 

multi-biomarker response (IBR) approach.  

Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as 

well as by warming and acidification. More significant changes (e.g. increases surpassing 100% 

in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total 

ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred 

via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate 

change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish 

muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. 

vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when 

co-exposed with acidification). Yet, increased stress severity was observed when the three 

stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 

21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the 

relevance of performing multi-stressors ecotoxicological studies, as such approach enables a 

better estimation of the environmental hazards posed by pollutants in a changing ocean and, 

consequently, the development of strategies to mitigate them. 

 

Keywords: venlafaxine, fish, warming, acidification, integrated multi-biomarker response. 
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1. Introduction 

The exhaustive exploitation of natural resources, along with the increasing production and 

release of pollutants into the environment, including the “so called” greenhouse gases (GHG, e.g. 

CO2, CH4, N2O), have contributed to one of the greatest environmental concerns of our time. 

According to the latest report of the Intergovernmental Panel on Climate Change (IPCC, 2014), 

GHG emissions have reached unprecedented levels in the last 50 years, unequivocally causing 

the warming of the planet, with most of the energy produced in the form of heat being stored in 

the ocean (only ~1% of the total energy produced within the climate system is stored in the 

atmosphere). Furthermore, the increasing release of GHG has also resulted in a higher oceanic 

uptake of CO2 (i.e. increased CO2 partial pressure, pCO2, which causes the drop of the average 

seawater pH), therefore, leading to a phenomenon known as “ocean acidification” (IPCC 2014; 

McNeil and Sasse, 2016). Thus, even if efforts are made to keep GHG emissions at today’s rates 

and pollution levels stable in a short/medium term, recent projections indicate that, within a 50 to 

100 years’ timeframe, seawater temperature and pCO2 levels will still increase as high as 5 ºC 

and 1000 µatm, respectively (IPCC 2014; McNeil and Sasse, 2016).  

Climate change-related stressors can have negative impacts on marine species, affecting their 

physiology, metabolism and ecological fitness (e.g. Madeira et al., 2016, Rosa et al., 2014, 2016, 

2017), thus, making them less resilient to the co-exposure with other environmental stressors, 

such as chemical contaminants (Sampaio et al., 2016, 2018; Maulvault et al., 2017; 2018a,b,c, 

Serra-Compte et al., 2018). On the other hand, changes of the surrounding abiotic conditions (e.g. 

temperature and pH) can also affect chemical contaminants’ physical and chemical properties (i.e. 

speciation, transport, transfer among compartments), as well as their uptake, elimination and 

toxicity to marine organisms (e.g. Marques et al., 2010; Maulvault et al., 2016, 2017, 2018a, 

Sampaio et al., 2018; Serra-Compte et al., 2018). Yet, understanding the potential interactions 

between climate change-related stressors and pollution is a topic that only recently raised attention 

within the scientific community and, therefore, further research efforts are urgently required to 

better forecast the ecotoxicological implications of climate change. 

Pharmaceuticals and personal care products (PPCPs) comprise a wide diversity of non-

regulated compounds of emerging concern, including human and veterinary pharmaceuticals, 

cosmetics, preservatives, detergents, among others. These compounds have been frequently 

detected in coastal waters (concentrations ranging from ng L-1 up to mg L-1; e.g. Gaw et al., 2014; 

Arpin-Pont et al., 2016; Rodriguez-Mozaz et al., 2017), as well as in marine biota (e.g. 

Vandermeersch et al., 2015; Rodriguez-Mozaz et al., 2017), promoting several adverse effects in 

non-target organisms (Best et al., 2014; Bisesi Jr. et al., 2014; Bidel et al., 2016; Maulvault et al., 

2018b,c). Despite recent evidence suggested that PPCPs’ bioavailability and toxicity is strongly 

mediated by the surrounding abiotic conditions (e.g. Gul et al., 2015; Rowett et al., 2016; Serra-
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Compte et al., 2018), their ecotoxicological implications to marine organisms under future climate 

conditions are still ununderstood.  

With the aim of better understanding the interactions between PPCPs exposure and abiotic 

variables, we have recently conducted two studies focused on the widely used psychiatric 

pharmaceutical venlafaxine (VFX), using juvenile meagre (Argyrosomus regius) as model 

organism (Maulvault et al., 2018a,b). Both of these studies constituted relevant proofs of concept, 

confirming that the co-exposure to abiotic conditions  not only affected VFX’s bioaccumulation 

and elimination mechanisms in fish species (Maulvault et al., 2018a), but also accentuated the 

behavioural impairments elicited by VFX (Maulvault et al., 2018b). Such findings arose the 

interest for conducting a third study to assess the potential biochemical alterations at tissue/cell 

level induced by exposure to VFX, warming and/or acidification. In this context, the present study 

aimed to investigate the ecotoxicological responses (antioxidant enzymes activities, chaperoning 

and protein degradation, neurotoxicity and endocrine disruption) of juvenile A. regius tissues 

(muscle, gills, liver and brain) after 28 days of co-exposure to VFX (via water, i.e. [VFX ] ~20 

µg L-1, and via feed, i.e. [VFX] ~160 µg kg-1 dry weight, dw), warming (ΔTºC = +5 ºC) and 

acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-

biomarker response (IBR) approach. 

 

2. Materials and Methods 

2.1. Acclimation  

A. regius specimens were reared until the juvenile stage at the aquaculture pilot station of the 

“Portuguese Institute for the Sea and Atmosphere (EPPO-IPMA, Olhão, Portugal)” using routine 

hatchery conditions, and were subsequently transported to the aquatic facilities of “Laboratório 

Maritimo da Guia (MARE-FCUL, Cascais, Portugal)”. Here, fish with similar morphometry 

(total length: 6.8 ± 0.6 cm; total weight 2.6 ± 0.8 g; n = 120) were randomly and equitably 

distributed in 30 rectangular shaped incubating glass tanks (10 treatments x 3 replicate tanks; 

each tank with 50 L of total volume; Figure 4.2.1.) within independent recirculation aquaculture 

systems (RAS). To maintain seawater quality and abiotic parameters at the adequate levels, each 

tank was equipped with: i) protein skimmer (Reef SkimPro, TMC Iberia, Portugal); ii) UV 

disinfection (Vecton 300, TMC Iberia, Portugal); iii) biological filtration (model FSBF 1500, 

TMC Iberia, Portugal); iv) chemical filtration (activated carbon, Fernando Ribeiro Lda, 

Portugal); v) automatic seawater refrigeration systems (± 0.1 °C; Frimar, Fernando Ribeiro Lda, 

Portugal) and submerged digital thermostats (200W, V2Therm, TMCIberia, Portugal) to control 

seawater temperature; and vi) individual pH probes (GHL, Germany) connected to a 

computerized pH control system (± 0.1 pH units; Profilux 3.1N, GHL, Germany) to monitor 

seawater pH in each tank (measures every 2 seconds), and adjust to the adequate levels whenever 
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needed, through the injection of either CO2 (Air Liquide, Portugal; to decrease pH) or CO2-

filtered air (Stella 200 air pumps, Aqua One Pro, Aqua Pacific UK Ltd, United Kingdom; to 

increase pH) via submerged air stones displayed in each tank. As routine procedures, every day, 

fish faeces were cleaned and 25% of seawater total volume was renewed in each tank. Ammonia, 

nitrite and nitrate levels were checked every week using colorimetric tests (Tropic Marin, USA), 

and kept below detectable levels, with the exception of nitrates (i.e. kept below 2.0 mg L-1). 

Furthermore, seawater total alkalinity was measured in every tank on a weekly basis, following 

the protocol  described by Sarazin et al. (1999), and the combination of total alkalinity (AT) and 

pH was used to calculate carbonate system parameters  (average values obtained for each 

treatment can be consulted in Annex 6, Table A.6.1.). 

Before beginning the trial, fish were acclimated for a period of 30 days, under the following 

abiotic conditions: i) dissolved oxygen (DO) > 5 mg L-1; ii) temperature (T ⁰C) = 19.0 ± 0.5 °C; 

iii) pH = 8.00 ± 0.10 units; iv) salinity = 35 ± 1 ‰; and v) photoperiod = 12 hours light:12 hours 

darkness. Temperature, pH, salinity and DO were checked daily using a multi-parameter 

measuring instrument (Multi 3420 SET G, WTW, Germany). During acclimation, fish from all 

treatments were fed ~2% of their body weight (bw) with a non-contaminated fish diet, i.e. with 

CTR feed (VFX concentration in CTR feed < 0.30 ng g-1, i.e. < the limit of detection, LOD, of 

the methodology used to determine VFX concentrations in feed samples; Gros et al., 2012; 

Maulvault et al., 2018a). Details regarding feeds preparation and VFX determination were 

previously presented in Maulvault et al. (2018a,b). Moreover, feeds nutritional composition is 

available in Annex 6, Table A.6.2. No mortality was observed during the acclimation period 

(nor during the trial). 

 

2.2. Experimental setup  

The experimental setup used to expose fish to VFX (via diet or water), warming and 

acidification was similar to the ones previously described by Maulvault et al. (2018a,b). Briefly, 

the following experimental conditions (acting in isolation or combined) were simulated: i) either 

the absence of VFX contamination (i.e. non-contaminated treatments) or exposure to this 

pollutant through two different pathways (VFX uptake from water via inhalation, i.e. VFX-water 

treatments, or VFX uptake from diet via ingestion, i.e. VFX-feed treatments); and ii) either the 

temperature and pCO2 conditions normally used in juvenile meagre rearing conditions in 

Southern Europe (i.e. 19 ºC and ~500 µatm pCO2, equivalent to 8.0 pH units) or the projected 

seawater warming (i.e. Warm treatments; ΔTºC = +5 ºC) and acidification (i.e. Acid treatments; 

ΔpCO2 ~+1000 µatm, equivalent to ΔpH = -0.4 units).  
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Figure 4.2.1. Experimental setup. Abbreviations: CTR – reference temperature and pH 
conditions (i.e. T = 19 ºC and pH = 8.0 units); VFX-feed – VFX exposure via feed; VFX-water – 
VFX exposure via water; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated 
warming (i.e. T = 24 ºC). 

 

To simulate VFX feed exposure, a VFX-enriched diet (with the same nutritional composition 

as CTR feed; see Annex 6, Table A.6.1.) was prepared by top-coating fish CTR feed pellets 

with a VFX hydrochloride stock solution (C17H27NO2·HCl, >98%, Sigma-Aldrich; solubilized 

in deionized water; detailed description of VFX-enriched feed preparation presented in 

Maulvault et al., 2018a,b). VFX final concentration in VFX-enriched feed was 161.7 ± 17.1 µg 

kg-1 dry weight (dw). To simulate VFX water exposure, a VFX hydrochloride stock solution was 

also prepared to daily spike each tank, achieving a final VFX concentration of 20.2 ± 3.8 µg L-

1 in each tank (in a steady state). The criteria followed to select such concentrations, as well as 

data regarding the stability assessment of VFX concentrations in both feed and seawater 

throughout the trial are shown in Maulvault et al. (2018a,b). 

To simulate seawater warming and acidification, one week before initiating the trial, seawater 

temperature and pH were gradually adjusted (+1 ºC and -0.1 pH unit per day), until reaching 24 

ºC and ~1500 µatm pCO2 (equivalent to pH = 7.6 units) in tanks simulating climate change 

conditions (Figure 4.2.1.), according to the projections of the Intergovernmental Panel for 

Climate Change (scenario RCP8.5; IPCC, 2014), as well as considering the intervals of future 

CO2 amplification scenarios described by McNeil and Sasse (2016). Due to experimental 

limitations, only VFX dietary exposure was selected to investigate all possible interactions 
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between stressors, in a full cross-factorial design (i.e. Warm+VFX-feed, Acid+VFX-feed and 

Warm+Acid+VFX-feed treatments; the criteria used to prioritize VFX-feed exposure, over 

VFX-water exposure, was previously described in Maulvault et al., 2018a,b). Nevertheless, the 

effect of warming and acidification acting together (i.e. the worst-case scenario) was assessed 

in treatments simulating both VFX exposure routes (i.e. seawater and dietary exposures; 

Acid+Warm+VFX-water and Acid+Warm+VFX-feed; Figure 4.2.1.). 

In summary, ten treatments were carried out (n = 4 animals per replicate tank, i.e. 12 fish per 

treatment; the experimental setup is shown in Figure 4.2.1.) during 28 days of trial, i.e. 4 non-

contaminated treatments in which fish were exposed to the corresponding temperature and pCO2 

conditions while being daily fed (2% bw) with CTR feed (CTR, Acid, Warm and Acid+Warm 

treatments), 4 treatments simulating VFX dietary exposure, in which fish were exposed to the 

corresponding temperature and pCO2 conditions while being daily fed (2% bw) with VFX-

enriched feed (VFX-feed, Acid+VFX-feed, Warm+VFX-feed and Acid+Warm+VFX-feed 

treatments), and 2 treatments simulating VFX water exposure, in which fish were exposed to 

seawater daily spiked with a VFX stock solution, as well as to the corresponding temperature 

and pCO2 conditions, while being daily fed (2% bw) with CTR feed.  

 

2.3. Samples collection  

After 28 days of trial, 6 fish were randomly collected from each treatment (i.e. 2 fish collected 

from each of the 3 replicate tanks that composed each treatment), euthanized by immersion in 

an overdosed MS222 solution (2000 mg L-1; Sigma-Aldrich, USA) buffered with sodium 

bicarbonate (1 g of NaHCO3 to 1 g of MS222 in 1 L of seawater) for 10 min. Euthanized fish 

were dissected and fish muscle, gills, liver and brain tissues were collected. Each tissue 

(approximately 100 mg of muscle, gills and liver, and about 40 mg of brain) was individually 

homogenized in ice-cold conditions with 1.0 mL of phosphate buffered saline (PBS; 140 mM 

NaCl, 3mM KCl, 10 mM KH2PO4, pH = 7.40 ± 0.02; reagents from Sigma-Aldrich, Germany), 

using an Ultra-Turrax® device (T25 digital, Ika, Germany). Crude homogenates were 

centrifuged in 1.5 mL microtubes for 15 minutes at 10.000 g and 4 ºC. Supernatants were then 

transferred to new microtubes, immediately frozen and kept at -80 ºC until further analyses. 

 

2.4. Integrated ecotoxicological response of A. regius 

To assess fish tissue responses to VFX, warming and acidification exposure, eight 

ecotoxicological biomarkers (of exposure and/or effect) were selected, each corresponding to 

distinct biological endpoints: 
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i) Antioxidant defences – catalase activity [CAT; spectrophotometric enzymatic assay 

adapted from Johansson and Borg (1988)], superoxide dismutase activity [SOD; 

spectrophotometric enzymatic assay adapted from Sun et al. (1988)] and glutathione S-

transferases activity [GST; spectrophotometric enzymatic assay adapted from Habig et 

al. (1974)]; 

ii) Cellular damage – Lipid peroxidation [(LPO); measured as the total malondialdehyde 

(MDA) content through the thiobarbituric acid test, adapted from Uchiyama and Mihara 

(1978)]; 

iii)  Protein chaperoning / Heat shock response – HSP70/HSC70 content [determined through 

an enzyme-linked immunosorbent assay (ELISA), based on the methodology described 

by Njemini et al. (2005)]; 

iv) Protein degradation / DNA repair – Ubiquitin content [Ub; determined through the ELISA 

methodology, as described by Madeira et al. (2014)]; 

v) Reproduction / Endocrine disruption – Vitellogenin liver content [VTG; determined 

through the ELISA methodology based on the methodology described by Denslow et al. 

(1999)]; 

vi) Neurotoxicity – Acetylcholinesterase activity [AChE; spectrophotometric enzymatic 

assay adapted from Ellman et al. (1961)]. 

 

These biochemical biomarkers have been widely employed in ecotoxicological studies, being 

considered as reliable and suitable to assess the effects of xenobiotics exposure, including 

antidepressants (e.g. Fong and Ford, 2014; Rodrigues et al., 2014; Ding et al., 2017), as well as 

of climate change-related effects (e.g. Rosa et al., 2016; Maulvault et al., 2017, 2018c; Sampaio 

et al., 2018). To normalize the results of each biomarker (i.e. results expressed in mg of protein), 

total protein levels were also quantified in each sample according to the Bradford assay (Bradford, 

1976). Furthermore, to facilitate data consultation and interpretation, biomarker results are 

presented throughout as U mg-1 protein, with the exception of SOD for which values were 

presented as % of inhibition (all biomarker units can be consulted in Annex 6, Methodologies). 

All biomarker assays were carried out using reagents of pro analysis grade or higher, as well as 

96-well microplates from Nunc-Roskilde (Denmark) and a microplate reader (Multiskan Go 

1510, ThermoFisher Scientific, USA). Further details regarding the methodologies used to 

determine tissue ecotoxicological responses are available in Annex 6, Methodologies. Each 

sample was analysed in triplicate. 

In order to integrate the various ecotoxicological responses, the integrated multi-biomarker 

response (IBR) was calculated for each treatment and tissue, according to the methodology 

proposed by Beliaeff and Burgeot (2002), later modified by Guerlet et al. (2010). Further details 

regarding the IBRs calculations are presented in Annex 6, Methodologies. As IBR compares 
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biomarker responses of organisms exposed to stressors with those of animals under control 

conditions, in general, lower biomarker scores (and, thus, lower IBR index values) indicate a 

better health status (higher animal fitness), whereas higher scores usually indicate that organisms 

are in a poorer physiological condition (i.e. stressed; e.g. Ferreira et al., 2015; Madeira et al., 

2016, 2018; Maulvault et al., 2018c). To compare A. regius physiological state from a whole 

organism perspective, the average IBR value for each treatment (using values from all tissues) 

was also calculated (Madeira et al., 2016). Star plots and IBR calculations were performed using 

Microsoft Excel software. 

 

2.5. Statistical analyses 

As standard procedure, data were first tested for normality and homoscedasticity through 

Kolmogorov–Smirnov and Levene tests, respectively. Data were log or square-rooted 

transformed, whenever at least one of these assumptions was not verified. To evaluate the 

presence of significant differences between treatments in biomarker levels, nested factorial 

ANOVAs were carried out, using replicate tank as nesting factor, and tissue (brain, liver and 

muscle) and/or treatment as variables. Moreover, to determine the existence of significant 

differences in IBRs between treatments (all tissues combined), a simple one-way ANOVA 

analysis was performed instead. After performing the ANOVA analyses, post-hoc Tukey HSD 

tests were conducted to identify significant differences. Statistical analyses were performed at a 

significance level of 0.050, using STATISTICATM software (Version 7.0, StatSoft Inc., USA). 

 

3. Results 

3.1. Biomarker tissue levels 

Tissue biomarker responses in A. regius exposed to the different treatments are shown in 

Figures 4.2.2.-4.2.4. (biomarker values, i.e. activity/concentration, in CTR treatment can also be 

consulted in Annex 6, Table A.6.3.). Diminished CAT activity was generally observed in the 

muscle of fish exposed to VFX (regardless of exposure route), acidification and/or warming in 

relation to CTR treatment (i.e. decreases ranging from 31% in Acid and Warm treatments up to 

68% in Acid+Warm+VFX-water treatment; p < 0.050), with the exception of VFX-water and 

Acid+Warm+VFX-feed treatments in which no significant changes were observed (p > 0.050; 

Figure 4.2.2.A and Table 4.2.1.). In contrast, CAT activity was significantly enhanced by VFX 

exposure in fish liver (i.e. VFX-feed and VFX-water treatments) and by warming in brain, 

regardless of pCO2 conditions and VFX exposure (i.e. CAT activity Warm, Warm+VFX-feed, 

Acid+Warm, Acid+Warm+VFX-feed and Acid+Warm+VFX-water treatments; p < 0.050; 

Figures 4.2.2.C,D and Table 4.2.1.). As for fish gills, only VFX-feed and  Acid+Warm+VFX-
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water treatments significantly affected CAT activity in this tissue, the first treatment inhibiting 

this enzyme’s activity (52% decrease; p < 0.050), and the second enhancing it (56%; p < 0.050; 

Figure 4.2.2.B and Table 4.2.1.). In general, all stressors diminished SOD activity at least in one 

tissue, yet, such effect was particularly notorious in Acid+Warm+VFX-water treatment, as all 

studied tissues showed significantly higher inhibition compared to CTR treatment (maximum 

SOD inhibition obtained in fish brain, corresponding to 21% decrease in relation to CTR 

treatment; p < 0.050; Figures 4.2.2.E-H and Table 4.2.1.). Except for acidification alone, all 

stressors significantly increased GST activity in fish muscle, with the highest value being found 

in treatments simulating VFX water exposure (i.e. >100 increase in VFX-water and 

Acid+Warm+VFX-water treatments; p < 0.050; Figure 4.2.2.I and Table 4.2.1.). Similarly, GST 

brain activity was also significantly enhanced by warming alone or combined with the other two 

stressors (though the highest value was found in Warm treatment, corresponding to an increase 

of >100% in relation to CTR treatment; p < 0.050), as well as by the combination of acidification 

plus VFX via feed (i.e. 93% increase in Acid+VFX-feed treatment in relation to CTR treatment; 

p < 0.050; Figure 4.2.2.L and Table 4.2.1.). In contrast, a significant inhibition of this enzyme’s 

activity was observed in the liver of fish from VFX-water (60%), Acid (63%), Acid+VFX-feed 

(36%), Warm (26%) and Acid+Warm (57%) treatments (p < 0.050; Figure 4.2.2.K and Table 

4.2.1.). All stressors (with the exception of VFX-feed exposure alone) and their interactions 

significantly increased total MDA concentrations compared to CTR treatment, with tissue LPO 

being particularly significant in fish gills and brain regardless of treatment (i.e. MDA gill content 

increased ~100% in all treatments, with the exception of VFX-feed treatment; p < 0.050; Figures 

4.2.2.M-P and Table 4.2.1.). Noteworthy, the highest LPO value was found in fish gills from 

Acid+Warm+VFX-feed treatment (i.e. 0.062 ± 0.003 U mg proteín-1), corresponding to an 

average increase of 345% in relation to CTR treatment (Figure 4.2.2.N and Table 4.2.1.).
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 Figure 4.2.2. Antioxidant enzymes activity (GST, U mg-1 protein; CAT, U mg-1 protein; SOD, % inhibition) and lipid peroxidation (LPO, U mg-1 protein) in muscle (A, E, I, 
M), gills (B, F, J; N), liver (C, G, K; O) and brain (D, H, L, P) in A. regius (average ± standard deviation; n = 6) after 28 days of exposure to the different experimental conditions. 
Asterisk indicate significant differences between CTR and the remaining treatments (p < 0.05).  
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 Figure 4.2.2. (continuation) Antioxidant enzymes activity (GST, U mg-1 protein; CAT, U mg-1 protein; SOD, % inhibition) and lipid peroxidation (LPO, U mg-1 protein) in 
muscle (A, E, I, M), gills (B, F, J; N), liver (C, G, K; O) and brain (D, H, L, P) in A. regius (average ± standard deviation; n = 6) after 28 days of exposure to the different 
experimental conditions. Asterisk indicate significant differences between CTR and the remaining treatments (p < 0.05). Abbreviations: CTR – reference temperature and pH 
conditions (i.e. T = 19 ºC and pH = 8.0 units); VFX-feed – VFX exposure via feed; VFX-water – VFX exposure via water; Acid – simulated acidification (i.e. pH = 7.6 units); 
Warm – simulated warming (i.e. T = 24 ºC). 
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Table 4.2.1. Percentages of change (%) induced by VFX (via feed or water) exposure, acidification and warming in relation to the CTR treatment, as well as, 
statistical comparisons (Tukey HSD test) between CTR and the other treatments (i.e. p-values; n = 6 individuals analysed per treatment). “↑” before the value 
indicates a significant increase compared to values found in CTR treatment, whereas “↓“indicates a significant decrease (p < 0.05).  

 

    CAT SOD GST LPO  HSP70/HSC70 Ub VTG AChE 
    % p-value % p-value % p-value % p-value % p-value % p-value % p-value % p-value 

VFX-Feed 

Muscle ↓39.8 0.024 NS >0.050 ↑87.3 <0.001 NS >0.050 NS >0.050 ↑51.8 <0.001 -   - - 

Gills  ↓52.1 0.040 ↓7.3 <0.001 NS >0.050 NS >0.050 NS >0.050 NS >0.050 -   - - 
Liver ↑108.3 <0.001 NS >0.050 NS >0.050 NS >0.050 NS >0.050 ↑148.8 0.001 ↑122.1 <0.001 - - 
Brain NS >0.050 NS >0.050 NS >0.050 NS >0.050 ↑334.1 <0.001 NS >0.050 -   ↑37.2 0.004 

VFX-water 

Muscle NS >0.050 ↓9.3 0.011 ↑146.1 <0.001 ↑90.3 0.008 NS >0.050 NS >0.050 -   - - 
Gills NS >0.050 ↓6.8 <0.001 NS >0.050 ↑99.5 0.003 ↑145.3 <0.001 ↑115.6 0.001 -   - - 
Liver ↑25.0 0.032 NS >0.050 ↓59.8 <0.001 ↑47.6 0.032 ↑36.5 0.020 ↑202.4 <0.001 NS >0.050 - - 
Brain NS >0.050 NS >0.050 NS >0.050 ↑169.9 0.006 ↑627.6 <0.001 ↑253.6 0.008 -   NS >0.050 

Acid 

Muscle ↓31.8 0.033 NS >0.050 NS >0.050 NS >0.050 NS >0.050 NS >0.050 -   - - 
Gills NS >0.050 ↓6.1 0.003 ↑62.1 <0.001 ↑11.6 0.002 NS >0.050 ↑180.0 <0.001 -   - - 
Liver NS >0.050 NS >0.050 ↓63.2 <0.001 NS >0.050 ↑140.0 <0.001 ↑144.3 0.001 ↓57.3 0.004 - - 
Brain NS >0.050 NS >0.050 NS >0.050 NS >0.050 ↑268.5 <0.001 ↑104.8 0.035 -   ↑39.7 0.002 

Acid+VFX-

feed 

Muscle ↓53.2 0.001 NS >0.050 ↑83.6 <0.001 ↑264.2 <0.001 NS >0.050 ↑46.5 0.003 -   - - 
Gills NS >0.050 ↓5.8 0.005 NS >0.050 ↑207.5 <0.001 NS >0.050 NS >0.050 -   - - 
Liver NS >0.050 NS >0.050 ↓35.8 0.005 ↑49.3 0.023 NS >0.050 NS >0.050 NS >0.050 - - 
Brain NS >0.050 NS >0.050 ↑93.3 <0.001 ↑179.6 0.003 ↑391.9 <0.001 ↑104.0 0.028 -   ↑89.9 <0.001 

Warm 

Muscle ↓31.4 0.042 ↓12.5 0.004 ↑88.3 <0.001 NS >0.050 ↑35.9 0.026 ↑76.3 <0.001 -   - - 
Gills NS >0.050 ↓6.4 0.002 NS >0.050 ↑107.1 0.002 NS >0.050 NS >0.050 -   - - 
Liver NS >0.050 NS >0.050 NS >0.050 NS >0.050 ↑81.4 <0.001 ↑101.8 0.011 ↑46.6 0.021 - - 
Brain ↑73.4 0.001 ↓21.0 <0.001 ↑169.6 <0.001 ↑73.8 <0.001 ↑203.6 0.013 NS >0.050 -   ↑168.3 <0.001 

Warm+VFX-

feed 

Muscle ↓42.8 0.011 NS >0.050 ↑108.1 <0.001 NS >0.050 NS >0.050 NS >0.050 -   - - 
Gills NS >0.050 ↓7.8 <0.001 ↑72.4 <0.001 ↑224.9 <0.001 NS >0.050 NS >0.050 -   - - 
Liver NS >0.050 NS >0.050 NS >0.050 NS >0.050 ↓48.2 <0.001 NS >0.050 ↑122.0 <0.001 - - 
Brain ↑69.2 0.001 NS >0.050 ↑76.5 <0.001 ↑130.3 0.005 ↑358.6 <0.001 NS >0.050 -   ↑75.7 <0.001 

Acid+Warm 

Muscle ↓47.1 0.004 ↓10.8 0.019 ↑88.6 <0.001 ↑77.1 0.029 NS >0.050 ↑33.6 0.025 -   - - 
Gills NS >0.050 ↓6.6 <0.001 NS >0.050 ↑236.3 0.001 ↓46.2 0.033 NS >0.050 -   - - 
Liver NS >0.050 NS >0.050 ↓56.7 <0.001 NS >0.050 ↑70.7 <0.001 ↑108.0 0.023 NS >0.050 - - 
Brain ↑51.2 0.036 ↓17.2 0.004 ↑64.6 <0.001 ↑144.6 0.031 ↑138.2 <0.001 NS >0.050 -   ↑172.9 <0.001 
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Table 4.2.1. (continuation) Percentages of change (%) induced by VFX (via feed or water) exposure, acidification and warming in relation to the CTR 
treatment, as well as, statistical comparisons (Tukey HSD test) between CTR and the other treatments (i.e. p-values; n = 6 individuals analysed per treatment). 
“↑” before the value indicates a significant increase compared to values found in CTR treatment, whereas “↓“indicates a significant decrease (p < 0.05). 
Abbreviations: CAT – catalase activity; SOD – superoxide dismutase activity; GST – glutathione S-transferase activity; LPO - lipid peroxidation measured as 
the MDA concentration; HSP70/HSC70 - heat shock proteins concentration; Ub - total ubiquitin concentration; VTG – vitellogenin concentration; AChE – 
acetylcholinesterase activity; NS – No significant alteration (p > 0.05) compared to the CTR treatment; VFX-feed – VFX exposure via feed; VFX-water – 
VFX exposure via water; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC).  

    CAT SOD GST LPO  HSP70/HSC70  Ub VTG AChE 

    % p-value % p-value % p-value % p-value % p-value % p-value % p-value % p-value 

Acid+Warm+VFX-

feed 

Muscle NS >0.050 NS >0.050 ↑118.5 <0.001 ↑236.6 <0.001 NS >0.050 NS >0.050 -   - - 

Gills NS >0.050 ↓5.8 0.005 NS >0.050 ↑343.9 <0.001 NS >0.050 NS >0.050 -   - - 

Liver NS >0.050 NS >0.050 NS >0.050 NS >0.050 ↓70.5 <0.001 ↑127.2 0.004 NS >0.050 - - 

Brain ↑62.6 0.004 NS >0.050 ↑46.0 0.011 ↑125.4 <0.001 ↑706.1 <0.001 NS >0.050 -   ↑67.7 <0.001 

Acid+Warm+VFX-

water 

Muscle ↓67.7 <0.001 ↓7.3 0.016 ↑149.9 <0.001 ↑154.0 <0.001 ↑46.2 0.015 ↓35.4 0.049 -   - - 

Gills ↑55.7 0.022 ↓6.4 0.001 NS >0.050 ↑257.4 <0.001 ↑>100 <0.001 NS >0.050 -   - - 

Liver NS >0.050 ↓18.5 0.006 NS >0.050 NS >0.050 ↓24.0 0.026 NS >0.050 ↓53.6 0.023 - - 

Brain ↑136 <0.001 ↓21.2 <0.001 ↑98.3 <0.001 ↑245.9 <0.001 ↑246.1 0.001 NS >0.050 -   ↑159.0 <0.001 
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HSP70HSC70 and Ub contents are presented in Figure 4.2.3. Protein chaperoning and 

degradation was overall induced by the exposure to the three stressors (alone or combined), with 

the brain of fish from Acid+Warm+VFX-feed treatment revealing the highest HSP70/HSC70 

content (i.e. 5.16 ± 0.92 µg mg proteín-1, i.e. 706% increase in relation to CTR; Figures 4.2.3.A-

D and Table 4.2.1.), whereas higher Ub contents were found when stressors acted individually 

(muscle: 0.26 ± 0.01 µg mg proteín-1 in Warm treatment, i.e. 76% increase; gills: 0.21 ± 0.05 µg 

mg proteín-1 in Acid treatment, i.e. 180% increase; liver and brain: 0.23 ± 0.05 µg mg proteín-1  

and 0.12 ± 0.06 µg mg proteín-1, respectively, i.e. 202% and 254% increases, respectively, both 

in VFX-water treatment; p < 0.050; Figures 4.2.3.E-H and Table 4.2.1.). Noteworthy, in fish 

muscle, HSP70/HSC70 synthesis was only significantly induced in Warm (36% increase; p < 

0.050) and Acid+Warm+VFX-water (46% increase; p < 0.050) treatments (Figures 4.2.3.A-D 

and Table 4.2.1.). Yet, some exceptions were also observed, i.e. significant HSP70/HSC70 

synthesis inhibition was observed when warming was combined with acidification (i.e. 46% 

reduction in gills from Acid+Warm treatment) and/or VFX via feed or water (i.e. 48%, 71% and 

24% reduction in liver from Warm+VFX-feed, Acid+Warm+VFX-feed and Acid+Warm+VFX-

water, respectively; p < 0.050; Figures 4.2.3.A-D and Table 4.2.1.). Moreover, Ub synthesis was 

also impaired in fish muscle Acid+Warm+VFX-water treatment (i.e. 35% reduction in VFX 

relation to CTR treatment; p < 0.050; Figure 4.2.3.E and Table 4.2.1.).
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Figure 4.2.3. Heat shock proteins (HSP70/HSC70; A-D) and total ubiquitin (Ub; E-H) 
concentrations (U mg-1 protein; average ± standard deviation; n = 6) in muscle (A, E), gills (B, 
F), liver (C, G) and brain (D, H) in A. regius after 28 days of exposure to the different experimental 
conditions. Asterisk indicate significant differences between CTR and the remaining treatments 
(p < 0.05). Abbreviations: CTR – reference temperature and pH conditions (i.e. T = 19 ºC and pH 
= 8.0 units); VFX-feed – VFX exposure via feed; VFX-water – VFX exposure via water; Acid – 
simulated acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 

 

VTG liver content and AChE brain activity are shown in Figure 4.2.4. VTG contents in the 

liver of A. regius were significantly increased by warming and VFX exposure via feed acting 

alone or combined (i.e. 47% increase in Warm treatment and 122% increase in VFX-feed and 

Warm+VFX-feed treatments in relation to CTR treatment; p < 0.050), whereas acidification alone 

or combined with warming and VFX via water significantly inhibited the production of this 

protein (i.e. 57% and 54% in Acid and Acid+Warm+VFX-water treatments, respectively, in 

relation to CTR treatment; p < 0.050; Figure 4.2.4.A and Table 4.2.1.). All treatments 

significantly enhanced AChE activity in the brain, apart from VFX-water treatment, though it is 
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worth mentioning that warming alone or combined with acidification and/or VFX-water exposure 

yielded the highest enzyme activity (i.e. 168%, 173% and 159% increases in Warm, Acid+Warm 

and Acid+Warm+VFX-water treatments, respectively; Figure 4.2.4.B and Table 4.2.1.). 

 

Figure 4.2.4. Vitellogenin liver concentration (VTG; A) and acetylcholinesterase brain 
activity (AChE, B) in A. regius (U mg-1 protein; average ± standard deviation; n = 6) after 28 days 
of exposure to the different experimental conditions. Asterisk indicate significant differences 
between CTR and the remaining treatments (p < 0.05). Abbreviations: CTR – reference 
temperature and pH conditions (i.e. T = 19 ºC and pH = 8.0 units); VFX-feed – VFX exposure 
via feed; VFX-water – VFX exposure via water; Acid – simulated acidification (i.e. pH = 7.6 
units); Warm – simulated warming (i.e. T = 24 ºC). 

 
3.2. Integrated biomarker responses (IBRs) 

IBR index values for each tissue and treatment and the corresponding starplots are shown in 

Figure 4.2.5. (individual scores of each biomarker in the different fish tissues and treatments can 

also be consulted shown in Annex 6, Table A.6.4.). In general, CTR samples presented lower 

biomarker scores than those obtained in the remaining treatments (differing in ≥ 0.5 units) and, 

thus, lower total IBR indexes were always found in this treatment (with the exception of muscle 

from Acid treatment, which revealed a value similar to CTR samples), regardless of tissue (Figure 

4.2.5. and Annex 6, Table A.6.4.). Differences between CTR and the other treatments were 

further confirmed through the One-Way ANOVA analysis combining the total IBR index of all 

tissues (One-way ANOVA results: MS = 85.47; F = 5.98 and p < 0.001; Figure 4.2.5.A).
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Figure 4.2.5. IBR index values for each tissue/treatment (A) and star plots of biomarker scores in the different fish tissues (muscle: B – E; gills: F– I; liver: 
J-M; brain: N – Q). Different symbols (# or *) indicate significant differences between the mean IBR of each treatment (i.e. average IBR value of the 4 tissues 
analysed; p < 0.05).  
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Figure 4.2.5. (continuation) IBR index values for each tissue/treatment (A) and star plots of biomarker scores in the different fish tissues (muscle: B – E; 
gills: F– I; liver: J-M; brain: N – Q). Different symbols (# or *) indicate significant differences between the mean IBR of each treatment (i.e. average IBR value 
of the 4 tissues analysed; p < 0.05). 
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Figure 4.2.5. (continuation)  IBR index values for each tissue/treatment (A) and star plots of biomarker scores in the different fish tissues (muscle: B – E; 
gills: F– I; liver: J-M; brain: N – Q). Different symbols (# or *) indicate significant differences between the mean IBR of each treatment (i.e. average IBR value 
of the 4 tissues analysed; p < 0.05). Abbreviations: CAT – catalase activity; SOD – superoxide dismutase activity; GST – glutathione S-transferase activity; LPO 
- lipid peroxidation, measured as MDA concentration; HSP70/HSC70 - heat shock proteins concentration; Ub - total ubiquitin concentration; VTG – vitellogenin 
concentration; AChE – acetylcholinesterase activity; CTR – reference temperature and pH conditions (i.e. T = 19 ºC and pH = 8.0 units); VFX-feed – VFX 
exposure via feed; VFX-water – VFX exposure via water; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 
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In contrast, no significant differences among tissues (all treatments combined) were observed 

(One-way ANOVA results: MS = 27.75; F = 0.69 and p = 0.563; Figure 4.2.5.A). 

Looking at the variations according to exposure route, VFX-feed treatment revealed slightly 

higher total IBR index values than VFX-water treatment in fish muscle (i.e. 16 against 15, 

respectively) and liver (i.e. 22 against 19, respectively), whereas the opposite trend was observed 

in the brain (i.e. 11 against 20, respectively; Figure 4.2.5.A). In fish gills, similar values were 

yielded by the two VFX exposure routes (i.e. around 21; Figure 4.2.5.A). Combining the 

responses of all tissues, higher mean IBR index value was obtained in VFX-water treatment (i.e. 

19) compared to VFX-feed treatment (i.e. 17; Figure 4.2.5.A). 

Regarding the effect of abiotic stressors (acidification and warming acting separately), in fish 

muscle, acidification acting alone yielded the lowest IBR value (i.e. IBR = 6), while similar values 

were found in Acid+VFX-feed, Warm and Warm+VFX-feed treatments (i.e. IBRs around 15; 

Figure 4.2.5.A). In contrast, fish exposed to warming alone presented not only a lower IBR value 

in fish liver (i.e. IBR = 15) compared to the ones obtained in Acid, Acid+VFX-feed and 

Warm+VFX-feed treatments (i.e. IBRs = 18, 18 and 21, respectively), but also the highest IBR in 

the brain (i.e. IBR = 24; Figure 4.2.5.A). Interestingly, gills of non-contaminated fish exposed to 

acidification or warming showed higher IBR index values than those co-exposed to VFX via feed 

(i.e. 18.6 in Acid treatment against and 10.3 in Acid+VFX-feed treatment, and 13.7 in Warm 

treatment against and 9.8 in Warm+VFX-feed treatment; Figure 4.2.5.A). As for the combination 

of acidification plus warming, higher IBR index values were always obtained when VFX 

exposure was also added to the equation, i.e. Acid+Warm treatment always present lower IBR 

index values (mean IBR = 13) than Acid+Warm+VFX-water and Acid+Warm+VFX-feed 

treatments (Figure 4.2.2.). Moreover, Acid+Warm+VFX-water treatment also revealed higher 

values than Acid+Warm+VFX-feed treatment with the exception of fish muscle (i.e. 19), 

therefore yielding the highest mean IBR index out of all treatments (i.e. mean IBR all tissues 

combined = 21; Figure 4.2.5.A).  

Concerning the contribution of each analysed biomarker to the total IBR index value, 

differential patterns were observed according to tissue and treatment (Figures 4.2.5.B-Q and 

Annex 6, Table A.6.4.). Starting with the CTR treatment, the most responsive biomarker was 

SOD (i.e. SOD scores within the four highest values in all tissues) followed, in this order, by CAT 

(in muscle, gills and brain), GST (in gills and liver) and LPO (in liver and brain). Conversely, 

lower scores were always attributed to HSP70/HSC70, VTG and AChE (Figures 4.2.5.B-Q and 

Annex 6, Table A.6.4.).  

As for treatments simulating the exposure to stressors, SOD also consistently presented high 

scores, as did CAT in fish gills (except in Acid and Acid+VFX-feed, in which the IBR index 

value was overruled by GST instead) and LPO in the brain (Figures 4.2.5.B-Q and Annex 6, 
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Table A.6.4.). In general, Ub and VTG provided important contributions to the total IBR indexes 

in the muscle and liver of fish exposed to acidification and/or VFX via feed (i.e. VFX-feed, Acid 

and Acid+VFX-feed treatments; (Figures 4.2.5.B-Q and Annex 6, Table A.6.4.). In addition, 

these two biomarkers also played an important role in the liver of fish from Warm+VFX-feed and 

Acid+Warm+VFX-water treatments (Figures 4.2.5.B-Q and Annex 6, Table A.6.4.). On the 

other hand, fish muscle (except in Warm+VFX-feed and Acid+Warm+VFX-feed treatments) and 

liver (all treatments) exposed to warmer seawater temperatures usually exhibited high scores of 

HSP70/HSC70, regardless of pCO2 levels (Figures 4.2.5.B-Q and Annex 6, Table A.6.4.). 

Finally, it is also worth mentioning that fish brain also denoted important contributions of AChE 

in Acid+Warm and Acid+Warm+VFX-water treatments, but not in Acid+Warm+VFX-feed 

treatment, in which higher scores were rather attributed to HSP70/HSC70 (Figures 4.2.5.B-Q 

and Annex 6, Table A.6.4.).   

 

4. Discussion 

4.1. Differential biomarker responses to VFX exposure route 

Studies assessing the effects of exposure route on contaminants’ uptake and toxicity to marine 

biota are still scarce and, so far, to the best of our knowledge, most studies on the ecotoxicological 

implications of antidepressants have only focused on water exposure (e.g. Brooks et al., 2014; 

Fong and Ford, 2014; Chen et al., 2018; Pan et al., 2018). Although PPCPs are, in general, 

assumed to be mostly uptaken from water by marine biota, our previous study with A. regius 

constituted a proof of concept that, indeed, dietary exposure can substantially contribute to the 

total contaminant body burden in fish, even if to a lower extent compared to water exposure, with 

fish liver being the primary organ for VFX bioaccumulation, regardless of exposure route 

(Maulvault et al., 2018a). Here, we provide relevant and innovative data that point out that: i) 

distinct tissue biochemical responses (i.e. no effects or up/down-regulations) are triggered when 

different pathways of antidepressants’ exposure take place (i.e. water and diet); and ii) such 

differential tissue responses are not necessarily linked to the corresponding VFX tissue burdens 

elicited by the two VFX exposure routes (i.e. higher VFX tissue concentrations elicited by water 

exposure; Maulvault et al., 2018a); in fact, it seems that the exposure pathway influenced VFX 

toxicity, as well as tissue susceptibility to this compound.  

Fish antioxidant mechanisms were altered by both VFX exposure routes, namely through the 

enhancement of CAT (in the liver) and GST (in the muscle) activities, a mechanism that is 

frequently activated to overcome the excessive formation of reactive oxygen species (ROS) 

induced by the exposure to stressors. On the other hand, muscle and gills showed diminished CAT 

activity (under VFX-feed exposure), as well as SOD activity (under both exposure routes). Such 

inhibition is likely associated with the fact that the antioxidant machinery was unable to 
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compensate for an excessive production of substrate (i.e. superoxide radicals are converted into 

H2O2 by SOD, and then CAT converts H2O2 into H2O and O2) induced by VFX exposure 

(Gonzalez-Rey and Bebianno, 2014; Maulvault et al., 2018c). GST activity inhibition in the liver 

of fish exposed to VFX via water, but not in those exposed via feed, might also be related with 

the higher VFX concentration elicited by VFX water exposure (i.e. ~6810 µg kg-1 in VFX-water 

treatment against ~150 µg kg-1 in VFX-feed treatment; values previously reported in Maulvault 

et al., 2018a), which could have exhausted liver’s mechanisms of xenobiotic detoxification, 

through a decreased formation of reduced glutathione (i.e. lower substrate to be used by GST; 

Gonzalez-Rey and Bebianno, 2011). Furthermore, such impairment of VFX’s detoxification in 

fish liver may justify the increased formation of lipid peroxides (i.e. increased MDA 

concentration) found in all fish tissues from VFX-water treatment. Hence, results suggest that 

tissue antioxidant defences were able to prevent to some extent the oxidative stress induced by 

VFX exposure via feed, but not by VFX exposure via water, promoting cell damage in fish 

subjected to this treatment. In accordance with our findings, previous studies on aquatic species 

exposed to antidepressants via water reported not only increased CAT and GST activities (in 

Dreissena polymorpha; Magni et al., 2016; Danio rerio and Carassius auratus; Pan et al., 2018), 

but also diminished SOD (in Daphnia magna; Ding et al., 2017) and GST (in the liver of 

Pseudorasbora parva; Chen et al., 2018) activities, both being accompanied by increased LPO 

(Ding et al., 2017; Chen et al., 2018). For instance, Chen et al. (2018) reported decreased CAT 

and GST activities alongside with increased LPO after long-term exposure to a high concentration 

of fluoxetine (200 µg L-1). Yet, in this same study, a different pattern was observed under the 

lowest fluoxetine concentration (i.e. 50 µg L-1), i.e. CAT activity increased after short-term 

exposure, but not in a long-term, while GST was not significantly affected (regardless of exposure 

duration; Chen et al., 2018). Hence, such concentration- and time-dependency in antidepressants 

mode of action may explain the differential effects elicited by the two pathways of VFX exposure 

in the present study.  

The increased HSP70/HSC70 and Ub contents in fish exposed to VFX through both exposure 

routes is in agreement with the fact that the synthesis of these proteins is usually induced by the 

exposure to pollutants (e.g. Gravel and Vijayan, 2007; Horst et al., 2007; Ajima et al., 2018; 

Maulvault et al., 2018c), in order to prevent irreversible DNA damage, as the first mediates the 

repairing, refolding and elimination of damaged proteins (Sottile and Nadin, 2018), while the 

second is responsible for inactivating and tagging damaged proteins that are to be degraded by 

the proteasome (Jackson and Durocher, 2013). Yet, results suggest that VFX water exposure 

promoted cellular damage to a much higher extent compared to VFX feed exposure, given the 

substantial HSP70/HSC70 and Ub contents increase observed in fish gills, liver and brain from 

VFX-water treatment. 
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In opposition, VFX exposure via feed had a clear effect on AChE brain activity and VTG liver 

content (i.e. both increased), while no significant effects were elicited by VFX water exposure, 

despite the much higher VFX tissue concentrations observed in these tissues under VFX-water 

exposure (Maulvault et al., 2018a). The currently available literature has revealed some 

controversy in what concerns the effects of antidepressants on AChE activity in aquatic species, 

with some studies reporting its inhibition (e.g. Munari et al., 2014; Ding et al., 2017; Yang et al., 

2018), and others describing an induction (e.g. Gonzalez-Rey and Bebianno, 2013; Rodrigues et 

al., 2014; Xie et al., 2015; Chen et al., 2018; Pan et al., 2018). Several authors have previously 

argued that antidepressants act on AChE in a time- (Gonzalez-Rey and Bebianno, 2013; Ding et 

al., 2017; Pan et al., 2018) and concentration-dependent (Munari et al., 2014; Rodrigues et al., 

2014; Yang et al., 2018) manner, therefore, justifying the differential effects on AChE brain 

activity induced by the two VFX exposures routes simulated in our study. For instance, Munari 

et al. (2014) reported AChE activity inhibition in clams (Venerupis philippinarum) exposed to 1 

and 5 µg L-1 of fluoxetine, but not in clams exposed to 25, 125 and 625 µg L-1. Conversely, crab 

specimens Carcinus maenas exposed to sertraline-contaminated seawater exhibited an up-

regulation of AChE activity (in muscle) under a low compound concentration (0.05 µg L-1) and, 

concomitantly, a down-regulation under a high concentration (5 µg L-1; Rodrigues et al., 2014). 

In the present study, the increased AChE activity elicited by VFX-feed exposure (acting alone) 

can have three potential justifications: i) VFX-feed exposure could have promoted brain cell 

apoptosis, causing the release of AChE from brain cells (Zhang et al., 2002; Gonzalez-Rey and 

Bebianno, 2013, 2014); ii) similar to what has been reported for human subjects, exposure to 

stressful conditions can increase the synthesis of AChE splicing variants (e.g. AChE-R; Lionetto 

et al., 2013); and iii) as previously reported for other antidepressants [e.g. increased VTG1 gene 

expression in brain and gonads of Danio rerio following the exposure to mianserin (van der Ven 

et al., 2006); inhibition VTG-like proteins (measured indirectly as alkali-labile phosphates 

measurement in Mytillus galloprovincialis exposed to fluoxetine (Gonzalez-Rey and Bebianno, 

2014)], VFX (at the tissue and plasma concentrations elicited by feed exposure) might have had 

an estrogenic effect through the disturbance of the hypothalamo–pituitary–gonadal (HPG) axis, 

causing increased estrogen and VTG-like protein levels which, in turn, modulated the cholinergic 

system, including AChE activity (van der Ven et al., 2006; Gonzalez-Rey and Bebianno, 2014; 

Oliveira et al., 2015). The second and/or third hypothesises seem more plausible, since increased 

brain cell apoptosis would also presume increased LPO and altered chaperone and ubiquitin 

contents, which was not the case in VFX-feed treatment. Moreover, the third argument also 

matches the induction of VTG synthesis observed in the liver of VFX-feed exposed fish. Yet, 

further research on fish neuroendocrine responses to antidepressants (particularly, studies 

assessing AChE splicing forms, neurotransmitters, as well as sexual and thyroid hormone levels) 

are required in the future to confirm these hypothesises. 
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4.2.  Interactive effects of warming and acidification 

Overall, results evidenced that both warming and acidification strongly influenced fish coping 

mechanisms to the presence of antidepressants, resulting in either an enhancement of tissue 

ecotoxicological responses or in their attenuation/reversion. Such differential tissue responses are 

likely related to the fact that each tissue has distinct physiology, functioning and baseline levels 

of biochemical biomarkers, as they are composed by different cell types, and, therefore, may also 

respond differently to the interactive effects of environmental stressors. 

Seawater warming and acidification have the potential to directly or indirectly influence 

marine species physiology, metabolism and overall fitness (Rosa et al., 2014, 2016, 2017; 

Madeira et al., 2016, 2018). Though many organisms have evolved to cope with daily or seasonal 

abiotic variations, their thresholds of physiological tolerance can be surpassed when the co-

exposure to multiple stressors occurs at the same time (including exposure to pollutants), thus, 

compromising their fitness and ecological success (e.g. Rosa et al., 2016; Maulvault et al., 2017, 

2018c; Sampaio et al., 2018). In this way, the additional physiological stress promoted by the co-

exposure of VFX with abiotic stressors triggered cells antioxidant machinery (e.g. CAT in gills 

of fish exposed to VFX via water; CAT and SOD in brain of fish exposed to both VFX exposure 

routes, GST in muscle and brain of fish exposed to both VFX exposure routes). Although research 

on the interactive effects of climate change-related stressors is still in its infancy and, therefore, 

the available literature is limited, recent studies on marine biota have also reported a significant 

increase of CAT, SOD and GST activities when pollutants are co-exposed with higher 

temperatures and/or pCO2 levels (e.g. Freitas et al., 2016; Maulvault et al., 2017, 2018c; Sampaio 

et al., 2018). Such enhancement occurs as a way to compensate the elevated formation of ROS, 

due to an intensive mitochondrial respiration along with diminished fish aerobic scope (and 

deprived oxygen supply to the different tissues; Heise et al., 2006; Pörtner and Peck, 2010). 

Nevertheless, cells’ defences against low oxygen supplies and oxidative stress are time-dependent 

(Pörtner, 2002; Heise et al., 2006; Madeira et al., 2016, 2018), two different strategies may 

simultaneously take place under chronic stress conditions (such as the ones simulated in the 

present study, i.e. 28 days of exposure trial): i) after a certain period of acclimation, an organism 

may reach a state of internal homeostasis which enables to withstand stress and return to baseline 

levels (Madeira et al., 2018), i.e. not evidencing significant biomarker changes in relation to CTR, 

as occurred with CAT and SOD liver activities (all treatments, except Acid+Warm+VFX-water); 

or ii) when stress conditions are too severe and acclimation is no longer possible, animal 

metabolism can become depressed (and, consequently, protein synthesis is disturbed), translating 

into an inhibition of these enzymes’ activities (Sokolova, 2013; Ferreira et al., 2015; Madeira et 

al., 2016; Maulvault et al., 2018c), e.g. as observed in CAT muscle activity (all treatments, except 

Acid+Warm+VFX-feed) and GST liver activity (in treatments simulating acidification, except 



CHAPTER 4. 

195 

when the three stressors were combined). Moreover, an attenuation (or even reversion) of tissue 

responses could also be observed, in some cases, when the co-exposure to different stressors 

occurred (e.g. SOD activity in fish muscle was inhibited by increased temperature acting 

individually, but such inhibition was lowered by the co-exposure to acidification, whereas the co-

exposure to VFX-feed did not induce significant alterations in relation to CTR treatment, 

regardless of pCO2 levels). Similarly, in an earlier study using seabass (Dicentrachus labrax), 

diclofenac dietary exposure significantly decreased CAT activity (80% inhibition in relation to 

the control treatment), yet such inhibition was attenuated by the co-exposure to warming (63% 

inhibition) and/or acidification (57% inhibition;  Maulvault et al., 2018c). The significant increase 

of LPO in all treatments (with the exception of VFX-feed) in relation to relation to CTR treatment 

indicated that, despite tissues’ antioxidant defences were activated to some point (and extent), cell 

damage or even apoptosis occurred after 28 days of exposure to the studied stressors (particularly 

to acidification). Noteworthy, such tissue damage was particularly evident in fish gills (i.e. high 

concentrations of MDA in all treatments), and that could be related to the fact that gills are one 

of the most aerobic fish tissues (being responsible for fish breathing) and, therefore, are expected 

to be particularly sensitive to reduced oxygen levels caused by an impaired animal aerobic scope. 

As previously mentioned, stressful environmental conditions can trigger the synthesis of 

molecular chaperones, such as HSP70/HSC70, as a way to repair reversible protein damage that 

antioxidant scavengers alone are not able to prevent (Madeira et al., 2017; Sottile and Nadin, 

2018). Subsequently, when irreversible protein anomalies occur (i.e. molecular chaperoning 

mechanisms no longer can repair the cellular damage), the ubiquitin-proteosomal pathway is also 

initiated to signal and eliminate such proteins (Jackson and Durocher, 2013; Madeira et al., 2017). 

Yet, since protein synthesis is an extremely demanding process from the energetic point of view 

(requiring over 50% of an organism’s total oxygen supply), both mechanisms of chaperoning and 

ubiquitination can be impaired when organisms fall into physiological collapse due to severe or 

long-lasting stress conditions (Hofmann and Somero, 1995; Gravel and Vijayan, 2007; Araújo et 

al., 2018; Maulvault et al., 2018c). Based on this background knowledge, the present results 

suggest that, overall, increased temperatures (i.e. Warm, Warm+VFX-feed, Acid+Warm, 

Acid+Warm+VFX-feed and Acid+Warm+VFX-water treatments) promoted reversible cellular 

damaged in fish brain, which was withstood by the induction of HSP70/HSC70. Although the 

diminished HSP70/HSC70 and unchanged Ub contents in fish liver from Warm+VFX-feed and 

Acid+Warm+VFX-feed treatments could indicate, at a first glance, impaired cellular responses 

(Araújo et al., 2018), the trends of antioxidant enzymes and LPO in these treatments indicate that 

the physiological state of fish liver was favoured by warming, possibly due to an enhanced animal 

metabolism (and, thus, enzymatic activity and protein synthesis) which could have counteracted 

the negative effects of VFX feed exposure and/or acidification. In contrast, the simultaneously 

co-exposure to VFX via water, acidification and warming seemed to have caused severe 
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impairments in tissues’ protective mechanisms, as revealed by the increased chaperone synthesis 

in fish muscle, gills and brain, together with the inhibition of these proteins in the liver and of Ub 

in the muscle. Such depressed physiological stated could be likely attributed to the higher VFX 

tissue burdens elicited by VFX water exposure (in relation to VFX feed exposure, regardless of 

abiotic stressors; Maulvault et al., 2018a), which deteriorated fish aerobic scope and impaired 

protein synthesis (Falfushynska et al., 2014; Madeira et al., 2017). 

Seawater abiotic conditions, such as temperature and pH, play a key role on fish reproduction, 

determining the success of oocyte maturation, ovulation and spawning (e.g. Brown et al., 2006; 

Arantes et al., 2011; Milazzo et al., 2016). In line with this, both climate change-related stressors 

affected A. regius neuroendocrine response regardless of VFX exposure, with warming being 

responsible for an induction of VTG production and AChE activity, whereas acidification not 

only inhibited VTG synthesis but also increased AChE activity, though to lower extent compared 

to warming. This overstimulation of fish neuroendocrine responses in treatments simulating 

warming (regardless of VFX exposure) is in accordance with previous findings on the effects of 

temperature and chemical pollutants (endocrine disrupting compounds; Chandra et al., 2012; 

Maulvault et al., 2018c; Shappell et al., 2018). For instance, Chandra et al. (2012) reported 

increased VTG1 mRNA gene expression in Fundulus heteroclitus male specimens exposed to the 

combination of 17α-ethynylestradiol and increased seawater temperature (26 ºC). As 

hypothesized by these authors, such enhancement is certainly related to the exacerbation of fish 

metabolic rates (and, consequently, enzyme activities) at warmer temperatures. Yet, it should be 

noted that drastic temperature variations (i.e. outside species’ physiological thresholds) have also 

been associated with inhibitory reproductive effects in teleost species (Pankhurst and Munday, 

2011; Miranda et al., 2013). Therefore, the present results suggest that, despite the elicited 

changes, a temperature increase of +5 ºC may still fall within the reproductive thermal window 

of A. regius.  The present results are also consistent with the trends observed in our previous 

studies with D. labrax (Maulvault et al., 2018c) and Diplodus sargus (Maulvault et al., 2018d), 

as increased pCO2 levels evidenced an anti-estrogenic effect (i.e. VTG inhibition) and cholinergic 

modulation, possibly due to a disturbance of brain ionic homeostasis which, in turn, impaired 

neurotransmission and hormone synthesis (Pankhurst and Munday, 2011; Nilsson et al., 2012; 

Kwong et al., 2014; Heuer et al., 2016). Yet, such effects seemed to have been attenuated by 

warming and, to a lower extent, by VFX feed exposure, but not by VFX water exposure, once 

again, pointing out differential tissue responses to VFX exposure route. Since, so far, research on 

the reproductive effects of acidification (as well as warming) has been mostly focused on sensory 

and behavioural aspects (e.g. Nilsson et al., 2012; Munday et al., 2014; Maulvault et al., 2018b), 

further studies in this direction are still required to better understand the biochemical processes 

involved in fish neuroendocrine responses to climate change-related stressors. 
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4.3. Using IBRs to estimate the overall fish fitness  

To fully understand the effects of environmental stressors can become a challenging task, 

especially, when different tissues with distinct sensitivity and biomarker responses are analysed, 

as well as when multiple stressors interact with each other. Hence, IBRs constitute an innovative 

and practical tool that enables a qualitative assessment of the overall fitness of organisms, as well 

as comparisons among different stressors according to their magnitude of severity (e.g. Kamel et 

al., 2014; Ferreira et al., 2015; Madeira et al., 2016, 2018; Maulvault et al., 2018c). The use of 

this tool also evidences the sensitivity of each biomarker and tissue to respond to a specific 

stressor (Madeira et al., 2016, 2018; Maulvault et al., 2018c).  

Starting with biomarkers’ sensitivity to the studied stressors, the fact that SOD and LPO 

consistently yielded high scores, regardless of tissue and treatment, pointed out to a lack of 

specificity when responding to the three studied stressors acting individually or to their 

interactions. Conversely, in accordance with previous findings (Madeira et al., 2016, 2018), 

HSP70/HSC70 content proved to be a sensitive biomarker of thermal stress (in fish muscle, liver 

and brain), despite its induction was reduced or even inhibited by the co-exposure to VFX or 

acidification. Even though no previous IBR studies specifically focusing on the effects of 

acidification and antidepressants exposure were found, the present data showed an overall good 

reactivity of Ub and liver VTG content to acidification, thus, confirming the cytotoxic and anti-

estrogenic potential of increased pCO2 levels (Maulvault et al., 2018c). 

Using IBRs to compare stressors severity, as far as the effect of VFX exposure route is 

concerned, results evidenced that fish muscle, gills and liver were more susceptible to VFX 

exposure via feed (i.e. higher IBR) than to VFX water exposure, and such susceptibility was 

mostly attributed to the remarkable changes induced by this exposure pathway in CAT activity, 

as well as in Ub and VTG contents. Yet, the remarkable increase in LPO, protein chaperoning 

and degradation in fish exposed to VFX via water resulted in a much higher degree of stress in 

fish brain (i.e. higher IBR). The substantial increase of these biomarkers’ scores also translated 

into a poorer physiological state of water exposed fish (i.e. higher average IBR index, combining 

the integrated responses of all tissues) compared to those exposed via feed, a result that is in line 

with the differential VFX tissue concentrations elicited by both exposure routes (values 

previously reported in Maulvault et al., 2018a).  

Regarding the interactive effects of climate change-related stressors, regardless of the 

remarkable effects on Ub and VTG liver contents, IBR results revealed that acidification had an 

overall negative impact on fish gills (promoting severe cell damage, according to the increased 

LPO and Ub contents), but its effects were less evident in the remaining tissues compared to those 

promoted by warming and/or VFX exposure. In contrast, warming alone proved to be particularly 

harmful to fish brain. This can be attributed to the enhanced tissue metabolic rates (i.e. increased 
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CAT, GST and AChE activities and HSP70/HSC70 content) together with increased LPO. The 

comparatively lower IBR in fish brain from Warm+VFX-feed treatment was mainly due to the 

fact that VFX feed exposure attenuated biomarker changes induced by warming. The co-exposure 

to the three stressors (i.e. Acid+Warm+VFX-feed and Acid+Warm+VFX-water treatments) 

resulted, overall, in higher IBR index values, regardless of the lower VFX tissue concentrations 

elicited by these treatments (values presented in Maulvault et al., 2018a). These results reveal 

that, indeed, temperature and pCO2 levels have a determinant role in fish fitness, especially when 

both abiotic stressors are combined. In line with these findings, the co-exposure to pollutants and 

abiotic stressors has been previously described to result in comparatively higher IBR values, 

leading to a poorer animal physiological state (Serafim et al., 2012; Kamel et al., 2014; Ács et al., 

2016; Maulvault et al., 2018c). As occurred under normal temperature and pCO2 conditions, IBR 

data also highlighted that a higher magnitude of stress was inferred when VFX exposure occurred 

via water (i.e. higher tissue IBR in Acid+Warm+VFX-water treatment compared to 

Acid+Warm+VFX-feed treatment, except in fish muscle). 

As a final remark, it is also worth noting that the good responsiveness of AChE brain activity 

in fish co-exposed to the three stressors matched A. regius decreased exploratory behaviour and 

shoal cohesion observed in our earlier study (Maulvault et al., 2018b), pointing out severe 

neurological impairments, most likely linked to disrupted neurotransmission and/or brain cells’ 

death. 

 

5. Conclusions 

In this study, we show in a comprehensive way that VFX toxicological attributes to marine 

fish species are strongly influenced by the uptake pathway, as well as by the surrounding abiotic 

conditions. Furthermore, our results highlighted the importance of analyzing multiple tissue 

responses as to have a broader view of fish ecotoxicological responses, since each tissue is 

structurally and functionally distinct and, therefore, can respond differently to the presence of 

environmental stressors. As evidenced by our data, the differential tissue responses to stressors 

can translate into either an enhancement of biomarker levels (e.g. increase in CAT activity, LPO, 

Ub and VTG liver contents due to VFX exposure) or an inhibition (e.g. decreased CAT and SOD 

activities in muscle and gills, respectively, due to VFX exposure, warming or acidification). In 

addition, when multiple stressors interact with each other, such effects can be either exacerbated 

(e.g. CAT activity in fish muscle further decreased by the combination of VFX with acidification 

or warming) or attenuated/counteracted (GST activity in the liver was inhibited by acidification 

or warming, but such inhibition was attenuated by VFX feed exposure). 

By integrating all tissue biomarker responses, it became evident that the physiological stress 

induced by VFX water exposure was more severe (i.e. higher mean IBR index value) compared 
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to VFX feed exposure, regardless of seawater temperature and pCO2 levels. As for the interactive 

effects of abiotic stressors, while warming was generally associated to a poorer fish physiological 

state, the negative impact of acidification was only clearly evident in fish gills. Finally, the 

combination of the three stressors corresponded to the most severe stress scenarios (particularly, 

following VFX water exposure), overall yielding higher IBR index values than treatments 

simulating stressors acting alone or the interaction of two stressors. Hence, the present results 

emphasize the importance of conducting multi-stressor ecotoxicological assessments to enable a 

deeper understanding of the consequences of climate change, as well as to develop region-specific 

mitigation strategies, since environmental stressors will rarely occur in isolation and their 

ecological impacts will not be felt in the same way across the planet. 
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Abstract 

Antidepressants, such as venlafaxine (VFX), which are considered emerging environmental 

pollutants, are increasingly more present in the marine environment, and recent evidence suggest 

that they might have adverse effects on fish behaviour. Furthermore, altered environmental 

conditions associated to climate change (e.g. warming and acidification) can also have a 

determinant role on fish behaviour, fitness and survival. Yet, the underlying interactions between 

these environmental stressors (pharmaceuticals exposure and climate change) are still far from 

being fully understood. The aim of this study was to assess behavioural responses (in juvenile 

meagre (Argyrosomus regius) exposed to VFX via water ([VFX] ~20 µg L-1) and via dietary 

sources ([VFX] ~160 µg kg-1 dry weight), as well as to increased temperature (ΔTºC = +5 ºC) and 

high CO2 levels (Δ pCO2 ~1000 µatm; equivalent to ΔpH = -0.4 units). Overall, VFX 

bioaccumulation in fish plasma was enhanced under the combination of warming and 

acidification. VFX triggered fish exploration, whereas fish activity and shoal cohesion were 

reduced. Acidification alone decreased fish exploration and shoal cohesion, and reversed fish 

preference to turn leftwards compared to control conditions. Such alterations were further 

enhanced by VFX exposure. The combination of warming and acidification also reduced shoal 

cohesion and loss of lateralization, regardless of VFX exposure. The distinct behaviour observed 

when VFX contamination, acidification and warming acted alone or in combination highlighted 

the need to consider the likely interactive effects of seawater warming and acidification in future 

research regarding the toxicological aspects of chemical contaminants. 

 

Keywords: Fish behaviour, antidepressants, venlafaxine, ocean warming, ocean acidification. 
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1. Introduction 

Pharmaceuticals and personal care products (PPCPs) have become a great environmental 

concern, since they are a group of compounds intensively and continuously used, and their 

presence in both the environment and biota is currently not regulated. Domestic, hospital and 

industrial effluents, agriculture and aquaculture activities are the main sources of PPCPs’ 

contamination in marine environments (Gros et al., 2012), and their elimination through 

conventional wastewater treatments is chemically dependent and only partial (e.g. 50% of 

maximum removal for venlafaxine, lidocaine and tramadol; Rúa-Gómez and Püttmann, 2012).  

Given their ability to easily cross biological membranes, and high specificity and effectiveness to 

target cells and tissues, PPCPs can be toxic to non-target organisms, even at very low 

concentrations (e.g. Mehinto et al., 2010; Schmidt et al., 2011). Such impacts may be more 

deleterious when long-term or chronic exposure occurs, particularly in early life stages that are 

known to possess lower capabilities to metabolize such contaminants (Richardson and Ternes, 

2011). Nevertheless, the ecological impacts of PPCP exposure still require a better understanding, 

as  most available studies do not consider chronic (but sub-lethal) exposures (Dulawa et al., 2004), 

and are focused on bioconcentration rates (i.e. contaminants exposure via water), while other 

exposure routes, such as trophic transfer (i.e. dietary exposure) have deserved very little attention, 

despite they can be particularly important in predatory fish species that have long life cycles and 

are able to reach relatively high body dimensions  (Dijstra et al., 2013; Brooks et al., 2014; Zenker 

et al., 2014; Maulvault et al., 2016). Furthermore, very few studies consider the effect of other 

stressors, such as climate change (e.g. warming, acidification), which can affect PPCPs’ 

bioavailability (Brooks, 2014).  

Within pharmaceuticals of human use, venlafaxine (VFX) is frequently detected in the aquatic 

environment (e.g. around 50 ng L-1 in seawater samples and up to 580 ng L-1 in wastewater 

influent; Gos et al., 2012), often reaching higher concentrations than other well-known psychiatric 

drugs, such as fluoxetine or carbamazepine (Gros et al. 2012; Fong and Ford, 2014). VFX acts as 

a behaviour modulator by blocking the presynaptic reuptake of serotonin and norepinephrine 

(Serotonin-norepinephrine reuptake inhibitor; SNRI).  This results in increased serotonin and 

norephinephrine in the synapse, which then is available to bind to postsynaptic receptors and 

cause increased downstream effects (Thaler et al., 2012).  From the evolutionary perspective, 

vertebrate species have many preserved neurotransmitter systems and receptors, which is why 

many antidepressants that act on humans have similar effects on fish (e.g. Valenti et al., 2012; 

Bisesi Jr. et al., 2014).  However, studies on antidepressants and fish are limited and detailed 

toxicological information is required to better understand the effects of these compounds as 

wastewater pollutants (Brodin, et al., 2013; Hamilton et al., 2017).  Empirical data establishing 

toxicological and behavioural similarities (or distinctions) between humans, primates and other 
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vertebrate organisms, such as fish, exposed to antidepressants are important in two ways: i) to 

investigate fish species’ potential as in vivo experimental models that complement the data 

provided by mammalian models in neurotoxicological studies, since laboratory studies using 

humans and primates are often difficult, time consuming, costly and underlie many ethical issues; 

and ii) to assess possible ecological implications and cascading effects to marine biota due to the 

environmental contamination related to human pharmaceuticals. Over the last decades, different 

tests have been developed and validated to assess distinct behavioural cues in fish species, such 

as animal anxiety (e.g. novel tank diving test; Bencan et al., 2009; Sackerman et al., 2010; 

Reyhanian et al., 2011; Stewart et al., 2012) and social interactions (e.g. the shoaling test; Moretz 

et al., 2007; Reyhanian et al., 2011). Moreover, during the last two decades, fish lateralization has 

been one of the main research areas in fish behavioural studies (e.g. Bisazza and Brown, 2011; 

Bibost and Brown, 2013; Sampaio et al., 2016), because: i) it is intrinsically involved in habitat 

exploration, synchronized and polarized group swimming (schooling), as well as in fish loose 

group aggregation (shoaling), thus contributing to enhance foraging and predator escape (e.g. 

Bisazza and Dadda, 2005; Bibost and Brown, 2013); ii) recent evidence suggest that lateralization 

is an ecological strategy required to meet the contemporary ecological and social demands  

involved in the processes of natural selection (e.g. Bisazza and Dadda, 2005; Bisazza et al., 2000; 

Bisazza and Brown, 2011; Bibost and Brown, 2013). 

One third of the anthropogenically-originated carbon dioxide (CO2) has been absorbed by the 

oceans, which has led to a 0.1 unit drop in seawater pH from the pre-industrial to the present days 

(IPCC, 2014). Carbon dioxide concentrations have risen to concentrations now exceeding 400 

ppm (NOAA, 2017), and are expected to reach ~900 ppm by the end of the 21st century (Pörtner 

et al. 2014). These consequent changes in seawater chemistry are underpinned by a net increase 

of hydrogen (H⁺) and bicarbonate (HCO3¯ ) ions and decrease in carbonate ions (CO3
2¯ ), a process 

known as ocean acidification (Caldeira and Wickett, 2004). By 2100, in a “business-as-usual” 

scenario, the continuous CO2 uptake is expected to elicit a further 0.13-0.42 pH drop (IPCC 2014). 

Concomitantly, excessive greenhouse gas emissions (which are responsible for heat absorption 

and reemission) are also expected to promote a surface seawater temperature increase as high as 

+4.8 ºC (IPCC, 2014).Given the susceptibility of marine organisms to environmental variations, 

which can affect their physiological status and behaviour (e.g. Anacleto et al., 2014; Sampaio et 

al., 2016; Rosa et al. 2017), warming and acidification are two of the main challenges that species 

will have to face in a changing ocean (IPCC, 2014). By interfering with seawater physical and 

chemical properties, climate change can also affect the availability of chemical contaminants in 

marine ecosystems, their transfer among environmental compartments and their toxicity to biota 

(Marques et al., 2010; IPCC, 2014). Yet, it is still unclear how species will cope with the presence 

of chemical contaminants in climate change scenarios. Since behaviour plays a major role in an 
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organism’s ecological fitness and survival, potential changes induced by chemical contaminants 

and climate change, as well as the combination of both stressors may lead to substantial 

consequences at populational and ecosystem levels. 

Within this context, the present study aimed to assess VFX bioaccumulation (fish plasma) and 

the respective behavioural responses (anxiety, swimming activity, shoaling and lateralization) in 

juvenile meagre (Argyrosomus regius), when accounting for the effects of: a) VFX exposure route 

(via water, i.e. [VFX] ~20 µg L-1, and via dietary sources, i.e. [VFX] ~160 µg kg-1, dw); b) abiotic 

stressors, namely warming (ΔTºC = +5 ºC) and acidification (Δ pCO2 ~1000 µatm; ΔpH = -0.4 

units). Juvenile A. regius was selected as biological model because it is a predatory fish species 

that typically inhabits estuaries and coastal areas, thus being susceptible to accumulate high levels 

of chemical contaminants (FAO, 2017). Furthermore, the fact that it is also a commercially 

valuable species also emphasizes the relevance of using this species in ecotoxicological and 

behavioural studies, as changes to the behavioural patterns can potentially affect juvenile 

recruitment and species ecological success, therefore, affecting both fisheries and aquaculture 

sectors in an adverse way.  

 

2. Materials and Methods 

2.1. Feeds (CTR and VFX-enriched) and VFX stock solutions 

Non-contaminated feed (control, CTR feed) and VFX contaminated feed (VFX-enriched feed) 

with the same nutritional composition were manufactured by the company SPAROS Lda (Olhão, 

Portugal). Detailed feed composition can be consulted in Annex 7, Table A.7.1. Briefly, a control 

diet (CTR feed) was formulated to mimic a commercial fishmeal-rich formulation for juvenile 

marine fish with 48% crude protein and 18% crude fat. All powder ingredients were grinded (< 

200 micron) in a micropulverizer hammer mill (Hosokawa Micron, SH1, The Netherlands). 

Ingredients and fish oil were then mixed accordingly to the target formulation in a paddle mixer 

(Mainca RM90, Spain), and the feed mixture was further humidified with 25% deionized water 

at room temperature. The diet was extruded at 2.0 mm by means of a low-shear extruder (P55, 

Italplast, Italy). Upon extrusion, the feed pellets were dried in a vibrating fluid bed dryer (model 

DR100, TGC Extrusion, France). A 10 kg batch of CTR feed was subsequently contaminated 

with VFX (VFX-enriched feed). Given the current lack of background information, and to assure 

that behavioural changes were elicited during the timeline of the trials, a VFX nominal 

concentration of approximately 160 µg kg-1 on a dry weight basis (dw) was selected, which 

corresponds to ~4 times the values commonly found in species inhabiting contaminated coastal 

areas, susceptible to accumulate this contaminant, and that are natural preys of juvenile meagre 

(Álvarez-Muñoz et al., 2015).  To prepare the VFX-enriched feed, venlafaxine hydrochloride 

(C17H27NO2·HCl, >98%, CAS Number 99300-78-4, Sigma-Aldrich) previously solubilized in 
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ethanol, was further diluted in deionized water (total volume of 100 mL), and this solution was 

top-coated to the pellets with a pressurized spraying container (standard flat-fan nozzle; size 250 

micron; pressure 6 bar). Despite the top-coating process followed leads to the total volatilization 

of organic solvents (and, therefore, ethanol is not expected to be present in the experimental 

feeds), equivalent amounts of ethanol were also added to the Control feed to rule out the 

possibility of occurring any solvent carrier toxicity through feed. 

To perform VFX exposure via water (i.e. in VFX-water treatment), a stock solution of VFX 

was prepared to daily spike seawater during the 28 days of exposure, by dissolving venlafaxine 

hydrochloride (C17H27NO2·HCl, >98%, CAS Number 99300-78-4, Sigma-Aldrich) with 

deionized water (total volume of 500 mL), in order to achieve a nominal VFX concentration of 

20 µg L-1 in each incubating tank. Such VFX nominal concentration was mostly based on the 

order of magnitude of the lowest VFX concentration previously reported to cause significant 

behavioural effects in fish following short-term VFX exposure (50 µg L-1; Bisesi Jr et al., 2014).  

 

2.2. Fish rearing and acclimation  

A. regius specimens (n = 135) with similar biometric characteristics were reared until juvenile 

stage (total length: 6.8 ± 0.6 cm; weight 2.6 ± 0.8 g; Table 4.3.1.) at the aquaculture pilot station 

of the Portuguese Institute for the Sea and Atmosphere (EPPO-IPMA, Olhão, Portugal) using 

routine hatchery conditions. Subsequently, fish were transported to the aquatic facilities of 

Laboratório Maritimo da Guia (MARE-FCUL, Cascais, Portugal), where they were randomly and 

equitably distributed in 27 rectangular shaped incubating glass tanks (3 replicates x 9 treatments 

= 27 tanks in total; treatments randomly assigned to each tank/replicate; Figure 4.3.1.; see the 

description of each treatment in sections 2.3.1. and 2.3.2.), within independent recirculation 

aquaculture systems (RAS), each having 50 L of total volume capacity. Each of the 27 tanks had 

independent functioning, being equipped with protein skimmer (Reef SkimPro, TMC Iberia, 

Portugal), UV disinfection (Vecton 300, TMC Iberia, Portugal), biological filtration (model FSBF 

1500, TMC Iberia, Portugal) and chemical filtration (activated carbon, Fernando Ribeiro Lda, 

Portugal) to maintain seawater quality. Furthermore, each tank had independent temperature and 

pH control, and these parameters were adjusted whenever needed by means of: i) temperature - 

an automatic seawater refrigeration system (± 0.1 °C; Frimar, Fernando Ribeiro Lda, Portugal), 

as well as submerged digital thermostats (200W, V2Therm, TMCIberia, Portugal); ii) pH - 

individual pH probes (GHL, Germany) connected to a computerized pH control system (± 0.1 pH 

units; scale: pH 0.0-14.0 units; Profilux 3.1N, GHL, Germany), which monitored seawater pH in 

each tank every 2 s, and adjusted whenever need, via submerged air stones, by injecting CO2 (Air 

Liquide, Portugal; to decrease pH) or by CO2-filtered aeration (to increase pH) using air pumps 

(Stella 200, Aqua One Pro, Aqua Pacific UK Ltd, United Kingdom). 
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Table 4.3.1. Fish weight (g), total length (cm), VFX concentrations and net accumulation rates 
(NAR) in plasma of specimens collected in each treatment (trials I and II; day 28. In each column, 
different letters indicate significant differences between treatments (p < 0.05). Abbreviations: 
LOD: method’s limit of detection; nd – not determined; Acid – simulated acidification (i.e. pCO2 
~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); VFX-
water – fish exposed to VFX via water; VFX-feed – fish exposed to VFX via feed. 

 

 

Dead fish and faeces were daily removed and 25 % seawater renewal was performed in each 

incubation tank. Ammonia, nitrite and nitrate levels were daily checked, by means of colorimetric 

tests (Tropic Marin, USA), and kept below detectable levels, with the exception of nitrates, which 

were kept below 2.0 mg L-1. Fish density was kept below 1 g body weight L-1 (i.e. 5 fish in each 

50 L replicate tank) in order to avoid physiological stress related to high animal density. 

Specimens were initially acclimated to laboratory conditions for 30 days, being fed with CTR 

feed (2% of average body weight, bw) and kept under the following abiotic conditions: i) 

dissolved oxygen (DO) > 5 mg L-1; ii) temperature (T ⁰C) = 19.0 ± 0.5 °C; iii) pH = 8.00 ± 0.10 

units; iv) salinity = 35 ± 1 ‰; and v) photoperiod =  12L:12D (12 hours light:12 hours dark). 

Temperature, pH, salinity and DO were daily checked using a multi-parameter measuring 

instrument (Multi 3420 SET G, WTW, Germany). Seawater total alkalinity was also measured in 

every tank on a weekly basis, following the protocol previously described elsewhere (Sarazin et 

al., 1999) and the combination of total alkalinity (AT) and pH was used to calculate carbonate 

system parameters (average values obtained for each treatment can be consulted in Annex 7, 

Table A.7.2).

Weight (g)
Total length 

(cm)

Plasma VFX 

concentration (µg L-1)

NAR

(µg L− 1 day− 1)

Day 0 (all) 2.6 ± 0.8ab 6.8 ± 0.6abc nd -
Control 2.3 ± 0.7b 6.1 ± 0.7bc < LOD -
VFX-water 2.2 ± 0.5b 6.3 ± 0.4bc 1292.0 ± 79.9a 45.88 ± 1.72a

VFX-feed 2.2 ± 0.5b 6.0 ± 0.6c 13.5 ± 1.4c 0.48 ± 0.03d

Acid 2.9 ± 0.8ab 6.9 ± 0.6abc nd -
Acid+VFX-feed 2.4 ± 0.4b 6.5 ± 0.4bc 24.8 ± 8.5bc 0.91 ± 0.18c

Warm 4.9 ± 1.1a 7.8 ± 0.8a nd -
Warm+VFX-feed 4.7 ± 1.6a 7.8 ± 0.8a 34.9 ± 20.6bc 1.18 ± 0.44bc

Acid+Warm 4.8 ± 1.5a 7.9 ± 0.5a nd -
Acid+Warm+VFX-feed 5.0 ± 1.8a 8.0 ± 1.2ab 40.6 ± 11.7b 1.41 ± 0.25b
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Figure 4.3.1. Experimental design of trials I - Seawater versus dietary exposure (A); and II - 
Simulation of climate change effects and VFX exposure via enriched feed (B). Abbreviations: 
Acid – simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – 
simulated warming (i.e. T = 24 ºC); VFX-water – fish exposed to VFX via water; VFX-feed – fish 
exposed to VFX via feed.
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2.3. Exposure to VFX 

2.3.1. Trial I: Seawater versus dietary exposure 

Three treatments were carried out (n = 5 animals per replicate tank, i.e. 15 animals per 

treatment; Figure 4.3.1.A), simulating the average seawater temperature and pH currently used 

in juvenile meagre rearing in the South Europe, i.e. reference temperature and pH conditions = 

19 °C and 8.0 pH units: i) Control treatment, i.e. fish daily fed with CTR feed (2% bw); ii) VFX-

water treatment, i.e. fish daily fed (2% bw) with CTR feed, and seawater daily spiked with a VFX 

stock solution (nominal concentration = 20 µg L-1 in the tank);; iii) VFX-feed treatment, i.e. daily 

fish fed (2% bw) with VFX-enriched feed (nominal concentration = 160 µg kg-1 dw). Seawater 

abiotic parameters were daily checked and adjusted to adequate levels whenever needed, as 

described above. No mortality was observed during the 28 days of trial. By the end of exposure, 

behavioural tests were conducted (see section 2.5) in ten animals randomly selected out of the 

three replicate tanks composing each treatment. Afterwards, fish were removed from the test tanks 

and euthanized by immersion in an overdosed MS222 solution (2000 mg L-1; Sigma-Aldrich, 

USA) buffered with sodium bicarbonate (1 g of NaHCO3 to 1 g of MS222 to 1 L of seawater) for 

10 min. Euthanized fish were measured (total length and weight; Table 4.3.1.), and blood was 

collected by puncture of the caudal vein and centrifuged (4 ºC, 15 min, 10,000 g). Plasma samples 

were collected from the 10 fish for each treatment (3 tanks per treatment), pooled in two 

composite samples (n = 2) and kept at -80 ºC until further analyses. 

 

2.3.2. Trial II: Simulation of warming and acidification 

Due to experimental limitations, only one exposure pathway was selected to investigate the 

link between VFX exposure and climate change. Thus, exposure via VFX-enriched feed was 

selected for this purpose, because: a) contaminant exposure through dietary sources (i.e. trophic 

transfer of contaminants) currently represents a research gap in ecotoxicological studies; b) 

dietary exposure is thought to significantly contribute to high contaminant bioaccumulation in 

animal tissues, sometimes leading to more notorious toxicological effects than those promoted by 

contaminant exposure through inhalation, depending on the chemical behaviour of the target 

contaminant (e.g. Arnot and Gobas, 2004; Brooks et al., 2014). 

One week before initiating VFX exposure, seawater temperature and pCO2 were slowly 

adjusted (+1 ºC and -0.1 pH unit per day), until reaching 24 ºC and ~1500 µatm pCO2 (equivalent 

to pH = 7.6 units) in tanks simulating climate change conditions (i.e. treatments Acid, Warm, 

Acid+Warm, Acid+VFX-feed, Warm+VFX-feed and Acid+Warm+VFX-feed; Figure 4.3.1.B; 

see also section 2.3.), according to the projections of the Intergovernmental Panel for Climate 

Change (scenario RCP8.5; IPCC, 2014). It is worth noting that the high pCO2 levels used here 

(~1500 μatm) are beyond the worst-case IPCC scenarios for the end of the century (RCP8.5) 
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(IPCC, 2014), but still within the intervals of future CO2 amplification scenarios described by 

McNeil and Sasse (2016). 

Eight treatments were carried out (n = 5 animals per replicate tank of treatment, i.e. a total of 

15 animals per treatment; Figure 4.3.1.B), simulating the reference temperature (i.e. 19 ºC) and 

pCO2 (~500 µatm; 8.0 pH units) conditions, as well as the projected seawater warming (ΔTºC = 

+5 ºC) and acidification (ΔpCO2 ~1000 µatm; equivalent to ΔpH = -0.4 units), using a full cross-

factorial design: i) Control treatment, i.e. fish daily fed with CTR feed (2% bw) and exposed to 

reference temperature and pH conditions; ii) Acid treatment, i.e. fish daily fed with CTR feed (2% 

bw) and exposed to acidification (1500 µatm pCO2, equivalent to pH = 7.6 units); iii) Warm 

treatment, i.e. fish daily fed with CTR feed (2% bw) and exposed to warming (24 °C); iv) 

Acid+Warm, i.e. fish daily fed with CTR feed (2% bw) and exposed to warming and acidification 

(24ºC and ~1500 µatm pCO2); v) VFX-feed treatment, i.e. fish daily fed with VFX-enriched feed 

(2% bw) and exposed to reference temperature and pH conditions; vi) Acid+VFX-feed treatment, 

i.e. fish daily fed with VFX-enriched feed (2% bw) and exposed to acidification (1500 µatm 

pCO2); vii) Warm+VFX-feed treatment, i.e. fish daily fed with VFX-enriched feed (2% bw) and 

exposed to warming (24 ºC); viii) Acid+Warm+VFX-feed treatment, i.e. fish daily fed with VFX-

enriched feed (2% bw) and exposed to acidification and warming (24ºC and ~1500 µatm pCO2). 

Seawater abiotic parameters were daily checked and adjusted to adequate levels whenever needed, 

as described above. No mortality was observed during the 28 days of trial. By the end of exposure, 

behavioural tests were conducted (see section 2.5.) in ten animals randomly selected out of the 

three replicates composing each treatment. Afterwards, fish were removed from the test tanks and 

euthanized with MS222, as previously described. Biometric data were registered (Table 4.3.1.), 

and plasma samples were collected from the 10 fish (as described for Trial I, section 2.3.1.) for 

each treatment (3 tanks per treatment), pooled in two composite samples (n = 2) and kept at -80 

ºC until further analyses. 

 

2.4. Venlafaxine determination 

Seawater samples were collected from each tank (treatment) in both trials, at days 0, 14 and 

28 of the experiment, filtered by PVDF syringe filters 0.22 µm (Merck Millipore) and VFX was 

quantified by direct injection in UPLC-QqLIT according to the methodology described by Gros 

et al. (2012). Monitoring VFX concentrations in water along the trials allowed to: a) Trial I - 

assure a steady VFX concentration throughout the experiment in tanks/treatments simulating 

VFX exposure via water; b) Trials I and II - assure that no external contamination (apart from the 

intended dietary exposure) was also taking place in tanks/treatments simulating VFX exposure 

via feed. VFX concentrations were determined in composite samples of fish plasma (day 28; 

Table 4.3.1.) to establish possible relationships between fish behaviour and VFX 
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bioaccumulation in the different treatments. For the analysis of VFX in fish plasma, 50 µL of 

plasma were mixed with 50 µL of methanol and centrifuged (5000 rpm, 10 min, 4 ºC). Then, 60 

µL of supernatant were transferred to an insert and 0.6 µL of a 1 ng µL-1 VFX-d6 standard solution 

was added before the analysis by UPLC-QqLIT using the methodology described by Gros et al. 

(2012). Finally, VFX levels in feed (both, control and VFX-enriched) were determined using an 

extraction methodology adapted from Jakimska et al. (2013) and further quantified by UPLC-

QqLIT by Gros et al. (2012). Data generated was considered satisfactory thanks to the good 

precision and accuracy of the analytical methodologies previously optimized and validated (Gros 

et al., 2012; Jakimska et al., 2013), and detailed information on the validation parameters is given 

in Annex 7, Table A.7.3. Venlafaxine net accumulation rates for each treatment (NAR; µg L−1 

day−1) were determined assuming that fish were exposed to steady conditions (i.e. continuous 

contaminant exposure, as well as seawater abiotic parameters) and using the following equation 

(Santana et al., 2017): 

 

NAR& = ([VFX&+,] − [VFX&;])
t  

 

where, [VFX]to is the average VFX concentration in fish plasma before exposure (day 0) and 

[VFX]t28 is the average VFX concentration after 28 days of exposure.  

 

2.5. Behaviour assessment 

The first two behaviour tests were conducted according to the Novel Tank assay (to test for 

anxiety; Test 1) previously described by Egan et al. (2009) and the Shoaling assay (to test social 

behaviour; Test 2) first described by Moretz et al. (2007), with some modifications (Reyhanian et 

al., 2011). Briefly, glass test tanks (50 x 26 x 26 cm each) filled with about 20 L of seawater were 

set up so that Tests 1 and 2 could be performed one after the other, in the same run (the set up for 

each test can be consulted in Annex 7, Figure A.7.1). An isolated zone (8 x 26 x 26 cm), in the 

right end of each tank, was created using a transparent acrylic plate, to trap and separate a shoal 

of 5 fish from the testing area. Visual contact beforehand between the test fish and the shoal was 

avoided by placing a second acrylic plate covered with a black plastic sheet, next to the first plate. 

Then, the test tanks were horizontally divided, with gridlines marked in the outer part of the tanks, 

in order to define the bottom (B) and top (T) halves, and vertically divided defining: i) 2 zones 

for Test 1, i.e. left (L) and right (R) halves; ii) 3 zones for Test 2, i.e. close to the shoal (in_shoal), 

far from shoal (out_shoal-I) and very far from shoal (out_shoal-II). Before initiating the behaviour 

assessment, seawater temperature and pH were adjusted according to the experimental conditions 

set in each treatment (i.e. 19 ºC or 24 ºC, and pCO2 = ~500 or ~1500 µatm equivalent to 8.0 pH 

units and 7.6 pH units, respectively), and fish were not fed 12 h prior to the tests. Behaviour tests 
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were performed by direct observation, using in each test the same team of observers, in order to 

avoid inter-observer variability. Furthermore, to avoid the potential observer bias, all behaviour 

tests were performed in a blind way, i.e. no information was provided to the observers regarding 

the experimental groups that were being tested. In all tests, three test tanks were run at the same 

time, and behavioural observations were carried out between 8.00 am and 14.00 am, to minimize 

data variability due to metabolic fluctuations (e.g. cortisol cycle) that normally occur in fish 

species along the day.    

For the Novel Tank assay (Test 1; n = 10), the test fish was gently introduced in the test tank 

(by netting; 3 s of maximum time outside water), and the counting was initiated as soon as the 

fish reached the bottom area of the tank. Then, the time spent before crossing, for the first time, 

the gridline into the top area of the tank (T) was registered, as well as the total time spent in T and 

the number of vertical grid transitions (from B to T, and from T to B), during 5 min of observation. 

Fish swimming activity was also evaluated in parallel (counts initiated 30 s after introduction in 

the test tank), by counting the total number of transitions gridline (horizontal, i.e. from L to R and 

R to L; and vertical, i.e. from B to T and T to B) during 1 min. After the 5 min time period of Test 

1, the Shoaling assay (Test 2; n = 10) was immediately initiated by removing the black acrylic 

plate (leaving only the transparent one) and, thus, allowing the test fish to visualise the shoal. 

Then, the time spent before performing, for the first time, a transition towards the shoal (i.e. time 

to visualise the shoal for the first time) was registered, as well as the total time spent close to the 

shoal (in_shoal), and the number of gridline transitions towards or away from the shoal (i.e. from 

out_shoal-I or -II to in_shoal, and vice-versa; out_shoal-I counted as one gridline transitions and 

outshoal-II counted as two gridline transitions). Test 2 was concluded after a 5 min time period 

of observation. Fish that exhibited total immobility (i.e. did not show any swimming activity) 

during the 5 min of tests 1 and 2 were excluded from data analysis (i.e. only three cases: 1 fish 

from Control treatment, 1 fish from Acid+Warm treatment and 1 fish from Warm+VFX-feed 

treatment), as they were considered to be in an extreme (unusual) state of physiological stress, 

which could unlikely be exclusively attributed to the experimental conditions (i.e. VFX exposure, 

warming and acidification), based on the overall behaviour of the tested group. 

Finally, the test fish previously used in Tests 1 and 2 was quickly and gently transferred (by 

netting; 3 s of maximum time outside water) to another test tank in which the Lateralization Assay 

(Test 3; n = 10) was carried out (see Annex 7, Figure A.7.1), and allowed to acclimate for a 

period of 5 min (seawater temperature and pH adjusted according to the experimental conditions 

in each treatment). Test 3 was, then, performed according to the detour test previously described 

by Bisazza et al. (1998), briefly consisting of a two-way T-maze with a central runway and a 

movable wall at the end. The test fish was placed in one end of the tank (i.e. the starting point) 

and compelled to swim forward (by approaching with a scoop, simulating a potential threat). Once 
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it reached the wall, the fish had to choose which way to turn, i.e. left (L) or right (R), to escape. 

Ten consecutive runs per test fish were carried out, and the turning side was visually scored. To 

minimize possible irregularities in the test tank, both ends of the T-maze were alternatively used 

during the 10 runs. The relative lateralization index (LR) was calculated for each fish according 

to Bisazza et al. (1998): 

LR = [(turns to the right − turns to the left) / (turns to the right + turn to the left)] × 100 

with values close to 100 representing fish that turned right in all 10 runs, −100 representing 

fish that chose left instead in all 10 runs, and values near zero representing fish that equally 

preferred left and right. Fish absolute lateralization (i.e. the absolute LR value for each fish; LA) 

was also calculated, with values close to 0 indicating an equal preference for left and right, and 

values close to 100 indicating a preference for left or right in a total of 10 runs. 

 

2.6. Statistical analysis 

To determine significant differences among treatments in VFX plasma concentrations (and 

NAR), after checking that data complied with assumptions of normality (Kolmogorov–Smirnov’s 

test) and homogeneity of variances (Levene’s test), the analysis of variance ANOVA was carried 

out. Pearson correlation coefficients (r) between biometric data and VFX concentrations in fish 

plasma from each treatment were also calculated. For behavioural data, treatment effects were 

studied using Generalized Linear Mixed Models (GLMM), with tank replicate as random effect.  

A Gaussian distribution was used to analyse continuous data (i.e. latency to the top, latency to 

move towards the shoal and lateralisation), whereas a binomial distribution (or negative binomial 

when over-dispersion was observed) for proportions was used (percentage of time spent in the 

top, percentage of time spent within the shoal and percentage of transitions towards the shoal).  

Moreover, negative binomial distribution was also used for total number of transitions (i.e. fish 

activity) to account for over-dispersion. Selection for best model was made using Akaike 

Information Criterion (AIC), and the summary of GLMM results is presented in Annex 7, Table 

A.7.4.  Model assumptions, namely independence and absence of residual patterns, were verified 

by plotting residuals against fitted values and each covariate in the model. The post-hoc Tukey 

test was also carried out for multiple comparisons (see Figures 4.3.2.-4.3.4. and Table 4.3.2.). 

Statistical analysis was performed in R (R Core Team 2017) and data exploration and model 

validation used the R library from Highland Statistics (Zuur et al 2008). Statistical analyses were 

performed at a significance level of 0.05.  
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3. Results  

3.1. Biometric parameters and VFX concentrations 

Matching the nominal concentration selected for the contaminated feed, VFX concentration in 

VFX-enriched feed was around 161.7 ± 17.1 µg kg-1 dw, whereas VFX was not detected in CTR 

feed confirming that no external contamination occurred during feed preparation. In seawater 

samples VFX was only found in detectable levels in VFX-water treatment (day 0: < detection 

limit, i.e. < 0.15 µg L-1; day 14: 20.9 ± 1.8 µg L-1; day 28: 19.2 ± 1.6 µg L-1), thus confirming that: 

i) in Trial I, VFX concentration was maintained at around 20 µg L-1 in VFX-water treatment 

throughout the 28 days of exposure; ii) no contamination occurred, apart from the intended 

contamination of the feed, in VFX-feed, Acid+VFX-feed, Warm+VFX-feed and 

Acid+Warm+VFX-feed treatments (Trial II). 

Biometric parameters (i.e.  weight, W, and total length, TL) of fish collected from each 

treatment in Trials I and II, as well as VFX concentrations in fish plasma are shown in Table 

4.3.1. In Trial I, W and TL did not significantly vary among treatments (p > 0.05), whereas in 

Trial II, in overall, fish exposed to warmer temperature exhibited significantly higher W and TL 

(p < 0.05), regardless of seawater pH and VFX absence/presence. The maximum values were 

observed in the Acid+Warm+VFX-feed treatment (weight = 5.0 ± 1.8 g; total length = 8.0 ± 1.2 

cm; Table 4.3.1.).  

No detectable levels of VFX were observed in plasma of control specimens,  confirming that 

there was no other sources of external contamination apart from intended contamination of water 

(VFX-water treatment; Trial I) or feed (all VFX-feed treatments; Trials I and II). In Trial I, VFX 

plasma levels were much higher in fish exposed via water compared to fish exposed via feed 

(~50x higher in VFX-water; NARVFX-water = 46 µg L-1 day-1 against NARVFX-feed = 0.5 µg L-1 day-

1; Table 4.3.1.). In Trial II, VFX concentrations in plasma from fish under the control seawater 

temperature and pH conditions were significantly lower than those  in fish exposed to warmer 

temperature and lower pH simultaneously (i.e. 13.5 ± 1.4 µg L-1 against 40.6 ± 11.7 µg L-1 in 

VFX-feed and Acid+Warm+VFX-feed, respectively; p < 0.05), but not when fish were exposed 

to either of the two stressors acting alone (i.e. 24.8 ± 8.5 µg L-1 and 34.9 ± 20.6 µg L-1 in 

Acid+VFX-feed and Warm+VFX-feed, respectively; Table 4.3.1.).  Significantly higher NARs 

were determined in fish exposed to warming and acidification, acting alone or in combination, 

compared to those exposed to the control temperature and pH (i.e. VFX-feed; p < 0.05; Table 

4.3.1.). Significant positive correlations were found between W or TL and VFX concentrations, 

regardless of exposure pathway (W: r = 0.78 and r = 0.70 for VFX water and feed exposure 

treatments, respectively; TL: r = 0.66 and r = 0.75 for VFX water and feed exposure treatments, 

respectively; p < 0.01).  
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3.2. Behavioural assays 

In Trial I, no significant differences between non-contaminated and contaminated fish were 

observed in the time spent before initiating the exploration of the upper part of the tank (T; Figure 

4.3.2.A). On the other hand, VFX exposure significantly affected the total time spent within T, 

regardless of exposure pathway, increasing in fish exposed via water and decreasing in those 

exposed via feed (p < 0.05; Figure 4.3.2.B). Activity levels were significantly decreased in VFX 

contaminated fish (30 ± 12 grid movements in control treatment, against 11 ± 5 and 7 ± 3 in VFX-

water and VFX-feed, respectively; p < 0.05; Table 4.3.2.). 

 

 

 

 

Figure 4.3.2. Latency to reach the top area of the tank, for the first time (A) and percentage of 
time spent in this area (B), during 5 min of the test (n = 10; mean ± standard deviation). Different 
lower case letters indicate significant differences between treatments in Trial I, whereas upper 
case letter indicate significant differences between treatments in Trial II (p < 0.05). Abbreviations: 
Acid – simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – 
simulated warming (i.e. T = 24 ºC); VFX-water – fish exposed to VFX via water; VFX-feed – 
fish exposed to VFX via feed. 
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Table 4.3.2. Number of transitions made to each of 4 halves of the test tank during 1 min of 
activity test (n = 10; mean ± standard deviation). In each column, different lower case letters 
indicate significant differences between treatments (p < 0.05). Abbreviations: Acid – simulated 
acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated warming 
(i.e. T = 24 ºC); VFX-water – fish exposed to VFX via water; VFX-feed – fish exposed to VFX 
via feed. 

 

 

In the test of social behaviour (shoaling test), despite fish exposed to VFX via feed took less 

time to perform, for the first time, a transition towards the shoal (Figure 4.3.3.A), the percentage 

of transitions made towards the shoal was not significantly affect by VFX (both exposure routes; 

Figure 4.3.3.B).On the other hand, the total time spent within the shoal was drastically decreased 

in fish exposed to VFX via water (p < 0.05), and even further decreased with VFX exposure via 

feed (p < 0.05; Figure 4.3.3.C). Overall, control fish exhibited a preference to turn leftwards (LR; 

Figure 4.3.4.A). This pattern was maintained in fish exposed to VFX via water, but not in fish 

from VFX-feed treatment, in which LR and LA values closer to zero were observed (p < 0.05, for 

LR; Figure 4.3.4.).  

In Trial II, significantly different behavioural patterns were observed in fish exposed to 

increased temperature and high pCO2, when acting alone or in combination with VFX exposure 

(Figures 4.3.2.-4.3.4.; Table 4.3.2.). Starting with the introduction to a novel environment, 

acidification combined with VFX exposure significantly increased the time spent before initiating 

the exploration of the upper areas of the tank (T), regardless of temperature (i.e. treatments 

Acid+VFX-feed and Acid+Warm+VFX-feed (p < 0.001; Figure 4.3.2.A). Moreover, fish 

exposed to VFX, acidification and/or warming tended to spend less time on the upper area of the 

tank compared to those from Control treatment (p < 0.05; Figure 4.3.2.B). In terms of overall fish 

activity, acidification by itself increased the total number of grid transitions in comparison to all 

the other treatments, whereas in Acid+VFX-feed treatment the number of transitions drastically 

decreased and no transitions to the top were observed (p < 0.001; Table 4.3.2.). 

Total grid movements

Control 30 ± 12bc

VFX-water 11 ± 5d

VFX-feed 7 ± 3de

Acid 80 ± 10a

Acid+VFX-feed 2 ± 2e

Warm 22 ± 4c

Warm+VFX-feed 5 ± 2de

Acid+Warm 45 ± 9b

Acid+Warm+VFX-feed 30 ± 7bc
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Figure 4.3.3. Time spent until fish visualized the shoal for the first time (A), percentage of 
transitions towards the shoal (B), and percentage of time spent in this area (C) during the 5 min 
of shoaling test (n = 10; mean ± standard deviation). Different lower case letters indicate 
significant differences between treatments in Trial I, whereas upper case letter indicate significant 
differences between treatments in Trial II (p < 0.05). Abbreviations: Acid – simulated 
acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated warming 
(i.e. T = 24 ºC); VFX-water – fish exposed to VFX via water; VFX-feed – fish exposed to VFX 
via feed. 

 

During the shoaling test, in both non-contaminated and VFX-enriched fish, warming in 

combination with acidification increased the time spent before fish performed the first transition 

towards the the shoal (p < 0.05; Figure 4.3.3.A), but not when these two stressors acted 

independently (regardless of VFX exposure). Despite no significant differences were observed 

among treatments in the total number of transitions towards the shoal, fish exposed to VFX and/or 

acidification (i.e. VFX-feed, Acid, Acid+VFX-feed, Acid+Warm and Acid+Warm+VFX-feed) 

spent significantly less time spent within the shoal formation compared to fish from Control, 

Warm and Warm+VFX-feed treatments (p < 0.05; Figure 4.3.3.C). Furthermore, in general, fish 

exposed to acidification and/or warming (with and without VFX) tended to stay within the shoal 
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for a longer period of time than contaminated fish subjected to reference temperature and pCO2 

conditions (i.e. treatment VFX-feed; p < 0.05; Figure 4.3.3.C). 

 

 

Figure 4.3.4. Relative lateralization (A; LR; n = 10; box plots) and absolute lateralization (B; 
LA; n = 10; mean ± standard deviation) in A. regius after 28 days of exposure to VFX, warming 
and acidification. Different lower case letters indicate significant differences between treatments 
in Trial I, whereas upper case letter indicate significant differences between treatments in Trial II 
(p < 0.05). Abbreviations: Acid – simulated acidification (i.e. pCO2 ~1500 µatm, equivalent to 
pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); VFX-water – fish exposed to VFX 
via water; VFX-feed – fish exposed to VFX via feed. 

 

VFX feed exposure, acidification and/or warming affected fish lateralization, with fish 

exposed to acidification evidencing a preference to turn rightwards, as opposed to the control, 

VFX-feed and Warm+VFX-feed treatments in which a turning preference to the left was observed 

(p < 0.01; Figure 4.3.4.A). Moreover, an overall loss of preference was observed compared to 

non-contaminated fish (i.e. lower LA, with exception of Warm+VFX-feed treatment), particularly 

in fish exposed to combined acidification and VFX (i.e. Acid+ VFX-feed; LA > 20; p < 0.01), as 

well as when the three stressors were combined (i.e. Acid+Warm+VFX-feed; LA ~ 10; p < 0.01; 

Figure 4.3.4.B).  
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4. Discussion 

4.1. Effects of exposure route, temperature and pCO2 on VFX bioaccumulation  

The present results confirmed that VFX can be accumulated, not only from water, but also 

from diet (and, therefore, biomagnified along the food chain), thus, further emphasizing the 

ecological hazards this compound can pose to marine ecosystems. Yet, the lower VFX plasma 

concentration and NAR in fish exposed via feed suggest that diet may indeed play a minor role 

on the uptake of these ionizable weak base pharmaceuticals, compared to other routes of exposure 

(such as inhalation), as demonstrated in a recent laboratory study using several aquatic species 

from different trophic levels exposed to sertraline and fluoxetine (also anti-depressants; Boström 

et al., 2017). In fish exposed to VFX via feed, increased temperature and pCO2 levels enhanced 

VFX bioaccumulation, thus, evidencing the need to consider the potential interactions with abiotic 

variables when assessing the ecotoxicological implications of pollutants.  Such increase in VFX 

bioaccumulation is most likely related to the metabolic changes induced by altered temperature 

and pCO2 (e.g. Rosa et al., 2016; Sampaio et al., 2016, 2018), as well as possible tissue damages, 

which can then facilitate contaminant penetration into cells (Freitas et al., 2016; Sampaio et al., 

2016, 2018; Shi et al., 2016; Velez et al., 2016). 

The discrepancy of VFX plasma concentrations and NAR between the two exposure routes 

may, at a first glance, point out to the favoring of VFX bioaccumulation when exposure occurs 

via water, a result that is consistent with VFX physical-chemical properties (e.g. log Kow between 

2.74 and 3.30; Aryal, 2012). However, it should be noted that the selected VFX concentrations 

for water and feed are not comparable (and compound bioaccumulation patterns may be dose-

dependent) nor the present experimental design allowed to investigate some parameters (e.g. 

respiration and ingestion rates, compound bioavailability) which are crucial to deeply assess 

compound toxicokinetics (i.e. such knowledge was outside the scope of this work). Particularly 

in what concerns VFX exposure via water, the ratio between VFX concentrations in fish plasma 

and seawater (i.e. the bioconcentration factor, BCF) obtained in the present study (BFC = 64.6 ± 

0.4) was much higher than the values previously reported for fish plasma (i.e. BFC = 8; Grabicova 

et al. (2014) and brain (BCF around 10; Lajeunesse et al., 2011; Grabicova et al., 2014), 

suggesting that VFX bioaccumulation may be dose dependent. As for the relationship between 

VFX plasma concentration and fish morphometry, as observed for other chemical contaminants 

such as MeHg (e.g. Dijstra et al., 2013; Maulvault et al., 2016), results showed that VFX 

bioaccumulation in fish plasma was directly linked (i.e. correlated) to animal growth, regardless 

of the exposure pathway. Furthermore, because growth and contaminant metabolization/excretion 

are also largely influenced by abiotic conditions, changes in seawater temperature and pH can 

lead to increased contaminant bioaccumulation (e.g. Dijstra et al., 2013; Maulvault et al., 2016; 
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Sampaio et al., 2016), as observed in Trial II, particularly, when warmer temperatures and high 

pCO2 levels were combined. 

 

4.2. Differential effects of VFX exposure route on fish behaviour 

Both water and feed exposure triggered significant behavioural alterations, though to different 

extents and in different directions, and such differences are likely related to the different VFX 

levels reached in fish plasma in these treatments. Despite the lower concentrations detected in 

fish plasma, VFX exposure via diet (VFX-feed) significantly affected fish behavior and response 

to stress, when compared to non-contaminated fish or even to fish exposed to VFX via water 

(Control and VFX-water). This shows the great ability for this pharmaceutical to easily cross the 

brain blood barrier (i.e. BCF ~10 in fish brain; Lajeunesse et al., 2011; Grabicova et al., 2014) 

and promote severe behavioural alterations, even at lower VFX plasma concentrations (Bisesi Jr. 

et al., 2014), as those elicited by VFX exposure via feed. 

Differences between the two exposure routes (i.e. water and feed) were particularly evident in 

terms of fish exploratory activity and social interactions, which are two ecologically determining 

factors (Reyhanian et al., 2011; Stewart et al., 2012). Decreased exploratory activity along with 

increased erratic movements, latency to reach top areas and freezing have been typically 

associated with increased plasma levels of stress hormones such as cortisol and, consequently, to 

anxiety in fish (Wibe et al., 2002; Egan et al., 2009). Similarly to the effects induced in both 

humans and rodents (Katzman, 2004; Sprowles et al., 2017), chronic or acute exposure to different 

antidepressants has shown to decrease fish anxiety (e.g. citalopram in Danio rerio, Sackerman et 

al., 2010; fluoxetine in Pimephales promelas, Margiotta-Casaluci et al., 2014; fluoxetine in 

Pachygrapsus crassipes, Hamilton et al., 2015). Yet, an interesting outcome of the present study 

was that, in the novel tank test, the anxiolytic effect of VFX was clearly verified in fish exposed 

to this antidepressant via water (significantly longer permanence in the top area of the tank, 

despite the lower number of transitions compared to CTR fish), but not in fish exposed to VFX 

via feed.  Such differences between the two contaminated treatments could be related to dose-

dependent action of VFX (which is in line with the higher VFX concentrations in plasma of fish 

exposed via water) and/or to distinct bioavailability of this compound according to the exposure 

route (Sanchez and Meier, 1997; Brooks et al., 2014; Gray and Hughes, 2015). 

Although the apparent state of decreased anxiety in fish exposed to VFX via water (i.e. 

increased exploratory behaviour) may, at a first glance, come as somewhat positive (e.g. resulting 

in increased opportunities for feeding, reproduction and territory establishment in the wild), it can 

also translate into increased risk of predation, which is not beneficial from the ecological point of 

view. Hence, an increased bottom-dwelling behaviour can be also looked at as an anti-predatory 

strategy (Maximino et al., 2012). Noteworthy, the increased preference for the bottom of fish 
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exposed to VFX via feed may also be related to a combination of locomotor (increased sedation) 

and motivational (anxiolytic-anxiogenic) effects induced by VFX dietary exposure (Maximino et 

al., 2012; Rosemberg et al., 2012), as it can be corroborated by the lower number of transitions 

compared to control fish.  

Apart from playing a key role as an energy-saving mechanism during swimming, foraging and 

mating, close shoaling also represents an important anti-predatory strategy, increasing the chances 

of survival in face of danger, at both the individual and group levels (Pitcher and Parrish, 1993). 

Here, VFX exposure via water or feed decreased fish tendency to stay within the shoal formation, 

possibly as a result of lower fish anxiety, which can likely constitute an ecological drawback in 

the wild (Maximino et al., 2012). A similar trend was also described in study on D. rerio exposed 

to different contaminants with anxiolytic properties (i.e. clonazepam, bromazepam, diazepam, 

buspirone, propranolol and ethanol; Gebauer et al., 2011). Despite previously evidencing signs of 

increased anxiety compared to Control and VFX-water treatments, the 5 minutes spent during the 

first test (novel tank), which worked as an acclimation period before initiating the second test 

(shoaling), might have contributed to progressively drive fish from VFX-feed treatment into a 

lower stage of anxiety (i.e. less time spent before performing the first transition towards the shoal 

compared to Control and VFX-water, as well as similar number of transitions towards the shoal 

in these three treatments).  

The fact that lateralization (due to brain asymmetry) prevails within the animal kingdom 

suggests that this feature may represent a selective advantage over bilateral control of the 

cognitive functions (Rogers, 2002; Bisazza and Dadda, 2005). Despite the lack of statistical 

significance between Control and VFX-water treatments, which could be related to several factors 

(e.g. individual temperamental characteristics, drug sensitivity, and bias effects specifically 

associated to the chosen lateralization test, i.e. detour test), the present data suggests that side 

preference was decreased by VFX exposure via feed. Furthermore, as described by other authors 

(Bisazza and Dadda, 2005; Bisazza et al., 2000; Bisazza and Brown, 2011), the impairment of 

side preference promoted by VFX exposure via feed can also be linked to diminished social 

interactions, thus, matching the diminished time spent within the shoal in VFX-feed treatment, 

regardless of the number of transitions made on that direction.  

 

4.3. Combined effects of VFX exposure, warming and acidification on fish behaviour 

Warming and acidification, alone or combined, significantly enhanced or attenuated the effects 

of VFX exposure on fish stress response, social skills and lateralization. Elevated pCO2 levels are 

known not only to increase animal anxiety and boldness, but also to impair lateralization and 

olfaction, most likely due to the disruption of the ionic balance in proton-based neurotransmitter 

receptors, such as GABAA (e.g. Nilsson et al 2012; Hamilton et al., 2014; Munday et al., 2014; 
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Sampaio et al. 2016; Lai et al. 2015). For instance, following a light/dark test (scototaxis), 

Hamilton et al. (2014) reported increased anxiety in juvenile Californian rockfish (Sebastes 

diploproa) exposed to acidification, compared to specimens exposed to normal conditions. 

Another study using Atherina presbyter larvae, also reported decreased shoal cohesion after 7 

days of exposure to high pCO2, as well as individual loss of lateralization (Lopes et al., 2016). 

Here, in Trial II, significant behavioural changes were observed in fish exposed to acidification, 

particularly in terms of fish anxiety (less time spent in the top area), activity (increased number 

of transitions), and lateralization (reversed side preference). Such behavioural effects were further 

enhanced by VFX exposure via feed, which translated into a substantial decrease of fish 

swimming activity, exploration and time spent in shoal formation, as well as the loss of side 

preference that was clearly observed in fish exposed to acidification alone (towards the right). 

This constitutes an interesting outcome, since VFX acts as an anxiolytic (in humans) and, 

therefore, a counteraction of the anxiety induced by acidification would be expected instead. Such 

results further suggest that another mechanism, apart from the altered Cl- flow through GABAA 

receptors one induced by acidification alone, may be involved when VFX and acidification are 

combined (Nilsson et al., 2012; Hamilton et al., 2014), thus, calling for the need to further explore 

and understand the neurophysiological mechanisms involved when multiple stressors (such as 

VFX and acidification) interact.  

As for the effects of warming, so far, the majority of studies is primarily focused on metabolic 

changes and physiological stress induced by thermal stress (e.g. Nilsson et al., 2009; Rosa et al., 

2016), whereas little is known regarding its impacts on behavioural cues, such as shoaling and 

lateralization. Warmer temperatures have been often associated to increased activity and boldness 

(e.g. Forsatkar et al., 2016). Yet, this was not observed in the present study, as fish exposed to 

warming exhibited similar swimming activity and spent less time exploring the top area of the 

tank than Control fish. As for lateralization, a trend similar to the one observed in the present 

study was also reported by Domenici et al. (2014) in Ward's damselfish (Pomacentrus wardi), 

with warmer temperatures attenuating the bias observed in control treatments, or even reversing 

the effects promoted by acidification.  

The combination of VFX exposure, warming and acidification seemed to have elicited even 

more drastic behavioural changes (i.e. increased activity, as well as increased latency for the top 

area and towards the shoal) compared to each of these stressors acting alone, a result that is aligned 

with the higher VFX plasma concentration that was also observed in this treatment, thus pointing 

out to the great ecological impacts involved when the three stressors occur simultaneously. 

Similarly, in our previous study using juveline flatfish Solea senegalensis, distinct behavioural 

patterns were also observed when three stressors (MeHg exposure, warming and acidification) 

acted alone or combined, with increased temperatures reversing the effects of acidification in 
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terms of fish boldness and decision making in non-contaminated fish, whereas such reversion did 

not occur when MeHg exposure was also added to the equation (Sampaio et al., 2016). To sum 

up, the present study constitutes a proof of concept that warming, acidification and contaminant 

exposure can have differential and interactive effects on fish behaviour. Yet, it should be noted 

that the present findings are limited to the selected levels for VFX exposure and seawater 

temperature and pCO2 altered conditions (i.e. only one exposure level was tested for each stressor, 

given the complexity of the experimental design already as it was) and, therefore, 

bioaccumulation/behavioural patterns may differ when fish are exposed to a lower or higher 

severity degree of these stressors. 

 

5. Conclusions 

The present study showed that: i) the way, extent and direction in which VFX affects fish 

behavior is strongly related to exposure route and VFX concentration reached in fish plasma; ii) 

climate change-related stressors, particularly acidification, significantly affect fish behaviour, 

which can then translate into deleterious ecological impacts; and iii) such behavioural alterations 

can be further accentuated or reversed in some instances when these abiotic stressors interact with 

each other, or when chemical contamination occurs.  

The present findings constitute a relevant proof of concept, not only reinforcing the suitability 

of fish species to assess the toxicokinetics and behavioural implications of SNRI antidepressants, 

like VFX, but also evidencing the deleterious ecological impacts of human pharmaceutical 

pollutants on marine vertebrates in tomorrow’s ocean. This calls for a better understanding of the 

ecotoxicological impacts of these compounds on non-target marine vertebrate species, 

particularly focusing on their different modes of action and bioavailability. Furthermore, the 

distinct behavioural patterns observed when VFX contamination, high pCO2 and warming acted 

alone or in combination also highlight the urgent need to consider multiple environmental 

stressors (exploring less pronounced to more severe exposure scenarios) in future behavioural 

ecology studies. Such studies are particularly important since both environmental pollution and 

climate change effects are expected to worsen in the coming years, and the ecological 

consequences associated to these stressors, as well as to their interactions with other stressors are 

still far from being completely understood.  
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Abstract 

Triclosan (TCS) is a synthetic microbial compound widely used in the formulation of various 

personal care products. Its frequent detection in marine ecosystems, along with its physical and 

chemical properties, suggest that TCS can be highly persistent, being easily bioaccumulated by 

biota and, therefore, eliciting various toxicological responses. Yet, TCS’s mechanisms of 

bioaccumulation and toxicity still deserve further research, particularly focusing on the interactive 

effects with climate change-related stressors (e.g. warming and acidification), as both TCS 

chemical behaviour and marine species metabolism/physiology can be strongly influenced by the 

surrounding abiotic conditions. Hence, the aim of this study was to assess TCS bioaccumulation 

and ecotoxicological effects (i.e. animal fitness indexes, antioxidant activity, protein chaperoning 

and degradation, neurotoxicity and endocrine disruption) in three tissues (i.e. brain, liver and 

muscle) of juvenile Diplodus sargus exposed to the interactive effects of TCS dietary exposure 

(15.9 µg kg-1 dw), seawater warming (ΔTºC = +5 ºC) and acidification (ΔpCO2 ~ +1000 µatm, 

equivalent to ΔpH = -0.4 units). Muscle was the primary organ of TCS bioaccumulation, and 

climate change stressors, particularly warming, significantly reduced TCS bioaccumulation in all 

fish tissues. Furthermore, the negative ecotoxicological responses elicited by TCS were 

significantly altered by the co-exposure to acidification and/or warming, through either the 

enhancement (e.g. vitellogenin content) or counteraction/inhibition (e.g. heat shock proteins 

HSP70/HSC70 content) of molecular biomarker responses, with the combination of TCS plus 

acidification resulting in more severe alterations. Thus, the distinct patterns of TCS tissue 

bioaccumulation and ecotoxicological responses induced by the different scenarios emphasized 

the need to further understand the interactive effects between pollutants and abiotic conditions, as 

such knowledge enables a better estimation and mitigation of the toxicological impacts of climate 

change in marine ecosystems. 

 

Keywords: Triclosan, bioaccumulation, warming, acidification, multi-biomarkers 

responses. 
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1. Introduction 

The production and use of pharmaceutical and personal care products (PPCPs) has 

substantially increased over the last few decades (Arpin-Pont et al., 2016; Rodríguez-Mozaz et 

al., 2017). As a result, these chemical contaminants are persistently discharged in marine 

ecosystems (particularly estuaries and coastal areas located near highly urbanized and 

industrialized areas), through municipal wastewater treatment plants (WWTPs), as well as run 

offs from agricultural and aquaculture areas (Gros et al., 2012; Gaw et al., 2014). Hence, PPCPs 

have been frequently detected in marine coastal waters (concentrations ranging from 0.01 ng L-1 

up to 0.23 mg L-1; Gaw et al., 2014; Arpin-Pont et al., 2016; Rodríguez-Mozaz et al., 2017) and 

biota (e.g. concentrations ranging from ~1 ng g-1 dry weight, dw, for some pharmaceutical active 

compounds, such as carbamazepine, up to 3600 ng g-1 lipid weight, lw, for some preservatives 

like parabens; Vandermeersch et al., 2015). Yet, PPCPs were only recently regarded as 

environmental pollutants with potential risks to non-target aquatic species, as well as to humans, 

and despite some of these compounds have been already included in the list of priority substances 

in the field of water policy (EC, 2008), their levels in the environment (and seafood) still require 

regulation. 

Triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy)phenol) is a synthetic compound widely 

used in the formulation of various personal care products (e.g. toothpastes, soaps, detergents and 

cosmetics; EC, 2010, 2014) given its broad-spectrum antibacterial and antimycotic action. In 

2016, its production/consumption in the above mentioned products was estimated to be 850 tons 

in Europe, and 4,760 tons at a global scale (QYR, 2016). Although the high effectiveness of TCS’s 

removal at WWTPs (~90% of the parent compound; TCS usually does not undergo metabolic 

alteration, since most TCS-containing products are used externally in the human body, and not 

ingested), small, but not negligible, amounts of TCS are still discharged into the environment 

through domestic effluents (EC, 2010; Dhillon et al., 2015). Furthermore, agricultural activities 

are also an (if not the most) important source of TCS environmental contamination, since this 

compound is also frequently used in the formulation of agro-fertilizing biosolids (Chalew and 

Halden, 2009). As a result, TCS has been frequently detected in marine ecosystems (e.g. up to 

100 ng L−1 and 35 μg kg−1 dw in seawater and sediments in contaminated coastal areas with strong 

river and WWTPs discharges, respectively; EC, 2010; from 2 ng g-1 dw up to 507 ng g-1 dw in 

marine species; Álvarez-Muñoz et al., 2015; Vandermeersch et al., 2015). Such environmental 

levels along with TCS chemical properties (i.e. its lipophilic nature) suggest that this pollutant 

can be highly persistent and easily bioaccumulated by marine species (Dhillon et al., 2015). Apart 

from its negative effect on microbial resistance, which has been intensively described over the 

last years (e.g. Bailey et al., 2009; EC, 2010; Jutkina et al., 2018), several ecotoxicological 

impacts have also been associated with TCS contamination. Some of the previously reported 
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effects of TCS exposure in aquatic biota include endocrine disruption and neurotoxicity (e.g. 

Matozzo et al., 2002; Hedrick-Hopper et al., 2015), reduced growth and genotoxicity (Gao et al., 

2015), as well as impairments on species’ immune system, metabolism and xenobiotic 

detoxification mechanisms (e.g. Regnault et al., 2016; Mi et al., 2018). Although it is generally 

assumed that most PPCPs are directly uptaken from water (i.e. through inhalation) and, therefore, 

most studies using aquatic organisms have focused on water exposure (e.g. Hwang et al., 2014; 

Rowet et al., 2016; Arnot et al., 2017), TCS chemical attributes (e.g. lipophilicity and logarithm 

of the octanol-water partition coefficient, log KoW, around 4.8; Dhillon et al., 2015) suggest that 

diet (i.e. trophic transfer along the food chain) may also represent an important exposure pathway, 

particularly in predatory fish species (Fair et al., 2009; Zenker et al., 2014; Hedrick-Hopper et al., 

2015). Hence, further research is still required to better understand the ecotoxicological impacts 

of this pollutant to marine organisms, particularly accounting for other compound uptake 

pathways apart from water exposure. 

In parallel with the environmental problematic of pollution, climate change effects (e.g. 

warming and acidification) in marine ecosystems have also recently raised great concerns among 

the scientific community and environmental managers/regulators, as changes in seawater abiotic 

conditions can alter the availability, speciation and toxicity of pollutants (Marques et al., 2010; 

Maulvault et al., 2016, Sampaio et al., 2018), particularly, ionizable ones, like PPCPs (e.g. Munari 

et al., 2016; Rowett et al., 2016). Such is the case of TCS, which undergoes protonation and loses 

its negative charge as the surrounding pH decreases (i.e. ionisation constant, pKa, defined at 8.14; 

Dhillon et al., 2015), becoming more bioavailable and, thus, toxic (Orvos et al., 2002; Rowett et 

al., 2016). On the other hand, by affecting marine biotas’ physiology and welfare, climate change 

effects can also potentially compromise the resilience of these species to other stressors, such as 

chemical contamination (e.g. Rosa et al., 2016; Jesus et al., 2017; Maulvault et al., 2017). Hence, 

understanding the interactive effects between chemical pollutants and abiotic stressors has 

become an urgent matter, since climate change effects can already be felt in many geographic 

locations (e.g. in Ria Formosa coastal lagoon, situated in Olhão, southern Portugal; Barbosa et 

al., 2010; Rodrigues et al., 2017) and are expected to worsen in the next 50 to 100 years, with 

southern Europe being particularly prone to these impacts (IPCC, 2001, 2014). According to the 

most recent projections, seawater temperature and pCO2 levels are expected to rise as high as +5 

ºC and +1000 CO2 µatm (i.e. equivalent to -0.4 pH units), respectively, even if efforts are made 

to maintain the emissions of greenhouse gases at the present levels (scenario RCP 8.5, IPCC, 

2014; McNeil and Sasse, 2016), likely surpassing species’ acclimation ability (i.e. species’ 

physiological and molecular plasticity; e.g. Madeira et al., 2016a; Araújo et al., 2018).  Moreover, 

increased frequency, duration (chronicity) and intensity of extreme climate events, such as heat 

waves (that last at least 5 days in a row, subsequently, interfering with the remaining water 
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chemistry parameters), are also expected to occur in a climate change context (IPCC, 2014). These 

effects are expected to be particularly notorious (or even to be felt in a shorter term) in estuaries 

and coastal area, which naturally exhibit pronounced shifts of abiotic conditions in month 

(according to season) or even day time scales (particularly, in shallow water zones with weak 

hydrodynamic activity, e.g. inner zones of the lagoon and coastal ponds), due to the influence of 

season and/or tides, among other factors (Barbosa, 2010; Madeira et al., 2016a,b; Rodrigues et 

al., 2017). Even though marine fish inhabiting these unstable environments (such as the 

seabreams, e.g. Diplodus sargus) may have developed different ecological strategies to cope with 

great daily or monthly amplitudes of abiotic conditions, recent evidence suggested that these 

species are extremely vulnerable to climate change effects as they already live close to their 

physiological thresholds and have limited acclimation plasticity (e.g. Madeira et al., 2012, 2016a). 

Hence, climate change effects are expected to have devastating impacts in estuaries and coastal 

areas, like Ria Formosa, causing biodiversity reduction and great economic losses in the fisheries 

(e.g. due to decreased juvenile recruitment) and aquaculture sectors (Barbosa et al., 2010; 

Rodrigues et al., 2017), since these ecosystems not only are important spawning and nursery areas 

(and, thus, shelter many bivalve, crustacean and fish species, e.g. D. sargus, during their early 

and most vulnerable life stages), but also house many aquaculture facilities (in which species are 

also exposed to changes of abiotic conditions, depending on the type of rearing system used). 

Within this context, the aim of the present study was to assess the interactive effects of TCS 

dietary exposure (15.9 µg kg-1 dw), seawater warming (ΔTºC = +5 ºC) and acidification (ΔpCO2 

~ +1000 µatm, equivalent to ΔpH = -0.4 units) in compound bioaccumulation and 

ecotoxicological responses (animal condition, antioxidant activity, chaperoning and protein 

degradation, neurotoxicity and endocrine disruption) in three tissues (muscle, liver and brain) of 

juvenile white seabream (D. sargus), i.e. an economically and ecologically important fish species 

that typically inhabits coastal areas subjected to strong anthropogenic and climate-related 

pressures. 

 

2. Materials and Methods 

2.1. Model species 

D. sargus is a fish species commonly found in Southern Europe, namely in Ria Formosa 

coastal lagoon, i.e. a sensitive marine ecosystem (and natural park; ICNF, 2008) exposed to strong 

anthropogenic and climate-related pressures (as described in the Introduction section). It is a 

highly appreciated seafood species (both wild and farmed) among European consumers, thus, 

being commercially relevant in the fisheries sector (e.g. about 4000 tons of total catches in 2011; 

FAO, 2018; up to 29% of total catches in Southern Portugal; IUCN, 2018), as well as in 

aquaculture (though to a lower extent; i.e. 174 tons produced in aquaculture during 2010; FAO, 
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2018; IUCN, 2018). By being a predator species that feeds on small benthic organisms that are 

often in direct contact with contaminated sediments, wild D. sargus can likely accumulate high 

levels of chemical contaminants, particularly through dietary exposure (i.e. ingestion of 

contaminated preys). As for the effects of abiotic stressors, throughout its life cycle, wild D. 

sargus alternates between estuaries and coastal lagoons during spawning and fish early life stages 

(eggs, larvae and juveniles), and shallow coastal waters (once the adult stage is reached), 

therefore, being subjected to wide regimes of seawater abiotic conditions (IUCN, 2018). In 

aquaculture conditions, although D. sargus optimal rearing temperature and pH are around ~19 

ºC and ~8.0 pH units, respectively (e.g. Moretti et al., 2005; Saavedra et al., 2006), farmed 

specimens are also susceptible to strong variations of seawater parameters, since low volumes of 

water and shallow water depths are usually used in fish rearing. Yet, the severity of these changes 

will depend on the type of aquaculture system used in fish rearing, as  this species can be reared 

extensively and semi-intensively (in coastal ponds and lagoons), as well as intensively using land-

based installations (with open or semi-closed aquaculture rearing systems) or sea cages (Moretti 

et al., 2005). Based on this background knowledge, D. sargus was selected as model species due 

its ecological and commercial relevance, i.e., it is a commercially relevant predatory fish species 

(i.e. placed in the higher levels of the food chain) typically exposed to abiotic stressors and 

pollution and has a very common life cycle among coastal fish species, therefore, representing a 

very interesting model species that adequately suited the purposes of understanding the 

ecotoxicological implications of climate change in marine fish. 

 

2.2. Experimental setup 

2.2.1. Control and TCS-contaminated feeds  

An experimental non-contaminated feed (CTR feed) with an adequate composition to meet the 

nutritional requirements of juvenile white seabream was manufactured by SPAROS Lda (Olhão, 

Portugal) (details on feed composition are presented in Annex 8, Table A.8.1.). Briefly, all 

powder components were ground (<200 micron; micropulverizer hammer mill, Hosokawa 

Micron, SH1, The Netherlands), and mixed with fish oil according to the target feed composition 

(all ingredients used in fish feeds are presented in Annex 8, Table A.8.1.), using a paddle mixer 

(Mainca RM90, Spain). Then, 25% of deionized water at room temperature was used to further 

humidify the feed mixture. The feed was subsequently extruded (at 3.0 mm; low-shear extruder, 

P55, Italplast, Italy) and subsequently dried on vibrating fluid bed dryer (model DR100, TGC 

Extrusion, France). Then, a 10 kg batch of this non-contaminated feed was also used to perform 

the enrichment with TCS (i.e. TCS-contaminated feed), by top-coating pellets with a TCS solution 

(C12H7Cl3O2, >98% purity, Sigma-Aldrich; TCS previously solubilized in 5 mL of ethanol and 

then mixed in fish oil, making up a total volume of 200 mL) using a pressurized spraying container 
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(standard flat-fan nozzle, size 250 micron, pressure 2.1 bar; the low volume of ethanol used to 

first solubilize TCS was totally volatilized during this step). Considering the lack of previous 

studies on pharmaceuticals dietary exposure, a TCS nominal concentration of approximately 15 

µg kg-1 on a dry weight basis (dw) was selected to assure that TCS bioaccumulation and 

ecotoxicological responses were induced during the timeline of the trial. As a reference, although 

such nominal concentration was above the levels frequently found in marine biota inhabiting 

contaminated coastal areas (i.e. ~7 times higher; Álvarez-Muñoz et al., 2015), this value was still 

below the lowest observed effect concentration reported in the only available study on TCS 

dietary exposure in aquatic species, to the best of the authors’ knowledge (Hedrick-Hopper et al., 

2015). At the beginning and end of the trial, TCS concentration was determined in both 

experimental feeds in order to assure: i) TCS stability (in TCS-contaminated feed); and ii) no 

external contamination occurred during feed preparation (in CTR feed). 

 

2.2.2. Specimens collection and acclimation  

Juvenile D. sargus specimens with similar age (with approximately 200 days of post-hatching 

period; n = 168) and morphometry (total length: 4.0 ± 0.3 cm; total weight 6.1 ± 0.4 g) were 

reared at the aquaculture pilot station of the Portuguese Institute for the Sea and Atmosphere 

(EPPO-IPMA, situated in Ria Formosa coastal lagoon, Olhão, Portugal), using the routine 

hatchery conditions used in Southern European Countries (e.g. Saavedra et al., 2006). Then, 

juvenile fish were transplanted (September, 2017, which corresponded to the end of the summer 

season) to the facilities of Laboratório Marítimo da Guia (MARE-FCUL, Cascais, Portugal), 

where the exposure trial took place. Here, fish were distributed, in a random and equitable way, 

in 24 rectangular shaped incubating glass tanks (50 L each, total volume) within recirculation 

aquaculture systems (RAS; i.e. each group of three tanks corresponded to one treatment, and 3 

replicate tanks x 8 treatments = 24 tanks in total; see the description of each treatment in section 

2.3.) with independent functioning (Figure 5.1.). To maintain seawater quality, each tank was 

equipped with: i) protein skimmers (Reef SkimPro, TMC Iberia, Portugal); ii) ultra-violet (UV) 

disinfection (Vecton 300, TMC Iberia, Portugal); iii) biological filtration (model FSBF 1500, 

TMC Iberia, Portugal); and iv) chemical filtration (activated carbon, Fernando Ribeiro Lda, 

Portugal). Furthermore, fish faeces were removed daily in each incubation tank, and a 25% 

seawater renewal was performed. Ammonia, nitrite and nitrate levels were daily checked through 

colorimetric tests (Tropic Marin, USA), and kept below detectable levels (except nitrates, which 

were kept below 2.0 mg L-1). On a weekly basis, seawater total alkalinity was also measured in 

every tank according to the methodology of Sarazin et al. (1999), and the carbonate system 

parameters were calculated through the combination of total alkalinity (AT) and pH (average 

values obtained for each treatment presented in Annex 8, Table A.8.2.). 
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Before starting the exposure trial, an acclimation period was carried out during 30 days, with 

fish being fed with CTR feed (2% average body weight, bw) and kept under the following abiotic 

conditions: i) temperature = 19.0 ± 0.5 °C; ii) pH = 8.00 ± 0.10 units; iii) salinity = 35 ± 1 ‰; iv) 

dissolved oxygen (DO) > 5 mg L-1;  and v) photoperiod = 14 hours light and 10 hours dark (the 

multi-parameter measuring instrument Multi 3420 SET G, WTW, Germany, was used to daily 

check seawater temperature, pH, salinity and DO). These seawater abiotic conditions were similar 

to the ones to which fish were exposed to at EPPO, before being transplanted to the experimental 

tanks, and corresponded to the optimal conditions for juvenile D. sargus rearing (Moretti et al., 

2005; Saavedra et al., 2006). Temperature and pH were adjusted whenever needed using: i) 

temperature - an automatic seawater refrigeration system (± 0.1 °C; Frimar, Fernando Ribeiro 

Lda, Portugal), as well as submerged digital thermostats (200W, V2Therm, TMC Iberia, 

Portugal); ii) pH - individual pH probes (GHL, Germany) connected to a Profilux 3.1N control 

system (± 0.1 pH units;, GHL, Germany), which monitored seawater pH in each tank every 2 s, 

and adjusted the levels whenever needed, through the injection of either CO2 (Air Liquide, 

Portugal; to decrease pH) or CO2-filtered aeration (Stella 200 air pumps, Aqua One Pro, Aqua 

Pacific UK Ltd, United Kingdom; to increase pH).  

 

2.2.3. Exposure to TCS, warming and acidification 

One week before initiating the trial, seawater temperature and pCO2 were slowly adjusted (+1 

ºC and -0.1 pH unit per day), until reaching the simulated climate change conditions (, i.e. 24 ºC 

and ~1500 µatm pCO2, equivalent to pH = 7.6 units, which corresponded to + 5 ºC and +1000 

µatm pCO2  in relation to juvenile D. sargus optimal rearing conditions, as well as to the seawater 

conditions that fish were exposed to before transplantation to the experimental tanks; scenario 

RCP8.5 of IPCC, 2014; McNeil and Sasse, 2016) in the corresponding treatments (Figure 5.1.). 

Although the seawater warming and acidification conditions simulated in the present study can 

be defined as an extreme climate change scenario (i.e. worst-case scenario), the reader should 

note that these conditions are particularly likely to occur (in a shorter time frame) in shallow water 

coastal environments with low hydrodynamic activity, that naturally exhibit strong tidal/seasonal 

abiotic variations and are particularly prone to extreme climate events (e.g. heat waves), and in 

which some of the projected climate change effects are already visible, as is the case of Ria 

Formosa (Barbosa et al., 2010, Rodrigues et al., 2017). Hence, the altered abiotic conditions 

simulated in the present study can be considered realistic (according to IPCC projections) and 

ecologically representative. The remaining seawater abiotic conditions (i.e. DO, salinity and 

photoperiod) were kept as previously described in section 2.2. (i.e. as during the acclimation 

period). Thus, eight treatments (4 non-contaminated and 4 TCS-contaminated treatments), 

randomly assigned to each replicate tank, were carried out (n = 7 animals per replicate tank of 
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treatment, i.e. a total of 21 animals per treatment; Figure 5.1.), using a full cross-factorial design: 

i) Control treatment – 19 ºC, 500 µatm pCO2 and fish daily fed with CTR feed (2% bw); ii) Acid 

treatment - 19 ºC, 1500 µatm pCO2 (equivalent to pH = 7.6 units) and fish daily fed with CTR 

feed (2% bw); iii) Warm treatment - 24 ºC, 500 µatm pCO2 and fish daily fed with CTR feed (2% 

bw); iv) Acid+Warm - 24 ºC, 1500 µatm pCO2 (equivalent to pH = 7.6 units) and fish daily fed 

with CTR feed (2% bw); v) TCS treatment – 19 ºC, 500 µatm pCO2 and fish daily fed with TCS-

contaminated feed (2% bw); vi) TCS+Acid treatment - 19 ºC, 1500 µatm pCO2 (equivalent to pH 

= 7.6 units) and fish daily fed with TCS-contaminated feed (2% bw); vii) TCS+Warm treatment 

- 24 ºC, 500 µatm pCO2 and fish daily fed with TCS-contaminated feed (2% BW); and viii) 

TCS+Acid+Warm - 24 ºC, 1500 µatm pCO2 (equivalent to pH = 7.6 units) and fish daily fed with 

TCS-contaminated feed (2% bw). Seawater physical and chemical conditions were daily 

monitored and adjusted whenever needed, as described above (section 2.2.). No mortality was 

observed during the 28 day trial. Seawater samples were also collected from each tank at days 0 

(beginning) and 28 (end) of the trial, and TCS concentrations were determined to confirm that an 

external contamination did not occur in non-contaminated treatments, as well as in TCS 

contaminated treatments (apart from the intended TCS dietary exposure through feed). 

 

Figure 5.1. Experimental setup. Abbreviations: TCS – triclosan exposure; Acid – simulated 
acidification (i.e. pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated warming 
(i.e. T = 24 ºC). 
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2.2.4. Samples collection and preparation 

At the end of the trial, 15 fish were randomly collected from each treatment (i.e. 5 fish collected 

from each of the 3 replicate tanks that composed each treatment), euthanized (i.e. fish immersed 

for 10 min in a tricaine methanesulfonate, MS222, solution at 2000 mg L-1 buffered with sodium 

bicarbonate, NaHCO3; Sigma-Aldrich, USA for), measured (total length, TL, and weight, W), 

and dissected (i.e. muscle, brain and liver tissues were collected and weighed). 

For TCS determination, due to the amount of sample required by the analytical methodology, 

two composite samples per tissue and per treatment were performed (i.e. tissues of 5 individuals 

used in each pool, n = 2 pools). Homogenized pooled samples were freeze-dried (−50 °C, 10-1 

atm of vacuum pressure for 48 h; Power Dry LL3000, Heto, Czech Republic) and kept at -80 °C 

until further analysis. 

To assess fish ecotoxicological responses, tissues of 5 animals from each treatment were 

individually used. Each tissue (muscle and liver: ~100 mg; brain: ~40 mg) was homogenized with 

1.0 mL of phosphate buffered saline (PBS; 3mM of potassium chloride, KCl, 10 mM of potassium 

phosphate monobasic, KH2PO4 and 140 mM of sodium chloride, NaCl, pH adjusted to 7.40 ± 

0.02 units; all reagents from Sigma-Aldrich, Germany), in ice-cold conditions, using a T25 digital 

Ultra-Turrax device (Ika, Germany). Crude homogenates were then centrifuged in 1.5 mL 

Eppendorf tubes (15 minutes, 10.000 g, 4 ºC), and supernatants were transferred to new Eppendorf 

tubes, being immediately frozen and kept at -80 ºC until further analyses. 

 

2.3. TCS determination in seawater, feeds and fish tissues 

For TCS determination in liquid samples (i.e. seawater), the protocol followed was based on 

the methodology described by Castro et al. (2018), with some adjustments. Briefly, 4.0 mL of 

sample was placed in 10 mL conic glass tube, and 100 µL of Chrysene D-12 at 0.5 mg L-1 were 

added (solution pH adjusted to ≥ 10 pH units, using droplets of potassium carbonate, K2CO3, 23%, 

analytical grade, Panreac Química SA). Then, a mixture of 85 µL of carbon tetrachloride (CCl4; 

99.9% purity, Panreac Química), 800 µL of acetonitrile and 125 µL of acetic anhydride was 

rapidly transferred to the 10 mL tube. Each tube was vortexed for 1 minute and centrifuged at 

1500 g for 3 minutes. Then, 50 µL of end-phase was transferred to an injection vial containing 10 

µL of methyltriclosan D-3 at 2 mg L-1, and 1 µL of this mixture was injected into the gas 

chromatography–mass spectrometry (GC-MS) system. 

In solid samples (i.e. feeds and fish tissues), a combined QuEChERS (quick easy cheap 

effective rugged safe) and DLLME (dispersive liquid-liquid micro extraction) procedure was first 

carried out following the methodology of Castro et al. (2018) with some modifications. Briefly, 

500 mg of feed or freeze-dried tissue sample was weighted to 40 mL dark glass tubes, and 50 μL 
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of internal standard (IS1) was added (Chrysene D-12, 3 mg L-1; 98 atom %, Sigma-Aldrich). After 

15 min, samples were hydrated with deionized water (5 mL), and 4 mL of acetonitrile (MeCN, ≥ 

99.9% purity, Honeywell Riedel-de Haёn ACS), 0.5 g of NaCl (≥ 99.9% purity Sigma-Aldrich) 

and 2 g of anhydrous magnesium sulphate (MgSO4, ≥ 99.5%, Sigma-Aldrich) were added. Sample 

tubes were vortexed for 30 seconds, placed in a round shaker for 30 minutes and, then, centrifuged 

again (5 minutes at 4000 g). The extracts obtained were used as a dispersive solvent for DLLME. 

Hence, to 1 mL of MeCN extract obtained, 50 μL of internal standard (IS2; methyl-triclosan D3, 

2 mg L-1, Sigma-Aldrich), 60 μL of CCl4, and 125 µL of acetic anhydride (C4H6O3, ≥99% purity, 

Sigma-Aldrich) were added. This mixture was quickly transferred to a 10 mL screw cap glass 

tubes with a conical bottom containing 3 mL of deionized (pH ≥ 10 units, adjusted with K2CO3 

23% droplets). Tubes were manually shaken for a few seconds and centrifuged (3 minutes at 

4000 g). The settled volume (60 ± 5 μL) was transferred to an injection vial with 10 µL of 

methyltriclosan D-3 at 2 mg L-1, and 1 μL of sample was injected in the GC–MS system. 

GC-MS analyses were carried using an Agilent gas chromatograph 6890 (Little Falls, DE, 

USA) equipped with an electronically controlled split/splitless injection port and interfaced to a 

MSD-5975B mass-selective detector. GC separation was conducted on a DB-5MS column 

(30 m × 0.25 mm i.d. 0.25 μm film thickness; J&W Scientific, Folsom, CA, USA), using helium 

as the carrier gas (1 mL minute-1 of constant gas flow). Injections were made in splitless mode 

(purge-off time: 60 s) at 250 °C, and the following oven temperature programme (with 28 min of 

total run time) was carried out: 1 minute hold at 90 °C, temperature ramped at 20 °C minute-1 until 

150 °C, 5 °C minute-1 between 150 ºC and 225 °C, and then 20 °C minute-1 between 225 ºC and 

300 °C, 5.25 minute hold. The following mass spectrometric parameters were set: 70 eV energy 

electron ionization, 230 °C of ion source temperature, and 150 °C of mass spectrometry (MS) 

quadrupole temperature. Selective ion monitoring (SIM) mode was employed and each analyte 

was quantified using the peak area of one target ion and two qualifier ions. Data 

collection/processing and GC-MS control was performed on the software Agilent Chemstation. 

SIM parameters, retention times of analytes, and validation parameters of the methodology are 

shown in Annex 8, Table A.8.3.  

 

2.4. D. sargus ecotoxicological responses 

2.4.1. Fitness indexes (K, HSI and BBratio) 

Animal condition was determined by calculating the Fulton’s K index (Ricker, 1975), using 

fish weight (W) and total length (TL):  

� = 100 � � (	)
��(��) 
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Organ condition (liver and brain) was also assessed by calculating the hepatosomatic index 

(i.e. HSI; Diniz et al., 2009) and brain to body mass ratio (i.e. BBratio; Maulvault et al., 2017) using 

the following equations:  

��� =  ����� ���	ℎ� (	)
� (	)  � 100 

and, 

������� =   �!�" ���	ℎ� (	)
� (	)  � 100 

 

2.4.2. Molecular biomarkers 

Eight molecular biomarkers (of exposure and/or effect) were selected to assess distinct 

biological effects (endpoints) induced by TCS dietary exposure, warming and acidification, at the 

tissue level (Table 5.1.). These molecular biomarkers have been widely employed in 

ecotoxicological studies, being considered as reliable and suitable to assess the effects of 

xenobiotics exposure, including TCS (e.g. Matozzo et al., 2012), as well as of climate change-

related effects (e.g. Rosa et al., 2016; Jesus et al., 2017; Maulvault et al., 2017, 2018a). Table 5.1. 

presents a summary of the selected biomarkers (and the corresponding ecotoxicological response 

tested), as well as the different methodologies used (further details regarding these methodologies 

have been previously presented in Maulvault et al., 2017 and Maulvault et al., 2018a). All 

biomarker values were normalized using the total protein content of each sample (i.e. results 

presented in mg of protein), determined through the Bradford assay (Bradford, 1976).  

All protocols used for both enzymatic and protein quantification assays were adapted to 96-

well microplates (microplates from Nunc-Roskilde, Denmark, used in all assays), and carried out 

in triplicate, and read in a Multiskan Go 1510 microplate reader (ThermoFisher Scientific, USA). 

All reagents used were of pro analysis grade or higher.
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Table 5.1. Summary of selected molecular biomarkers and the corresponding methodologies used. 

 

 

Biomarkers Category Tested ecotoxicological response Type of methodology used Methodology references 

Catalase (CAT) activity Biomarker of effect Oxidative stress Enzymatic assay  Johansson and Borg (1988); Maulvault et al. (2017) 

Superoxide dismutase (SOD) activity Biomarker of effect Oxidative stress Enzymatic assay  Sun et al. (1988); Maulvault et al. (2017) 

Glutathione S-transferase (GST) activity Biomarker of effect Oxidative stress and xenobiotic 
detoxification phase II Enzymatic assay  Habig et al. (1974); Maulvault et al. (2017) 

Lipid peroxidation (LPO) Biomarker of effect Oxidative stress and cellular damage TBARS method Uchiyama and Mihara (1978); Madeira et al. (2016a)

HSP70/HSC70 proteins content Biomarker of effect Chaperoning, heat shock response Indirect ELISA Njemini et al. (2005); Maulvault et al. (2017) 

Total Ubiquitin (Ub) content Biomarker of effect Protein degradation and DNA repair Direct ELISA Madeira et al. (2014) 

Acetylcholinesterase (AChE) activity 
Biomarker of effect and 

exposure Neurotoxicity Enzymatic assay  Ellman et al. (1961); Maulvault et al. (2017) 

Vitellogenin (VTG) content  Biomarker of exposure 
Endocrine disruption and 

reproduction Direct ELISA Denslow et al. (1999); Diniz et al. (2009) 
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2.5. Statistical analyses 

For the different studies variables, differences between treatments were investigated using 

Generalized Linear Mixed Models (GLMM).  Selection for best model was made using Akaike 

Information Criterion (AIC), i.e.: a Gamma distribution was used to analyse TCS tissue 

concentration data, whereas a Gaussian distribution was used for fish morphometric (W, TL) and 

ecotoxicological data (K, HSI and BBratio, as well as tissue biomarker responses), with replicate 

tank as random effect. Model assumptions, namely independence and absence of residual patterns, 

were verified by plotting residuals against fitted values and each covariate in the model. The 

summary of GLMM results is presented in Annex 8, Tables A.8.4.-A.8.6. The post-hoc Tukey 

test was also carried out for multiple comparisons (results are presented in Figures 5.2.-5.6.). 

Finally, Pearson correlation coefficients between variables were also calculated. Statistical 

analyses were performed at a significance level of 0.05, and using the R Core Team 2017 

software. Data exploration and model validation used the R library from Highland Statistics (Zuur 

et al., 2009).  

 

3. Results 

3.1. TCS concentration in feeds and seawater samples 

An average TCS concentration of 15.9 ± 2.9 µg kg-1 dw was obtained in TCS-contaminated 

feed throughout the trial, whereas TCS was not detected in CTR feed (i.e. CTR feed concentration 

< 0.009 µg kg-1). In the beginning of the trial (day 0), seawater samples from all treatments 

revealed TCS below LOD (i.e. concentration < 0.050 µg L-1). Yet, at day 28, quantifiable and 

similar TCS concentrations were found in contaminated treatments (average concentration = 0.44 

± 0.10 µg L-1; Figure 5.2.A), while TCS levels remained below LOD in the Control treatment.  
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Figure 5.2. Triclosan concentration in seawater samples (µg L-1; A) and in fish tissues (µg kg-

1 dw; B-D) from contaminated treatments after 28 days of TCS dietary exposure. Different letters 
(a-d) indicate significant differences between treatments (for the same tissue; p < 0.05), whereas 
different symbols (*, # or /) indicate significant differences between tissues (for the same 
treatment; p < 0.05). Abbreviations: TCS – triclosan exposure; Acid – simulated acidification (i.e. 
pCO2 ~1500 µatm, equivalent to pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 

 

3.2. Fish morphometry and TCS tissue bioaccumulation  

After 28 days of trial, fish exposed to the reference temperature and pCO2 levels (i.e. Control 

and TCS treatments) exhibited significantly lower W and TL than fish exposed to warming alone 

(i.e. Warm treatment; p < 0.010) or in combination with TCS exposure and acidification (i.e. 

TCS+Acid+Warm treatment; p < 0.050; Figure 5.3.A).  

By the end of the exposure trial, none of the tissues of non-contaminated fish (i.e. Control 

treatment) revealed detectable levels of TCS (i.e. concentration in fish tissues < 0.009 µg kg-1). 

As for contaminated treatments, TCS concentrations significantly varied among tissues and 

treatments, with muscle being the primary organ for TCS bioaccumulation regardless of seawater 

temperature and pCO2 conditions (e.g. in TCS treatment: 1.781 ± 0.114 µg kg-1 dw in muscle, 

0.168 ± 0.005 µg kg-1 dw in liver and 0.050 ± 0.009 µg kg-1 dw in brain; p < 0.001; Figures 5.2.B-

D). Furthermore, significantly lower TCS concentrations were found under increased seawater 

temperature and/or pCO2 levels, regardless of tissue, with warming overall yielding lower TCS 
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levels in all organs (i.e. TCS+Warm treatment: 0.268 ± 0.027 µg kg-1 dw in muscle, 0.027 ± 0.005 

µg kg-1 dw in liver and 0.026± 0.007 µg kg-1 dw in brain) compared to the reference seawater 

temperature conditions or to acidification alone (Figures 5.2.B-D). Significant negative 

correlations were obtained between morphometric data and TCS concentration in liver (r = -0.62 

and r = -0.55 and p < 0.010 and p < 0.050 in W and TL versus TCS liver concentration, 

respectively; Table 2) and brain (r = -0.60 and r = -0.53 and p < 0.01 and p < 0.050 in W and TL 

versus TCS brain concentration, respectively; Table 5.2.) of contaminated fish, but not in muscle 

(i.e. p > 0.050; Table 5.2.). 

 

Figure 5.3. D. sargus total length (TL; cm) and weight (W; g), Fulton’s condition index (K), 
hepatosomatic index (HSI) and brain-to-body mass ratio (BBratio) after 28 days of trial (mean ± 
SD; n = 15). Different letters (lower case, a-b, in W bars and upper case, A-B, in TL bars) and 
symbols (* or # in HSI bars) indicate significant differences (p < 0.05) between treatments. 
Abbreviations: TCS – triclosan exposure; Acid – simulated acidification (i.e. pH = 7.6 units); 
Warm – simulated warming (i.e. T = 24 ºC). 
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Table 5.2. Pearson correlation coefficients (r) between TCS tissues concentration, animal 
morphometry, fitness indexes and molecular biomarker responses.  In each column, asterisks 
indicate significant correlations between variables (*: p < 0.05; ** p < 0.01; *** p < 0.001). 
Abbreviations: TW – total weight; TL – total length; K - Fulton’s condition index; HSI - 
hepatosomatic index; BBratio - brain-to-body mass ratio; CAT – catalase activity; SOD activity 
inhibition – superoxide dismutase; GST activity – glutathione S-transferase; LPO - lipid 
peroxidation; HSP70/HSC70 - heat shock proteins concentration; Ub - total ubiquitin 
concentration; AChE – acetylcholinesterase activity; VTG – vitellogenin concentration; TCS – 
triclosan exposure; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated 
warming (i.e. T = 24 ºC). 

 

 Treatments used in the analysis Variables r 

All 

W x TL 0.85*** 

K x HSI 0.19 
K x BBratio 0.05 

TCS-contaminated treatments 

 Muscle Liver Brain 

[TCS]  x W -0.41 -0.62** -0.60** 
[TCS]  x TL -0.38 -0.55* -0.53* 
[TCS]  x K 0.04 0.08 0.12 
[TCS]  x HSI - 0.46* - 

[TCS]  x BBratio - - 0.37 
[TCS]  x CAT 0.77*** -0.02 -0.17 

[TCS]  x SOD -0.20 -0.001 -0.20 
[TCS]  x GST 0.26 0.09 0.19 

[TCS]  x LPO 0.11 0.17 -0.40 
[TCS]  x HSP70/HSC70 -0.17 0.58** -0.02 

[TCS]  x Ub -0.40 0.47* 0.51* 
[TCS]  x AChE - - -0.07 

[TCS]  x VTG - -0.21 - 

All 

K  x CAT 0.01 -0.16 -0.04 

K  x SOD -0.10 0.09 0.19 

K  x GST 0.13 -0.04 -0.07 

K  x LPO -0.02 -0.19 -0.02 
K  x HSP70/HSC70 -0.09 0.27 0.40** 

K  x Ub -0.14 -0.33* 0.22 
K  x AChE - - 0.12 

K  x VTG - 0.37* - 

All 

HSI  x CAT - -0.17 - 
HSI  x SOD - -0.31 - 
HSI  x GST - 0.24 - 

HSI  x LPO - 0.28 - 
HSI  x HSP70/HSC70 - 0.19 - 

HSI  x Ub - -0.19 - 
HSI  x AChE - - - 

HSI  x VTG - 0.11 - 

All 

BBratio  x CAT - - -0.07 
BBratio  x SOD - - 0.05 

BBratio  x GST - - 0.28 
BBratio  x LPO - - -0.17 
BBratio  x HSP70/HSC70 - - -0.19 

BBratio  x Ub - - -0.04 
BBratio  x AChE - - -0.12 

BBratio  x VTG - - - 
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3.3. Ecotoxicological responses  

Fish fitness indexes (K, HSI and BBratio) after 28 days of exposure to the three stressors are 

presented in Figure 5.3.B. While K and BBratio were not significantly affected by TCS, 

acidification and/or warming (i.e. p > 0.050 in Control treatment against all treatments), 

significantly higher HSI was found in fish exposed to TCS alone or in combination with 

acidification compared to fish exposed to the three stressors simultaneously (p < 0.010 and p < 

0.05, respectively; Figure 5.3.B). Moreover, HSI was significantly and positively correlated with 

TCS liver concentrations in contaminated fish (r = 0.46 and p < 0.050; Table 5.2.). 

Figure 5.4. presents the antioxidant enzymes activity (CAT, SOD and GST) and lipid 

peroxidation (LPO) in fish tissues. In fish muscle, a significant increase in CAT activity was 

observed when TCS exposure acted alone (corresponding to a 54.5% increase in relation to 

Control treatment; p < 0.050), but not when combined with the warming and/or acidification 

(Figure 5.4.A and Annex 8, Table A.8.7.). Furthermore, in the muscle of contaminated fish, a 

significant and positive correlation was found between CAT activity and TCS concentration (r = 

0.77 and p < 0.001; Table 5.2.).  As for the liver and brain, although CAT activity was not 

significantly affected by the three stressors acting alone (p > 0.05), a significant decrease was 

observed in the liver of fish co-exposed to TCS and warming (i.e. TCS+Warm treatment), not 

only in relation to the Control treatment (equivalent to a 38.7% decrease; p < 0.001), but also to 

Warm (p < 0.001), TCS+Acid (p < 0.001) and TCS+Acid+Warm treatments (p < 0.001; Figure 

5.4.B and Annex 8, Table A.8.7.). SOD and GST activities were significantly affected by abiotic 

stressors, acting alone or combined with each other (i.e. SOD muscle activity decreased around 

9% in relation to Control treatment; ; p < 0.050 and p < 0.010, in Control against Warm and 

Acid+Warm treatments, respectively; GST brain activity increased between 76% and over 100% 

in relation to Control treatment; p < 0.050, p < 0.001 and p < 0.001 in Control against Acid, Warm 

and Acid+Warm treatments; Figures 5.4.D-I and Annex 8, Table A.8.7.). On the other hand, 

TCS exposure did not affect SOD activity, unless in the liver and brain of fish exposed to the 

combination of TCS and acidification (corresponding to activity increases of 18.6% and 5.5% in 

relation to Control treatment, in liver and brain, respectively; p < 0.001 and p < 0.050, 

respectively; Figures 5.4.E-F and Annex 8, Table A.8.7.).  Similarly, TCS exposure did not 

affect GST activity, except in the muscle and liver of fish co-exposed to TCS and warming (i.e. 

corresponding to a decrease of 46.8% and 69.6% in relation to Control treatment in muscle and 

liver, respectively; p < 0.001 in both cases; Figures 5.4.G-H, and Annex 8, Table A.8.7.). It 

should be further noted that significantly higher GST activity was also found in TCS+Acid 

treatment compared to TCS+Warm treatment (in muscle and liver; p < 0.001 in both cases), as 

well as to TCS and TCS+Acid+Warm treatments (in liver; p < 0.001 and p = 0.019, respectively; 

Figures 5.4.G-.H). Overall, TCS acted alone or in combination with acidification induced 
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significantly higher LPO in fish muscle and liver (i.e. average increase of over 100% in relation 

to Control treatment, in both tissues), but not in the brain (p > 0.050; Figures 5.4.J-L and Annex 

8, Table A.8.7.). 

HSP70/HSC70 and Ub contents in the different fish tissues are shown in Figure 5.5. 

Contrasting the trends mentioned above, in the absence of TCS (i.e. in non-contaminated fish), 

abiotic stressors only affected HSP70/HSC70 content in fish liver, resulting in a significant 

increase in Acid treatment (i.e. equivalent to 63.2% increase in relation to Control treatment; p < 

0.001), whereas Acid+Warm treatment significantly inhibited the synthesis of these proteins (i.e. 

equivalent to 74.0% decrease in relation to Control treatment; p < 0.001; (Figures 5.5.A-C and 

Annex 8, Table A.8.7.). Conversely, TCS alone or combined with acidification significantly 

lowered HSP70/HSC70 contents in fish muscle (corresponding to a 44.6% and 56.6% decrease 

in TCS and TCS+Acid treatments, respectively, relation to Control treatment; p < 0.001 in both 

cases), but such effect was reversed when the three stressors acted simultaneously (i.e. in 

TCS+Acid+Warm treatment; corresponding to an increase of 66.5% in relation to Control 

treatment; p < 0.001; Figure 5.5.A and Annex 8, Table A.8.7.). In fish liver, significant effects 

were only found when TCS was combined with abiotic stressors (i.e. decreases in HSP70/HSC70 

contents between 36.6% in TCS+Warm treatments and 76.6% in TCS+Acid treatment, relation 

to the Control treatment; p < 0.010 and p < 0.001, respectively; Figure 5.5.B and Annex 8, Table 

A.8.7.). No significant differences were observed in HSP70/HSC70 brain contents (p > 0.050; 

Figure 5.5.C and Annex 8, Table A.8.7.). A significant and positive correlation was found 

between HSP70/HSC70 and TCS contents in fish liver (r = 0.58 and p < 0.001), as well as between 

HSP70/HSC70 and K in the brain (r = 0.40 and p < 0.001; Table 5.2.). As for Ub content, 

warming combined with acidification or with TCS significantly increased Ub protein synthesis in 

fish muscle (i.e. 85.4% and 66.0% increase in relation to Control treatment in Acid+Warm and 

TCS+Warm treatments, respectively; p < 0.001 in both cases; Figure 5.5.D and Annex 8, Table 

A.8.7.). On the other hand, Ub contents in fish liver were significantly increased in acidified 

conditions (i.e. average increase of over 100% in relation to the Control treatment for TCS+Acid 

and TCS+Acid+Warm treatments; Figure 5.5.E and Annex 8, Table A.8.7.). In the brain, with 

the exception of Acid+Warm and TCS treatments, all other treatments significantly reduced Ub 

protein synthesis in relation to the Control treatment, particularly with acidification acting alone 

(which yielded a 69.5% decrease in relation to Control treatment; p < 0.001; Figure 5.5.F and 

Annex 8, Table A.8.7.). Ub contents in both liver and brain of contaminated fish were 

significantly correlated with TCS contents (r = 0.47 and r = 0.51, respectively, and p < 0.050 in 

both cases), as well as to K (only in liver; r = -0.33 and p < 0.050; Table 5.2.). 
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Figure 5.4. Antioxidant activity (CAT, µM min -1 mg-1 protein; SOD, % inhibition; GST, nmol min -1 mg-1 protein) and lipid peroxidation (expressed as 
MDA concentration; µM mg-1 protein) in muscle (A, D, G, J), liver (B, E, H, K) and brain (C, F, I, L) of D. sargus after 28 days of exposure (mean ± SD; n = 
5). Different letters (a-c) indicate significant differences between treatments (for the same tissue; p < 0.05). 
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Figure 5.4. (continuation) Antioxidant activity (CAT, µM min -1 mg-1 protein; SOD, % inhibition; GST, nmol min -1 mg-1 protein) and lipid peroxidation 
(expressed as MDA concentration; µM mg-1 protein) in muscle (A, D, G, J), liver (B, E, H, K) and brain (C, F, I, L) of D. sargus after 28 days of exposure (mean 
± SD; n = 5). Different letters (a-c) indicate significant differences between treatments (for the same tissue; p < 0.05). Abbreviations: Control – reference 
temperature and pH conditions (i.e. T = 19 ºC and pH = 8.0 units); TCS – triclosan exposure; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – 
simulated warming (i.e. T = 24 ºC), CAT – catalase activity; SOD – superoxide dismutase inhibition; GST – glutathione S-transferase; LPO – lipid peroxidation.  
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Figure 5.5. HSP/HSC70 (µg mg-1 protein) and ubiquitin (Ub; µg mg-1 protein) concentrations 
in muscle (A, D), liver (B, E) and brain (C, F) of D. sargus after 28 days of exposure (mean ± 
SD; n = 5). Different letters (a-d) indicate significant differences between treatments (for the same 
tissue; p < 0.05). Abbreviations: Control – reference temperature and pH conditions (i.e. T = 19 
ºC and pH = 8.0 units); TCS – triclosan exposure; Acid – simulated acidification (i.e. pH = 7.6 
units); Warm – simulated warming (i.e. T = 24 ºC); HSP70/HSC70 – heat shock proteins; Ub – 
total ubiquitin. 
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highest inhibition in relation to the Control treatment (i.e. a decrease around 80% in relation to 

Control treatment; p < 0.001 in both cases; Figure 5.6.B and Annex 8, Table A.8.7.). In addition, 

a significant negative correlation found between VTG content and K (r = 0.37 and p < 0.050; 

Table 5.2.). 

 

Figure 5.6. Acetylcholinesterase (AChE) activity (µmol min -1 mg-1 protein; A) in brain tissues 
and vitellogenin (VTG) concentration (ng mg-1 protein; B) in liver tissues of D. sargus after 28 
days of trial (mean ± SD; n = 5). Different letters (a-d) indicate significant differences between 
treatments (p < 0.05). Abbreviations: TCS – triclosan exposure; Acid – simulated acidification 
(i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); AChE – acetylcholinesterase 
activity; VTG – vitellogenin concentration. 
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content, but less evident effects were observed in fish antioxidant machinery (CAT, SOD and 

GST activities). Furthermore, these effects were either exacerbated or attenuated/reversed by the 

co-exposure to abiotic stressors, with the combination of TCS and acidification resulting, overall, 

in more notorious biochemical alterations (namely, in SOD, LPO, HSP70/HSC70, Ub and VTG) 

compared to the other treatments. 

 

4.1. TCS concentration in feeds, seawater and non-contaminated fish samples 

TCS was efficiently incorporated in TCS-contaminated feed, evidencing a stable concentration 

during the whole trial (i.e. TCS in feed did not undergo degradation/loss throughout time). The 

fact that TCS was not detected in CTR feed indicates that no external contamination occurred 

during feed preparation. Furthermore, seawater and fish samples from Control treatment also 

revealed TCS levels below LOD, thus, confirming that during the trial no external contamination 

has taken place within the independent recirculation aquaculture system, apart from the intended 

TCS dietary exposure in contaminated treatments. In this way, the quantifiable (and similar 

among treatments) TCS levels in seawater samples from contaminated treatments after 28 days 

of dietary exposure to TCS can only be attributed to two reasons: i) TCS partial leaching from 

contaminated feed to seawater, which seems less likely to have occurred given the physical and 

chemical properties of this compound (i.e. low water solubility and high adsorption to solid 

particles; Dhillon et al., 2015); and ii) faecal excretion by fish of TCS in its parental form 

(Escarrone et al., 2016; Arnot et al., 2017). It should be noted that the low, but not negligible, 

TCS levels in seawater from contaminated treatments, to which fish were chronically exposed 

during the trial, might have also contributed (even if to a much lower extent compared to the 

intended dietary exposure) to the final TCS tissue burden due to its re-uptake through fish gills 

(i.e. via inhalation), possibly enhancing the ecotoxicological effects elicited by the dietary 

exposure to this compound (as well as the studied abiotic stressors). 

 

4.2. TCS tissue bioaccumulation and effects of warming and acidification  

Even though PPCPs are generally assumed to be mostly uptaken by marine biota through direct 

contact with contaminated water masses (i.e. via gills through inhalation, or via skin), recent 

studies have pointed out dietary transfer (i.e. biomagnification along the food webs) as an 

important pathway for contaminants’ bioaccumulation in marine fish species, particularly for 

organic and/or less hydrosoluble compounds (e.g. Dijstra et al., 2013; Zenker et al., 2014; 

Maulvault et al., 2016, 2018b). Hence, even though TCS exposure concentration selected in this 

study may not mimic a dietary exposure that occurs in nature (e.g. TCS levels in bivalve species, 

which are natural preys of D. sargus, are around 2 ng g-1 dw, i.e., ~7 times lower than TCS 
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concentration in the contaminated feed; Álvarez-Muñoz et al., 2015), the present results constitute 

a proof of concept that, indeed, TCS can be uptaken by marine fish species through diet, with 

muscle being the primary organ for bioaccumulation of this compound. To date, studies on TCS 

bioaccumulation in different fish tissues are extremely limited (Escarrone et al., 2016) and, to the 

best of the authors’ knowledge, no such studies have been carried out using marine species 

exposed to TCS via diet, thus, hindering comparisons of the present results with previous reports. 

Yet, the lipophilic behaviour of TCS suggests that it can be highly bioaccumulative and persistent 

in fatty tissues, such as liver and gonads, while much lower bioaccumulation is expected to occur 

in tissues with lower lipid content, such as muscle and brain (Dhillon et al., 2015; Escarrone et 

al., 2016). Indeed, Escarrone et al. (2016) detected higher TCS concentrations in fish gonads and 

liver, and lower levels in gills, brain and muscle after 14 days of TCS water exposure (160 µg L-

1). Such findings contradict the pattern observed in the present study (i.e. muscle TCS 

concentrations were ~10 times higher than those of liver, under the reference temperature and 

pCO2 conditions), suggesting that contaminant exposure route, dose and time may play a 

preponderant role on TCS’s mechanisms of bioaccumulation and tissue distribution in fish. On 

the other hand, the surprisingly lower persistence of TCS in its parental form observed in the liver 

could be due to an intensive compound biotransformation that might have occurred in this tissue, 

since liver is the primary organ for the metabolization and detoxification of xenobiotics, being 

then transported to other organs through the blood circulation or excreted via the hepatobiliary 

route (Wang et al., 2010; Maulvault et al., 2016). The toxicokinetic mechanisms of TCS in fish 

species are still poorly understood, however, recent data have shown that TCS is intensively and 

rapidly metabolized in the liver, where it partially undergoes glucuronidation or sulfonation, being 

subsequently transformed into more soluble and easily excreted metabolites (James et al., 2012). 

Such TCS detoxification mechanism seem to have been enhanced by seawater warming and 

acidification (although, to a lower extent in this last case), substantially reducing TCS levels in 

all tissues. 

Warmer temperatures often enhance fish metabolism, which translate into increased 

ventilation and feeding rates in order to fulfil the higher metabolic demands (Rosa et al., 2013, 

2014; Anacleto et al., 2018). Thus, although an enhanced animal metabolism can result in higher 

contaminants’ uptake (of those dissolved in the water column, i.e. via respiration, or those present 

in the feed, i.e. via ingestion; e.g. Dijkstra et al., 2013; Hedrick-Hopper et al., 2015; Maulvault et 

al., 2016, 2018b), it can also facilitate contaminants’ metabolization and elimination (Maulvault 

et al., 2016, 2018b; Serra-Compte et al., 2018). Moreover, increased metabolic rates can enhance 

animal growth, which can also translate into lower contaminant bioaccumulation due to somatic 

growth dilution (Dijkstra et al., 2013; Maulvault et al., 2016). This argument may also explain the 

lower TCS tissue burden in fish exposed to warming conditions, which match the generally higher 

W and TL also found in these treatments, as well as the negative correlation observed between 
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these parameters and TCS concentrations in liver and brain of contaminated fish. As follows, here 

we argue that the enhanced metabolism of D. sargus elicited by 28 days of exposure to +5 ºC of 

seawater temperature could have been accompanied by an increase in both animal growth and 

TCS metabolization/excretion, therefore, translating into lower TCS tissue burdens in fish under 

warming. Yet, such pattern seemed to have been somewhat reversed by acidification in fish 

muscle, as TCS+Acid+Warm treatment showed higher TCS concentrations than TCS+Warm 

treatment, but similar values to those observed in TCS+Acid treatment.  

Contaminants’ chemical properties are largely influenced by environmental conditions, with 

metals and other ionic compounds being particularly affected by the surrounding seawater pH 

levels. Such is the case of TCS that becomes increasingly protonated and loses its negative charge 

as pH falls below ~8.0 units (Orvos et al., 2002; Rowett et al., 2016). In this way, a recent study 

using the freshwater amphipod Gammarus pulex as model organism evidenced increased TCS 

toxicity under lower pH levels (i.e. 7.3 pH units versus 8.4 pH units), and such results were 

justified by the fact that cell lipid membranes are generally impermeable to ionised molecular 

forms (i.e. ionized TCS forms are less toxic; Rowett et al., 2016). Yet, the present results are not 

in agreement with this argument, since fish exposed to acidification alone also exhibited lower 

TCS tissue burdens than those under normal temperature and pCO2 conditions, though not as 

much as warming. Such results can be explained by the three following points. First, the study of 

Rowett et al. (2016) was focused on TCS exposure via water and, therefore, a greater influence 

of the surrounding pH level on TCS’s availability can be expected in this case, in comparison 

with the conditions simulated in the present study (i.e. TCS exposure via feed). Second, in this 

previous study, a higher ΔpH was simulated (i.e. a decrease of -0.9 pH units, whereas in the 

present study ΔpH = -0.4 pH units), as more pronounced changes in pH levels can be expected in 

freshwater environments likely conditioning the ratio between molecular and ionized TCS forms 

available for fish uptake to a greater extent than the one elicited in the present study. Third, the 

energy required to maintain animal homeostasis under -0.4 pH units could have diminished fish 

biological activities, thus, reducing the uptake rates of TCS. It is also worth mentioning that the 

trends observed in fish liver and brain under acidification were further enhanced when warming 

was also added to the equation (i.e. lower values in TCS+Acid+Warm treatment compared to 

TCS+Acid treatment), and that was certainly related to the increased metabolic rates (and, the 

corresponding enhanced TCS detoxification) induced by +5 ºC of seawater temperature. 

Linking the present findings with environmental and seafood safety, despite results do not 

evidence increased TCS uptake in fish tissues under warming and/or acidification, the trends 

presently observed clearly confirm that PPCPs’ fish tissue burdens are strongly influenced by 

seawater abiotic variables, which can alter compounds’ bioaccumulation, metabolization and 

elimination mechanisms. Hence, such findings highlight that the interactive effects of abiotic 
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variables should not be neglected when estimating the environmental hazards posed by PPCPs, 

nor when regulating the presence of PPCPs in the environment and seafood species. Furthermore, 

the current lack of literature on this matter, along with the controversial results reported in the 

few available studies (Hedrick-Hopper et al., 2015; Escarrone et al., 2016) calls for the need to 

further investigate the impacts of climate change from an ecotoxicological point of view, 

considering different contaminant exposure routes, as well as exploring less pronounced to more 

severe ranges of stressors’ effects.  

 

4.3. Interactive ecototoxicological effects of TCS, warming and acidification in D. sargus  

Although animal condition can gradually decline when fish are exposed to environmental 

stressors due to additional energetic costs that prevent the allocation of energy resources towards 

somatic growth (Sandblom et al., 2016; Maulvault et al., 2018a; Anacleto et al., 2018), juvenile 

D. sargus did not exhibit significant differences in K (nor in BBratio) after 28 days of exposure to 

the experimental conditions. Therefore, results suggest that fish physiological mechanisms were 

somewhat able to compensate the stress induced by TCS, +5 ºC and/or +1000 µatm pCO2 

(equivalent to -0.4 pH units) during 28 days of exposure trial. On the other hand, fish exposed to 

TCS alone or combined with acidification revealed, in overall, higher HSI than the other 

treatments (though statistical significance was only obtained against TCS+Acid+Warm 

treatment). These results match the trends observed in TCS tissue concentrations (i.e. higher TCS 

concentrations in TCS and TCS+Acid treatments, along with the positive correlation found 

between TCS liver concentration and HIS), and are in agreement with the fact that xenobiotics’ 

exposure usually provokes liver hypertrophy and/or hyperplasia (Diniz et al., 2009; 

Sadekarparwar and Parikh, 2013; Maulvault et al., 2017). Conversely, the significantly lower HSI 

observed in fish exposed to the combination of the three stressors (compared to TCS exposure 

alone or combined with acidification) may be associated with the lower TCS liver concentration 

elicited in this treatment and/or with cell apoptosis promoted by such severe stress conditions. 

In agreement with previous findings (e.g. Canesi et al., 2007; Matozzo et al., 2012; Liang et 

al., 2013; Maulvault et al., 2017, 2018a), the exposure to the three studied stressors resulted in 

both up- and down regulations of molecular biomarker responses, according to fish tissue and 

biomarker. The differential tissue responses (e.g. higher CAT activity in muscle than in liver and 

brain; and CAT muscle activity induced by TCS alone, whereas CAT liver activity was inhibited 

by TCS plus acidification) were likely related to the fact that different tissues not only can have 

distinct baseline levels of molecular biomarkers, but may also respond differently to the presence 

of stressors (such as, TCS, warming and/or acidification), since each tissue is composed by 

different cell types (i.e. organs are physiologically and functionally different). Hence, the current 

findings highlight the importance of assessing fish tissue differential responses in 
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ecotoxicological studies, as such approach provides a broader view on the impacts of 

environmental stressors in a whole organism context.  

The antioxidant enzymes SOD, CAT and GST play a key role in cells’ defence mechanisms 

against the oxidative stress induced by environmental stressors, i.e.: SOD converts superoxide 

radicals into hydrogen peroxide and molecular oxygen (O2) and, then, CAT converts hydrogen 

peroxide into oxygen and water (Halliwell and Gutteridge, 1985), while GST is a major second 

phase detoxification enzyme (Sheehan et al., 2001), being also responsible for generating less 

toxic and more hydrophilic compounds through the conjugation of lipid peroxidase breakdown 

products with glutathione (GSH; Barata et al., 2005; Park et al., 2017). In this way, previous 

studies conducted in marine organisms have reported an induction of CAT, SOD and GST 

activities under increased temperature and pCO2 levels (e.g. Rosa et al., 2016; Jesus et al., 2018; 

Maulvault et al., 2017, 2018a), as well as under chemical contaminants’ exposure (e.g. Matozzo 

et al., 2012; Maulvault et al., 2017, 2018a), thus, corroborating the findings obtained with D. 

sargus exposed to warming and/or acidification (increased GST brain activity), TCS (increased 

CAT muscle activity, as well as a positive correlation between TCS concentration and CAT 

activity in contaminated fish muscle) and TCS co-exposed with acidification (increased SOD liver 

and brain activities). In agreement, Park et al. (2017) reported increased SOD and GST activities 

in the copepod Tigriopus japonicus short-term exposed to different concentrations of TCS via 

water (50 and 100 µg L-1). Similarly, in response to TCS water exposure, Matozzo et al. (2012) 

found a significant increase in SOD gills activity in Ruditapes philippinarum, while no changes 

were observed in CAT activity. Yet, an opposite effect was also observed in our study, with CAT 

(liver) and GST (muscle and liver) activities being inhibited by the co-exposure of TCS and 

warming, though such inhibition seemed to have been somewhat attenuated by acidification. Such 

pattern suggests that, despite the lower TCS levels in TCS+Warm treatment in the different 

tissues, the severity of stress induced by the combination of TCS exposure and + 5 ºC must have 

led cells’ antioxidant mechanisms to exhaustion, possibly due to an excessive production of H2O2 

(Gonzalez-Rey and Bebianno; 2014; Maulvault et al., 2018a). SOD muscle activity was also 

inhibited in Warm and Acid+Warm treatments, most likely due to ROS-mediated denaturation 

promoted by increased temperatures resulting in the inactivation of this enzyme (Ferreira et al., 

2015), but such effect was reversed by TCS co-exposure. Though literature is extremely scarce 

in what concerns the interactive effects of PPCPs and abiotic variables on marine species 

ecotoxicological responses (with no studies being focused on cells’ antioxidant activity, to the 

best of the authors’ knowledge), a similar trend was also observed in our recent study performed 

with Dicenthrachus labrax, where the increased SOD inhibition in fish muscle promoted by 

warming and acidification was partially attenuated by diclofenac co-exposure (Maulvault et al., 

2018a).  
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In line with the enhanced CAT and SOD activities, TCS exposure alone or combined with 

acidification elicited the formation of lipid peroxides in fish muscle and liver (i.e. increased MDA 

concentration in relation to the remaining treatments), a result that is most likely related with the 

higher TCS levels found in fish exposed to these conditions. The increased LPO found in these 

treatments suggests that the enhancement of antioxidant defences was only able to prevent the 

oxidative stress induced by TCS and acidification to some extent, leading to the consequent cell 

damage. 

Matching some of the present findings (i.e. HSP70/HSC70 content in fish liver under 

acidification and muscle of fish exposed to the three stressors alone), the synthesis of molecular 

chaperones, such as HSPs, can be induced in order to repair, refold, and/or eliminate damaged 

proteins, thus preventing cellular damage promoted by the exposure to both abiotic stressors (e.g. 

Rosa et al., 2014; Pimentel et al., 2015; Madeira et al., 2016a,b) and chemical contaminants (e.g. 

Maulvault et al., 2017, 2018a), including TCS (Lin et al., 2014). The positive correlation found 

between TCS and HSP70/HSC70 concentrations in this tissue is consistent with this trend, thus 

evidencing that chaperoning mechanisms were further enhanced as TCS tissue levels increased 

(and vice-versa). Yet, chaperone activation mechanisms cannot be looked at as straightforward 

process, as they are influenced by several physiological factors, including stress levels, 

interactions with chemical contaminants, species, tissue and animal hormone levels, (e.g. 

Mahmood et al., 2014; Madeira et al., 2016b). Furthermore, HSPs can also be down-regulated 

due to the exhaustion of cytoprotective systems and metabolic depression promoted by severe 

and/or chronic stress conditions (Madeira et al., 2016b; Maulvault et al., 2018a). Such was the 

case of fish liver exposed to acidification and/or warming (regardless of TCS exposure), as well 

as muscle of fish exposed to TCS and acidification. Similarly, a previous study with D. labrax 

reported that HSP70/HSC70 synthesis in fish muscle was up-regulated by acidification and 

warming in co-exposure with diclofenac, but down-regulated by acidification alone (Maulvault 

et al., 2018a). Falisse et al. (2017) also reported HSPs overexpression in zebrafish (Danio rerio) 

larvae following TCS seawater exposure at 100 µg L-1, but not at 50 µg L-1, suggesting that TCS 

mode of action may be dose-dependent. 

Similar to HSPs, Ub synthesis can be induced when internal stress is generated, in order to 

signal denatured proteins to be degraded by the proteasome (e.g. Gravel, and Vijayan, 2007; 

Madeira et al., 2017). This pattern was observed in fish liver exposed to increased pCO2 levels 

(i.e. Acid, Acid+Warm, TCS+Acid and TCS+Acid+Warm treatments), where increased Ub levels 

were generally negatively correlated with lower K. Furthermore, results also indicate that the 

synthesis of these proteins was positively correlated with TCS levels in liver and brain. 

Conversely, extreme or long-lasting stress conditions can also result in Ub inhibition due to 

physiological collapse, since protein synthesis is an energy demanding process, requiring over 

50% of all O2 consumed my fish (e.g. Gravel, and Vijayan, 2007; Madeira et al., 2016b). Indeed, 
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the overall decrease Ub content observed in fish brain suggests that the exposure to TCS, 

acidification and/or warming led to irreversible damages, that both chaperoning and ubiquitin-

proteosomal pathways could not compensate for, most likely as a result of a poorer energy budget 

(and aerobic scope) in fish under these stressors (Falfushynska et al., 2014; Madeira et al., 2017). 

Moreover, Ub inhibition was particularly evident under acidification alone or combined with TCS 

and warming, and that may be related to the fact that elevated pCO2 levels disrupt the ionic 

balance in proton-based neurotransmitter cell receptors (e.g. GABAA), with the consequent 

increase of animal stress and cognition impairments (e.g. Nilsson et al., 2012; Hamilton et al., 

2014; Munday et al., 2014; Maulvault et al., 2018c).  

AChE was also inhibited by warming alone or by the co-exposed with acidification, and by 

TCS alone or by the co-exposure to the two abiotic stressors simultaneously. These results are in 

line with previous findings: i) the exposure to abiotic stressors, particularly increased pCO2 levels, 

strongly mediates AChE brain activity (Rosa et al., 2016); and ii) AChE can be a target for 

chemical contaminants, leading to the inhibition of its activity and, therefore, to failed synaptic 

transmission and muscle overstimulation (Schmidel et al., 2014; Maulvault et al., 2017; Topal et 

al., 2017). Furthermore, AChE activity inhibition seemed to be consistent with the Ub synthesis 

impairment in the brain, particularly in TCS-exposed treatments, suggesting that TCS dietary 

exposure may have a neurotoxic effect in fish species. In accordance with the present results, 

Hedrick-Hopper et al. (2015) observed impaired reflexes in Atlantic croaker (Micropogonias 

undulatus) following TCS dietary exposure, with the dorsal fin response being further affected 

by the combination of TCS and increased temperatures, evidencing that TCS’s toxicological 

attributes may be accentuated by the predicted climate change seawater conditions. It is also worth 

noting that Falisse et al. (2017) reported acute neurotoxicological effects in D. rerio larvae 

exposed to TCS (50 and 100 µg L-1), though such effects translated into an induction of AChE 

activity rather than an inhibition, contrasting with the present findings. 

VTG is usually very low or undetectable in male and juvenile individuals, but can reach high 

values in the liver and plasma of mature females. Nonetheless, the exposure to endocrine 

disrupting compounds has been previously described to either elicit its production in 

males/juveniles (estrogenic effect) or inhibit its production in females (antiestrogenic effect; 

Matozzo et al., 2008; Gonzalez-Rey and Bebianno, 2014), causing remarkable reproductive 

impairments and, ultimately, deleterious ecological consequences. Such impacts may be even 

more severe in protandrous fish, such as those belonging to the Sparidae family, which can 

alternate from one sex to another throughout its life cycle. This is the case of D. sargus, which is 

a digynic hermaphrodite species, i.e. some early life-stage individuals exhibit non-functional 

bisexual gonads, which can develop into male or female due to various environmental factors 

(e.g. demographics, social behaviour, abiotic conditions and insufficient nutrition; once mature, 
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some males retain the ability to invert sex into secondary females (Morato et al., 2003). Moreover, 

since marine fish species’ reproductive strategies are strongly mediated by the surrounding abiotic 

conditions, warming and acidification are also expected to affect their reproduction and ecological 

success, or even to accentuate their negative responses to the presence of endocrine disrupting 

compounds (e.g. Morato et al., 2003; Pankhurst and Munday, 2011; Cripps et al., 2014). These 

arguments are in accordance with the present findings, since TCS dietary exposure drastically 

inhibited VTG synthesis in relation to the values observed under control conditions and, therefore, 

showed a potential antiestrogenic effect in juvenile D. sargus, as did warming and acidification 

(except when these last two acted alone). Interestingly, the greatest inhibition was observed under 

the combination of TCS and increased pCO2 levels (i.e. TCS+Acid and TCS+Acid+Warm 

treatments). These results follow the trend observed in an earlier study with D. labrax, i.e. 

acidification and/or warming also seemed to have an antiestrogenic effect (i.e. lowering VTG 

levels) by counteracting the effects of dietary exposure to diclofenac (Maulvault et al., 2018a). 

Even though the effects of increased temperatures are, by far, better described in literature (e.g. 

Chandra et al., 2012; Hedrick-Hopper et al., 2015; Maulvault et al., 2018a), previous studies also 

pointed out that acidification can play a preponderant role on marine biota’s endocrine regulation 

(e.g. by modulating the synthesis of cortisol levels and thyroid hormones, which are, in turn, 

linked to VTG induction; McCormick and Bradshaw, 2006; Kwong et al., 2014). Yet, little is still 

known regarding interactive effects of co-exposure to acidification and endocrine disruptors, thus 

calling for the need to further investigate the effects of environmental stressors on fish endocrine 

system and reproduction. 

 

5. Conclusions 

Data confirmed that TCS uptake and elimination mechanisms in the marine fish species D. 

sargus are strongly influenced by seawater temperature and pCO2 levels, and that the metabolic 

and physiological changes elicited by warmer and/or more acid environmental conditions can 

result in lower TCS tissue burdens.  

As for ecotoxicological responses, results showed that TCS dietary exposure promoted cellular 

damage (increased LPO), neurotoxicity (AChE inhibition) and endocrine disruption (VTG 

inhibition) in juvenile D. sargus, while its effect on tissues’ antioxidant machinery (CAT, SOD 

and GST activities) was not so clear. Yet, the differential responses (up- or down-regulation) 

observed according to tissue pointed out that TCS can have distinct modes of action depending 

on animal tissue and enzyme. TCS toxicological attributes were also largely influenced by 

increased temperature (+5 ºC) and pCO2 levels (+1000 µatm), resulting in an enhancement or 

attenuation of biochemical biomarker responses. Overall, TCS co-exposed with acidification 

resulted in more drastic biochemical alterations than those elicited by TCS co-exposed with 
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warming or even the combination of the three stressors, resulting in increased SOD activity and 

LPO, as well as in diminished chaperoning and VTG synthesis. Hence, the distinct effects 

promoted by TCS exposure, acidification and warming, acting alone or combined, highlight the 

need to consider the interactions between environmental stressors in future ecotoxicological 

studies, as well as to incorporate these variables in future regulations and recommendations 

regarding the environmental presence of PPCPs. Such actions will be crucial to understand and 

mitigate the toxicological implications of climate change, as environmental stressors unlikely 

occur in isolation, nor the alterations of environmental conditions affect marine ecosystems in the 

same way across the planet. 
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Abstract 

Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and 

perfluorinated compounds (PFCs), among others], that have not been historically recognized as 

pollutants nor their toxicological hazards, are increasingly more present in the marine 

environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on 

bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota 

have been poorly studied until now. In this context, the aim of this study was to assess, for the 

first time, the effect of warmer seawater temperatures (Δ = +4 ºC) and lower pH levels (Δ = -0.4 

pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs 

(dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and 

PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). 

Overall, results showed that warming alone or combined with acidification promoted the 

bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the 

elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of 

dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when 

both abiotic stressors are combined, bivalves’ capacity to accumulate contaminants may be time-

dependent, considering the significantly drastic increase observed with Dec 602 and TBBPA, 

during the last 10 days of exposure, when compared to reference conditions.  Such changes in 

contaminants’ bioaccumulation/elimination patterns also suggest a potential increase of human 

health risks of some compounds, if the climate continues changing as forecasted. Therefore, this 

first study pointed out the urgent need for further research on the effects of abiotic conditions on 

emerging contaminants kinetics, to adequately estimate the potential toxicological hazards 

associated to these compounds and develop recommendations/regulations for their presence in 

seafood, considering the prevailing environmental conditions expected in tomorrow’s ocean. 

 

Keywords: emerging chemical contaminants, flame retardants, toxic elements, perfluorinated 

compounds, bioaccumulation, warming, acidification. 
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1. Introduction 

The remarkable increase of the human footprint on the planet (i.e. world population constant 

growth, excessive use of natural resources, and massive production of pollutants), especially since 

the mid-20th century, has contributed to one of the greatest environmental concerns of our time: 

climate change. Climate change effects can already be felt in many regions of the world, and are 

expected to worsen in the coming 50-100 years, with devastating consequences at ecological and 

human scales, even if strong efforts are made to maintain greenhouse gas emissions (GHGs) at 

the current levels (IPCC, 2014). Such changes also affect marine ecosystems, leading to a 

potential increase of the average seawater surface temperature (up to +4 ºC), as well as to ocean 

acidification due to increased levels of atmospheric CO2, which dissolves into the ocean, dropping 

seawater pH down to 0.4 units in some areas of the globe (according to scenario 8.5 of the 

Representative Concentration Pathways of GHG concentrations, i.e. RCP 8.5, of the 

Intergovernmental Panel for Climate Change, IPCC, 2014). Depending on the region, both 

climate change effects can act independently as a single stressor, promoting deleterious alterations 

in marine species metabolism, growth, reproduction, among others, or can occur simultaneously 

(i.e. combined with each other or with other climate stressors, e.g. hypoxia, salinity) representing 

additional challenges to the resilience of marine ecosystems (e.g. Rosa et al., 2016; Maulvault et 

al., 2016, 2017; Sampaio et al., 2018).  

Marine species are currently chronically surrounded by an array of chemical contaminants, 

particularly those inhabiting areas that are more vulnerable to anthropogenic impacts (e.g. 

estuaries and coastal lagoons) (e.g. Bollman et al., 2012; Maulvault et al., 2015). New chemical 

substances that have not been historically recognized as pollutants, and for which limited 

toxicological information is still currently available, are increasingly more present in the marine 

environment (e.g. Feo et al., 2012; Cunha et al., 2015; Marques et al., 2015; Vandermeersch et 

al., 2015). These "contaminants of emerging concern" include various compounds from distinct 

chemical groups, which may occur naturally in the environment [e.g. inorganic arsenic (iAs)] or 

are exclusively man-made substances [e.g. flame retardants (FRs), perfluorinated compounds 

(PFCs), pharmaceutical residues, UV-filters and musks, among others] commonly derived from 

domestic, hospital and industrial effluents, as well as, agriculture and aquaculture activities (e.g. 

Bollman et al., 2012; Feo et al., 2012; Maulvault et al., 2015; Vandermeersch et al., 2015). Arsenic 

is an ubiquitous element that can occur in the aquatic environment in several oxidation states (-3, 

0, +3 and +5), although being mostly found in its most toxic forms, i.e. the inorganic ones (AsIII 

or AsV; Matschullat, 2000). Arsenic concentrations in coastal ecosystems may range from 1 to 

20 µg L–1 (Smedley and Kinniburgh, 2001), and in biota the highest concentrations are usually 

found in bivalve species (total As concentrations up to 24 µg g-1 dry weight (dw) (Sloth et al., 

2008; Maulvault et al., 2015). Flame retardants (FRs) are persistent contaminants in the 
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environment, particularly accumulating in sediments and biota, since most of them are extremely 

hydrophobic. Thus, their concentrations in seawater are usually undetectable or within the range 

of pg L-1 (e.g. Bollmann et al., 2012), whereas in marine sediments and biota values are in the 

order of pg g-1 dw and ng g-1 lipid weight (lw), respectively (e.g. Feo et al., 2012; Santín et al., 

2013; Vandermeersch et al., 2015). Tetrabromobisphenol A (TBBPA) is one of the most relevant 

FR widely used by the industry and can be found in river and estuarine sediments, as well as in 

biota, reaching up to 14 ng g-1 of lw (EFSA, 2011; Vandermeersch et al., 2015). As for other types 

of FRs, based on their known toxic effects, recently, the EU banned or restricted the use of certain 

compounds (e.g. PBDEs, Mirex), which were replaced by new substances, defined as emerging 

FRs [e.g. dechloranes (Decs); Feo et al., 2012] for which limited information is available about 

their levels in marine environments. PFCs (e.g. perfluorooctanesulfonic acid, PFOS, and 

perfluorooctanoic acid, PFOA) are molecules composed by carbon chains strongly bound to 

fluorine atoms, which are widely used in various industrial and consumer activities (e.g. stain-

resistant coatings for fabrics and carpets, fire-fighting foams and floor polishes, among others). 

Their strong carbon:fluorine bounds make them extremely resistant to degradation and, therefore, 

persistent over time in biological compartments. In aquatic environments, PFCs’ concentrations 

can vary from undetectable to values surpassing 100 ng L-1 (Flores et al., 2013) and even 

exceeding 500 ng g-1 of wet weight (ww) in aquatic biota (e.g. EFSA, 2008; Vandermeersch et 

al., 2015).  

Chemical contaminants’ availability in marine sediments/water column and toxicity to biota 

are strongly influenced by environmental drivers, such as temperature, pH, salinity, upwelling 

and stratification events. Recent literature has intensively described climate change to likely have 

a direct impact on contaminants’ physical-chemical properties and their partitioning among 

biological compartments (e.g. Noyes et al., 2009; Marques et al., 2010). Moreover, by altering 

species physiological status and, at the same time, exacerbating many forms of water pollution, 

climate change can promote deleterious impacts on marine organisms’ physiology, hindering 

them to cope with the presence of chemical contaminants in the same way as they did before (e.g. 

Marques et al., 2010; Maulvault et al., 2016, 2017; Sampaio et al., 2018). On the other hand, 

changes in contaminants’ uptake, retention and detoxification rates due to climate change may 

certainly compromise seafood safety, thus rising concerns from the public health point of view 

(e.g. Marques et al., 2010; Maulvault et al., 2016). Yet, given the limited number of empirical 

studies, with most available information being based on mechanistic approaches, the interaction 

between climate change and pollution still requires further understanding. 

In this context, the aim of this study was to assess, for the first time, the effect of temperature 

(Δ = +4 ºC) and pH (Δ = -0.4 pH units), acting alone or in combination, on the bioaccumulation 

and elimination of emerging chemical contaminants (Dec 602, Dec 603, Dec 604, iAs, TBBPA, 

PFOA and PFOS), using estuarine bivalve species (Mytilus galloprovincialis and Ruditapes 
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philippinarum) as biological models. The selection of the model species was based on the fact 

that these species can be considered suitable bioindicators of environmental pollution, since: i) 

they are filter-feeding and benthic organisms, thus potentially accumulating high levels of 

chemical contaminants, either dissolved or in suspended particulate forms, often reaching 

concentrations several orders of magnitude above the surrounding levels (e.g. Maulvault et al., 

2015); and ii) they are among the most commercially important seafood species (both wild or 

farmed), with high consumption frequencies in Europe, thus enabling to establish a link with 

seafood safety. 

 

2. Materials and Methods 

2.1.  Experimental design 

2.1.1. Chemical contaminants 

The contaminants used in each exposure trial were purchased from Toronto Research 

Chemical Inc. (Toronto, ON, Canada) in the case of Dec 602 (C14H4Cl12O, ≥ 98%), Dec 603 

(C17H8Cl12, ≥ 98%) and Dec 604 (C13H4Br4Cl6, ≥ 98%), or Sigma-Aldrich (USA) in the case of 

TBBPA ((CH3)2C[C6H2(Br)2OH]2) ,97%), iAs (H3AsO4, i.e. As(v) oxide, >95%), PFOS 

(heptadecafluorooctanesulfonic acid solution, CF3(CF2)7SO3H, 10 µg mL-1) and PFOA 

(CF3(CF2)6COOH, 96%). The remaining reagents used to perform the quantification of each 

contaminant were of analytical grade or higher, and are given in section 2.2. Quantification of 

emerging contaminants throughout the description of the respective methodologies, as well as 

in Annex 9, Materials and Methods. 

 

2.1.2. Contaminant exposure 

To perform contaminant exposure, two different approaches (i.e. exposure routes) were 

considered taking into account the specific physical-chemical properties of each selected 

compound:  i) Trial I - Exposure via dietary sources through contaminant enriched feed. This 

exposure was carried out for compounds with hydrophobic behaviour, that are more commonly 

detected in marine sediments or can potentially be biomagnified along the food chain (due to their 

long half-lives in animal tissues). Thus, the compounds tested were Dec 602 (water solubility 

(WS) = 8.49 x 10-3 mg mL-1), Dec 603 (WS = 3 x 10-2 mg mL-1), Dec 604 (WS = 21 x 10-3 mg mL-

1; Feo et al., 2012) and TBBPA (WS = 6.3 x 10-5 mg mL-1; EU, 2012); and ii) Trial II - Exposure 

via seawater spiked with contaminant solution. This exposure was carried out for compounds with 

high water solubility and which are commonly detected in seawater samples. Thus, the 

compounds tested were iAs (WS > 12 mg mL-1; US National Research Council, 1977), PFOA 

(WS = 3.4 mg mL-1; EFSA, 2008) and PFOS (WS = 0.52 mg mL-1; EFSA, 2008). 
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As shown in Table 6.1., TBBPA was not successfully incorporated, using the available feed 

production methodology nor detected in the experimental feed bioaccumulation. Thus, since 

TBBPA bioaccumulation could not be studied using the first experimental approach (exposure 

via contaminant enriched feed), the second experimental approach (i.e. exposure via contaminated 

seawater) was used instead to study this compound. 

For the first approach (i.e. exposure via contaminant enriched feed), bivalve powder feeds 

(particle size ~40 µm) were manufactured by SPAROS Lda (Olhão, Portugal). Briefly, 

ingredients were blended in a paddle mixer (Mainca RM90, Spain), micropulverized in a hammer 

mill (Hosokawa Micron, SH1, The Netherlands) and sieved below 25 micron. This feed was 

composed by 72.4% crude protein and 12.1% crude fat (full composition of feed can be consulted 

in Annex 9, Table A.9.1.). Contaminant stock solutions were then prepared, by solubilising an 

amount of each contaminant in < 5 mL chloroform (96%, Merck, USA), in order to achieve the 

nominal concentrations presented in Table 6.1. (i.e. ~100x the average concentrations found in 

marine sediments of contaminated coastal areas, to assure a clear bioaccumulation/elimination 

pattern was obtained during the selected experimental time; e.g. Feo et al., 2012; Sühring et al., 

2015). Contaminant stock solutions were diluted in deionized water (total volume of 25 mL) and 

these solutions were top-sprayed on batches of the powder feeds with a pressurized spraying 

container (standard flat-fan nozzle; size 10 micron; pressure 2.7 bar). Upon coating the 

contaminant enriched feeds were dried in a convection oven (OP 750-UF, LTE Scientifics, United 

Kingdom) for 20 min at 40 ºC. After feed preparation, contaminants’ final concentration was then 

determined according to the methodologies described below (see section 2.2. Quantification of 

emerging contaminants; Table 6.1.). A non-contaminated feed (maintenance feed to be used 

during the elimination phase of Trial I and during the whole Trial II) with the same composition 

was also prepared, following the same preparation protocol previously described, but without 

including the contaminant stock solutions, to maintain bivalves from control treatments (CTR) in 

both trials (I and II). 

For the second approach (i.e. exposure via contaminated seawater; Trial II), contaminants 

stock solutions were prepared, by first solubilising an amount of each contaminant in < 5 mL of 

solvent (methanol, chloroform, or acid nitric, according to contaminant’s chemical properties). 

All solvents were purchased from Merck (USA), and were of liquid chromatography gradient 

grade (methanol and chloroform) or supra pure (nitric acid 65%). The final volume of each stock 

solution was then adjusted with seawater to 500 mL (target nominal concentration shown in Table 

6.1.; nominal concentrations of ~10x the mean concentrations found in seawater samples from 

contaminated coastal areas were prepared, except for TBBPA for which 10 µg L-1 were used, to 

assure a clear bioaccumulation/elimination pattern was obtained during the experiment; e.g. 

Smedley and Kinniburgh, 2001, Flores et al., 2013). 
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2.1.3.  Animal collection and acclimation 

Bivalve specimens (Trial I: Japanese carpet shell clam, Ruditapes philippinarum, n = 1100, 

collection date – May 2015; Trial II: Mediterranean mussel, Mytilus galloprovincialis, n = 1100, 

collection date – March 2016) with similar dimensions were collected from the Tagus estuary 

(Lisbon, Portugal) and transported in appropriate refrigerated boxes (4 ºC) to Guia Marine 

Laboratory (Faculty of Sciences, University of Lisbon, Portugal). Once at the laboratory, bivalves 

were randomly and equitably distributed in different rectangular shaped glass tanks (70 L of total 

capacity; 3 tanks per treatment) of a recirculation aquaculture system (RAS). Each tank had 

independent functioning. Temperature was set and adjusted whenever needed using an automatic 

seawater refrigeration system (± 0.1 °C; Frimar, Fernando Ribeiro Lda, Portugal), as well as, 

submerged digital thermostats (200W, V2Therm, TMCIberia, Portugal). Seawater pH was set and 

maintained thanks to individual pH probes (GHL, Germany) connected to a computerized pH 

control system (± 0.1 pH units; Profilux 3.1N, GHL, Germany), which monitored seawater pH in 

each tank every 2 s, and adjusted them whenever needed, via submerged air stones, by injecting 

CO2 (Air Liquide, Portugal; to decrease pH) or by CO2-filtered aeration (to increase pH) using air 

pumps (Stella 200, Aqua One Pro, Aqua Pacific UK Ltd, United Kingdom). Furthermore, each 

tank was equipped with independent UV disinfection (Vecton 300, TMC Iberia, Portugal) and 

biological filtration (FSBF 1500, TMC Iberia, Portugal) to maintain seawater quality parameters. 

Bivalves were acclimated for a time period of 7 days, at the following conditions: dissolved 

oxygen > 5 mg L-1; temperature = 19 ± 0.5 °C, pH = 8.00 ± 0.05 units, salinity = 35 ± 1 ‰ and 

photoperiod of 12 hours light and 12 hours dark (12L:12D). Ammonia (NH3/NH4+), nitrite      

(NO2-) and nitrate (NO3-) concentrations were daily checked (Tropic Marin, USA), and kept below 

detectable levels (i.e. < 0.02 mg L-1), with the exception of nitrates, which were kept below 2.0 

mg L-1. Seawater total alkalinity was also measured in every tank on a weekly basis, following a 

protocol previously described (Sarazin et al., 1999) and the combination of total alkalinity (AT) 

and pH was used to calculate carbonate system parameters  (average values obtained for each 

treatment can be consulted in Annex 9, Table A.9.2.). Bivalves were fed at least three times a 

day with non-contaminated feed (maintenance diet; 2% of the average animal body weight, bw). 

On a daily basis, animal condition was checked (i.e. dead animals were removed) and 25% of the 

total water volume in each incubation tank was exchanged.  

Four days before initiating contaminants’ exposure, seawater temperature and pH were slowly 

adjusted (+1 ºC and -0.1 pH units per day) in the corresponding tanks, until reaching the target 

values in tanks/treatments with higher seawater temperature and/or lower pH. The experimental 

setup (i.e. crossed treatments) used in both trials is schematized in Figure 6.1., and comprised 5 

treatments: i) CTR [(control; non-contaminated treatment to investigate possible external sources 

of contamination apart from feed (Trial I) or seawater (Trial II), in which specimens were 
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maintained at reference temperature and pH conditions set according to the average values 

observed in Tagus estuary during summer (i.e. 19 ºC and 8.0 pH units; Anacleto et al., 2014)], ii) 

CONT (contaminated and reference temperature and pH conditions]; iii) CONT+Acid 

(contaminated, reference temperature and pH set at 7.6 units, i.e. ΔpH = -0.4 units according to 

scenario RCP8.5 of the IPCC, 2014); iv) CONT+Warm (contaminated, reference pH and 

temperature set at 23 ºC, i.e. ΔTemperature = +4 ºC, according to scenario RCP8.5 of the IPCC, 

2014); and v) CONT+Acid+Warm (contaminated, pH set at 7.6 units and temperature set at 23 

ºC). Each treatment was composed by three replicates (Figure 6.1.). 

 

Figure 6.1. Experimental setup in Trials I and II. Abbreviations: Rep – replicate of each 
treatment; CTR – control (non-contaminated), 19 ºC, 8.0; CONT -  contaminated, 19 ºC, 8.0 pH 
units; CONT+Acid - contaminated, 19 ºC, 7.6 pH units; CONT+Warm - contaminated, 23 ºC, 8.0 
pH units; CONT+Acid+Warm - contaminated, 23 ºC, 7.6 pH units. 

 

2.1.4. Contaminant exposure and elimination (Trials I and II) 

In Trial I (i.e. exposure via contaminant enriched feed), R. philippinarum from each treatment 

were daily fed with the respective feeds (contaminated for treatments CONT and non-

contaminated for treatment CTR; feed amount = 2% of the average animal bw, divided in at least 

3 times a day) for a period of 20 days. Afterwards, an elimination phase was carried out for a 

similar period of time (i.e. another 20 days) by daily feeding animals from all treatments with 

non-contaminated feed.  

In Trial II (i.e. exposure via contaminated seawater), each contaminated treatment was spiked 

at day 1 with the contaminant stock solutions in order to achieve the nominal concentrations 

targeted for each contaminant (Table 6.1.), while M. galloprovincialis were daily fed with non-

CTR

T= 19 ºC pH= 8.0 units
CONT

T= 19 ºC pH= 8.0 units

CONT+Acid

T= 19 ºC pH= 7.6 units

CONT+Warm

T= 23 ºC pH= 8.0 units
CONT+Acid+Warm

T= 23 ºC pH= 7.6 units
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contaminated feed during the 20 days of exposure to contaminants (i.e. control feed; feed amount 

= 2% of the average animals body weight, bw, divided in at least 3 times a day). The target 

nominal concentrations, as well as, the final contaminant concentrations in each contaminated 

treatment are shown in Table 6.1. Control tanks (i.e. treatment CTR) were also spiked with 

equivalent amounts of solvent to ensure that no carrier solvent toxicity occurred. On a daily basis, 

seawater in each tank was partially replaced (~25%) and a volume of the contaminant stock 

solution (proportional to the 25% water replacement, thus, accounting for concentration lowering 

due to water exchange) in order to assure a steady contaminant concentration throughout the 

exposure phase. Afterwards, an elimination phase was carried out (daily contaminant spiking 

stopped) for 20 days. 

In both trials, seawater physical-chemical parameters were daily checked and adjusted at 

optimum levels whenever needed as previously described. No mortality was observed during 

experimental trials I and II. Thirty animals (n = 10 per replicate treatment) were randomly 

sampled from each treatment on days 0, 2, 10, 20 (exposure), 22, 30 and 40 (elimination). 

Bivalves’ biometric data, i.e. total length (L, cm), height (H, cm), width (WI, cm) of the shell, 

total weight (W, g) and edible weight (EW, g), were registered. Then, edible tissues were 

collected, pooled (i.e. n = 3 pools per treatment, per sampling day), immediately frozen at -80 °C 

(for 24 h), freeze-dried at −50 °C, 10-1 atm of vacuum pressure, for 48 h (Power Dry LL3000, 

Heto, Czech Republic) and kept at -80 °C until contaminant quantification was performed. 

Seawater samples were also collected from each tank at each sampling day and kept at 4 ºC until 

further analysis, in order to: i) investigate possible external sources of contamination (seawater 

from CTR treatments; Trials I and II) ii) assure that no contaminant leaching was occurring from 

the feed (Trial I); and iii) determine contaminants’ final concentrations in seawater of each 

tank/replicate throughout the 40 days of trial (Trial II). 
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Table 6.1. Contaminant concentrations (mean ± standard deviation) in contaminated (exposure of Trial I) and non-contaminated (exposure of Trial II and 
elimination phase of Trials I and II) feeds, seawater (Trials I and II) and bivalve samples from CTR treatment (Trials I and II), as well as certified reference 
material values and limits of the detection (LOD) and quantification (LOQ) in each methodology used to quantify contaminants. Abbreviations: CTR – control 
(non-contaminated), 19 ºC, 8.0 pH units; CONT -  contaminated, 19 ºC, 8.0 pH units; CONT+Acid - contaminated, 19 ºC, 7.6 pH units; CONT+Warm - 
contaminated, 23 ºC, 8.0 pH units; CONT+Acid+Warm - contaminated, 23 ºC, 7.6 pH units; LW – lipid weight. 

Contaminant

Nominal 

concentration 

(exposure)

Final concentration in seawater (µg L-1)
Final 

concentration in 

enriched feed

Contaminant 

concentration 

CTR bivalves 

LOD LOQ

Sampling day CTR CONT CONT+Acid CONT+Warm
CONT+Acid+

Warm
Seawater 
samples

Bivalve 
samples

Seawater 
samples

Bivalve samples

Dec 602
50 ng g-1

(Feed)
Days 0-40 < LOD < LOD < LOD < LOD < LOD 10.0 ± 0.4 ng g-1 < LOD

(Trial I)
0.60 µg L-1 21 pg g-1 lw 2 µg L-1 70 pg g-1 lw

Dec 603
50 ng g-1

(Feed)
Days 0-40 < LOD < LOD < LOD < LOD < LOD 50.0 ± 2.0 ng g-1 < LOD

(Trial I)
0.10 µg L-1 7 pg g-1 lw 0.3 µg L-1 24 pg g-1 lw

Dec 604
50 ng g-1

(Feed)
Days 0-40 < LOD < LOD < LOD < LOD < LOD 1.0 ± 0.1 ng g-1 < LOD

(Trial I)
0.10 µg L-1 7 pg g-1 lw 0.3 µg L-1 24 pg g-1 lw

TBBPA
10 µg L-1

(Seawater)

Exposure
(Days 2-20)

< LOD 9.6 ± 1.5 4.0 ± 1.3 9.6 ± 1.1 2.0 ± 1.1
-

< LOD
(Trial II)

0.10 µg L-1 0.3 µg kg-1 1.0 µg kg-1 0.25 µg kg-1

Elimination
(Days 22-40)

< LOD 0.3 ± 0.5 < LOD < LOD < LOD

iAs
100 µg L-1

(Seawater)

Exposure
(Days 2-20)

74.6 ± 3.3 138.8 ± 9.3 145.1 ± 7.3 152.8 ± 13.6 145.6 ± 7.3
-

10.9 ± 4.3 ng g-1

(Trial II)
0.30 µg L-1 2.0 µg kg-1 1.0 µg L-1 4.0 µg kg-1

Elimination
(Days 22-40)

71.2 ± 2.4 69.2 ± 6.7 75.1 ± 2.3 75.8 ± 4.6 72.3 ± 5.7

PFOA
1 µg L-1

(Seawater)

Exposure
(Days 2-20)

< LOD 1.0 ± 0.0 0.8 ± 0.3 1.1 ± 0.2 0.9 ± 0.2
-

< LOD
(Trial II)

0.03 µg L-1 0.30 µg L-1 0.05 µg kg-

1 0.50 µg kg-1

Elimination
(Days 22-40)

< LOD < LOD < LOD < LOD < LOD

PFOA
1 µg L-1

(Seawater)

Exposure
(Days 2-20)

< LOD 1.0 ± 0.0 1.8 ± 0.3 1.0 ± 0.1 1.1 ± 0.2
-

< LOD
(Trial II)

0.03 µg L-1 0.30 µg L-1 0.05 µg kg-

1 0.50 µg kg-1

Elimination
(Days 22-40)

< LOD < LOD < LOD < LOD < LOD
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2.2. Quantification of emerging contaminants 

2.2.1.  Dechloranes 602, 603 and 604 (Decs) 

Dechloranes were extracted from feed and bivalve samples using a previously optimized 

method (de la Cal et al., 2003, Labandeira et al., 2007). For the dechloranes extraction in seawater, 

samples were first spiked with an internal standard (13C-syn-DP), followed by an ultrasound 

assisted extraction using 2 ml of hexane (15 min sonication) and centrifugation (7 min, 3500 rpm). 

The hexane was transferred to a vial. The extract was then reconstituted with 40 µl of toluene for 

the instrumental analysis. Dechloranes’ quantification in all samples was performed using an 

Agilent 7890A gas chromatograph coupled to an Agilent 7000B triple quadrupole mass 

spectrometer (Santa Clara, USA). The instrumental conditions and elution program were based 

on previous work (Barón et al., 2012). Further details regarding this methodology can be 

consulted in Annex 9, Materials and Methods. 

 

2.2.2. Inorganic arsenic (iAs) and total arsenic (total As) 

In seawater samples the total concentration of As was determined, whereas only the inorganic 

fraction was quantified in bivalve samples (i.e. iAs). The extraction of iAs in bivalve samples was 

performed as previously described in Rasmussen et al. (2012), and iAs was subsequently 

quantified following the standard method (EN 16802:2016) recently issued by European 

Committee for Standardization (CEN, 2016). As species were separated on anion exchange High 

Performance Liquid Chromatography (1100 HPLC Agilent Technologies, Waldbronn, Germany) 

and detected by inductively coupled plasma mass spectrometry (Agilent 7500ce ICP-MS, Santa 

Clara, USA) in no gas mode (As75). Total arsenic in seawater samples was determined by direct 

injection of samples diluted in nitric acid (2%, v/v) in ICP-MS in no gas mode (As75) with 

rhodium (Rh103) as internal standard. Further details on these two methodologies can be 

consulted in Annex 9, Materials and Methods. 

 

2.2.3. Tretabromobisphenol A (TBBPA) 

 TBBPA in bivalve and feed samples was extracted using the following procedure based on 

QuEChERS – LLE extraction, which was previously described in more detail (Cunha et al., 2017). 

Sample extracts were analyzed by LC-MS/MS, i.e. a high-performance liquid chromatography 

(HPLC) system Waters Alliance 2695 (Waters, Milford, MA, USA) interfaced to a Quattro Micro 

triple quadrupole mass spectrometer (Waters, Manchester, UK). TBBPA was analysed in 

seawater by direct injection on LC-MS/MS with prior addition of 80 μL of TBBPA13C12 (IS, 1000 

μg L-1). The optimized MS/MS parameters for the target analytes are described in Cunha et al. 
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(2017). Further details regarding this methodology can be consulted in Annex 9, Materials and 

Methods. 

 

2.2.4. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) 

PFOS and PFOA were extracted and analysed in both seawater and biota samples using the 

methods previously described in Kwadijk et al. (2010). Instrumental analysis was performed 

using a Thermo Finnigan (Waltham, MA) Surveyor Autosampler and an HPLC system coupled 

with a Thermo Finnigan LCQ advantage Ion-Trap MS instrument with electrospray (ESI-

MS/MS). Further details regarding this methodology can be consulted in Annex 9, Materials and 

Methods. 

 

2.3 . Data analysis 

Animal condition index (CIt) was calculated, in ww basis, according to Maguire et al. (1999): 

 

CI& = W&L& x H& x WI&  x 10,000 

 

where,  t is the sampling time in days, W is the animal total weight (g), and L, H and W are 

the length, height and width of the shell (cm), respectively. Bivalves’ growth rate (GR; mg of ww 

day− 1) was calculated as described by Santana et al. (2017): 

 

GR& = (W& − W&;)/ t 
 

where, W is the average total weight (g) at t days of trial. The net accumulation rate for each 

contaminant at each sampling day (NAR; ng g−1 of dw day−1) was determined assuming that 

bivalves were exposed to steady conditions (i.e. continuous contaminant exposure, as well as 

seawater abiotic parameters) and using the following equation (Santana et al., 2017): 

 

NAR& = ([cont&] − [cont&;])
t  

 

where, [cont] is the average contaminant concentration in bivalve tissues (i.e. contaminant 

bioaccumulated) after t days of exposure.  

The percentage of contaminant lost during the elimination phase of each trial, i.e. the 

elimination factor (EF;%) was calculated according to the following equation:  
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EF = 100 − I [cont&]
[cont&+;]  x 100J 

 

where, [cont] is the average contaminant concentration in bivalve tissue after t days of 

elimination and [contt20] is the average contaminant by the end of the exposure phase, i.e. day 20 

(Jebali et al., 2014). EF was considered to be 0 whenever [contt22,30 and 40] higher than [contt20]. 

To perform statistical analysis, data were first tested for normality of distribution 

(Kolmogorov–Smirnov’s test) and homogeneity of variance (Bartlett's test), and Log-transformed 

whenever necessary to comply with both assumptions of the ANOVA test. Then, two-way 

ANOVA test was used to check for the presence or absence of significant differences between 

contaminated treatments, with temperature (19 ºC or 23 ºC) and pH (8.0 units or 7.6 units) as 

variables. Post-hoc Tukey HSD test was subsequently carried out to identify such differences. 

Finally, potential correlations between CI, GR, NAR and EF were investigated by means of 

Pearson’s correlation analysis. Statistical analyses were performed at a significance level of 0.05, 

using STATISTICATM software (Version 7.0, StatSoft Inc., USA). 

 

3. Results 

3.1. Contaminant levels in seawater, feed and CTR bivalve samples (Trials I and II) 

In Trial I, Decs 602, 603 and 604 were not detected in seawater samples (both CTR and CONT 

treatments with concentrations < LOD), neither in Japanese carpet shell clam samples (R. 

philippinarum) collected in CTR treatment (Table 6.1.). As for the enriched feed, despite 

equivalent amounts of Decs 602, 603 and 604 were added in order to reach the same final 

concentration (~50 ng g-1), a remarkable loss of Dec 602 and Dec 604 occurred during feed 

preparation (final concentrations of 10.0 ± 0.4 ng g-1 and 1.0 ± 0.1 ng g-1 for Dec 602 and Dec 

604, respectively; Table 6.1.). Such differences in Decs’ concentrations were subsequently 

accounted for when analysing data. As previously described, TBBPA was not detected in the 

contaminant enriched feed, therefore, the bioaccumulation of this compound was subsequently 

assessed in Trial II. 

In Trial II, none of the selected contaminants were detected in seawater samples collected in 

CTR treatment (i.e. TBBPA, PFOA and PFOS concentrations < LOD), except iAs (74.6 ± 3.3 µg 

L-1; Table 6.1.). Such results translated into detectable levels of iAs in CTR mussel samples (10.9 

± 4.3 ng g-1; Table 6.1.), which were subsequently taken into account when analysing data from 

CONT treatments.  As for seawater samples from all CONT treatments, PFOA and PFOS 

concentrations were stable and around the nominal value set for these compounds. Conversely, 

iAs final concentrations were also steady by slightly above the nominal concentration defined for 

this element (around 150 µg L-1), whereas lower TBBPA final concentrations were found in 
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seawater samples collected from treatments exposed to acidification (i.e. CONT+Acid = 4.0 ± 1.3 

µg L-1 ; CONT+Acid+Warm = 2.0 ± 1.1 µg L-1; Table 6.1.). 

 

3.2. Trial I – Exposure to Dec 602, Dec 603 and Dec 604 via enriched feed 

Figure 6.2. presents the concentrations of Decs 602, 603 and 604 in Japanese carpet shell 

clams’ meat during 40 days of Trial I. During contaminant exposure, detectable levels of these 

three compounds were found in all clam samples collected from CONT treatments, with Dec 603 

showing, overall, higher concentrations than Dec 602 and Dec 604, regardless of seawater 

temperature and pH (Figure 6.2.). Overall, warmer temperatures significantly increased Dec’s 

602 concentration, straight from the second day of exposure (p < 0.01; Figure 6.2. and Table 

6.2.). Furthermore, exhibiting a less pronounced increase in the first days of exposure compared 

the other treatments, after 20 days of exposure, treatment CONT+Acid+Warm registered the 

maximum Dec 602 concentration (i.e. 0.19 ng g-1 dw, equivalent to a NAR = 0.010 ng g-1 day-1; 

p < 0.01; Figure 6.2. and Table 6.2.). Subsequently, a reduction was observed immediately after 

2 days of depuration (i.e. day 22) in all treatments. Yet, acidification acting alone (i.e. 

CONT+Acid) resulted in the lowest EF for this compound after 20 days of elimination period 

(78%; p < 0.05; Table 6.2.). As for Dec 603, lower pH levels, alone or combined with warmer 

temperatures, promoted significantly higher concentrations of this compound in clams’ meat 

during the exposure phase (i.e. CONT+Acid = 1.53 ± 0.02 ng g-1 dw and CONT+Acid+Warm = 

1.16 ± 0.01 ng g-1 dw), as well as during depuration (i.e. CONT+Acid = 0.23 ± 0.01 ng g-1 dw 

and CONT+Acid+Warm = 0.06 ng g-1 dw; p < 0.01; Figure 6.2.). Such trend resulted in 

significantly higher NARs and lower EFs in treatments CONT+Acid and CONT+Acid+Warm (p 

< 0.05; Table 6.2.). Warming alone (i.e. CONT+Warm) has also lead to significant higher levels 

of Dec 603 at the end of the exposure and until day 30 compared to treatment CONT (Figure 6.2. 

and Table 6.2.). Finally, during the 20 days of exposure, Dec 604 revealed significantly higher 

levels in bivalves subjected to warming and acidification acting alone (i.e. ~0.19 ng g-1 dw in 

CONT+Acid and CONT+Warm; p < 0.01), but not when both effects were combined (i.e. 

CONT+Acid+Warm; Figure 6.2. and Table 6.2.). Despite the statistically higher concentrations 

of Dec 604 in the treatment CONT+Warm at days 22 and 30, by the end of the clearance period 

the percentages of elimination of this compound were similar among treatments (Table 6.2.). 

Regarding animal condition (CI) and growth rate (GR; Table 6.3.), although the CIs of 

contaminated animals were not significantly different from non-contaminated ones (i.e. CTR) nor 

within CONT treatments, overall, bivalves exposed to warmer temperatures revealed significantly 

higher GR than those exposed to the reference temperature or to low pH alone, namely at days 10 

(CONT+Warm; p < 0.05), 20 (CONT+Warm and CONT+Acid+Warm; p < 0.05) and 30 
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(CONT+Acid+Warm; p < 0.05) (Table 6.3.). Moreover, ignificant positive correlations were 

found between NAR of Decs 602, 603 and 604, and clams GR (p < 0.05; Table 6.4.). 

 

Figure 6.2. Dechloranes’ concentrations (dw) in Japanese carpet shell clam samples (R. 

philippinarum) from each contaminated treatment during the 20 days exposure and 20 days of 
elimination in Trial I (mean ± standard deviation; n = 3). Different letters indicate significant 
differences between treatments for each day (p < 0.05). Abbreviations: CONT -  contaminated, 
19 ºC, 8.0 pH units; CONT+Acid - contaminated, 19 ºC, 7.6 pH units; CONT+Warm - 
contaminated, 23 ºC, 8.0 pH units; CONT+Acid+Warm - contaminated, 23 ºC, 7.6 pH units. 
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Table 6.2. Net accumulation rates (NAR; mean ± standard deviation) after 20 days of contaminant exposure and elimination factors (EF; mean ± standard 
deviation) after 20 days of elimination in contaminated treatments. In each column (and sampling day), different letters indicate significant differences between 
treatments (p > 0.05). Abbreviations: CONT -  contaminated, 19 ºC, 8.0 pH units; CONT+Acid - contaminated, 19 ºC, 7.6 pH units; CONT+Warm -contaminated, 
23 ºC, 8.0 pH units; CONT+Acid+Warm -  contaminated, 23 ºC, 7.6 pH units. 

 

  

Sampling 

day
Treatment

Dec 602 Dec 603 Dec 604 TBBPA iAs PFOA PFOS

NAR ng g− 1 dw
day− 1

EF (%)
NAR ng g− 1 dw

day− 1
EF (%)

NAR ng g− 1 dw
day− 1

EF (%)
NAR ng g− 1

dw day− 1
EF (%)

NAR ng g− 

1 dw day− 1
EF (%)

NAR ng g− 1

dw day− 1
EF (%)

NAR ng g− 1

dw day− 1
EF (%)

Day 20

CONT 0.007 ± 0.001b - 0.035 ± 0.001d - 0.001 ± 0.001b - 243.4 ± 15.8b - 35.1 ± 0.2a - 0.98 ± 0.11a - 113.1 ± 2.7a -

CONT+Acid 0.007 ± 0.001b - 0.076 ± 0.001a - 0.010 ± 0.001a - 150.9 ± 2.6c - 18.1 ± 0.6b - 0.45 ± 0.01b - 95.5 ± 7.8b -

CONT+Warm 0.008 ± 0.001ab - 0.048 ± 0.004c - 0.009 ± 0.002a - 256.5 ± 40.4ab - 17.6 ± 0.4b - 0.27 ± 0.07c - 73.8 ± 5.4c -

CONT+Acid+Warm 0.010 ± 0.000a - 0.058 ± 0.001b - 0.002 ± 0.001b - 285.8 ± 9.0a - 7.3 ± 0.4c - 0.56 ± 0.12b - 112.6 ± 3.6a -

Day 40

CONT - 99.3 ± 0.9a - 99.9 ± 0.1a - 100.0 ± 0.0 - 97.3 ± 0.3b - 42.2 ± 5.8c - 68.4 ± 3.5b - 97.8 ± 0.5ab

CONT+Acid - 78.7 ± 5.2b - 85.2 ± 0.3c - 98.6 ± 2.0 - 96.1 ± 0.4b - 46.9 ± 1.5c - 88.3 ± 1.4a - 98.8 ± 0.1a

CONT+Warm - 81.5 ± 4.2ab - 99.9 ± 0.2a - 99.0 ± 1.3 - 99.7 ± 0.1a - 71.3 ± 0.9a - 73.7 ± 1.3b - 97.0 ± 0.5b

CONT+Acid+Warm - 99.2 ± 1.1a - 94.6 ± 0.2b - 99.7 ± 0.5 - 99.5 ± 0.1a - 52.4 ± 0.4b - 90.5 ± 1.5a - 97.4 ± 0.4b
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Table 6.3. Bivalves’ condition index (CI) and growth rate (GR) during 40 days of trial (20 days 
exposure + 20 days elimination; mean ± standard deviation). In each column (and day), different letters 
indicate significant differences between treatments (p > 0.05). Abbreviations: CTR – control (non-
contaminated), 19 ºC, 8.0 pH units; CONT -  contaminated, 19 ºC, 8.0 pH units; CONT+Acid - 
contaminated, 19 ºC, 7.6 pH units; CONT+Warm -contaminated, 23 ºC, 8.0 pH units; 
CONT+Acid+Warm -  contaminated, 23 ºC, 7.6 pH units. 

 

  

Trial I (R. philippinarum) Trial II (M. galloprovincialis)

CI GR (g day-1) CI GR (g day-1)
Day 0 All 6.92 ± 0.46 - 4.96 ± 0.66 -

Day 2

CTR 7.08 ± 0.48 1.06 ± 0.13 5.18 ± 0.28 0.59 ± 0.59ab

CONT 6.98 ± 0.48 0.90 ± 0.16 5.35 ± 0.16 0.25 ± 0.05b

CONT+Acid 7.30 ± 0.36 0.85 ± 0.11 5.13 ± 0.46 0.56 ± 0.18a

CONT+Warm 6.74 ± 0.36 1.34 ± 0.45 5.02 ± 0.54 0.63 ± 0.17a

CONT+Acid+Warm 7.52 ± 0.40 1.09 ± 0.25 5.11 ± 0.22 1.18 ± 0.77a

Day 10

CTR 7.01 ± 0.33 0.18 ± 0.03b 5.00 ± 0.41 0.50 ± 0.44
CONT 6.84 ± 0.36 0.14 ± 0.01c 5.23 ± 0.08 0.61 ± 0.36
CONT+Acid 6.93 ± 0.53 0.13 ± 0.01c 5.00 ± 0.67 0.83 ± 0.19
CONT+Warm 7.54 ± 0.57 0.37 ± 0.03a 5.21 ± 0.43 0.45 ± 0.33
CONT+Acid+Warm 7.00 ± 1.16 0.23 ± 0.04b 5.04 ± 1.67 0.71 ± 0.62

Day 20

CTR 7.11 ± 0.55 0.08 ± 0.01c 5.25 ± 0.32 0.75 ± 0.18a

CONT 7.03 ± 0.32 0.09 ± 0.01bc 5.14 ± 0.15 0.28 ± 0.11b

CONT+Acid 7.09 ± 0.51 0.06 ± 0.00d 5.25 ± 0.23 0.11 ± 0.10b

CONT+Warm 6.96 ± 0.64 0.12 ± 0.01a 5.25 ± 0.21 0.83 ± 0.12a

CONT+Acid+Warm 7.26 ± 0.27 0.11 ± 0.01a 5.19 ± 0.53 0.79 ± 0.22a

Day 22

CTR 7.23 ± 0.20 0.05 ± 0.01ab 5.72 ± 0.72 1.43 ± 0.75a

CONT 7.32 ± 0.35 0.04 ± 0.01b 5.62 ± 0.37 0.13 ± 0.12b

CONT+Acid 7.25 ± 1.04 0.08 ± 0.02a 5.30 ± 0.24 1.19 ± 0.28b

CONT+Warm 7.26 ± 0.50 0.04 ± 0.01b 5.63 ± 0.55 0.67 ± 0.54ab

CONT+Acid+Warm 7.46 ± 0.70 0.06 ± 0.01ab 5.97 ± 0.90 0.82 ± 0.06ab

Day 30

CTR 7.06 ± 0.43 0.03 ± 0.01ab 5.73 ± 0.86ab 1.01 ± 0.14a

CONT 7.13 ± 0.49 0.02 ± 0.01b 5.68 ± 0.34ab 0.19 ± 0.16b

CONT+Acid 7.28 ± 0.56 0.04 ± 0.00ab 5.34 ± 0.14b 1.22 ± 0.34a

CONT+Warm 7.12 ± 0.30 0.04 ± 0.02ab 5.84 ± 0.17a 0.33 ± 0.01b

CONT+Acid+Warm 7.11 ± 0.51 0.05 ± 0.01a 5.37 ± 0.11b 0.39 ± 0.22 b

Day 40

CTR 7.03 ± 0.53 0.01 ± 0.00 5.53 ± 0.26 0.72 ± 0.07a

CONT 7.10 ± 0.46 0.01 ± 0.01 5.40 ± 0.18 0.46 ± 0.01b

CONT+Acid 7.53 ± 0.35 0.02 ± 0.01 5.41 ± 0.28 0.19 ± 0.03c

CONT+Warm 7.57 ± 0.71 0.02 ± 0.01 5.62 ± 0.69 0.02 ± 0.00d

CONT+Acid+Warm 7.56 ± 1.31 0.02 ± 0.01 5.48 ± 0.24 0.01 ± 0.00d
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Table 6.4. Pearson’s correlation coefficients between animal growth rate (GR), condition 
index (CI) and contaminants’ net accumulation rates (NAR) and elimination factors (EF). 
Asterisks indicate significant correlations between variables (p > 0.05).  

 

 

3.3. Trial II – Exposure to TBBPA, iAs, PFOA and PFOS via contaminated seawater 

As shown in Figure 6.3., all mussel samples collected from CONT treatments revealed 

detectable levels of TBBPA, iAs, PFOA and PFOS. Concerning TBBPA, despite the significantly 

higher concentrations found in treatment CONT at day 10 of the trial, by the end of the exposure 

phase (day 20) mussels exposed to warming combined with acidification showed the highest 

concentrations (i.e. treatment CONT+Acid+Warm = 5716 ± 179 ng g-1 dw), as well as the highest 

NARs for this compound (p < 0.05; Figure 6.3. and Table 6.2.). Furthermore, increased seawater 

temperature (with or without pH decrease) also led to a significantly higher elimination of TBBPA 

(~99% of TBBPA concentration at day 40 in these treatments; p < 0.05; Table 6.2.). Conversely, 

significantly lower concentrations of TBBPA were found in mussels subjected to lower pH alone. 

As far as iAs and PFOA are concerned, warm and acid (alone or combined) treatments revealed 

significantly lower levels compared to those found in specimens exposed to reference temperature 

and pH conditions during exposure (CONT = 711 ± 3 ng g-1 dw and 20 ± 2 ng g-1 dw, for iAs and 

PFOA respectively, at day 20;  p < 0.05; Figure 6.3.). 

  

r

NAR EF
Trial I

GR x CI -0.64

GR x Dec 602 0.90* -0.21
CI x Dec 602 -0.24 -0.04
GR x Dec 603 0.66* 0.27
CI x Dec 603 0.12 -0.23
GR x Dec 604 0.77* -0.36
CI x Dec 604 -0.02 0.03

Trial II

GR x CI -0.25
GR x TBBPA 0.17 -0.14
CI x TBBPA -0.49* -0.02
GR x iAs 0.07 -0.46
CI x iAs -0.35 0.11
GR x PFOA 0.04 -0.27
CI x PFOA -0.36 0.10
GR x PFOS 0.25 0.19
CI x PFOS -0.43* -0.13
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Figure 6.3. Contaminants’ concentrations (dw) in Mediterranean mussel samples (M. 

galloprovincialis) from each contaminated treatment during the 20 days exposure and 20 days of 
elimination in Trial II (mean ± standard deviation; n = 3). Different letters indicate significant 
differences between treatments for each day (p < 0.05). Abbreviations: CONT -  contaminated, 
19 ºC, 8.0 pH units; CONT+Acid - contaminated, 19 ºC, 7.6 pH units; CONT+Warm - 
contaminated, 23 ºC, 8.0 pH units; CONT+Acid+Warm - contaminated, 23 ºC, 7.6 pH units. 
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As for the depuration period, iAs showed the highest EF in warming treatments (over 52% 

with or 71% without acidification; p < 0.05; Table 6.2.), whereas acidification promoted a higher 

elimination of PFOA (90% with or 88% without warming; p < 0.05; Table 6.2.). Finally, 

significantly lower PFOS concentrations were found in bivalves exposed to warming and 

acidification alone (i.e. CONT+Warm = 1476 ± 108 ng g-1 dw and CONT+Acid = 1910 ± 156 ng 

g-1 dw; p < 0.01; Figure 6.3.) compared to the CONT treatment (i.e. contaminated under reference 

temperature and pH), but not with the combination of both factors, whereas the highest 

percentages of elimination were found in CONT+Acid (99%; p < 0.05; Table 6.2.), though not 

statistically different than mussels from the CONT treatment. Animal CI also did not vary 

significantly in Trial II, with the exception of day 30, in which bivalves exposed to warming 

(CONT+Warm) showed significantly higher CI than those exposed to acidification (CONT+Acid 

and CONT+Acid+Warm; p < 0.05; Table 6.3.). Moreover, a significant negative correlation was 

found between CI and NAR of TBBPA and PFOS, but not for the remaining contaminants (p < 

0.05; Table 6.4.). In general, non-contaminated animals revealed significantly higher GR than 

contaminated ones exposed to the same temperature and pH values (i.e. CTR versus CONT; p < 

0.05; Table 6.3.). Yet, when exposed to warming alone or the combination of warming and lower 

pH, significantly higher mussels GR were observed compared to animals exposed to control 

temperature and pH (i.e. CONT), and to contaminated mussels under low pH during exposure 

(CONT+Acid). In contrast, by the end of the elimination period, treatments under reference 

temperature and pH (CTR and CONT) revealed statistically higher GR compared to the remaining 

treatments (p < 0.05; Table 6.3.). 

 

4. Discussion 

Starting with contaminant levels in the enriched feed (Trial I), results evidenced that 

compound stabilization difficulties occurred during feed preparation for Dec 602 and Dec 604, as 

well as for TBBPA, which was also intended to be studied using the first experimental approach 

(exposure via enriched feed) in the first place, as previously mentioned. Such feed stabilization 

difficulties can be possibly due to contaminant adsorption to the equipments used during feed 

preparation and/or compound degradation (e.g. mechanic degradation or due to heat exposure). 

Furthermore, the considerable loss of TBBPA compared to Decs may be related to the fact that 

this compound is known to be less persistent and easily degraded, being subsequently transformed 

in BPA due to the loss of its bromine groups. As for contaminant levels in seawater samples, in 

Trial I results evidenced that: i) contaminant leaching from feed to seawater did not occur in Trial 

I; and ii) no other source of external chemical contamination apart from the enriched feed 

occurred. 



Ana Luísa Maulvault 

 

306 
 

Concerning seawater samples (Trial II), the levels of iAs found in CTR treatment (which 

translated in detectable concentrations of this compound in CTR mussels, as well as in iAs 

concentrations in CONT treatments above the defined nominal value) are most likely due to the 

presence of this compound in the maintenance feed used in these trials. On the other hand, the 

lower TBBPA concentrations observed in seawater samples from acid treatments (CONT+Acid 

and CONT+Acid+Warm) may be related to the fact that, as most ionisable compounds, TBBPA 

can alternate from molecular to ionic forms and vice-versa, precipitate or even be degraded 

according to the surrounding pH level. 

Regarding bivalve samples from both trials, the higher concentrations of Dec 603 compared 

to Decs 602 and 604 found in clams’ edible tissues (all CONT treatments) during the exposure 

phase can be partially attributed to the lower daily exposures of Dec 602 (~5 times) and even 

lower of Dec 604 (~50 times) compared to Dec 603, due to the considerable loss of these 

compounds during feed preparation (Table 6.1.), as previously mentioned. It should be noted that 

differences in Decs’ bioaccumulation can also be related to distinct bioavailability (i.e. readiness 

to be absorbed at an organism’s digestive epithelia) of each compound, as it has been also reported 

in wild biota, with Dec 602 being often found in marine species at higher levels compared to other 

Dec’s (i.e. Dec 603, Dec 604 and Dec Plus; Feo et al., 2012; Aznar-Alemany et al., 2017). The 

same fact can also justify the discrepancy in concentration ranges of PFOA a PFOS observed in 

Trial II, despite the similar concentrations in seawater, with the second exhibiting much higher 

NAR during the exposure phase, regardless of the treatment, than the first one. In fact, the 

bioaccumulation of PFCs in biota, as well as their adsorption to sediments has been previously 

shown to be dependent on the length of the perfluorinated tail (e.g. Martin et al., 2004). A recent 

field study performed in marine biota from different taxonomic groups concluded that the 

bioaccumulation and elimination of these compounds is largely dependent on species and 

compound, with fish species showing, in general, higher levels of PFOS than PFOA, whereas 

bivalves showed the opposite trend, thus, contrasting the present findings (Hong et al., 2015). 

As for the effects of temperature and pH, the current lack of empirical studies focusing on the 

bioaccumulation and toxicity of emerging contaminants, hinders adequate comparisons of the 

findings acquired in this first study with previous literature on contaminants’ kinetics. Yet, the 

different trends observed in bivalves exposed to increased seawater temperature and reduced pH 

in this study highlighted the urgent need to consider the interactions between multiple stressors 

when assessing the potential environmental and human health risks of emerging contaminants’ 

exposure, especially in the context of climate change. 

By enhancing biota’s metabolism, thus, increasing species ventilation and feeding rates in 

response to higher metabolic demands (Dijkstra et al., 2013), warmer temperatures can likely 

translate into higher contaminant bioaccumulation, as well as increased contaminant 
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metabolization and excretion (e.g. Maulvault et al. 2016; Sampaio et al., 2016). Hence, such 

metabolic enhancement may justify the increased bioaccumulation of some compounds under 

warmer seawater temperatures, particularly those with long half-lives, such as Dec 602, Dec 603 

and Dec 604, which are more likely to build up their concentrations in tissues under continuous 

exposure conditions due to their lipophilic behaviour and low elimination rates (Shen et al., 2010). 

Similarly, a recent study performed with juvenile seabass (Dicentrachus labrax) exposed to 

methylmurcury (MeHg) from dietary sources, also revealed higher MeHg bioaccumulation at 

warmer temperatures, as well as diminished ability to detoxify this persistent and biomagnifying 

pollutant (Maulvault et al., 2016). On the other hand, enhanced metabolic rates due to warming 

may translate into the opposite trend for compounds with lower ability to persist in biological 

compartments, i.e. those with shorter half-lives, which can be transformed and subsequently 

excreted at faster rates (i.e. within 24 to 72 hours; e.g. Vanden Heuvel et al., 1991; Knudsen et 

al., 2007; WHO, 2001), as observed in the present study for some compounds, such as iAs, 

TBBPA and PFOA. Furthermore, animal growth should also be accounted when interpreting 

contaminants’ bioaccumulation in warmer environments, as increased feeding rates to support 

enhanced metabolic demands can also result in greater growth, leading to reduced contaminant 

bioaccumulation through somatic growth dilution (Dijkstra et al., 2013). Yet, despite few 

variations in GR, particularly in CONT+Warm and CONT+Warm+Acid treatments, the opposite 

trend was observed in terms of Decs’ bioaccumulation (i.e. GR positively correlated with NARs), 

whereas there was no clear relation between GR and the bioaccumulation of the other compounds.  

Concerning the effect of acidification, as observed in Decs 603 and 604, increased contaminant 

bioaccumulation has also been reported in some studies due to metabolic changes under 

hypercapnia (e.g. Rosa et al., 2016; Sampaio et al., 2016, 2018), as well as, damages in tissues’ 

apical epithelial membrane that facilitate contaminant penetration into cells (Freitas et al., 2016; 

Sampaio et al., 2016, 2018; Shi et al., 2016; Velez et al., 2016).  On the other hand, lower 

contaminant elimination at reduced pH levels has also been previously described due to the fact 

that bivalves possess a valve closing strategy of defence when exposed to stressors (i.e. 

surrounding pH outside species’ optimal range; and/or contaminants exposure), thus, preventing 

the uptake of contaminants, as well as the excretion of compounds and their metabolites into the 

environment (Freitas et al., 2016; Velez et al., 2016). Such argument may justify the lower 

elimination of Dec 602, Dec 603, TBBPA and iAs under acid conditions. Yet, such physiological 

responses under reduced pH conditions seem to be reversed when warming is also added to the 

equation. Also worth mentioning, particularly in what concerns metals and other ionizable 

compounds, is the fact that the surrounding seawater pH levels strongly influences the chemistry, 

speciation and, thus, the availability of these compounds (e.g. Shi et al., 2016; Velez et al., 2016). 

Contrasting the results observed in the present study, Velez et al. (2016) reported an increase in 

iAs bioaccumulation at lower pH, justifying their results with the fact that the uptake of this 
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element occurs via the phosphate transport systems (such as Na+ and K+-ATPase) which are also 

involved in pH osmoregulation of estuarine biota, thus probably leading to the competition for 

the same transport mechanisms (Monserrat et al., 2007). Yet, possible justifications for such 

differences in iAs bioaccumulation patterns include: i) different iAs forms used in each study 

(H3AsO4 in this study; Na2HAs4
- in Velez et al., 2016); ii) iAs bioaccumulation depends on the 

tested pH level (8.0 and 7.6 pH units in the present study and 7.8 and 7.3 pH units in Velez et al., 

2016); iii) iAs bioaccumulation may be a species dependent mechanism (M. galloprovincialis in 

the present study and R. philippinarum in Velez et al., 2016), given distinct filtration rates of 

bivalve species, as well as the ability for some species to keep valves closed as a strategy of 

protection against the exposure to contaminants and/or low pH (Freitas et al., 2016; Velez et al., 

2016). As for the bioaccumulation and elimination of PFOA and PFOS, which was also affected 

by pH level, studies involving biota are extremely scarce and, to the authors’ best knowledge, the 

present report is the first to explore the effect of pH on the bioaccumulation of these contaminants. 

Hence, despite it is not possible to compare the present data with previous reports on marine biota, 

both of these PFCs have been pointed out intensively in the literature to alter from molecular 

forms into ionic dissolved forms according to the surrounding pH conditions, with higher pH 

facilitating the uptake of adsorbed molecular forms (e.g. Higgins and Luthy, 2006; Wang et al., 

2012). Furthermore, unlike other pollutants, PFOA and PFOS do not primarily accumulate in 

adipose tissues, but rather bind to proteins, such as albumin, which are mainly present in blood, 

liver and eggs (e.g. Martin et al., 2003). Since albumin is involved in organisms’ osmoregulation, 

being responsible for controlling the osmotic pressure in tissues, changes in surrounding pH may 

interfere with albumin ability to bind to PFOS and PFOA, thus, resulting in lower tissue 

bioaccumulation. This pattern has been described in several pharmacokinetic studies involving 

vertebrate species and different chemical compounds (Kim et al., 1999; Hinderling and Hartmann, 

2005). Regarding the combination of warmer temperature and lower pH, the distinct patterns 

compared to those observed when both stressors acted in isolation (e.g. after 20 days of exposure, 

Dec 604 and iAs: CONT+Acid and CONT+Warm significantly higher than CONT+Warm+Acid; 

PFOA and PFOS: CONT+Acid and CONT+Warm significantly lower than 

CONT+Warm+Acid), emphasized the importance of considering the interactions between 

different abiotic stressors in studies focused on contaminants’ bioaccumulation kinetics. 

Particularly concerning TBBPA, the bioaccumulation trends observed for this compound (i.e. 

increased in CONT+Acid+Warm during the last 10 days of exposure) suggest that, though 

bivalves inhabiting estuarine, intertidal, and subtidal areas, like R. philippinarum  and M. 

galloprovincialis, have developed strategies to cope with the presence of multiple environmental 

stressors at the same time (i.e. pollution and wide ranges of abiotic conditions; Lannig et al., 

2010), such physiological plasticity may: i) be time-limited, with species resilience to stress being 
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committed under long-term and continuous exposure conditions (Belivermis et al., 2016); ii) have 

pushed bivalves’ resilience to the edge when both stressors were combined, given the high 

energetic costs required to simultaneously adapt to warmer seawater and lower pH (Lannig et al., 

2010), thus compromising bivalve’s ability to cope with TBBPA exposure. 

To sum up, in a more generalized way, despite the different bioaccumulation and elimination 

patterns observed according to each compound, overall: i) warming (acting alone) seemed to play 

a key role for contaminants with longer half-lives, such Decs and TBBPA, enhancing their 

bioaccumulation; ii) acidification, on the other hand, seemed to particularly influence the 

bioaccumulation/elimination of ionisable compounds, such as TBBPA, iAs, PFOA and PFOS, 

impairing their bioaccumulation; iii) when both abiotic stressors are combined, these previously 

described effects are accentuated in the case of some contaminants(e.g. even higher Dec 602 

bioaccumulation and even lower iAs bioaccumulation when both stressors are combined), but 

reversed for others (e.g. lower TBBPA and PFOS bioaccumulation in treatments simulating 

warming and acidification in isolation).  

 A direct link can also be established between the increased bioaccumulation and/or impaired 

detoxification of selected emerging contaminants, particularly Dec 602, 603, 604 and TBBPA 

under warmer temperatures and/or lower pH levels and the potential implications of these findings 

in seafood safety. Despite the presence of these compounds in seafood still remains unregulated, 

nor recommendations concerning tolerable limits of intake have been established due to the 

current lack of toxicological studies (e.g. EFSA, 2012), an adequate hazard assessment and risk 

analysis cannot be performed in the present study. Yet, the results suggest that human exposure 

to Decs and TBBPA through the consumption of seafood may increase under higher temperatures 

and lower pH. Such findings can be of particular concern, considering the fact that marine 

bivalves are important food resources from the economical and nutritional point of view, being 

among the most frequently consumed seafood species worldwide (FAO, 2016).  

 

5. Conclusions 

As clearly evidenced in this first study, temperature and pH can strongly affect the 

bioaccumulation and elimination patterns of emerging chemical contaminants in marine 

organisms, by affecting seawater physical and chemical properties, as well as animal metabolism 

and physiological responses. Overall, while warming in isolation enhanced the bioaccumulation 

of contaminants, particularly those with longer half-lives (e.g. Decs and TBBPA), acidification 

seemed to have a preponderant role on the bioaccumulation/elimination of ionisable compounds, 

reducing the bioaccumulation of TBBPA, iAs, PFOA and PFOS. Noteworthy, the combination 

of warming and acidification seemed to have reversed the effects promoted by both stressors 
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acting alone, in the specific cases of TBBPA and PFOS (both ionisable), but not in the remaining 

compounds.  

Despite variations were found according to the chemical compound, these results provide new 

insights on emerging contaminants’ kinetics in bivalves maintained at higher temperatures and 

lower pH, and the potential human health risks associated to their consumption in the future. It 

also strengthens the need to carry out greater research efforts to understand how multiple 

environmental stressors interact with each other. Given the distinct behaviour of each contaminant 

and the different trends observed when warmer seawater and lower pH acted alone or in 

combination, future research should take into consideration regional trends (i.e. abiotic factors, 

pollution levels and diversity of contaminants) when addressing the expected effects of climate 

change on the kinetics of emerging contaminants, as the alterations of environmental conditions 

will certainly not affect marine ecosystems in the same way across the planet. Furthermore, 

because environmental stressors will unlikely occur in isolation, or all at once, different 

combinations of contaminant mixtures and abiotic conditions (exploring less pronounced to more 

severe scenarios) should be investigated to have a broader view of the toxicological impacts of 

climate change. Strengthening the knowledge on this matter will allow to incorporate the effects 

of climate change in future national and international regulations and set recommendations for 

human exposure to emerging contaminants, as well as to develop mitigation strategies to assure 

seafood safety in tomorrow’s ocean.  
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General Discussion 

Climate change and chemical contamination are two of the greatest environmental concerns 

that Man faces at the present. Both stressors are expected to occur either in isolation or 

simultaneously, depending on the region of the planet, with their combined effects representing 

additional challenges to the resilience of marine ecosystems, thus, potentially compromising the 

safety and sustainability of fisheries and aquaculture resources. In this way, this PhD thesis 

intended to provide a valuable contribution to the overall understanding of climate change impacts 

from the marine ecotoxicology and seafood safety perspectives, by assessing the combined effects 

of seawater warming and acidification on different emerging chemical contaminants (ECCs) with 

distinct chemical and toxicological attributes. In the end, the knowledge acquired throughout this 

PhD work can be seen as an “additional knowledge-based evidence” towards the need of effective 

regulation of ECCs in the environment (i.e. their discharges and/or efficient removal from 

wastewater) and of greenhouse gases emissions (that can speed up and/or intensify climate change 

effects). It also supports the need to develop mitigation strategies that will assure a sustainable 

management of marine resources in tomorrow’s ocean. 

In the objectives section (Chapter 1.4.1.), three research questions were initially proposed. 

Chapter 7. presents a summary of the main findings of this PhD thesis and a concrete answer to 

each of these questions. Starting with the first question: 

 

1. Will warming and/or acidification affect ECCs’ bioaccumulation and elimination 

mechanisms in marine biota?  

Yes. Results gathered in this PhD thesis showed that warming and/or acidification indeed 

affect ECCs’ bioaccumulation and elimination mechanisms in marine fish and bivalve species. 

Yet, different patterns were observed according to compound and/or abiotic stressor (Table 7.1.). 

As mentioned throughout this PhD thesis, by enhancing biotas’ metabolism, warmer 

temperatures can exacerbate ECCs’ bioaccumulation and, at the same time, facilitate their 

metabolization and subsequent elimination (e.g. Noyes et al., 2009; Marques et al., 2010; Dijkstra 

et al., 2013; Serra-Compte et al., 2018). As such, overall, warming increased the bioaccumulation 

of ECCs with a more lipophilic behaviour and longer half-lives, such as MeHg and Decs (Shen 

et al., 2010; Sverko et al., 2011; Jo et al., 2015), while ECCs’ tissue burdens tended to decrease 

for ionic compounds that are less hydrophobic and persistent (i.e. iAs, VFX, TCS and DCF, which 

was not detected in its parental form in none of the samples), being promptly 

metabolized/detoxified by marine biota (ECCs chemical properties and toxicity data are presented 

in Chapter 1. and Table 1.1.).  
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Table 7.1. Summary of climate change effects on ECCs’ bioaccumulation and elimination mechanisms in marine biota, presented as the percentage (%) of 
change in relation to the ECC content observed under the reference temperature and pCO2 conditions. ↑ or ↓ indicate significant increase or decrease, respectively, 
in relation to the contaminated treatment simulating the reference temperature and pCO2 conditions. Moreover, values in red or green represent a negative change 
or positive change from the toxicological point of view, respectively. Abbreviations: MeHg, methylmercury; iAs, inorganic arsenic; DCF, diclofenac; VFX, 
venlafaxine; TCS, triclosan; TBBPA, tetrabromobisphenol A; Dec, dechlorane; PFOS, perfluorooctanesulfonic acid; PFOA, perfluorooctanoic acid; nd, not 
determined; ns, not significantly different (see statistical results in Chapters 2.-6.). 

      Warming Acidification Warming+Acidification 

Biaccumulation 

Toxic elements 
MeHg 

fish muscle: 
↑22.3 

fish liver: 
ns 

fish brain: 
↑50.6 

nd nd nd nd nd nd 

iAs Bivalve: ↓49.3 Bivalve: ↓47.9 Bivalve: ↓78.3 

PPCPs 

DCF nd nd nd nd nd nd nd nd nd 

VFX 
fish muscle: 

ns 
fish liver: 
↓38.3 

fish brain: 
ns 

fish muscle: 
ns 

fish liver: 
↓45.4 

fish 
brain: ns 

fish muscle: 
ns 

fish liver: 
↓56.0 

fish brain: 
ns 

TCS 
fish muscle: 
↓85.0 

fish liver: 
↓83.7 

fish brain: 
↓52.4 

fish muscle: 
↓63.0 

fish liver: 
↓66.0 

fish 
brain: ns 

fish muscle: 
↓50.6 

fish liver: 
↓81.4 

fish brain: 
↓47.0 

FRs 

TBBPA Bivalve: ns Bivalve: ↓38.0 Bivalve: ↑17.4 
Dec 602 Bivalve: ns Bivalve: ns Bivalve:  ↑35.2 
Dec 603 Bivalve:  ↑36.9 Bivalve:  ↑>100 Bivalve:  ↑64.5 
Dec 604 Bivalve:  ↑>100 Bivalve:  ↑>100 Bivalve: ns 

PFCs 
PFOS Bivalve: ↓34.7 Bivalve: ↓15.6 Bivalve: ns 
PFOA Bivalve: ↓72.7 Bivalve: ↓54.1 Bivalve: ↓42.6 

Elimination 

Toxic elements 
MeHg 

fish muscle: 
ns 

fish liver: 
↓13.9 

fish brain: 
ns nd nd nd nd nd nd 

iAs Bivalve: ↑29.1 Bivalve: ns Bivalve: ↑10.2 

PPCPs 

DCF nd nd nd nd nd nd nd nd nd 

VFX 
fish muscle: 

ns 
fish liver: 
↓23.9 

fish brain: 
ns 

fish muscle: 
↓100.0 

fish liver: 
↓32.5 

fish 
brain: 
↓41.4 

fish muscle: 
ns 

fish liver: 
↓38.1 

fish brain: 
ns 

TCS nd nd nd nd nd nd nd nd nd 

FRs 

TBBPA Bivalve: ↑2.4 Bivalve: ns Bivalve: ↑2.2 
Dec 602 Bivalve: ns Bivalve: ↓20.7 Bivalve: ns 
Dec 603 Bivalve: ns Bivalve: ↓14.7 Bivalve: ↓5.3 
Dec 604 Bivalve: ns Bivalve: ns Bivalve: ns 

PFCs 
PFOS Bivalve: ns Bivalve: ns Bivalve: ns 
PFOA Bivalve: ns Bivalve: ↑20.0 Bivalve: ↓22.1 
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In the specific case of VFX, compound  bioaccumulation and elimination (in its parental form) 

diminished with warming and, especially, acidification. Such reduction could have been a result 

of somatic growth dilution (which is linked to the enhanced animal growth rates; e.g. Dijstra et 

al., 2013; Maulvault et al., 2016; Anacleto et al., 2018) combined with altered physiological 

mechanisms of xenobiotics’ biotransformation and excretion (Serra-Compte et al., 2018), since 

most of the animals’ energy was being channelled towards growth. Matching this argument, 

Serra-Compte et al. (2018) reported a decrease in VFX bioaccumulation and metabolization in 

mussels (M. galloprovincialis) exposed to acidification, which was mostly attributed to the 

physiological impairments elicited by this abiotic stressor. 

PFOS and PFOA constituted a special case, as their low degradability (i.e. no 

biotransformation products of PFOS and PFOA were identified, so far, in in vivo models), 

extended half-life and relatively poor water solubility (EFSA, 2008) would suggest, beforehand, 

a higher bioaccumulation of these compounds in biota’s tissues at warmer temperatures. Instead, 

a significant reduction of these ECCs was observed in bivalves exposed to warming, and this was 

most likely because, in the face of stressful surrounding conditions (e.g. pollution, abiotic 

variations), bivalves tend to keep their valves closed, thus, limiting/preventing not only the 

accumulation of xenobiotics, but also their metabolization and/or release to the environment 

(Freitas et al., 2016; Velez et al., 2016). This hypothesis may explain the decrease in PFOS and 

PFOA bioaccumulation under both warming and/or acidification, as well as the lower elimination 

of PFOA (Table 7.1.). In addition, it points out the fact that the bioaccumulation of PFCs (and of 

the remaining studied ECCs families) depends not only on species’ ecological strategies (for 

instance, fish versus bivalves; Hong et al., 2015), but also on ECCs’ exposure concentration and 

pathways, as both interfere with compound bioavailability (e.g. Memmert et al., 2013; Zenker et 

al., 2014; Silva et al., 2016; Maulvault et al., 2018b). 

Acidification also seemed to have a preponderant role in the bioaccumulation of ionisable 

ECCs, leading to lower tissue burdens of VFX, TCS, TBBPA, iAs, PFOA and PFOS. This 

reduction can be attributed to different factors, such as: i) the energy required to maintain animal 

homeostasis under acidified conditions could have affected animal biological activities, 

translating into lower ECCs’ uptake and/or metabolization rates; ii) ionisable ECCs can alternate 

between molecular forms according to the surrounding pH conditions, with tissue membranes 

being, in general, less permeable to ionized forms (Orvos et al., 2002; Rowett et al., 2016; Serra-

Compte et al., 2018); and iii) in the specific case of bivalves, as mentioned above, the valve 

closing defence strategy might have prevented these species from bioaccumulating ECCs (Freitas 

et al., 2016; Velez et al., 2016). It should be also stressed that, contrasting with other studied 

ECCs, TBBPA bioaccumulation in bivalve species was enhanced by the combination of warming 

and acidification (but not by acidification alone). Since in this trial bivalves were exposed to 

TBBPA via water, such exacerbation of compound tissue burdens could have been related to an 
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alternation of TBBPA’s molecular forms potentiated by the combination of increased temperature 

and lower pH levels in seawater (TBBPA’s acid dissociation constant, pKa, has been estimated 

to be ~7.5; EFSA, 2011). On the other hand, the combination of thermal stress and hypercapnia 

may have also resulted in substantial tissue damage in bivalves, given the severity of such stress 

conditions, therefore, facilitating TBBPA’s penetration into cells. 

From a human perspective, the above mentioned changes elicited by seawater warming and 

acidification on marine organisms’ ability to  bioaccumulate and eliminate ECCs can be directly 

linked to seafood safety aspects, therefore, bringing up the second question posed in the beginning 

of this PhD thesis:  

 

2. Will seafood consumers be at a greater risk in tomorrow’s ocean? 

The answer to this question is not straightforward, as the results gathered in this PhD thesis 

showed that the extent and direction of the changes elicited in ECCs’ bioaccumulation and 

elimination mechanisms strongly depend on the compound, marine species (i.e. ecological 

attributes, e.g. feeding habits, position on the trophic chain and intraspecific mechanisms to cope 

with stressful environmental conditions), and regional trends (i.e. ECCs loads and profiles, as 

well as type/severity of climate change effects expected in a particular geographic area). In other 

words, and starting with the compound-dependency factor, the present results suggest that, in a 

climate change context, the risk of human dietary exposure to MeHg and FRs (Decs and TBBPA) 

through the consumption of contaminated seafood will increase, whereas the risk seems to be 

reduced in the case of iAs, PPCPs (TCS and VFX; no adequate information was obtained for 

DCF) and PFCs (PFOS and PFOA). However, such risk reduction can be fallacious because, as 

described above, it might be associated with an altered metabolization of parental ECCs under 

climate change-related stressors, therefore, meaning that an increased accumulation of more toxic 

and persistent metabolites may take place alongside for some contaminants. In accordance with 

this hypothesis, Serra-Compte et al. (2018) observed that higher pCO2 levels impaired the 

biotransformation of VFX and its primary and most active metabolite O-desmethyl-VFX into less 

toxic compounds (i.e. N-desmethyl-VFX and NO-didesmethyl-VFX), therefore, suggesting that 

the toxicity of this antidepressant to marine bivalves is enhanced by ocean acidification. Despite 

the information regarding ECCs metabolization in marine fish and bivalves is extremely scarce, 

in mammals the metabolism of iAs involves the reduction of pentavalent As (AsV) into the 

trivalent As (AsIII) through the glutathione biotransformation pathway, with this second species 

being more toxic (i.e. more easily bound to proteins and subsequently transported across cell 

membranes) than the first (Thomas et al., 2001; Moulin et al., 2015). Similarly, despite TCS’s 

half-life (parent compound) is estimated to be longer than other PPCPs, such as VFX or DCF, 

once uptaken, this compound also readily undergoes a series of metabolization steps involving 
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glucuronidation and sulfonation (Dhillon et al., 2015). Yet, no information is currently available 

in what concerns the toxicity of glucuronidated and sulfonated TCS conjugates to marine 

organisms. Although the trial focused on DCF bioaccumulation did not yield positive results and, 

thus, this matter cannot be appropriately discussed in this PhD thesis, it should be noted that this 

compound is also known to be rapidly metabolized (at the liver of vertebrate organisms), being 

subsequently transformed into different phase I and phase II metabolites, some of which (e.g. 4′-

hydroxy-DCF) evidencing (in mammals) equal or even higher toxicity than the parental 

(unchanged) DCF (Syed et al., 2016). 

As for the species-dependency factor, despite during this PhD research work it was impossible 

(due to time, budget and logistic constraints) to evaluate the bioaccumulation and elimination 

mechanisms of all tested ECCs in fish and bivalve model organisms, the data acquired with these 

preliminary trials suggests that climate change-related stressors will not affect these species in the 

same way, given their distinct ecological features. For instance, bivalves’ valve closing reflex 

under stressful abiotic conditions might have contributed to the lower absorption of iAs, TBBPA 

(only under acidification) and PFCs from contaminated seawater. Yet, fish do not possess this 

strategy and, as such, different bioaccumulation patterns may take place when these species are 

exposed to the same ECCs, thus representing distinct risks to seafood consumers. On the other 

hand, from the ECCs’ detoxification/elimination point of view, valve closing may also constitute 

a drawback to bivalve species that are neither able to release metabolized ECCs’ forms to the 

environment nor to perform gas exchanges. By limiting gas exchanges, internal hypoxia may 

occur, forcing bivalves to experience impaired metabolic rates and physiological condition when 

they remain closed for extended periods of time. This may, in turn, emphasize ECCs’ toxicity to 

these species (Carregosa et al., 2014; Correia et al., 2015) and, ultimately, lead to increased human 

exposure to these compounds (unchanged and/or biotransformed) when consuming contaminated 

bivalves. Moreover, climate change effects may also affect ECCs’ bioaccumulation/elimination 

patterns in different ways among fish species and, thus constitute distinct risks to seafood 

consumers, depending on animals’ feeding habits (e.g. predatory fish species with long life-cycles 

are more likely to accumulate high levels of persistent ECCs, such as MeHg, FRs and PFCs, in a 

warming context than small herbivorous species with shorter life cycles), distribution (e.g. species 

that spend longer periods of time in coastal areas subjected to stronger abiotic variations and 

inputs of ECCs versus species that mostly live in the open ocean) and habitat (pelagic species that 

are more active, have faster metabolic rates and feed in the water column versus benthic species 

that are less active, have lower metabolic rates and are in constant contact with contaminated 

sediments). 

The distinct bioaccumulation and elimination patterns according to the ECC and climate 

change scenario (i.e. warming and acidification acting in isolation or simultaneously) also reveal 

that the extent to which the safety of seafood consumers will be affected in tomorrow’s ocean 
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depends on various geographical factors. Such regional-dependency is due to the fact that neither 

chemical contamination, climate change effects, nor the adaptive and regulatory actions 

implemented to tackle both environmental stressors will be the same across the planet (IPCC, 

2014; FAO, 2018). For instance, since the present results evidenced that warmer temperatures can 

facilitate the bioaccumulation of persistent organic pollutants (e.g. MeHg and FRs), special 

attention should be given to the environmental presence of these ECCs in geographic regions that 

are expected to be particularly fustigated by warming, namely coastal areas within the Northern 

Hemisphere, such as the Mediterranean, Black, North, Barents and Caspian seas (see Chapter 1. 

and Figure 1.2.). Conversely, as acidification may enhance the biotransformation of ionic ECCs 

into different metabolites (e.g. iAs, PPCPs and, potentially, PFCs), for which the toxicological 

information is still limited, careful monitoring of these ECCs should be implemented in  higher 

latitude regions that are expected to experience a more pronounced decrease in the average 

seawater pH level compared to tropical areas (see Chapter 1. Figure 1.2.). Apart from monitoring 

the occurrence of these environmental stressors, accurately estimating the impacts of climate 

change in seafood safety will also require additional information specifically about the seafood 

trade chain, like the production (i.e. seafood species that are predominantly caught in fishing areas 

or farmed) and consumption patterns (i.e. consumers’ preference and frequency of seafood 

consumption) within different countries, as these aspects can considerably vary from one region 

of the world to another, thus, being determinant factors to the risk assessment of human exposure 

to ECCs through seafood consumption (FAO, 2018).  

In addition to the human perspective (i.e. seafood safety), the present research work also 

intended to contribute to the overall understanding of the ecological implications of climate 

change. Therefore, a third (and final) question was raised in the beginning of this PhD thesis: 

 

3. Will warming and/or acidification affect marine species’ ecotoxicological responses to 

ECCs? 

Yes. Although it was not possible to investigate all endpoints in every trial preformed (the 

endpoints were selected according to the mode of action and expected toxicological effect of each 

ECC), preliminary results acquired in this PhD thesis showed that the way marine fish cope with 

the exposure to ECCs (e.g. MeHg, DCF, VFX and TCS) is strongly influenced by the surrounding 

temperature and pCO2 conditions. Yet, the combination of these environmental stressors can elicit 

distinct effects (in terms of direction, i.e. up- or down-regulations, and extent/severity), at the 

different organizational levels (whole organism, organ or biochemical levels) and according to 

the ECC and type/severity of climate change effects (i.e. whether warming and acidification act 

in isolation or in combination). Table 7.2. presents a summary of the interactive effects that occur 

due to the co-exposure to ECCs and climate change-related stressors on a whole organism context. 
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Starting with the three selected indexes of animal fitness, while DCF and TCS co-exposed with 

warming and/or acidification significantly altered fish condition (K) and hepatosomatic (HSI) 

indexes, the same was not observed in fish exposed to MeHg or VFX. Furthermore, regardless of 

the ECC, no significant differences between contaminated fish exposed to the reference 

temperature and pCO2 levels and those under different climate change scenarios were observed 

in terms of fish brain to body mass ratio (BBratio; Table 7.2.). In fact, as described in Chapters 

2.-5., the majority of changes with respect to these indexes were mostly found between non-

contaminated and contaminated fish (i.e. regardless of temperature and pCO2 conditions). This 

was most likely related to the fact that the simulated experimental conditions corresponded to 

worst-case scenarios of climate change effects (as well as of ECCs’ contamination), but were still 

kept as realistic as possible (of course, taking into consideration the limitations associated with 

experimental laboratory conditions, which cannot exactly mimic what happens in nature). In other 

words, the experimental designs used in all trials attempted to simulate sub-lethal stress 

conditions, which were expected to trigger fish responses to a realistic and visible (during the 

timeline of each trial) extent, but not leading to total physiological collapse, drastically 

compromising animal survival (no mortality was observed in all trials). Yet, particularly regarding 

TCS, it was interesting to note that, contrasting the trend generally observed when fish are 

chronically exposed to xenobiotics (Diniz et al., 2009; Sadekarpawar and Parikh, 2013), the co-

exposure to warming and acidification decreased fish HSI (in relation to the reference abiotic 

conditions; Table 7.2.; see also Chapter 5. Parts 1. and 2.). This indicates that such stress 

interaction must have been too severe for the model species used in this trial (i.e. D. sargus), 

causing cellular (hepatocyte) death (Triebskorn et al., 2004; Pandey et al., 2017). Focusing on 

DCF’s trial, in which some haematological parameters were also investigated given its anti-

inflammatory mode of action, once again the significant differences observed in the total number 

of erythrocyte nuclear abnormalities (ENAs) were not associated with climate change effects, but 

rather with the exposure to DCF (Table 7.2.; see also Chapter 3. Part 1.), therefore, evidencing 

the genotoxicity potential of this compound. On the other hand, DCF’s cytotoxicity to fish 

(assessed through erythrocytes’ viability) seemed to have been enhanced by acidification, 

regardless of temperature conditions. As previously mentioned, during the trial focused on the 

antidepressant VFX, a parallel behavioural study was also carried out, given the psychotropic 

mode of action of this compound (see Chapter 4. Part 3.). 
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Table 7.2. Average percentage (%) of change of the selected whole organism endpoints in contaminated fish under climate change scenarios in relation 
to the reference temperature and pCO2 levels. ↑ represents a significant increase in relation to the corresponding contaminated treatment simulating the 
reference temperature and pCO2 levels, whereas ↓ indicates a significant decrease. Abbreviations: MeHg, methylmercury; DCF, diclofenac; VFX, 
venlafaxine; TCS, triclosan; K, Fulton’s condition index; HSI, hepatosomatic index; BBratio, brain to body mass ratio; Ery:Leu, total erythrocytes to total 
leukocytes ratio; ENAs, erythrocyte nuclear abnormalities; Ery viable, erythrocytes’ viability; nd, not determined; not significantly different (see statistical 
results in Chapters 2.-6.).  

 

    
Animal condition Haematological parameters 

Animal behaviour 

    Anxiety / Boldness Activity Social interaction Lateralization 

    
K HSI BBratio Ery:Leu ENAs Ery 

viable 
Time to 
cross up 

Time 
spent up 

Time to 
join shoal 

Time spent 
within shoal 

MeHg 

Warming ns ns ns 

nd nd nd Acidification nd nd nd 
Warming+ 

Acidification 
nd nd nd 

DCF 

Warming ↓9.1 ns ns ns ns ns 

nd Acidification ns ↑>100.0 ns ns ns ↓16.6 
Warming+ 

Acidification 
↓6.4 ns ns ns ns ↓31.0 

VFX 

Warming ns ns ns 

nd nd 

ns ↑>100.0 ns ns ↑94.8 ↓40.0 

Acidification ns ns ns ↑>100.0 ↓89.3 ns ns ↑>100.0 ↑50.0 

Warming+ 

Acidification 
ns ns ns ↑>100.0 ↓54.4 ↑>100.0 ↑>100.0 ↑>100.0 ↓67.0 

TCS 

Warming ns ns ns 

nd nd nd Acidification ns ns ns 
Warming+ 

Acidification 
ns ↓64.5 ns 
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One of the main findings in the VFX trial was that, despite all stressors affected fish behaviour to some 

extent, overall the most notorious behavioural alterations were found in fish co-exposed to acidification 

(i.e. increased animal anxiety/decreased boldness which, in turn, translated into altered activity and 

social interaction, as well as loss or reversion of lateralization in relation to VFX contaminated fish 

exposed to the reference abiotic conditions), regardless of temperature or even VFX co-exposure (Table 

7.2.; see also Chapter 4. Part 3.). These changes were likely due to an impairment of fish 

neurotransmission mechanisms promoted by reduced seawater pH levels (Nilsson et al 2012; Hamilton 

et al., 2014; Munday et al., 2014), which may represent major ecological implications, potentially 

translating into disrupted population dynamics, as well as lower reproduction success and feeding 

opportunities (Pitcher and Parrish, 1993; Bisazza and Brown, 2011; Maximino et al., 2012). 

As for the biochemical alterations, firstly, data highlighted the importance of evaluating the 

ecotoxicological responses to stressors in different fish tissues, which not only have distinct baseline 

biomarker levels, but also respond differently to environmental stressors, including their interactions. In 

fact, it was particularly interesting to verify that each studied ECC elicited differential tissue biomarker 

responses, therefore, evidencing their distinct modes of action in fish species. In agreement with 

previous findings (e.g. Islas-Flores et al., 2013; Madeira et al., 2016a,b; Rosa et al., 2016; Sampaio et 

al., 2018), both up- and down biomarker regulations were observed, depending on the stressor and tissue 

(Table 7.3. and Chapters 2.-3.). The occurrence of these contrasting strategies was linked to the fact 

that the exposure to environmental stressors can either: i) activate cells’ defence and scavenging 

mechanisms in order to overcome/adjust the stress induced (e.g. increased glutathione S-transferases, 

GST, activity and heat shock proteins HSP70/HSC70 synthesis in fish brain co-exposed to DCF and 

climate change effects; increased superoxide dismutase, SOD, activity and ubiquitin, Ub, synthesis in 

the liver of fish co-exposed to TCS and acidification; Table 7.3.); or ii) inhibit these cellular mechanisms 

due to their exhaustion, particularly when stress conditions are too severe (in terms of intensity and 

duration) and exceed the thresholds of physiological tolerance of the organism/tissue (e.g. catalase, 

CAT, and GST inhibition in fish brain under MeHg and warming co-exposure; CAT and GST activities, 

as well as Ub synthesis, in the liver of fish co-exposed to VFX and acidification; Table 7.3.; Ferreira et 

al., 2015; Madeira et al., 2016a,b). 

In some cases (e.g. in the muscle and/or gills of fish exposed to DCF and VFX, as well as in the liver 

of fish co-exposed to TCS and acidification), a significant increase of fish tissues’ lipid peroxidation 

(LPO) was registered under the co-exposure to ECCs and abiotic stressors (in relation to the reference 

temperature and pCO2 conditions; Table 7.3.; see also Chapters 2.-5.), thus, indicating that cells’ 

antioxidant machinery was only able to prevent to some extent the tissue damage caused by the 

exacerbated formation of free radicals (Madeira et al., 2013; Gonzalez-Rey and Bebianno, 2014). 
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Table 7.3. Average percentage (%) of change of the selected tissue specific biochemical endpoints in contaminated fish under climate change scenarios 
in relation to the reference temperature and pCO2 levels. ↑ represents a significant increase in relation to the corresponding contaminated treatment 
simulating the reference temperature and pCO2 levels, whereas ↓ indicates a significant decrease.  

 

  Oxidative stress 

    CAT SOD GST LPO 

    Muscle Gills Liver Brain Muscle Gills Liver Brain Muscle Gills Liver Brain Muscle Gills Liver Brain 

MeHg 

Warming ns nd ns ↓53.3 ns nd ns ns ↓66.4 nd ↓27.4 ↓23.2 

nd Acidification nd nd nd 

Warming+ 

Acidification 
nd nd nd 

DCF 

Warming ns nd ns ns ns nd ↓10.4 ns ↑90.2 nd ↑25.0 ↑39.3 ↑84.7 nd ns ↓15.6 

Acidification ns nd ↓32.2 ns ↑12.7 nd ns ↑7.2 ns nd ns ↑70.9 ns nd ns ↓10.6 

Warming+ 

Acidification 
ns nd ↓21.6 ns ns nd ↑14.7 ns ns nd ns ↑>100.0 ns nd ns ↓24.8 

VFX 

Warming ns ↑>100.0 ↓54.1 ns ns ns ns ns ↑11.1 ↓71.1 ↑20.2 ns ns ↑>100.0 ns ns 

Acidification ns ns ↓47.4 ns ns ns ↑12.8 ns ns ↓26.8 ↓41.5 ↑48.2 ↑>100 ↑>100.0 ns ns 
Warming+ 

Acidification 
↑97.0 ↑>100.0 ↓56.9 ns ns ns ↑8.9 ↓23.0 ↑16.7 ns ns ns ↑>100.0 ↑>100.0 ns ns 

TCS 

Warming ↓37.9 nd ns ns ns nd ns ns ns nd ↓62.2 ns ns nd ↓53.5 ns 

Acidification ns nd ns ns ns nd ↑17.6 ns ns nd ↑83.1 ns ns nd ↑>100.0 ns 

Warming+ 

Acidification 
↓40.3 nd ns ns ns nd ns ns ns nd ns ns ns nd ↓67.0 ns 
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Table 7.3. (continuation) Average percentage (%) of change of the selected tissue specific endpoints in contaminated fish under climate change 
scenarios in relation to the reference temperature and pCO2 levels. ↑ represents a significant increase in relation to the corresponding contaminated 
treatment simulating the reference temperature and pCO2 levels, whereas ↓ indicates a significant decrease. Abbreviations: MeHg, methylmercury; DCF, 
diclofenac; VFX, venlafaxine; TCS, triclosan; HSP70/HSC70, heat shock protein 70 kDa content; Ub, ubiquitin content; AChE, acetylcholinesterase 
activity; VTG, vitellogenin content; nd, not determined; not significantly different (see statistical results in Chapters 2.-6.). 

 
    Protein chaperoning and degradation Neurotoxicity Endocrine disruption 

    HSP70/HSC70 Ub AChE VTG 

    Muscle Gills Liver Brain Muscle Gills Liver Brain Brain Liver 

MeHg 

Warming ns ns nd ns 

nd 

ns 

nd Acidification nd nd 

Warming+ 

Acidification 
nd nd 

DCF 

Warming ↑>100.0 nd ns ↑>100.0 ns nd ↓44.6 ns ↓26.1 ↓35.8 

Acidification ↑77.8 nd ns ↑41.5 ↑34.9 nd ↓47.6 ns ↓15.3 ↓50.9 

Warming+ 

Acidification 
↑55.6 nd ns ns ↓35.7 nd ↓32.3 ns ns ↓37.1 

VFX 

Warming ns ns ↓56.7 ns ns ↓53.0 ↓47.3 ns ns ns 

Acidification ns ns ns ns ns ns ↓62.3 ns ↑38.4 ↓51.4 

Warming+ 
Acidification 

ns ns ↓75.3 ↑85.7 ↓30.6 ↓49.9 ns ns ns ↓44.6 

TCS 

Warming ↑64.5 nd ns ns ns nd ns ns ↑17.3 ns 

Acidification ns nd ↓70.0 ns ns nd ↑>100.0 ns ↑27.0 ns 

Warming+ 
Acidification 

↑>100.0 nd ↓59.3 ns ns nd ↑>100.0 ns ns ns 
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Conversely, the opposite trend was observed in other occasions (i.e. significantly lower LPO 

in the brain and liver of fish exposed to DCF and TCS, respectively; Table 7.3.; see also Chapters 

3. Part 1. and 4. Part 2.), probably as a result of the enhanced antioxidant activity (i.e. CAT, 

SOD and/or GST activities) under increased temperature and pCO2 levels.  

Protein chaperoning and ubiquitination also constitute important cellular defence mechanisms, 

amending the protein damage that antioxidant scavengers were not able to prevent in the first 

place, with the first mechanism being responsible for repairing reversible protein damage, while 

the second is activated in order to signal and eliminate irreversible protein anomalies (i.e. 

molecular chaperones no longer can repair the cellular damage; Jackson and Durocher, 2013; 

Madeira et al., 2017; Sottile and Nadin, 2018). As such, the enhancement of chaperones (e.g. 

HSP70/HSC70) and Ub synthesis can likely indicate that increased cell damage is taking place in 

fish tissues (e.g. muscle of fish co-exposed to abiotic stressors and DCF or TCS; Table 7.3.; see 

also Chapters 3. Part 1. and 5. Parts 1. and 2.). On the other hand, since protein synthesis is, in 

general, an extremely energy-demanding process, the inhibition of protein chaperoning and 

ubiquitination (as observed, for instance, in the liver of fish co-exposed to abiotic stressors and 

DCF or VFX; Table 7.3.; see also Chapters 3. Part 1. and 4. Part 2.) can also occur under severe 

stress conditions, due to impaired animal metabolism/aerobic scope (Hofmann and Somero, 1995; 

Gravel and Vijayan, 2007; Araújo et al., 2018). 

Although changes in acetylcholinesterase (AChE) brain activity were primarily expected to 

occur in fish exposed to MeHg and VFX (given their well-known modes of action; Korbas et al., 

2012; Bisesi et al., 2014) regardless of the surrounding abiotic conditions, the present results 

revealed that dietary exposure to DCF or TCS also affected marine fish neurological function 

(Table 7.3.; see also Chapters 2.-5.). As observed in the trials focused on MeHg and TCS (see 

Chapters 3. Part 2. and 5. Parts 1. and 2.), several studies have previously reported an inhibition 

of AChE activity following the exposure to xenobiotics, as this enzyme can be a target for many 

chemical compounds (Schmidel et al., 2014; Topal et al., 2017). On the other hand, and matching 

the results obtained in fish exposed to DCF and VFX (see Chapters 3. Part 1. and 3. Part 2.), an 

activation of this enzyme has also been previously reported, though less commonly, and some 

potential justifications for this include: i) increased brain cell apoptosis, causing the release of 

AChE from brain cells (Zhang et al., 2002; Gonzalez-Rey and Bebianno, 2013, 2014); ii) 

increased synthesis of AChE splicing variants (e.g. AChE-R) under stressful conditions (Lionetto 

et al., 2013); or iii) disturbances of fish hypothalamo–pituitary–gonadal (HPG) axis due to 

xenobiotics’ exposure, which enhance the synthesis of estrogens and vitellogenin (VTG)-like 

proteins that, in turn, modulate the cholinergic system, including AChE activity (van der Ven et 

al., 2006; Gonzalez-Rey and Bebianno, 2014; Oliveira et al., 2015). Although very little is known 

so far concerning the effects of ECCs on fish neuroendocrine system (nor the present data allows 
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to draw appropriate conclusions on this matter), it was interesting to see that, indeed, the increased 

AChE brain activity in fish exposed to DCF and VFX was accompanied by increased VTG in 

liver content (see Chapters 3. Part 1 and 4. Part 2.), whereas a reduction of both AChE activity 

and VTG content was found in fish exposed to TCS (see Chapter 5. Parts 1 and 2.; VTG content 

was not determined in fish exposed to MeHg). In parallel, seawater abiotic conditions, such as 

temperature and pH, can have a determinant role on marine biota’s reproduction (namely, 

specimens’ maturation and spawning; Brown et al., 2006; Arantes et al., 2011; Milazzo et al., 

2016) and, thus, warming and acidification can likely affect fish neuroendocrine functioning, 

potentiating the effects elicited by the exposure to ECCs (as observed in AChE activity, when 

VFX was co-exposed with acidification or TCS co-exposed with acidification and warming), or 

reversing them (as occurred in AChE activity of fish co-exposed to abiotic stressors and DCF, as 

well as VTG content of fish co-exposed to abiotic stressors and DCF or VFX; Table 7.3.; see also 

Chapters 2.-5.). While warmer temperatures have been previously associated with increased 

AChE activity and VTG content, most likely due to the enhancement of fish metabolic rates 

(Chandra et al., 2012; Shappell et al., 2018), information regarding the effects of acidification on 

fish neuroendocrine system is still limited (Kwong et al., 2014; Heuer et al., 2016). In this way, 

the results presented in this PhD thesis constitute an important contribution to the current state of 

the art, evidencing that increased pCO2 levels may have an anti-estrogenic action (i.e. VTG 

inhibition) or even exacerbate the effects of ECCs with anti-estrogenic modes of action in marine 

fish, which subsequently translate in the modulation of their cholinergic system. Such action may 

be attributed to the disturbance of brain ionic homeostasis under increased pCO2 conditions 

which, in turn, impair fish neurotransmission and hormone synthesis (Pankhurst and Munday, 

2011; Nilsson et al., 2012; Kwong et al., 2014; Heuer et al., 2016). 

To sum up, the changes observed in terms of the whole animal fitness (including animal 

behaviour) and tissue biochemical responses revealed that the co-exposure to climate change-

related stressors will certainly defy the resilience of marine organisms, particularly those 

inhabiting strongly polluted environments (e.g. coastal areas and estuaries). Moreover, by 

compromising species’ welfare, recruitment and ecological success, climate change effects will 

also represent great challenges to the sustainability of fisheries and aquaculture sectors, therefore, 

calling for urgent regulatory, mitigation and/or adaptive actions at a global scale.  
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Final Remarks and Future Directions 

The present PhD thesis provides a valuable contribution towards the understanding of climate 

change impacts from different scientific perpectives (e.g. ecophysiology, behavioural ecology, 

ecotoxicology, seafood safety), evidencing that the rising of seawater temperature and pCO2 

levels foreseen for the coming 50-100 years will likely strongly affect marine organisms’ ability 

to cope with the presence of emerging chemical contaminants (ECCs). By affecting ECCs’ 

bioaccumulation and detoxification mechanisms, as well as the ecotoxicological responses to 

these compounds, climate change effects will certainly represent great challenges to the resilience 

of marine invertebrate and vertebrate species, therefore, implying strong and negative impacts on 

the fisheries and aquaculture sectors. 

The empirical findings gathered in this PhD dissertation point out to the urgent need to develop 

region-specific mitigation and/or adaptive strategies that will assure the sustainability of 

tomorrow’s ocean. Hence, upon detecting climate change potential risks, which was the core of 

the present thesis, it is outmost crucial to clearly identify the opportunities that will emerge from 

it, and those include, among others: i) replacing heavily polluting technologies for “greener” 

and/or cleaner alternatives; ii) applying stronger efforts/pressures on policy making institutions, 

in order to regulate the environmental presence of ECCs, as well as GHG emissions in a tighter 

and more effective way; iii) developing more cost-effective wastewater treatment or even 

remediation (e.g. phycoremediation) technologies; iv) replacing seafood species commonly 

caught in the wild or farmed by other species that are more resilient to the prevailing 

environmental conditions and/or less ecologically threatened; v) increasing/extending the number 

of protected areas and/or improving their environmental management, paying particular attention 

to vulnerable ecosystems, such as coastal areas and estuaries that are frequently exposed to strong 

abiotic variations (e.g. due to their poorer hydrodynamic activity) and inputs of ECCs (e.g. due 

to their location near intensely urbanized regions); and, most importantly, vi) growing the 

ecological awareness of the general population through education, particularly in what concerns 

the causes and impacts of both climate change and ECCs, as well as the daily actions that can be 

undertaken individually to reduce the “human footprint” on the planet. 

From the scientific point of view, while analysing and interpreting results in an integrated way, 

it also became evident that further studies are also required in the future, to support and/or 

complement the information presented in this PhD thesis. In this way, the trials focused on 

pharmaceuticals and personal care products (PPCPs), particularly the one on diclofenac (DCF; 

see Chapter 3.), highlighted the importance of further assessing the mechanisms of ECCs’ 

biotransformation, as this presently constitutes one of literature’s greatest gaps. Such knowledge 

will allow to better understand the toxicokinetics of ECCs in a climate change context, particularly 

those that can easily alternate between molecular forms according to the surrounding abiotic 
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conditions and/or are readily metabolized (i.e. the parental compound has a relatively short half-

life, within the hour or few days’ time scale) by marine biota, being transformed into different 

metabolites for which the toxicological attributes are still unknown. In line with this, a topic that 

also showed to deserve further attention was the differential effects of ECCs’ exposure route. 

Although this matter was somewhat outside the framework of this PhD research work, during the 

trial focused on VFX (Chapter 4.) it became clear that, indeed, climate change effects can trigger 

distinct interactive effects (at the bioaccumulation, biochemical and behavioural levels), 

depending on the pathway of exposure to this compound (i.e. via water or via feed) and the tissue 

burdens that are subsequently reached in marine organisms. Moreover, since in the environment 

marine species are rarely exposed to a single ECC, but rather to a panoply of compounds, and 

based on the current state of the art on this matter, future ecotoxicological studies should also 

focus on climate change interactive effects with environmentally relevant (in terms of profile, 

exposure concentration and pathway) mixtures of ECCs (i.e. a topic that was only lightly tackled 

in Chapter 6.). 

This PhD thesis also brought to light three research opportunities which will increase the 

present knowledge on climate change-related ecotoxicological impacts. Firstly, in Chapter 3. 

(i.e. the trial focused on DCF), results showed that hostile abiotic conditions can compromise fish 

immune system, with the co-exposure to ECCs resulting in either a stimulation or suppression of 

such effects. In this way, further studies on this direction (i.e. effects of environmental stressors 

on fish immunological responses) will be crucial in the future as one of the most expected impacts 

of climate change is the increased distribution, frequency of occurrence and severity of diseases 

(bacterioses, viroses and parasitoses) in the marine environment. These events will certainly pose 

a serious threat to the resilience of wild and farmed stocks and, thus, to the sustainability of 

fisheries and aquaculture sectors. Secondly, the way ECCs and abiotic stressors (namely, seawater 

pCO2 levels) interfere with the normal functioning of fish neuroendocrine system is also a poorly 

studied topic, though it proved to be extremely relevant throughout Chapters 2.-5. As such, 

further research efforts should be undertaken in order to understand how and the extent to which 

environmental stressors can disturb fish neurotransmission and the normal course of the 

hypothalamo–pituitary–gonadal (HPG) axis, as these biochemical alterations can translate into 

impaired animal behaviour, as well as sexual differentiation and maturation, mating, spawning, 

hatching and territory establishment events. All these impairements can seriously compromise the 

dynamics at the whole population level and, ultimately, species ecological success. Thirdly, 

studies using species from different taxonomic groups, and from different geographical areas 

(tropical and temperate regions where species are able to show distinct plasticity to abiotic 

variations), as well as incorporating innovative “omic” tools (genomics, proteomics, 

transcriptomics and metabolomics) will also constitute a major research challenge in the future. 
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Such approaches will enable the prediction of climate change impacts from an evolutionary 

perspective (i.e. at the population and community levels), unveiling in depth the molecular 

pathways involved in animal stress responses, the potential mechanisms of genomic/phenotypic 

adaptation in marine species, as well as the genetic transfer of these adaptive responses across 

generations. 

As a final consideration, and based on the distinct trends observed according to the ECC and/or 

climate change scenarios (i.e. when seawater warming and acidification act in isolation or 

combined), future research should address specific regional trends, considering not only the two 

studied climate change-related stressors, but also other outmost relevant climate variables, such 

as alterated salinity, dissolved oxygen and UV-radiation, among others. This will be crucial to the 

development of “tailor-made” mitigation/adaptive solutions, since climate change-related 

stressors and pollution (profiles and burdens) will certainly not affect marine ecosystems in the 

same way across the planet.
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TABLES 

Table A.2.1. Composition of control and MeHg-enriched diets (i.e. dry inert pellets) used for 
juvenile seabass feeding. 

 

 
1 Peruvian fishmeal LT: 71% crude protein (CP), 11% crude fat (CF) (EXALMAR, Peru); 2 Fair Average 

Quality (FAQ) fishmeal: 62% CP, 12%CF (COFACO, Portugal); 3CPSP 90: 84% CP, 12% CF 
(Sopropêche, France); 4 Soycomil P: 65% CP, 0.8% CF (ADM, The Netherlands); 5 VITEN: 85.7% CP, 
1.3% CF (ROQUETTE, France); 6 Maize gluten feed: 61% CP, 6% CF (COPAM, Portugal); 7 Solvent 
extracted dehulled soybean meal: 47% CP, 2.6% CF (SORGAL SA, Portugal); 8 Fish oil (COPPENS 
International, The Netherlands); 9 Premix for marine fish (PREMIX Lda, Portugal). Vitamins (IU or mg kg-

1 diet): DL-alpha tocopherol acetate, 100 mg; sodium menadione bisulphate, 25 mg; retinyl acetate, 20000 
IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg; riboflavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 
0.1 mg; nicotinic acid, 200 mg; folic acid, 15 mg; ascorbic acid, 1000 mg; inositol, 500 mg; biotin, 3 mg; 
calcium panthotenate, 100 mg; choline chloride, 1000 mg, betaine, 500 mg. Minerals (g or mg kg-1 diet): 
cobalt carbonate, 0.65 mg; copper sulphate, 9 mg; ferric sulphate, 6 mg; potassium iodide, 0.5 mg; 
manganese oxide, 9.6 mg; sodium selenite, 0.01 mg; zinc sulphate,7.5 mg; sodium chloride, 400 mg; 
calcium carbonate, 1.86 g; excipient wheat middlings. 

 

Table A.2.2. Concentration of MeHg in feeds (dry weight) and T-Hg in seawater sampled 
from the four treatments during the trial (mean ± standard deviation mg kg-1; n = 3). 
Abbreviations: 18_control – seawater temperature set at 18 °C and animals fed with control diet; 
18_MeHg-enriched – seawater temperature set at 18 °C and animals fed with MeHg-enriched 
diet; 22_control – seawater temperature set at 22 °C and animals fed with control diet; 22_MeHg-
enriched – seawater temperature set at 22 °C and animals fed with MeHg-enriched diet. 

 

 

Ingredients %DW 

Fishmeal LT70 1 28 
Fishmeal 60 2 20 
Fish soluble concentrate 3 2.5 
Soy protein concentrate 4 5 
Wheat gluten 5 5.5 
Maize gluten 6 5 
Soybean meal 48 7 9 
Wheat meal 5.5 
Whole peas 5 
Fish oil 8 13.5 
Vitamin and mineral premix 9 1 
Dry matter (DM), % 94.3 
Crude protein, %DM 51.7 
Crude fat, %DM 18.9 
Ash, %DM 9.6 

 Feed Water 
control MeHg-enriched 18_control 18_MeHg-enriched 22_control 22_MeHg-enriched 

0.60 ± 0.02 8.12 ± 0.07 < 0.005 < 0.005 < 0.005 < 0.005 

0.59 ± 0.03 8.02 ± 0.05 < 0.005 < 0.005 < 0.005 < 0.005 

0.61 ± 0.01 7.81 ± 0.05 < 0.005 < 0.005 < 0.005 < 0.005 

0.62 ± 0.01 8.10 ± 0.07 < 0.005 < 0.005 < 0.005 < 0.005 

0.61 ± 0.02 7.97 ± 0.04 < 0.005 < 0.005 < 0.005 < 0.005 

0.59 ± 0.01 7.92 ± 0.06 < 0.005 < 0.005 < 0.005 < 0.005 

0.60 ± 0.01 8.22 ± 0.05 < 0.005 < 0.005 < 0.005 < 0.005 
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Table A.2.3. Moisture content (%) in three tissues (muscle, liver and brain) of juvenile seabass 
(mean ± standard deviation; n = 6) sampled in each treatment, during 28 days of exposure to 
MeHg and 28 days of depuration. Abbreviations: 18_control – seawater temperature set at 18 °C 
and animals fed with control diet; 18_MeHg-enriched – seawater temperature set at 18 °C and 
animals fed with MeHg-enriched diet; 22_control – seawater temperature set at 22 °C and animals 
fed with control diet; 22_MeHg-enriched – seawater temperature set at 22 °C and animals fed 
with MeHg-enriched diet. 

 

     18_control 22_control 18_MeHg-enriched 22_MeHg-enriched 

0 

Muscle 74.3 ± 1.8 74.9 ± 2.0 74.7 ± 2.2 73.3 ± 1.9 

Liver 59.4 ± 5.2 63.0 ± 3.4 63.9 ± 3.7 60.5 ± 3.6 

Brain 78.0 ± 2.1 77.2 ± 3.2 76.9 ± 2.0 76.2 ± 2.7 

7 

Muscle 72.4 ± 2.2 73.9 ± 1.6 73.1 ± 2.5 74.5 ± 2.3 

Liver 60.2 ± 3.3 63.4 ± 4.2 63.7 ± 4.7 63.3 ± 5.0 

Brain 76.3 ± 3.3 76.2 ± 2.4 75.8 ± 3.6 77.3 ± 3.3 

14 

Muscle 71.6 ± 1.7 72.7 ± 1.5 73.2 ± 2.4 73.9 ± 1.7 

Liver 62.3 ± 4.3 58.7 ± 5.1 58.9 ± 5.3 58.8 ± 4.8 

Brain 77.1 ± 2.7 75.9 ± 4.1 75.9 ± 2.9 77.6 ± 2.8 

28 

Muscle 73.1 ± 1.4 72.6 ± 1.9 74.1 ± 2.7 72.6 ± 1.5 

Liver 58.9 ± 5.1 59.9 ± 4.8 60.9 ± 2.7 57.6 ± 4.7 

Brain 78.4 ± 4.3 76.7 ± 3.2 77.4 ± 3.5 76.7 ± 3.0 

35 

Muscle 73.5 ± 2.3 73.3 ± 2.1 73.8 ± 1.8 73.9 ± 1.8 

Liver 62.1 ± 2.1 62.5 ± 3.9 61.3 ± 3.7 62.4 ± 3.4 

Brain 75.2 ± 3.6 78.2 ± 2.5 76.2 ± 3.2 78.2 ± 1.9 

42 

Muscle 73.4 ± 2 74.0 ± 2.0 74.0 ± 2.1 74.2 ± 1.4 

Liver 61.5 ± 2.6 61.4 ± 4.6 61.0 ± 4.9 63.7 ± 3.9 

Brain 75.3 ± 3.0 75.4 ± 3.1 76.5 ± 2.7 76.3 ± 2.4 

56 

Muscle 74.1 ± 1.7 74.2 ± 1.8 73.4 ± 1.6 73.2 ± 2.2 

Liver 63.0 ± 2.4 61.4 ± 3.7 59.9 ± 3.2 62.6 ± 4.5 

Brain 77.2 ± 1.6 76.8 ± 2.6 77.6 ± 3.1 75.4 ± 3.3 
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Table A.2.4. Total Hg content (mg kg-1 of wet weight) in three tissues (muscle, liver and brain) 
of juvenile seabass (mean ± standard deviation; n = 6) sampled in each of the four treatments, 
during 28 days of exposure to MeHg and 28 days of depuration. Abbreviations: 18_control – 
seawater temperature set at 18 °C and animals fed with control diet; 18_MeHg-enriched – 
seawater temperature set at 18 °C and animals fed with MeHg-enriched diet; 22_control – 
seawater temperature set at 22 °C and animals fed with control diet; 22_MeHg-enriched – 
seawater temperature set at 22 °C and animals fed with MeHg-enriched diet. 

 

 
 

 

 

 

 

 

 

 

 

     18_control 22_control 18_MeHg-enriched 22_MeHg-enriched 

0 

Muscle 0.27 ± 0.09 0.27 ± 0.09 0.27 ± 0.09 0.27 ± 0.09 

Liver 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 

Brain 0.17 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 

7 

Muscle 0.35 ± 0.12 0.33 ± 0.05 0.81 ± 0.27 1.13 ± 0.18 

Liver 0.07 ± 0.00 0.07 ± 0.00 0.98 ± 0.31 2.78 ± 0.27 

Brain 0.21 ± 0.00 0.21 ± 0.00 1.41 ± 0.08 1.62 ± 0.02 

14 

Muscle 0.28 ± 0.05 0.27 ± 0.01 1.63 ± 0.52 1.95 ± 0.26 

Liver 0.10 ± 0.00 0.10 ± 0.00 2.37 ± 0.49 2.85 ± 0.10 

Brain 0.20 ± 0.02 0.2 ± 0.02 2.15 ± 0.02 3.32 ± 0.54 

28 

Muscle 0.29 ± 0.01 0.29 ± 0.01 4.02 ± 0.24 4.85 ± 0.30 

Liver 0.09 ± 0.01 0.09 ± 0.02 6.05 ± 1.83 5.43 ± 1.24 

Brain 0.18 ± 0.02 0.18 ± 0.02 5.74 ± 0.06 8.6 ± 0.42 

35 

Muscle 0.24 ± 0.03 0.24 ± 0.02 4.63 ± 0.32 5.38 ± 0.38 

Liver 0.10 ± 0.00 0.10 ± 0.01 4.00 ± 0.18 4.67 ± 0.31 

Brain 0.19 ± 0.01 0.19 ± 0.01 7.44 ± 0.72 9.73 ± 0.94 

42 

Muscle 0.24 ± 0.04 0.23 ± 0.01 3.78 ± 0.29 4.58 ± 0.33 

Liver 0.06 ± 0.01 0.06 ± 0.01 2.29 ± 0.08 5.00 ± 0.60 

Brain 0.18 ± 0.02 0.18 ± 0.02 5.88 ± 0.02 7.84 ± 0.50 

56 

Muscle 0.25 ± 0.02 0.24 ± 0.01 3.93 ± 0.27 4.58 ± 0.21 

Liver 0.08 ± 0.01 0.08 ± 0.02 2.09 ± 0.27 3.10 ± 0.31 

Brain 0.24 ± 0.00 0.24 ± 0.00 4.86 ± 0.56 7.24 ± 0.27 
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TABLES 

Table A.3.1. Composition of control and MeHg-enriched diets (i.e. dry inert pellets) used for 
juvenile seabass feeding. 

 

 
1 Peruvian fishmeal LT: 71% crude protein (CP), 11% crude fat (CF) (EXALMAR, Peru); 2 Fair Average 

Quality (FAQ) fishmeal: 62% CP, 12%CF (COFACO, Portugal); 3CPSP 90: 84% CP, 12% CF 
(Sopropêche, France); 4 Soycomil P: 65% CP, 0.8% CF (ADM, The Netherlands); 5 VITEN: 85.7% CP, 
1.3% CF (ROQUETTE, France); 6 Maize gluten feed: 61% CP, 6% CF (COPAM, Portugal); 7 Solvent 
extracted dehulled soybean meal: 47% CP, 2.6% CF (SORGAL SA, Portugal); 8 Fish oil (COPPENS 
International, The Netherlands); 9 Premix for marine fish (PREMIX Lda, Portugal). Vitamins (IU or mg kg-

1 diet): DL-alpha tocopherol acetate, 100 mg; sodium menadione bisulphate, 25 mg; retinyl acetate, 20000 
IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg; riboflavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 
0.1 mg; nicotinic acid, 200 mg; folic acid, 15 mg; ascorbic acid, 1000 mg; inositol, 500 mg; biotin, 3 mg; 
calcium panthotenate, 100 mg; choline chloride, 1000 mg, betaine, 500 mg. Minerals (g or mg kg-1 diet): 
cobalt carbonate, 0.65 mg; copper sulphate, 9 mg; ferric sulphate, 6 mg; potassium iodide, 0.5 mg; 
manganese oxide, 9.6 mg; sodium selenite, 0.01 mg; zinc sulphate,7.5 mg; sodium chloride, 400 mg; 
calcium carbonate, 1.86 g; excipient wheat middlings. 

 

 

Table A.3.2. Concentration of MeHg in feeds (dry weight) and T-Hg in seawater sampled 
from the four treatments (mean ± standard deviation mg kg-1; n = 3), throughout the 28 days of 
trial. Abbreviations: 18_control – seawater temperature set at 18 °C and animals fed with control 
diet; 18_MeHg-enriched – seawater temperature set at 18 °C and animals fed with MeHg-enriched 
diet; 22_control – seawater temperature set at 22 °C and animals fed with control diet; 22_MeHg-
enriched – seawater temperature set at 22 °C and animals fed with MeHg-enriched diet; LOD –
limit of detection in the methodology used for THg and MeHg quantification (0.005 mg L-1). 

 

 

Ingredients % dry weight 
Fishmeal LT70 1 28 
Fishmeal 60 2 20 
Fish soluble concentrate 3 2.5 
Soy protein concentrate 4 5.0 
Wheat gluten 5 5.5 
Maize gluten 6 5.0 
Soybean meal 48 7 9.0 
Wheat meal 5.5 
Whole peas 5.0 
Fish oil 8 13.5 
Vitamin and mineral premix 9 1.0 
Dry matter (DM), % 94.3 
Crude protein, %DM 51.7 
Crude fat, %DM 18.9 
Ash, %DM 9.6 

 Feed Seawater 
control MeHg-enriched 18_control 18_MeHg-enriched 22_control 22_MeHg-enriched 

0.60 ± 0.02 8.12 ± 0.07 < LOD < LOD < LOD < LOD 

0.59 ± 0.03 8.02 ± 0.05 < LOD < LOD < LOD < LOD 

0.61 ± 0.01 7.81 ± 0.05 < LOD < LOD < LOD < LOD 

0.62 ± 0.01 8.10 ± 0.07 < LOD < LOD < LOD < LOD 
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TABLES 

Table A.4.1. Proximate chemical composition of CRT and DCF-enriched feeds. 

 

1 Peruvian fishmeal LT: 67% crude protein (CP), 9% crude fat (CF), EXALMAR, Peru. 
2 CPSP 90: 84% CP, 12% CF, Sopropêche, France. 
3 Super prime without guts: 82% CP, 3.5% CF, Sopropêche, France; 
4 Krill meal: 52.4% CP, 21.7% CF, Aker Biomarine, Norway. 
5 VITAL: 85.7% CP, 1.3% CF, ROQUETTE, France. 
6 SAVINOR UTS, Portugal 
7 LECICO P 700IPM, LECICO GmbH, Germany.  
8 Guar gum HV109, SEAH International, France. 
9 OceanFeed: 10.2% CP, Ocena Harvest Technology, Ireland. 
10 Paramega PX, Kemin Europe NV, Belgium 
11 Monocalcium phosphate: 22% phosphorus, 16% calcium, Fosfitalia, Italy. 
12 PREMIX Lda, Portugal: Vitamins (IU or mg kg-1 diet): DL-alpha tocopherol acetate, 100 mg; sodium 
menadione bisulphate, 25 mg; retinyl acetate, 20000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg; 
riboflavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 0.1 mg; nicotinic acid, 200 mg; folic acid, 15 mg; 
ascorbic acid, 500 mg; inositol, 500 mg; biotin, 3 mg; calcium panthotenate, 100 mg; choline chloride, 
1000 mg, betaine, 500 mg. Minerals (g or mg kg-1 diet): copper sulphate, 9 mg; ferric sulphate, 6 mg; 
potassium iodide, 0.5 mg; manganese oxide, 9.6 mg; sodium selenite, 0.01 mg; zinc sulphate,7.5 mg; 
sodium chloride, 400 mg; excipient wheat middlings. 

Ingredients % 

Fishmeal LT701 20.0 

Fish protein concentrate2 20.5 

Squid meal3 25.0 

Krill meal4 5.0 

Wheat gluten5 11.0 

Fish oil6 8.0 

Soy lecithin7 3.5 

Guar gum8 1.3 

Macroalgae mix9 2.0 

Antioxidant10 0.5 

Monocalcium phosphate11 1.3 

Vitamin and mineral premix12 2.0 
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Table A.4.2. Seawater physical and chemical parameters (mean ± standard deviation) in each treatment. Abbreviations: Control – reference temperature and 
pH conditions (i.e. T = 19 ºC and pH = 8.0 units); Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); DCF – DCF 
exposure; TA – total alkalinity; pCO2 - partial CO2 pressure; TCO2 - Total CO2 concentration; HCO3

- - bicarbonate; CO3
2- - carbonate ion concentrations; ΩCal 

- calcite saturation state; ΩAra – aragonite saturation state.   

  

Control Acid DCF+Acid Warm DCF+Warm Acid+Warm DCF+Acid+Warm   

Temperature (°C) 19.2 ± 0.1 19.3 ± 0.2 19.2 ± 0.1 24.3 ± 0.2 24.4 ± 0.1 24.3 ± 0.3 24.4 ± 0.1 

Salinity 35.2 ± 0.3 35.0 ± 0.3 35.2 ± 0.4 35.0 ± 0.3 35.2 ± 0.3 35.0 ± 0.3 35.2 ± 0.4 

pH 8.02 ± 0.05 7.62 ± 0.04 7.61 ± 0.06 7.97 ± 0.03 8.00 ± 0.04 7.58 ± 0.03 7.61 ± 0.06 

TA (µmol kg-1 ) 2752.2 ± 70 2997.8 ± 98.2 2824.3 ± 46 2595.2 ± 55.4 2824.1 ± 68.8 2779 ± 110.5 2939.7 ± 221.9 

pCO2 (µatm) 500.9 ± 65.8 1540 ± 108.5 1501.9 ± 191.8 542.7 ± 48.6 544.3 ± 53.5 1597.5 ± 59.9 1580.6 ± 135.3 

TCO2 (µmol kg-1) 2241.9 ± 63.4 2752 ± 79.3 2597 ± 30.7 2088.2 ± 62.1 2243.3 ± 37.3 2529.8 ± 94.6 2659.1 ± 192.9 

HCO3
- (µmol kg-1) 2241.9 ± 66.7 2752 ± 70.4 2597 ± 26.8 2088.2 ± 64.1 2243.3 ± 22.7 2529.8 ± 85.1 2659.1 ± 174.5 

CO3
2- (µmol kg-1) 213.6 ± 24.3 104.4 ± 12.3 95.6 ± 12.6 210.9 ± 5.5 245 ± 26.2 105.1 ± 11.3 119.3 ± 22.3 

Ω Ara 5.1 ± 0.6 2.5 ± 0.3 2.3 ± 0.3 5.1 ± 0.1 5.9 ± 0.6 2.5 ± 0.3 2.9 ± 0.5 

Ω Cal 3.3 ± 0.4 1.6 ± 0.2 1.5 ± 0.2 3.3 ± 0.1 3.9 ± 0.4 1.7 ± 0.2 1.9 ± 0.4 
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Table A.4.3. Basal biomarker levels (mean ± SD; n = 9) in juvenile D. labrax. Abbreviations: TL - total length; W – weight; K - Fulton’s condition index; 
HSI - hepatosomatic index; BBratio - brain-to-body mass ratio; Ery - percentage of erythrocytes in relation to total cell counts; Leu - percentage of leukocytes in 
relation to total cell counts; Viable Ery - percentage of viable erythrocytes in relation to total erythrocyte counts; ENAs – percentage of erythrocyte nuclear 
abnormalities in relation to total erythrocyte counts; Micronuclei – percentage of micronuclei in relation to total erythrocyte counts; CAT – catalase activity; 
SOD – superoxide dismutase inhibition; GST – glutathione S-transferase activity; LPO - lipid peroxidation;  HSP70/HSC70 – heat shock proteins content; Ub 
– total ubiquitin content; AChE – acetylcholinesterase activity; VTG – vitellogenin content. 

 

  Whole body 

TL (cm) 7.0 ± 0.2 

W (g) 6.7 ± 0.3 

K 1.93 ± 0.13 

HSI 2.39 ± 0.69 

BBratio 0.97 ± 0.08 

Ery (%) 94.9 ± 0.9 
Leu (%) 5.1 ± 0.9 
Viable (%) 77.4 ± 2.3 
ENAs (%) 9.7 ± 3.3 
Micronuclei (%) 0.0 ± 0.0 
  Muscle Liver Brain 

CAT (µM min-1 mg-1 protein) 3.5 ± 1.4 5.6 ± 0.7 4.1 ± 1.0 

SOD (% inhibition) 39.1 ± 1.9 71.4 ± 2.2 70.3 ± 2.9 

GST (nmol min-1 mg-1 protein) 7.8 ± 0.1 29.2 ± 4.4 9.5 ± 0.4 

LPO (nmol mg-1 protein) 0.009 ± 0.001 0.004 ± 0.001 0.014 ± 0.002 

HSP70/HSC70 (µg mg-1 protein) 0.11 ± 0.01 0.05 ± 0.01 0.11 ± 0.01 

Ub (µg mg-1 protein) 0.018 ± 0.001 0.009 ± 0.003 0.004 ± 0.001 

AChE (nmol min-1 mg-1 protein) - - 36.7 ± 2.0 

VTG (ng mg-1 protein) - 189.9 ± 0.5 - 
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Table A.4.4. Summary of changes (%) induced by DCF exposure, acidification and warming in relation to the average values obtained in Control treatment. 
“↑” before the value indicates a significant increase compared to values found in Control treatment, whereas “↓“ indicates a significant decrease (p < 0.05). 
Abbreviations: K - Fulton’s condition index; HIS - hepatosomatic index; BBratio - brain-to-body mass ratio, Ery:Leu – ratio between total erythrocytes and total 
leukocytes counts; ENAs - erythrocytes nuclear abnormalities (including micronuclei); Viable Ery - viable erythrocytes; CAT – catalase; SOD – superoxide 
dismutase; GST – glutathione S-transferase; LPO - lipid peroxidation; HSP70/HSC70 - heat shock proteins; Ub - total ubiquitin; AChE – acetylcholinesterase; 
VTG – vitellogenin; NS – No significant alteration (p > 0.05) in relation to the Control treatment; DCF – DCF exposure; Acid – simulated acidification (i.e. pH 
= 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 

  Fish condition Hematological parameters Biomarkers 

Stressor K HSI BBratio Ery:Leu ENAs Viable Ery Tissue CAT SOD GST LPO 
HSP70/ 

HSC70 
Ub AChE VTG 

Acidification NS NS ↓ 47% NS NS ↓ 15% 

Muscle NS ↑ 58% ↓ 33% NS ↓ 24% NS - - 

Liver NS ↓ 11% ↓ 24% NS NS NS - ↓ 14% 

Brain NS NS NS NS ↑ 28% ↑ >100% NS - 

Warming NS NS ↓ 26% NS NS NS 

Muscle NS ↑ 53% NS ↑ 66% NS NS   

Liver NS NS ↑ 63% NS ↑ 56% ↑ 48%  ↑ 40% 

Brain NS NS ↑ >100% NS ↑ 50% ↑ 40% NS  

Acidification + 
Warming 

NS NS ↓ 44% ↓ 57% NS ↓ 11% 

Muscle NS ↑ 67% NS ↑ >100% NS NS - - 

Liver NS NS NS NS ↑ 67% ↑ 34% - ↑ 39% 

Brain NS NS ↑ 50% NS NS NS NS - 

DCF exposure NS ↓ 55% ↓ 25% NS ↑ >100% ↓ 37% 

Muscle ↓ 80% ↑ 44% NS NS NS ↑ 15% - - 

Liver NS ↓ 9% NS NS NS NS - ↑ 87% 

Brain NS NS ↑ 23% NS ↓ 40% NS ↑ 17% - 

DCF exposure + 
Acidification 

NS NS ↓ 30% NS ↑ >100% ↓ 48% 

Muscle ↓ 63% ↑ 25% NS ↓ 48% ↑ 44% ↑ 55% - - 

Liver NS ↓ 9% NS NS NS ↓ 36% - NS 

Brain NS NS ↑ >100% NS NS NS NS - 

DCF exposure + 
Warming 

↓ 12% NS ↓ 29% NS ↑ >100% ↓ 40% 

Muscle ↓ 57% ↑ 36% ↑ 88% ↑ 45% ↑ 84% NS - - 

Liver NS NS ↑ 21% NS NS ↓ 33% - ↑ 20% 

Brain NS NS ↑ 72% NS ↑ 23% NS ↓  13% - 

DCF exposure + 
Acidification + 

Warming 
↓ 10% ↓ 34% ↓ 18% NS ↑ >100% ↓ 57% 

Muscle ↓ 69% ↑ 36% NS ↓ 30% NS ↓ 26% - - 

Liver NS NS NS NS NS ↓ 18% - NS 
Brain NS NS ↑ >100% NS ↓ 37% NS NS - 
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Table A.4.5. Summary of IBR scores measured in each treatment, for the whole organism and different tissues. Values in bold correspond to individual 
biomarker scores (S) that differed in ≥ 0.5 from the score in Control treatment. Abbreviations: K - Fulton’s condition index; HIS - hepatosomatic index; BBratio 
- brain-to-body mass ratio, Ery:Leu – ratio between total erythrocytes and total leukocytes counts; ENAs - erythrocytes nuclear abnormalities (including 
micronuclei); Viable Ery - viable erythrocytes; CAT – catalase; SOD – superoxide dismutase; GST – glutathione S-transferase; LPO - lipid peroxidation; 
HSP70/HSC70 - heat shock proteins; Ub - total ubiquitin; AChE – acetylcholinesterase; VTG – vitellogenin; DCF – DCF exposure; Acid – simulated 
acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 

   K HSI BBratio Ery:Leu ENAs Viable Ery   CAT SOD GST LPO HSP70/HSC70 Ub AChE VTG 

Control Whole organism 1.05 4.20 0.00 1.02 0.76 0.36 
Muscle 1.67 0.32 1.30 1.06 1.59 1.76 - - 
Liver 2.70 2.33 1.22 4.69 2.67 2.01 - 1.01 
Brain 2.11 3.14 0.15 2.89 1.59 0.55 1.85 - 

Acid Whole organism 2.07 3.18 0.37 0.35 0.56 1.05 

Muscle 2.52 3.09 3.17 1.79 0.98 0.95 - - 
Liver 1.90 0.32 0.35 2.39 2.65 2.34 - 0.60 
Brain 3.28 4.10 2.36 3.61 0.75 3.30 1.77 - 

Warm Whole organism 1.94 3.65 1.61 1.60 2.63 0.35 
Muscle 1.86 2.81 1.43 2.23 1.06 2.27 - - 
Liver 1.71 1.45 3.54 5.06 4.74 3.56 - 2.22 

Brain 2.97 3.66 1.96 2.99 3.17 1.17 2.49 - 

Acid+Warm Whole organism 1.81 3.32 0.57 0.23 2.33 0.84 

Muscle 2.54 3.52 1.55 3.14 1.11 1.31 - - 
Liver 2.94 1.51 0.76 4.72 5.17 3.10 - 2.21 

Brain 3.94 3.95 1.57 3.50 1.48 1.08 1.63 - 

DCF Whole organism 1.94 1.12 1.54 1.76 2.94 2.03 

Muscle 0.14 2.39 1.27 0.67 1.10 2.34 - - 
Liver 4.39 0.66 1.10 3.74 3.92 2.71 - 3.66 

Brain 3.70 5.43 2.03 3.49 0.33 0.53 3.69 - 

DCF+Acid Whole organism 2.45 2.16 1.54 3.07 2.70 2.50 

Muscle 0.45 2.92 1.20 0.19 2.71 3.90 - - 
Liver 2.30 0.69 0.83 2.59 2.59 0.82 - 2.65 

Brain 3.60 1.86 2.04 2.32 1.13 0.24 1.77 - 

DCF+Warm Whole organism 0.92 2.56 1.61 2.45 2.60 2.17 

Muscle 0.57 2.39 3.75 1.87 3.73 2.11 - - 
Liver 4.30 2.42 2.00 4.37 3.96 0.94 - 1.79 

Brain 2.03 3.84 1.38 1.77 2.32 0.42 0.41 - 

DCF+Acid+Warm Whole organism 1.56 2.33 1.09 2.03 2.29 2.91 

Muscle 0.34 2.38 2.18 0.51 2.25 0.73 - - 

Liver 2.99 3.15 1.08 3.67 4.08 2.80 - 1.86 

Brain 4.81 3.68 3.00 0.75 0.41 0.41 3.08 - 
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ANNEX 5. 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 4. PART 1. 

Antidepressants in a changing ocean: Venlafaxine uptake and elimination in 

juvenile fish (Argyrosomus regius) exposed to warming and acidification 

conditions 
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TABLES 

Table A.5.1. Proximate chemical composition of CRT and VFX-enriched feeds. 
 

 
1 Peruvian fishmeal LT: 67% crude protein (CP), 9% crude fat (CF), EXALMAR, Peru. 
2 Fair Average Quality (FAQ) fishmeal: 62% CP, 12% CF, COFACO, Portugal.  
3 CPSP 90: 84% CP, 12% CF, Sopropêche, France. 
4 Soycomil P: 65% CP, 0.8% CF, ADM, The Netherlands. 
5 VITAL: 85.7% CP, 1.3% CF, ROQUETTE, France. 
6 GLUTALYS: 61% CP, 6 % CF, ROQUETTE, France. 
7 Dehulled solvent extracted soybean meal: 47% CP, 2.6% CF, Cargill, Spain. 
8 Whole wheat: 10.2% CP, 1.2% CF, Casa Lanchinha, Portugal. 
9 Whole peas: 19.8% CP, 2.2% CF, Casa Lanchinha, Portugal. 
10 SAVINOR UTS, Portugal 
11 Guar gum HV109, SEAH International, France. 
12 PREMIX Lda, Portugal: Vitamins: DL-alpha tocopherol acetate, 100 mg kg-1; sodium menadione 

bisulphate, 25 mg kg-1; retinyl acetate, 20000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg kg-1; 
riboflavin, 30 mg kg-1; pyridoxine, 20 mg kg-1; cyanocobalamin, 0.1 mg kg-1; nicotinic acid, 200 mg kg-1; 
folic acid, 15 mg kg-1; ascorbic acid, 500 mg kg-1; inositol, 500 mg kg-1; biotin, 3 mg kg-1; calcium 
panthotenate, 100 mg kg-1; choline chloride, 1000 mg kg-1, betaine, 500 mg kg-1. Minerals: copper sulphate, 
9 mg kg-1; ferric sulphate, 6 mg kg-1; potassium iodide, 0.5 mg kg-1; manganese oxide, 9.6 mg kg-1; sodium 
selenite, 0.01 mg kg-1; zinc sulphate,7.5 mg kg-1; sodium chloride, 400 mg kg-1; excipient wheat middlings. 

 

 % 
Fishmeal LT701 28.0 
Fishmeal 602 20.0 
Fish protein concentrate3 2.5 
Soy protein concentrate4 5.0 
Wheat gluten5 5.5 
Corn gluten6 5.0 
Soybean meal 487 9.0 
Wheat meal8 5.0 
Whole peas9 5.0 
Fish oil10 13.5 
Guar gum11 0.5 
Vitamin and mineral premix12 1.0 
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Table A.5.2. Seawater physical and chemical parameters (mean ± standard deviation) in each treatment. Abbreviations: Acid – simulated acidification (i.e. 
pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); VFX-water – fish exposed to venlafaxine via water; VFX-feed – fish exposed to venlafaxine via 
feed; TA – total alkalinity; P CO2 - partial CO2 pressure; T CO2 - Total CO2 concentration; HCO3

- - bicarbonate; CO3
2- - carbonate ion concentrations; ΩCal - 

calcite saturation state; ΩAra – aragonite saturation state.  
 

  

Control VFX-feed 

Acid+VFX-

feed 

Warm+VFX-

feed 

Acid+Warm+VFX-

feed VFX-water 

Acid+Warm+VFX-

water   

Temperature (°C) 19.0 ± 0.2 19.0 ± 0.1 19.0 ± 0.1 24.0 ± 0.2 24.0 ± 0.2 19.0 ± 0.3 24.0 ± 0.2 

Salinity 35.2 ± 0.5 35.1 ± 0.5 35.1 ± 0.7 35.5 ± 0.6 35.3 ± 0.6 35.1 ± 0.7 35.4 ± 0.8 

pH 8.02 ± 0.01 8.01 ± 0.04 7.63 ± 0.02 8.04 ± 0.03 7.62 ± 0.04 8.05 ± 0.03 7.62 ± 0.03 

TA (µmol kg-1 ) 2737.1 ± 20.9 2715.4 ± 33.1 2648.0 ± 135.8 2681.2 ± 68.2 2494.5 ± 71.4 2705.9 ± 33.2 2565.5 ± 191.6 

P CO2 (µatm) 540.8 ± 4.6 535.5 ± 6.8 1477.7 ± 78.4 523.2 ± 12.7 1394.8 ± 39.0 534.6 ± 8.5 1433.9 ± 107.8 

T CO2 (µmol kg-1) 2467.9 ± 21.2 2444.9 ± 29.3 2572.1 ± 134.5 2371.5 ± 60.1 2392.9 ± 68.2 2437.4 ± 33.8 2461.4 ± 185.9 

HCO3
- (µmol kg-1) 2242.7 ± 20.5 2220.1 ± 25.5 2434 ± 127.6 2121.9 ± 52.3 2252.4 ± 63.6 2214.0 ± 32.4 2316.5 ± 174.5 

CO3
2- (µmol kg-1) 207.3 ± 0.5 207.3 ± 3.7 89.4 ± 4.3 234.4 ± 7.5 100.4 ± 3.7 205.9 ± 1.0 103.7 ± 8.4 

Ω Ara 3.2 ± 0.1 3.2 ± 0.1 1.4 ± 0.1 3.7 ± 0.1 1.6 ± 0.1 3.2 ± 0.2 1.6 ± 0.1 

Ω Cal 4.9 ± 0.0 4.9 ± 0.1 2.1 ± 0.1 5.6 ± 0.2 2.4 ± 0.1 4.9 ± 0.1 2.5 ± 0.2 
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Table A.5.3. Validation parameters of venlafaxine analysis. Method detection and 
quantification limits (MDL, MQL) for fish tissues and feed are expressed in µg kg-1, dry weight, 
and for fish plasma and water in µg L-1. 

 

Matrix MDL MQL 
Recovery 

(%) 

Precision (%RSD) 

Intra-day Inter-day 

Brain 0.15 0.49 165 9.1 11.6 
Liver 0.23 0.78 36 2.3 12.1 
Muscle 0.43 1.43 106 2.2 2.8 
Plasma 0.04 0.12 66 5.1 11 
Feed 0.3 1 41 0.99 0.92 
Water 0.15 0.49 — 3.6 — 

 
 
Table A.5.4. VFX concentration in plasma (ug L-1) of contaminated fish after 28 days of 

exposure via water (VFX-water treatments) and via feed (VFX-feed treatments) and after 7 days 
of elimination. Different letters indicate significant differences between treatments, whereas 
different symbols (* or #) indicate significant differences between day 28 and 35 for the same 
treatment (p < 0.05). Abbreviations: Acid – simulated acidification (i.e. pCO2 ~1500 µatm, 
equivalent to pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 

 

  Day 28 Day 35 

VFX-water 1291.6 ± 79.9a* 673.0 ± 194.3b# 
Acid+Warm+VFX-water 1058.0 ± 64.8b 1029 ± 90.7a 
VFX-feed 13.5 ± 1.4d 9.6 ± 3.9d 
Acid+VFX-feed 24.8 ± 8.5cd 30.0 ± 7.7c 
Warm+VFX-feed 34.9 ± 20.6cd  23.3 ± 7.4cd 
Acid+Warm+VFX-feed 40.6 ± 11.7c* 15.5 ± 3.0d# 
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ANNEX 6. 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 4. PART 2. 

Living in a multi-stressors environment: An integrated biomarker approach to 

assess the ecotoxicological response of meagre (Argyrosomus regius) to 

venlafaxine, warming and acidification 
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TABLES 

Table A.6.1. Seawater physical and chemical parameters (mean ± standard deviation) in each treatment. Abbreviations: CTR – reference temperature and 
pH conditions (i.e. T = 19 ºC and pH = 8.0 units); VFX-feed – fish exposure VFX via feed; VFX-water –VFX exposure via water; Acid – simulated acidification 
(i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); TA – total alkalinity; P CO2 - partial CO2 pressure; T CO2 - Total CO2 concentration; HCO3

- 
- bicarbonate; CO3

2- - carbonate ion concentrations; ΩCal - calcite saturation state; ΩAra – aragonite saturation state.   
 

 Control VFX-water VFX-feed Acid Acid+VFX-feed Warm 
Warm+ 

VFX-feed 
Acid+Warm 

Acid+Warm+ 

VFX-feed 

Acid+Warm+ 

VFX-water 

Temperature 

(°C) 
19.0 ± 0.2 19.0 ± 0.3 19.0 ± 0.1 19.0 ± 0.1 19.0 ± 0.1 24.0 ± 0.3 24.0 ± 0.2 24.0 ± 0.2 24.0 ± 0.2 24.0 ± 0.2 

Salinity 35.2 ± 0.5 35.1 ± 0.7 35.1 ± 0.5 35.3 ± 0.6 35.1 ± 0.7 35.4 ± 0.8 35.5 ± 0.6 35.4 ± 0.8 35.3 ± 0.6 35.4 ± 0.8 

pH 8.02 ± 0.01 8.05 ± 0.03 8.01 ± 0.04 7.61 ± 0.03 7.63 ± 0.02 8.01 ± 0.02 8.04 ± 0.03 7.62 ± 0.03 7.62 ± 0.04 7.62 ± 0.03 

TA 

(µmol kg-1 ) 
2737.1 ± 20.9 2705.9 ± 33.2 2715.4 ± 33.1 2687.5 ± 60.1 2648.0 ± 135.8 2624.0 ± 43.8 2681.2 ± 68.2 2565.5 ± 191.6 2494.5 ± 71.4 2565.5 ± 191.6 

P CO2 

(µatm) 
540.8 ± 4.6 534.6 ± 8.5 535.5 ± 6.8 1497 ± 32.9 1477.7 ± 78.4 509.5 ± 9.4 523.2 ± 12.7 1433.9 ± 107.8 1394.8 ± 39.0 1433.9 ± 107.8 

T CO2 

(µmol kg-1) 
2467.9 ± 21.2 2437.4 ± 33.8 2444.9 ± 29.3 2610.9 ± 59.7 2572.1 ± 134.5 2313.8 ± 41.9 2371.5 ± 60.1 2461.4 ± 185.9 2392.9 ± 68.2 2461.4 ± 185.9 

HCO3
- 

(µmol kg-1) 
2242.7 ± 20.5 2214.0 ± 32.4 2220.1 ± 25.5 2470.8 ± 56.7 2434.0 ± 127.6 2066.7 ± 38.8 2121.9 ± 52.3 2316.5 ± 174.5 2252.4 ± 63.6 2316.5 ± 174.5 

CO3
2- 

(µmol kg-1) 
207.3 ± 0.5 205.9 ± 1.0 207.3 ± 3.7 90.7 ± 1.7 89.4 ± 4.3 232.5 ± 2.8 234.4 ± 7.5 103.7 ± 8.4 100.4 ± 3.7 103.7 ± 8.4 

Ω Ara 3.2 ± 0.1 3.2 ± 0.2 3.2 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 3.7 ± 0.0 3.7 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 

Ω Cal 4.9 ± 0.0 4.9 ± 0.1 4.9 ± 0.1 2.2 ± 0.0 2.1 ± 0.1 5.6 ± 0.1 5.6 ± 0.2 2.5 ± 0.2 2.4 ± 0.1 2.5 ± 0.2 
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Table A.6.2. Proximate chemical composition of CTR and VFX-enriched feeds (extracted from Maulvault et al., 
2018b).  

 
 % 

Fishmeal LT701 28.0 
Fishmeal 602 20.0 
Fish protein concentrate3 2.5 
Soy protein concentrate4 5.0 
Wheat gluten5 5.5 
Corn gluten6 5.0 
Soybean meal 487 9.0 
Wheat meal8 5.0 
Whole peas9 5.0 
Fish oil10 13.5 
Guar gum11 0.5 
Vitamin and mineral premix12 1.0 

 

1 Peruvian fishmeal LT: 67% crude protein (CP), 9% crude fat (CF), EXALMAR, Peru. 
2 Fair Average Quality (FAQ) fishmeal: 62% CP, 12% CF, COFACO, Portugal.  
3 CPSP 90: 84% CP, 12% CF, Sopropêche, France. 
4 Soycomil P: 65% CP, 0.8% CF, ADM, The Netherlands. 
5 VITAL: 85.7% CP, 1.3% CF, ROQUETTE, France. 
6 GLUTALYS: 61% CP, 6 % CF, ROQUETTE, France. 
7 Dehulled solvent extracted soybean meal: 47% CP, 2.6% CF, Cargill, Spain. 
8 Whole wheat: 10.2% CP, 1.2% CF, Casa Lanchinha, Portugal. 
9 Whole peas: 19.8% CP, 2.2% CF, Casa Lanchinha, Portugal. 
10 SAVINOR UTS, Portugal 
11 Guar gum HV109, SEAH International, France. 
12 PREMIX Lda, Portugal: Vitamins: DL-alpha tocopherol acetate, 100 mg kg-1; sodium menadione bisulphate, 25 mg kg-1; 

retinyl acetate, 20000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg kg-1; riboflavin, 30 mg kg-1; pyridoxine, 20 mg kg-1; 
cyanocobalamin, 0.1 mg kg-1; nicotinic acid, 200 mg kg-1; folic acid, 15 mg kg-1; ascorbic acid, 500 mg kg-1; inositol, 500 mg kg-1; 
biotin, 3 mg kg-1; calcium panthotenate, 100 mg kg-1; choline chloride, 1000 mg kg-1, betaine, 500 mg kg-1. Minerals: copper 
sulphate, 9 mg kg-1; ferric sulphate, 6 mg kg-1; potassium iodide, 0.5 mg kg-1; manganese oxide, 9.6 mg kg-1; sodium selenite, 0.01 
mg kg-1; zinc sulphate,7.5 mg kg-1; sodium chloride, 400 mg kg-1; excipient wheat middlings.
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Table A.6.3. Tissue molecular biomarker levels in A. regius from CTR treatment (average ± standard deviation; n = 6). Abbreviations: CAT – catalase; 
SOD – superoxide dismutase; GST – glutathione S-transferase; LPO - lipid peroxidation;  HSP70/HSC70 – heat shock proteins; Ub – total ubiquitin; AChE – 
acetylcholinesterase; VTG – vitellogenin content. 

 

  
CAT activity 

(U mg-1 proteín) 

SOD activity 

(% inhibition) 

GST activity 

(U mg-1 proteín) 

LPO 

(U mg-1 proteín) 

HSP70/HSC70 

concentration 

(U mg-1 proteín) 

Ub concentration 

(U mg-1 proteín) 

VTG concentration 

(U mg-1 proteín)  

AChE activity 

(U mg-1 proteín) 

Muscle 14.3 ± 1.2 80.9 ± 2.3 26.1 ± 3.4 0.005 ± 0.001 1.7 ± 0.1 0.14 ± 0.02 - - 

Gills 13.3 ± 4.7 86.7 ± 2.4 13.7 ± 3.3 0.014 ± 0.005 1.1 ± 0.1 0.08 ± 0.03 - - 

Liver 21.8 ± 2.3 77.2 ± 7.6 26.4 ± 3.7 0.016 ± 0.002 1.8 ± 0.2 0.07 ± 0.04 25.9 ± 3.1 - 

Brain 4.5 ± 1.3 67.7 ± 5.3 9.7 ± 0.6 0.002 ± 0.001 0.6 ± 0.2 0.03 ± 0.01 - 419.0 ± 43.4 

 

 

 

 



ANNEXES. 

367 
 

Table A.6.4. Molecular biomarker scores calculated in each treatment and fish tissue. Values 
in bold correspond to individual biomarker scores (S) that differed ≥ 0.5 from the CTR treatment 
score. Abbreviations: CAT – catalase activity; SOD – superoxide dismutase activity; GST – 
glutathione S-transferase activity; LPO - lipid peroxidation, measured as MDA concentration; 
HSP70/HSC70 - heat shock proteins concentration; Ub - total ubiquitin concentration; VTG – 
vitellogenin concentration; AChE – acetylcholinesterase activity; CTR – reference temperature 
and pH conditions (i.e. T = 19 ºC and pH = 8.0 units); VFX-feed – VFX exposure via feed; VFX-
water – VFX exposure via water; Acid – simulated acidification (i.e. pH = 7.6 units); Warm – 
simulated warming (i.e. T = 24 ºC). 

 
    CAT SOD GST LPO HSP70/HSC70 Ub VTG AChE 

CTR 

Muscle 2.79 2.34 0.62 0.52 1.00 1.31 - - 
Gills 2.17 1.31 2.80 0.31 0.93 0.63 - - 
Liver 0.49 1.56 2.02 1.71 1.15 0.91 1.42 - 
Brain 0.74 1.29 0.21 1.16 0.14 0.46 - 0.19 

VFX-Feed 

Muscle 1.30 4.95 2.17 2.32 1.94 2.94 - - 

Gills 3.81 4.67 2.24 2.98 1.56 1.71 - - 

Liver 3.60 2.98 2.30 2.92 1.48 3.02 3.42 - 

Brain 2.02 0.52 1.85 3.35 1.71 2.26 - 2.16 

VFX-water 

Muscle 0.74 4.49 3.21 1.45 2.41 2.76 - - 

Gills 2.69 4.45 2.08 2.39 3.09 2.47 - - 

Liver 1.21 3.49 2.71 3.78 1.72 3.79 2.17 - 

Brain 0.68 2.72 2.33 3.13 3.09 4.28 - 2.57 

Acid 

Muscle 1.60 3.98 0.20 1.87 0.65 2.17 - - 

Gills 1.32 4.14 4.67 2.28 0.50 3.49 - - 

Liver 0.56 2.80 2.81 2.44 3.34 2.96 3.16 - 

Brain 0.41 2.62 2.31 4.05 1.95 2.05 - 2.12 

Acid+VFX-feed 

Muscle 0.79 4.53 2.14 3.20 1.92 2.77 - - 

Gills 1.06 4.08 1.89 2.23 1.59 1.55 - - 

Liver 1.16 4.35 2.04 3.85 1.80 3.52 2.10 - 

Brain 1.78 2.80 1.96 3.24 1.98 2.03 - 1.58 

Warm 

Muscle 1.61 5.22 2.18 0.29 2.60 3.71 - - 

Gills 2.28 4.26 2.31 2.32 0.78 1.60 - - 

Liver 1.34 2.81 1.77 3.93 2.42 2.32 2.18 - 

Brain 2.38 3.38 3.39 4.33 2.26 1.93 - 2.80 

Warm+VFX-feed 

Muscle 1.18 3.64 2.54 1.80 3.25 2.19 - - 

Gills 2.73 4.91 0.61 2.39 1.49 0.30 - - 
Liver 1.55 3.51 2.92 2.70 2.55 3.00 3.41 - 

Brain 2.29 2.15 1.64 2.86 1.82 1.77 - 1.56 

Acid+Warm 

Muscle 1.02 4.82 2.19 1.58 0.76 2.37 - - 

Gills 1.97 4.39 2.37 2.49 0.24 1.55 - - 

Liver 1.13 3.56 2.63 2.49 2.26 2.45 1.95 - 

Brain 1.89 3.00 1.42 2.83 2.57 2.07 - 2.87 

Acid+Warm+VFX-

feed 

Muscle 3.49 3.77 2.72 2.92 0.69 2.62 - - 
Gills 2.86 4.08 2.34 3.49 1.47 0.38 - - 

Liver 1.72 3.78 1.99 3.03 2.89 2.72 1.85 - 
Brain 2.14 2.64 1.56 2.91 3.46 1.99 - 1.69 

Acid+Warm+VFX-

water 

Muscle 0.25 4.02 3.28 2.08 3.06 3.90 - - 

Gills 3.95 4.29 2.35 2.69 3.13 1.95 - - 

Liver 1.64 4.06 2.73 2.93 2.17 2.95 3.10 - 

Brain 3.78 3.40 2.05 4.01 2.06 2.31 - 2.66 
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METHODOLOGIES 

1. Total protein content 

Bradford assay (Bradford, 1976) was carried out to quantify total protein levels in each sample, 

and to enable the subsequent normalization of biomarker (i.e. given in mg of protein). In this 

assay, 180 µL of Bradford reagent (Bradford, 1976) and 20 µL of sample/standard were added to 

each microplate well. A calibration curve was generated with bovine serum albumin (BSA; Sigma 

Aldrich, Germany) at different dilutions (at least 7 concentrations, ranging from 0 to 2.0 mg mL-

1) as standard. Absorbance was read at 595 nm in a microplate reader (BioRad, Benchmark, USA). 

 

2. Catalase (CAT)  

Catalase activity (EC 1.11.1.6) was carried out following the procedure described by 

Johansson and Borg (1988), and adapted to 96-well microplates. To each microplate well, 20 µL 

of sample/standard, 100 μL of assay buffer (100 mM potassium phosphate; Sigma Aldrich, 

Germany), 30 μL of methanol (Merck, USA) and 20 μL of hydrogen peroxide (0.035 M; Sigma-

Aldrich, Germany) were added. After 20 min incubation, 30 μL of potassium hydroxide (10 M; 

Merck, USA) and 30 μL of Purpald (34.2 mM; Merck, USA) were added. After incubating 10 

min, 10 μL of potassium periodate (65.2 mM; Merck, USA) were added to finalize the reaction. 

A calibration curve was built using formaldehyde standards, with concentrations ranging from 5 

to 75 µM of formaldehyde (Sigma Aldrich, Germany). Standard bovine catalase solution of 

1523.6 U mL-1 (Sigma Aldrich, Germany) was used as positive control. Enzyme activity was 

calculated considering that one unit of catalase is defined as the amount that will cause the 

formation of 1.0 nmol of formaldehyde per minute at 25 °C. Absorbance was read at 540 nm and 

results expressed as µM min-1 mg protein-1. 

 

3. Superoxide dismutase (SOD)  

Superoxide dismutase activity (EC 1.15.1.1) was carried out as described by Sun et al. (1988), 

and adapted to 96-well microplates. Briefly, 10 μL of sample were transferred to the microplate 

wells. In each well, 240 μL of a reagent mix (3 mM EDTA, Merck, USA; 3 mM xanthine, Sigma 

Aldrich, Germany; 0.75 mM NBT, Merck, USA; and 100 um XOD Sigma Aldrich, Germany) 

were added. Negative controls (i.e. mix without sample) were also included. Samples absorbance 

was read at 550 nm, and results were presented as the percentage of enzyme inhibition, using the 

following equation: 

% �"ℎ� ���K" =  L M550/��"O0P���Q0 R�O���S −  L M550/��".�TUS0L M550/��"O0P���Q0 R�O���S  � 100 
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4. Glutathione S-transferase (GST)  

Glutathione S-transferase activity (EC 2.5.1.18) was determined according to the method 

described by Habig et al. (1974) and adapted to 96-well microplates. To each microplate well, 20 

μL of sample/standard and 180 μL of a reagent mix (200 mM reduced L-glutathione, 100 mM 

CNDB and buffer Dulbecco; all from Sigma-Aldrich, Germany) were added. Equine liver GST 

(Sigma-Aldrich, Germany) was used as standard and positive control. Absorbance was read at 

340 nm every minute during 6 minutes, with the increase in absorbance being directly 

proportional to GST activity. The reaction rate was determined considering the molar CDNB 

extinction coefficient of 0.0053εmM, and results were expressed as nmol min-1 mg protein-1.  

 

5. Lipid peroxidation (LPO) 

Lipid peroxidation was determined using a 96-well microplates protocol adapted from the 

thiobarbituric acid reactive substances (TBARS) method of Uchiyama and Mihara (1978). 5 μL 

of each sample/standard were added to microtubes. Then, 45 μL of monobasic sodium phosphate 

buffer (50 mM, Sigma Aldrich, Germany), 12.5 μL of SDS (8.1%, Sigma Aldrich, Germany), 

93.5 μL of trichloroacetic acid (20%, pH1/43.5, Merck, USA), 93.5 μL of thiobarbituric acid (1%, 

Merck USA) and  50.5 μL of Milli-Q grade ultrapure water were added to each microtube.  

Microtubes were then vortexed for 30 s and incubated in boiling water for 10 min (microtubes’ 

lids were punctured with a needle before incubation). Afterwards, microtubes were immediately 

placed on ice for a few minutes to cool to room temperature, and 62.5 μL of Milli-Q grade 

ultrapure water and 312.5 μL of n-butanol pyridine (15:1, v/v, MercK, USA) were added. 

Microtubes were vortexed again, and centrifuged at 10,000 g for 5 min. Duplicates of 150 μL of 

the supernatant of each reaction were transferred to microplate wells. Lipid peroxides were 

quantified using an eight-point calibration curve ranging from 0 to 0.3 mM TBARS, performed 

with malondialdehyde bis (dimethylacetal) standards (Merck). Absorbance was read at 530 nm 

and results were expressed as nmol mg-1 protein. 

 

6. Heat shock response (HSP70/HSC70) 

Heat Shock Protein 70 (HSP70/HSC70) was quantified using an indirect Enzyme Linked 

Immunosorbent Assay (ELISA) based on a protocol from Njemini et al. (2005). Briefly, 50 μL of 

sample/standard were added to microplate wells, and left to incubate overnight at 4°C. 

Afterwards, microplates were washed 3 times with a PBS solution containing 0.05% of Tween-

20 (Sigma-Aldrich, Germany), and then blocked by adding 200 μL of 1% BSA solution prepared 

in PBS. Microplates were incubated for 90 min at 37 ºC and washed again (with PBS+0.05% of 

Tween-20 solution) and 50 μL of primary antibody solution were added to each well (anti-

Hsp70/Hsc70, Acris, USA; diluted to 1.0 μg mL-1 in a 1% BSA solution). Then, microplates were 

incubated again for 90 min at 37 ºC, washed (with PBS+0.05% of Tween-20 solution) and 50 μL 
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of secondary antibody solution were added to each well (anti-mouse IgG, fab specific, alkaline 

phosphatase conjugate, Sigma-Aldrich, Germany; also diluted to 1.0 μg mL-1 in 1% BSA 

solution). After incubating at 37 °C for 90 min, microplates were washed again, 100 μL of 

substrate (SIGMA FAST™ p-Nitrophenyl Phosphate Tablets, Sigma- Aldrich, USA) was added 

and microplates were left to incubate for 30 min at room temperature. Then, 50 μL of NaOH 

solution (3N, Merck, Germany) were added to stop the reaction. 

A calibration curve was performed using serial dilutions (at least 7 different concentrations) 

of purified HSP70 active protein (Acris, USA), ranging from 0 to 2.0 μg mL−1 of protein. The 

absorbance was read at 405 nm and results were expressed in µg mg-1 protein.  

 

7. Ubiquitin (Ub) 

Total ubiquitin was quantified using a direct ELISA method previously described by Madeira 

et al. (2014). Briefly, 50 μL of sample/standard were added to microplate wells, and left to 

incubate overnight at 4°C. Afterwards, microplates were washed 3 times with a PBS solution 

containing 0.05% of Tween-20, and then blocked by adding 200 μL of 1% BSA solution prepared 

in PBS. Microplates were incubated for 90 min at 37 ºC and washed again (with PBS+0.05% of 

Tween-20 solution) and 50 μL of a conjugated primary antibody (Ub P4D1, sc-8017, HRP 

conjugate, Santa Cruz, USA) were added to each well. Microplates were incubated for 90 min at 

37 ºC, washed again (with PBS+0.05% of Tween-20 solution), and 100 μL of substrate (TMB/E, 

Temecula California, Merck Millipore) was added. After incubating for 30 min at room 

temperature, 100 μL stop solution (1 N HCl, Merck, USA) was added.  A calibration curve was 

performed using serial dilutions (at least 7 concentrations) of the ubiquitin standard E110, UbP 

(Santa Cruz, USA; concentrations ranging from 0 to 2.0 μg mL−1 protein). The absorbance was 

read at 450 nm and results were expressed in µg mg-1 protein. 

 

8. Acetylcholinesterase (AChE) activity 

Acetylcholinesterase (EC 3.1.1.7) activity was assessed in brain tissues, following a 

methodology adapted from Ellman et al. (1961) to 96-well microplates. Briefly, 50 μL of 

previously diluted samples (1:10) were transferred to the microplate wells, and 250 μL of a 

reagent mix containing (sodium phosphate buffer 50 mM at 8.0 pH units, 1 mM Ellman’s reagent, 

i.e. DTNB – 5,5’-dithiobis-(2-nitrobenzoic acid; in 50mM phosphate buffer, and 75 mM ACTI 

(acetilthiocholine iodide); in phosphate buffer 50 mM; all from Sigma-Aldrich, Germany) were 

added. Negative controls were included (i.e. 50 μL of buffer instead of sample). Samples 

absorbance was read at 412 nm, every minute during 10 minutes, and AChE activity was 

measured considering that one unit of enzyme is responsible for the formation of 1.0 µmol of 

thiocholine per minute. Results were expressed as nmol min−1 mg protein−1. 
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9. Vitellogenin (VTG) 

Vitellogenin content (VTG) was determined in fish liver following a direct ELISA assay based 

on the protocol of Denslow et al. (1999). Briefly, 50 μL of sample (previously diluted 1:200) or 

standard were added to microplate wells, and left to incubate overnight at 4°C. Afterwards, 

microplates were washed 3 times with a TBST solution (10 mM Tris-HCl at 7.0 pH units, Merck, 

USA; 150 mM NaCl, Merck, USA; and 0,05% de Tween-20, Sigma-Aldrich, Germany), and then 

blocked by adding 200 μL of 1% BSA solution prepared in PBS. Microplates were incubated for 

90 min at 37 ºC and washed again (with TBST solution) and 50 μL of a primary antibody (carp 

VTG monoclonal antibody, Biosense, Norway; diluted to 1.0 μg mL-1 in a 1% BSA solution) were 

added. Then, microplates were incubated again for 90 min at 37 ºC, washed (TBST solution) and 

50 μL of secondary antibody solution (anti-mouse IgG, fab specific, alkaline phosphatase 

conjugate, Sigma-Aldrich, Germany; also diluted to 1.0 μg mL-1 in 1% BSA) were added to each 

well. After incubating at 37 °C for 90 min, microplates were washed again, 100 μL of substrate 

(SIGMA FAST™ p-Nitrophenyl Phosphate Tablets, Sigma- Aldrich, USA) was added and 

microplates were left to incubate for 30 min at room temperature. Then, 50 μL of NaOH solution 

(3N) were added to stop the reaction. A calibration curve was performed using serial dilutions (at 

least 7 concentrations) of carp VTG standard (Biosense, Norway), ranging from 0 to 2.0 μg mL−1 

of protein. The absorbance was read at 405 nm and results were expressed in µg mg-1 protein. 

 

10. Integrated Biomarker Response (IBR) 

Integrated biomarker responses (IBRs) and respective star plots were calculated in order to 

understand the global ecotoxicological responses of A. regius exposed to VFX (via feed and 

water), acidification and warming. Calculations were performed according to the methodology 

proposed by Beliaeff and Burgeot (2002), later modified by Guerlet et al. (2010). Briefly, for each 

tissue, the general mean (m) and standard deviation (s) of a given biomarker was calculated 

(including data from all treatments), and subsequently standardized to obtain Y, i.e. Y = (X – m) 

/ s, where X is the mean biomarker value of a given treatment. Then, Z was calculated as Z = -Y 

or Z = +Y according to the expected biological effect, with “-“ representing an inhibition of a 

biological effect and “+” representing an induction (such evaluation was based on the average 

baseline biomarker values). Then, biomarker scores (S) were calculated as S = Z + |Min|, where 

Z ≥ 0 and |Min| is the absolute value of all Y calculated for a given biomarker (including all 

measurements). Star plots were performed to represent the scores (S) of all biomarkers measured 

in a given treatment and tissue, as well as to calculate IBRs according to the following formulas: 

��V =  W L�
O

�XY
 

L� =  1
2 sin 82 � ]

" :  � �� � ��^Y 
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where, Ai is the area connecting the two scores (S), Si and Si+1 are two consecutive clockwise 

scores (radius coordinates) of a given star plot, and n is the number of biomarkers used for 

calculations. IBR calculations were always performed with the same order of parameters for all 

treatments and tissues, i.e. CAT, SOD, GST, LPO, HSP70/HSC70, Ub, and VTG (in the case of 

fish liver) or AChE (in the case of fish brain). In order to evaluate the scores as a fitness index, 

values that differed in 0.5 from the score of CTR treatment were considered to be from an animal 

with a higher or lower fitness (Ferreira et al., 2015). 
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ANNEX 7. 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 4. PART 3. 

Differential behavioural responses to venlafaxine exposure route, warming 

and acidification in juvenile fish (Argyrosomus regius) 
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FIGURES 

 

 

 

 

Figure A.7.1. Tank setup for behavior tests: 1 - Novel tank assay (A), 2 – Shoaling Assay (B) and 3 – 
Lateralization (C). Abbreviations: LB – Left-bottom area; LT – Left-top area of the tank; RB – Right-bottom 
area of the tank; RT – Right-top area of the tank; in_shoal – Tank area closer to the shoal (i.e. test fish 
considered to be inside the shoal); out_shoal-I – Tank area far from shoal (i.e. test fish considered to be outside 
the shoal); out_shoal-II – Tank area very far from shoal (i.e. test fish considered to be outside the shoal); L – 
Left side (fish perspective); R – Right side (fish perspective). 
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TABLES 

Table A.7.1. Proximate chemical composition of CRT and VFX-enriched feeds used in trials 
I and II.  

 

1 Peruvian fishmeal LT: 67% crude protein (CP), 9% crude fat (CF), EXALMAR, Peru. 
2 Fair Average Quality (FAQ) fishmeal: 62% CP, 12% CF, COFACO, Portugal.  
3 CPSP 90: 84% CP, 12% CF, Sopropêche, France. 
4 Soycomil P: 65% CP, 0.8% CF, ADM, The Netherlands. 
5 VITAL: 85.7% CP, 1.3% CF, ROQUETTE, France. 
6 GLUTALYS: 61% CP, 6 % CF, ROQUETTE, France. 
7 Dehulled solvent extracted soybean meal: 47% CP, 2.6% CF, Cargill, Spain. 
8 Whole wheat: 10.2% CP, 1.2% CF, Casa Lanchinha, Portugal. 
9 Whole peas: 19.8% CP, 2.2% CF, Casa Lanchinha, Portugal. 
10 SAVINOR UTS, Portugal 
11 Guar gum HV109, SEAH International, France. 
12 PREMIX Lda, Portugal: Vitamins: DL-alpha tocopherol acetate, 100 mg kg-1; sodium menadione 
bisulphate, 25 mg kg-1; retinyl acetate, 20000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg kg-1; 
riboflavin, 30 mg kg-1; pyridoxine, 20 mg kg-1; cyanocobalamin, 0.1 mg kg-1; nicotinic acid, 200 mg kg-1; 
folic acid, 15 mg kg-1; ascorbic acid, 500 mg kg-1; inositol, 500 mg kg-1; biotin, 3 mg kg-1; calcium 
panthotenate, 100 mg kg-1; choline chloride, 1000 mg kg-1, betaine, 500 mg kg-1. Minerals: copper 
sulphate, 9 mg kg-1; ferric sulphate, 6 mg kg-1; potassium iodide, 0.5 mg kg-1; manganese oxide, 9.6 mg 
kg-1; sodium selenite, 0.01 mg kg-1; zinc sulphate,7.5 mg kg-1; sodium chloride, 400 mg kg-1; excipient 
wheat middlings. 
  

 % 

Fishmeal LT701 28.0 
Fishmeal 602 20.0 
Fish protein concentrate3 2.5 
Soy protein concentrate4 5.0 
Wheat gluten5 5.5 
Corn gluten6 5.0 
Soybean meal 487 9.0 
Wheat meal8 5.0 
Whole peas9 5.0 
Fish oil10 13.5 
Guar gum11 0.5 
Vitamin and mineral premix12 1.0 
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Table A.7.2. Seawater physical and chemical parameters (mean ± standard deviation) in each treatment of Trials I and II. Abbreviations: Acid – simulated 
acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); VFX-water – fish exposed to VFX via water; VFX-feed – fish exposed to VFX 
via feed; TA – total alkalinity; pCO2 - partial CO2 pressure; TCO2 - Total CO2 concentration; HCO3

- - bicarbonate; CO3
2- - carbonate ion concentrations; ΩCal - 

calcite saturation state; ΩAra – aragonite saturation state.   
 

  
Control VFX-water VFX-feed   

    
  

Trial I     

Temperature (°C) 19.0 ± 0.2 19.0 ± 0.3 19.0 ± 0.1     

Salinity 35.2 ± 0.5 35.1 ± 0.7 35.1 ± 0.5     

pH 8.02 ± 0.01 8.05 ± 0.03 8.01 ± 0.04     

TA (µmol kg-1 ) 2737.1 ± 20.9 2705.9 ± 33.2 2715.4 ± 33.1     

pCO2 (µatm) 540.8 ± 4.6 534.6 ± 8.5 535.5 ± 6.8     

TCO2 (µmol kg-1) 2467.9 ± 21.2 2437.4 ± 33.8 2444.9 ± 29.3     

HCO3
- (µmol kg-1) 2242.7 ± 20.5 2214.0 ± 32.4 2220.1 ± 25.5     

CO3
2- (µmol kg-1) 207.3 ± 0.5 205.9 ± 1.0 207.3 ± 3.7     

Ω Ara 3.2 ± 0.1 3.2 ± 0.2 3.2 ± 0.1     

Ω Cal 4.9 ± 0.0 4.9 ± 0.1 4.9 ± 0.1     

Trial II VFX-Feed Acid 
Acid+VFX-

feed 
Warm 

Warm+VFX-

feed 
Acid+Warm 

Acid+Warm+VFX-

feed 

Temperature (°C) 19.0 ± 0.2 19.0 ± 0.1 19.0 ± 0.1 24.0 ± 0.3 24.0 ± 0.2 24.0 ± 0.2 24.0 ± 0.2 
Salinity 35.1 ± 0.7 35.3 ± 0.6 35.1 ± 0.7 35.4 ± 0.8 35.5 ± 0.6 35.4 ± 0.8 35.3 ± 0.6 
pH 8.02 ± 0.02 7.61 ± 0.03 7.63 ± 0.02 8.01 ± 0.02 8.04 ± 0.03 7.62 ± 0.03 7.62 ± 0.04 
TA (µmol kg-1 ) 2715.4 ± 33.1 2687.5 ± 60.1 2648.0 ± 135.8 2624.0 ± 43.8 2681.2 ± 68.2 2565.5 ± 191.6 2494.5 ± 71.4 
pCO2 (µatm) 535.5 ± 6.8 1497 ± 32.9 1477.7 ± 78.4 509.5 ± 9.4 523.2 ± 12.7 1433.9 ± 107.8 1394.8 ± 39.0 
TCO2 (µmol kg-1) 2444.9 ± 29.3 2610.9 ± 59.7 2572.1 ± 134.5 2313.8 ± 41.9 2371.5 ± 60.1 2461.4 ± 185.9 2392.9 ± 68.2 
HCO3

- (µmol kg-1) 2220.1 ± 25.5 2470.8 ± 56.7 2434 ± 127.6 2066.7 ± 38.8 2121.9 ± 52.3 2316.5 ± 174.5 2252.4 ± 63.6 
CO3

2- (µmol kg-1) 207.3 ± 3.7 90.7 ± 1.7 89.4 ± 4.3 232.5 ± 2.8 234.4 ± 7.5 103.7 ± 8.4 100.4 ± 3.7 
Ω Ara 3.2 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 3.7 ± 0.0 3.7 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 
Ω Cal 4.9 ± 0.1 2.2 ± 0.0 2.1 ± 0.1 5.6 ± 0.1 5.6 ± 0.2 2.5 ± 0.2 2.4 ± 0.1 

 



ANNEXES. 

377 
 

Table A.7.3. Validation parameters of venlafaxine analysis in feed, water and fish plasma. 
Method detection and quantification limits (MDL, MQL) for feed are expressed in µg kg-1, dry 
weight, and for water and fish plasma in µg L-1. 

Matrix MDL MQL 
Recovery 

(%) 

Precision (%RSD) 

Intra-day Inter-day 

Feed 0.30 1.0 41 0.99 0.92 

Water 0.15 0.49 — 3.6 — 

Fish plasma 0.04 0.12 66 5.1 11.0 

 

 

 

 



Ana Luísa Maulvault 

 

378 
 

Table A.7.4. General linear mixed models (GLMMs), with tank as random effect, of behavior results in juvenile A. regius. Values in bold indicate significant 
differences. Abbreviations: Est – estimates; Std error – standard error. 

 

Trial I GLMM - Latency to top GLMM - Latency to shoal GLMM - LA GLMM - LR 
 Est Std error t value p value Est Std error t value p value Est Std error t value p value Est Std error t value p value 

Intercept 119.00 10.42 11.42 < 0.001 2.20 0.56 3.96 < 0.001 34.00 6.12 5.55 < 0.001 -34.00 6.12 5.55 < 0.001 

VFX (Control) -42.90 14.74 -2.91 < 0.01 3.60 0.79 4.59 < 0.001 30.00 8.66 3.47 < 0.01 -30.00 8.66 3.47 < 0.01 

VFX (Water) -86.10 14.74 -5.84 < 0.001 2.80 0.79 3.57 < 0.01 22.00 8.66 2.54 < 0.05 -22.00 8.66 2.54 < 0.05 

  Familiy = Gaussian Familiy = Gaussian Familiy = Gaussian Familiy = Gaussian 
Trial I GLMM - % time spent in top GLMM - Total transitions (activity) GLMM - % transitions to shoal GLMM - % time spent within shoal 

 Est Std error z value p value Est Std error z value p value Est Std error z value p value Est Std error z value p value 

Intercept -2.17 0.13 -17.19 < 0.001 2.1401 0.2083 10.272 < 0.001 -0.03 0.13 -0.20 0.8420 2.51 0.09 27.18 < 0.001 

VFX (Control) 1.62 0.17 9.43 < 0.001 1.0986 0.281 3.909 < 0.001 0.16 0.21 0.79 0.4290 -3.32 0.12 -28.21 < 0.001 

VFX (Water) 3.56 0.17 20.49 < 0.001 0.1625 0.2916 0.557 0.577 0.05 0.18 0.27 0.7840 -1.96 0.12 -16.80 < 0.001 

  Familiy = binomial Familiy = negative binomial Familiy = binomial Familiy = binomial 
Trial II GLMM - Latency to top GLMM - Latency to shoal GLMM - LA GLMM - LR 

 Est Std error t value p value Est Std error t value p value Est Std error t value p value Est Std error t value p value 

Intercept 76.10 7.92 9.61 < 0.001 5.80 0.70 8.27 < 0.001 64.00 5.06 12.65 < 0.001 -63.95 8.17 -7.83 < 0.001 

pCO2 12.50 11.20 1.12 0.2681 -0.80 0.99 -0.81 0.4223 -30.00 7.16 -4.19 < 0.001 98.42 11.55 8.52 < 0.001 

Temp -46.30 11.20 -4.13 < 0.001 -2.90 0.99 -2.93 < 0.01 -42.00 7.16 -5.87 < 0.001 57.43 11.28 5.09 < 0.001 

VFX 42.90 11.20 3.83 < 0.001 -3.60 0.99 -3.63 < 0.001 -30.00 7.16 -4.19 < 0.001 30.00 11.55 2.60 < 0.05 

pCO2 xTemp -13.50 15.84 -0.85 0.3969 7.40 1.40 5.28 < 0.001 40.00 10.12 3.95 < 0.001 -108.11 15.85 -6.82 < 0.001 

pCO2 x VFX 166.40 15.84 10.51 < 0.001 1.00 1.40 0.71 0.4780 16.00 10.12 1.58 0.1183 -44.47 16.33 -2.72 < 0.05 

Temp x VFX 1.80 15.84 0.11 0.9098 3.10 1.40 2.21 < 0.05 58.00 10.12 5.73 < 0.001 -73.48 16.14 -4.55 < 0.001 

pCO2 xTempxVFX 46.90 22.40 2.09 < 0.05 4.40 1.98 2.22 < 0.05 -66.00 14.31 -4.61 < 0.001 109.96 22.75 4.83 < 0.001 

  Familiy = Gaussian Familiy = Gaussian Familiy = Gaussian Familiy = Gaussian 
Trial II GLMM - % time spent in top GLMM - Total transitions (activity) GLMM - % transitions to shoal GLMM - % time spent within shoal 

 Est Std error z value p value Est Std error z value p value Est Std error z value p value Est Std error z value p value 

Intercept -0.55 0.14 -4.04 < 0.001 3.24 0.15 22.01 < 0.001 0.14 0.16 0.87 0.3860 -0.81 0.13 -6.13 < 0.001 

pCO2 -0.95 0.19 -4.86 < 0.001 -0.39 0.21 -1.85 0.0640 -0.05 0.22 -0.23 0.8180 0.98 0.19 5.30 < 0.001 

Temp -3.91 0.25 -15.79 < 0.001 1.05 0.20 5.18 < 0.001 -0.05 0.18 -0.28 0.7820 -0.80 0.17 -4.63 < 0.001 

VFX -1.63 0.20 -8.20 < 0.001 -1.10 0.23 -4.86 < 0.001 -0.16 0.21 -0.79 0.4290 3.33 0.19 17.09 < 0.001 

pCO2 x Temp -0.55 0.47 -1.17 0.2400 -0.21 0.29 -0.72 0.4730 -0.13 0.27 -0.48 0.6310 1.77 0.23 7.79 < 0.001 

pCO2 x VFX -3.10 0.49 -6.28 < 0.001 0.23 0.33 0.70 0.4850 -0.01 0.28 -0.05 0.9640 -2.12 0.27 -7.88 < 0.001 

Temp x VFX 2.17 0.34 6.36 < 0.001 -2.35 0.36 -6.49 < 0.001 -0.22 0.26 -0.88 0.3800 -2.17 0.26 -8.34 < 0.001 

pCO2 xTempxVFX 5.83 0.69 8.42 < 0.001 2.90 0.48 6.08 < 0.001 0.19 0.37 0.52 0.6050 0.96 0.35 2.73 < 0.01 

  Familiy = binomial Familiy = negative binomial Familiy = binomial Familiy = binomial 
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ANNEX 8. 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 5. PARTS 1. AND 2. 

Bioaccumulation and ecotoxicological responses of juvenile white 

seabream (Diplodus sargus) exposed to triclosan, warming and 

acidification  
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TABLES 

Table A.8.1. Proximate chemical composition of CRT and TCS-contaminated feeds. 
 

Ingredients % 
Fishmeal LT701 40.0 
Fish protein concentrate2 7.8 
Squid meal3 10.0 
Chlorella4 2.0 
Soy protein concentrate5 4.0 
Soybean meal 486 4.0 
Wheat meal7 6.0 
Fish oil8 12.0 
Soy lecithin9 2.0 
Guar gum10 1.2 
Macroalgae11 5.0 
Antioxidant12 0.5 
Monocalcium phosphate13 1.0 
Glycerol14 3.5 
Vitamin and mineral premix15 1.0 

  
1 Peruvian fishmeal LT: 67% crude protein (CP), 9% crude fat (CF), EXALMAR, Peru; 
2 CPSP 90: 84% CP, 12% CF, Sopropêche, France; 
3 Super prime without guts: 82% CP, 3.5% CF, Sopropêche, France; 
4 Chlorella powder: 62.5% CP, 9.2% CF, ALLMICROALGAE, Portugal; 
5 Soycomil P: 65% CP, 0.8% CF, ADM, The Netherlands; 
6 Dehulled solvent extracted soybean meal: 47% CP, 2.6% CF, Cargill, Spain; 
7 Whole wheat: 10.2% CP, 1.2 % CF, Casa Lanchinha, Portugal; 
8 SAVINOR UTS, Portugal; 
9 LECICO P 700IPM, LECICO GmbH, Germany; 
10 Guar gum HV109, SEAH International, France; 
11 OceanFeed: 10.2% CP, Ocena Harvest Technology, Ireland; 
12 Paramega PX, Kemin Europe NV, Belgium; 
13 Monocalcium phosphate: 22% phosphorus, 16% calcium, Fosfitalia, Italy; 
14 Rapeseed-derived crude glycerol, IBEROL, Portugal; 
15 PREMIX Lda, Portugal: Vitamins (IU or mg kg-1 diet): DL-alpha tocopherol acetate, 100 mg; 

sodium menadione bisulphate, 25 mg; retinyl acetate, 20000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 
mg; riboflavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 0.1 mg; nicotinic acid, 200 mg; folic acid, 15 
mg; ascorbic acid, 500 mg; inositol, 500 mg; biotin, 3 mg; calcium panthotenate, 100 mg; choline 
chloride, 1000 mg, betaine, 500 mg; Minerals (g or mg kg-1 diet): copper sulphate, 9 mg; ferric sulphate, 6 
mg; potassium iodide, 0.5 mg; manganese oxide, 9.6 mg; sodium selenite, 0.01 mg; zinc sulphate,7.5 mg; 
sodium chloride, 400 mg; excipient wheat middlings. 
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Table A.8.2. Seawater physical and chemical parameters (mean ± standard deviation) in each treatment. Abbreviations: Control – reference temperature and 
pH conditions (i.e. T = 19 ºC and pH = 8.0 units); Acid – simulated acidification (i.e. pH = 7.6 units); Warm – simulated warming (i.e. T = 24 ºC); TCS – 
Triclosan exposure; TA – total alkalinity; pCO2 - partial CO2 pressure; TCO2 - Total CO2 concentration; HCO3

- - bicarbonate; CO3
2- - carbonate ion 

concentrations; ΩCal - calcite saturation state; ΩAra – aragonite saturation state.   
  

Control Acid Warm Acid+Warm TCS TCS+Acid TCS+Warm TCS+Acid+Warm 
  

Temperature (°C) 19.6 ± 0.5 19.4 ± 0.4 24.2 ± 0.2 24.2 ± 0.4 19.5 ± 0.5 19.1 ± 0.2 24.2 ± 0.2 23.9 ± 0.1 

Salinity 35.4 ± 0.3 35.2 ± 0.4 35.2 ± 0.1 35.1 ± 0.1 35.1 ± 0.2 35.0 ± 0.1 35.0 ± 0.2 35.3 ± 0.3 

pH 8.01 ± 0.12 7.63 ± 0.22 8.05 ± 0.10 7.60 ± 0.31 8.08 ± 0.09 7.59 ± 0.13 8.00 ± 0.10 7.61 ± 0.20 

TA (µmol kg-1 ) 2818.9 ± 34.9 2780 ± 36.8 2752.2 ± 89.1 2653.4 ± 69.9 2618.9 ± 34.9 2753.4 ± 76.3 2652.2 ± 118.1 2786.7 ± 54.9 

pCO2 (µatm) 489.0 ± 53.7 1535.8 ± 90.9 496.5 ± 43.6 1522.8 ± 16.5 506.2 ± 134.9 1510.3 ± 139.2 524.9 ± 141.3 1522.2 ± 104.5 

TCO2 (µmol kg-1) 2518.6 ± 20.9 2704.7 ± 36.9 2424.4 ± 60.3 2558.0 ± 60.0 2354.6 ± 47.9 2678.5 ± 58.6 2348.9 ± 80.6 2681.3 ± 59.5 

HCO3
- (µmol kg-1) 2273.5 ± 34.8 2563.3 ± 35.9 2162.4 ± 42.4 2413.9 ± 53.6 2138.4 ± 79.9 2538.5 ± 51.5 2105.2 ± 80.9 2528.2 ± 58.1 

CO3
2- (µmol kg-1) 229.1 ± 24.7 90.9 ± 4.1 247.7 ± 25.4 100.1 ± 7.3 199.5 ± 40.3 90.0 ± 11.6 228.6 ± 51.1 108.9 ± 4.1 

Ω Cal 5.5 ± 0.6 2.2 ± 0.1 5.9 ± 0.6 2.4 ± 0.2 4.8 ± 1.0 2.2 ± 0.3 5.5 ± 1.2 2.6 ± 0.1 

Ω Ara 3.5 ± 0.4 1.4 ± 0.1 3.9 ± 0.4 1.6 ± 0.1 3.1 ± 0.6 1.4 ± 0.2 3.6 ± 0.8 1.7 ± 0.1 
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Table A.8.3. Retention times and quantification ions (m/z) for TCS determination through GC-MS, as well as, validation parameters. Method detection and 
quantification limits (MDL, MQL) for fish tissues and feed are expressed in ng kg-1, dry weight, whereas for water values are presented in µg L-1. 

 

Analyte Retention time SIM ions m/z Matrix MDL MQL 
Recovery 

% 

Precision (relative 

standard deviation, RSD) 

 % 

methyl-TCS D-3 (IS2) 18.27 305, 307, 252, 254 
Brain 0.015 0.025 72 12 
Liver 0.015 0.025 78 10 

TCS 19.34 288, 290, 252, 218 
Muscle 0.009 0.015 89 8 

Feed 0.009 0.015 91 11 
Chrysene D-12 (IS1) 22.68 240, 241, 120, 236 Seawater 0.007 0.010 102 7 
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Table A.8.4. Generalized Linear Models (GLM) of TCS tissue concentration between 
different treatments. In p-value column, values in bolt indicate significant differences. 

 

  Estimate Std Error 
Estimate/  
Std Error 

p-value 

     

Model: GLM (Gamma)     

Response variable: TCS 

concentration 
    

Final model term(s): Principal effects of tissue, pH 

and temperature (Brain as reference) 
      

(Intercept) 18.52 2.60 7.13 1.19E-05 

Tissue (Liver) -12.57 2.73 -4.61 6.03E-04 

Tissue (Muscle) -17.96 2.60 -6.91 1.62E-05 

Temperature 19.94 5.99 3.33 0.01 

pH 2.53 3.93 0.64 0.53 

Tissue (Liver) × Temperature 10.47 7.91 1.32 0.21 

Tissue (Muscle) × Temperature -16.77 6.01 -2.79 0.02 

Tissue (Liver) × pH 8.90 4.70 1.89 0.08 

Tissue (Muscle) × pH -1.58 3.94 -0.40 0.70 

Temperature × pH -5.91 8.29 -0.71 0.49 

Tissue (Liver) × Temperature × pH -10.15 11.01 -0.92 0.37 

Tissue (Muscle) × Temperature × pH 2.36 8.31 0.28 0.78 

Final model term(s): Principal effects of tissue, pH 

and temperature (Liver as reference) 
      

(Intercept) 5.95 0.83 7.13 1.19E-05 

Tissue (Brain) 12.57 2.73 4.61 6.03E-04 

Tissue (Muscle) -5.39 0.84 -6.43 3.25E-05 

Temperature 30.41 5.17 5.89 7.41E-05 

pH 11.44 2.58 4.44 8.09E-04 

Tissue (Brain) × Temperature -10.47 7.91 -1.32 0.21 

Tissue (Muscle) × Temperature -27.24 5.19 -5.25 2.06E-04 

Tissue (Brain) × pH -8.90 4.70 -1.89 0.08 

Tissue (Muscle) × pH -10.48 2.59 -4.05 1.61E-03 

Temperature × pH -16.06 7.24 -2.22 0.05 

Tissue (Brain) × Temperature × pH 10.15 11.01 0.92 0.37 

Tissue (Muscle) × Temperature × pH 12.50 7.27 1.72 0.11 
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Table A.8.5. Generalized Linear Models (GLM) of W, TL, K, HSI and BBratio between 
different treatments. In p-value column, values in bolt indicate significant differences. 

 

  Estimate Std Error 
Estimate/  
Std Error 

p-value 

Model: GLMM (Gaussian)     

Random effect: replicate tank     

Final model term(s): Principal effects of 

TCS exposure, pH and temperature 
    

Response variable: W         

(Intercept) 4.48 0.41 10.98 8.52E-10 

TCS exposure -0.27 0.54 -0.50 0.62 

Temperature 1.98 0.54 3.66 9.84E-04 

pH 0.60 0.54 1.11 0.28 

TCS exposure × Temperature -0.99 0.76 -1.29 0.21 

TCS exposure × pH 0.19 0.76 0.24 0.81 

Temperature × pH -1.49 0.76 -1.95 0.06 

TCS exposure × Temperature × pH 1.82 1.08 1.68 0.10 

Response variable: TL         

(Intercept) 6.48 0.21 30.80 2.00E-16 

TCS exposure 0.12 0.28 0.43 0.67 

Temperature 1.00 0.28 3.61 1.11E-03 

pH 0.48 0.28 1.73 0.09 

TCS exposure × Temperature -0.54 0.39 -1.38 0.18 

TCS exposure × pH 0.10 0.39 0.26 0.80 

Temperature × pH -0.80 0.39 -2.04 0.05 

TCS exposure × Temperature × pH 0.92 0.55 1.66 0.11 

Response variable: K         

(Intercept) 0.94 0.16 6.01 1.49E-06 

TCS exposure 0.38 0.22 1.72 0.10 

Temperature -0.03 0.22 -0.14 0.89 

pH 0.18 0.22 0.84 0.41 

TCS exposure × Temperature -0.48 0.31 -1.55 0.13 

TCS exposure × pH -0.21 0.31 -0.68 0.50 

Temperature × pH -0.21 0.31 -0.66 0.51 

TCS exposure × Temperature × pH -0.10 0.44 -0.23 0.82 

Response variable: HSI         

(Intercept) 1.64 0.07 25.01 2.00E-16 

TCS exposure -0.20 0.09 -2.11 0.04 

Temperature -0.13 0.09 -1.37 0.18 

pH -0.14 0.09 -1.55 0.13 

TCS exposure × Temperature 0.15 0.13 1.11 0.28 

TCS exposure × pH 0.08 0.13 0.64 0.53 

Temperature × pH 0.12 0.13 0.92 0.36 

TCS exposure × Temperature × pH -0.17 0.19 -0.92 0.37 

Response variable: BBratio         

(Intercept) 0.97 0.12 8.27 1.91E-09 

TCS exposure 0.15 0.17 0.88 0.39 

Temperature 0.15 0.17 0.92 0.37 

pH 0.03 0.17 0.19 0.85 

TCS exposure × Temperature -0.23 0.23 -0.96 0.34 

TCS exposure × pH -0.17 0.23 -0.72 0.48 

Temperature × pH -0.04 0.23 -0.18 0.86 

TCS exposure × Temperature × pH -0.01 0.33 -0.02 0.98 
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Table A.8.6. Generalized Linear Models (GLM) of tissue biomarker responses between 
different treatments. In p-value column, values in bolt indicate significant differences.  

 

  Estimate Std Error 
Estimate/ 
Std Error 

p-value 

Model: GLMM (Gaussian)     

Random effect: replicate tank     

Final model term(s): Principal effects of TCS exposure, pH 

and temperature 
   

Tissue: Muscle         
Variable: CAT activity         
(Intercept) 21.22 1.61 13.18 3.92E-08 
TCS exposure 11.42 1.94 5.88 2.03E-06 
Temperature 1.74 1.94 0.90 0.38 
pH 3.83 1.94 1.97 0.06 
TCS exposure × Temperature -13.99 2.75 -5.10 1.83E-05 
TCS exposure × pH -13.46 2.75 -4.90 3.15E-05 
Temperature × pH -4.78 2.75 -1.74 0.09 
TCS exposure × Temperature × pH 13.63 3.88 3.51 1.45E-03 

Variable: SOD activity         
(Intercept) 82.71 0.94 87.98 2.00E-16 
TCS exposure 1.55 1.33 1.17 0.25 
Temperature 7.47 1.33 5.62 3.31E-06 
pH -2.12 1.33 -1.60 0.12 
TCS exposure × Temperature -7.30 1.88 -3.88 4.85E-04 
TCS exposure × pH 5.73 1.88 3.05 4.61E-03 
Temperature × pH 2.47 1.88 1.31 0.20 
TCS exposure × Temperature × pH -3.82 2.66 -1.44 0.16 
Variable: GST activity         
(Intercept) 62.03 3.53 17.56 6.53E-13 
TCS exposure -11.47 4.65 -2.47 0.02 
Temperature 26.93 4.65 5.80 2.59E-06 
pH 10.29 4.65 2.22 0.03 
TCS exposure × Temperature -44.34 6.57 -6.75 1.89E-07 
TCS exposure × pH 1.49 6.57 0.23 0.82 
Temperature × pH -22.08 6.57 -3.36 2.16E-03 
TCS exposure × Temperature × pH 38.53 9.29 4.15 2.60E-04 

Variable: LPO (MDA content)          
(Intercept) 0.01 0.00 6.19 6.25E-07 
TCS exposure 0.01 0.00 3.39 1.88E-03 
Temperature 0.00 0.00 2.18 0.04 
pH 0.00 0.00 -0.44 0.66 
TCS exposure × Temperature -0.01 0.00 -3.24 2.78E-03 
TCS exposure × pH 0.01 0.00 2.77 0.01 
Temperature × pH 0.00 0.00 -0.56 0.58 
TCS exposure × Temperature × pH -0.01 0.00 -1.89 0.07 
Variable: HSP70/HSC70 content          
(Intercept) 789.73 75.62 10.44 7.77E-12 
TCS exposure -352.09 106.95 -3.29 2.43E-03 
Temperature -274.56 106.95 -2.57 0.02 
pH -25.71 106.95 -0.24 0.81 
TCS exposure × Temperature 556.92 151.25 3.68 8.47E-04 
TCS exposure × pH -69.03 151.25 -0.46 0.65 
Temperature × pH 256.27 151.25 1.69 0.10 
TCS exposure × Temperature × pH 433.36 213.90 2.03 0.05 
Variable: Ub content          
(Intercept) 19.63 1.46 13.47 1.81E-11 
TCS exposure 6.85 1.93 3.55 1.30E-03 
Temperature -1.55 1.93 -0.80 0.43 
pH -1.98 1.93 -1.03 0.31 
TCS exposure × Temperature 7.73 2.73 2.83 0.01 
TCS exposure × pH 1.49 2.73 0.55 0.59 
Temperature × pH 20.40 2.73 7.48 2.55E-08 
TCS exposure × Temperature × pH -26.81 3.86 -6.95 1.05E-07 
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Table A.8.6. (continuation) Generalized Linear Models (GLM) of tissue biomarker responses 

between different treatments. In p-value column, values in bolt indicate significant differences.  
 

  Estimate Std Error 
Estimate/ 
Std Error 

p-value 

Model: GLMM (Gaussian)     

Random effect: replicate tank     

Final model term(s): Principal effects of TCS 

exposure, pH and temperature 
    

Tissue: Brain         
Variable: CAT activity         
(Intercept) 7.23 0.52 13.94 1.14E-13 
TCS exposure -1.15 0.73 -1.58 0.12 
Temperature -2.02 0.73 -2.78 0.01 
pH -0.97 0.73 -1.34 0.19 
TCS exposure × Temperature 2.84 1.03 2.76 0.01 
TCS exposure × pH 2.40 1.03 2.34 0.03 
Temperature × pH 2.46 1.03 2.39 0.02 
TCS exposure × Temperature × pH -3.32 1.45 -2.29 0.03 

Variable: SOD activity         
(Intercept) 86.64 1.43 60.60 <2E-16 
TCS exposure -3.84 1.99 -1.93 0.06 
Temperature 1.92 1.99 0.97 0.34 
pH -0.14 1.99 -0.07 0.94 
TCS exposure × Temperature -1.03 2.81 -0.37 0.72 
TCS exposure × pH -0.82 2.81 -0.29 0.77 
Temperature × pH 1.49 2.81 0.53 0.60 
TCS exposure × Temperature × pH -0.36 3.98 -0.09 0.93 
Variable: GST activity         
(Intercept) 8.32 1.37 6.09 8.47E-07 
TCS exposure 1.61 1.93 0.83 0.41 
Temperature 12.12 1.93 6.27 4.96E-07 
pH 6.33 1.93 3.27 2.56E-03 

TCS exposure × Temperature -13.01 2.73 -4.76 4.00E-05 

TCS exposure × pH -4.44 2.73 -1.63 0.11 
Temperature × pH -7.10 2.73 -2.60 0.01 
TCS exposure × Temperature × pH 4.67 3.87 1.21 0.24 
Variable: LPO (MDA content)          
(Intercept) 0.01 0.00 9.29 1.35E-10 
TCS exposure 0.00 0.00 0.11 0.91 
Temperature 0.00 0.00 -3.92 4.42E-04 
pH 0.00 0.00 -0.40 0.69 
TCS exposure × Temperature 0.00 0.00 3.70 8.06E-04 
TCS exposure × pH 0.00 0.00 0.03 0.98 
Temperature × pH 0.00 0.00 0.37 0.71 
TCS exposure × Temperature × pH 0.00 0.00 0.56 0.58 
Variable: HSP70/HSC70 content          
(Intercept) 166.80 13.31 12.54 6.88E-14 
TCS exposure -37.46 18.82 -1.99 0.06 
Temperature -67.86 18.82 -3.61 1.04E-03 
pH -67.51 18.82 -3.59 1.10E-03 
TCS exposure × Temperature 81.11 26.61 3.05 4.60E-03 
TCS exposure × pH 64.24 26.61 2.41 0.02 
Temperature × pH 93.24 26.61 3.50 1.38E-03 
TCS exposure × Temperature × pH -120.44 37.64 -3.20 3.09E-03 

Variable: Ub content          
(Intercept) 22.12 1.57 14.11 2.16E-09 
TCS exposure -4.89 1.92 -2.55 0.02 
Temperature -10.30 1.92 -5.36 8.51E-06 
pH -15.51 1.92 -8.07 5.27E-09 
TCS exposure × Temperature 6.38 2.72 2.35 0.03 
TCS exposure × pH 12.71 2.72 4.68 5.83E-05 
Temperature × pH 21.04 2.72 7.74 1.23E-08 
TCS exposure × Temperature × pH -21.44 3.84 -5.58 4.55E-06 
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Table A.8.6. (continuation) Generalized Linear Models (GLM) of tissue biomarker responses 

between different treatments. In p-value column, values in bolt indicate significant differences. 
 

  Estimate Std Error 
Estimate/ 
Std Error 

p-value 

Model: GLMM (Gaussian)     

Random effect: replicate tank     

Final model term(s): Principal effects of TCS 

exposure, pH and temperature 
    

Tissue: Brain         
Variable: AChE activity          
(Intercept) 1853.71 42.73 43.39 2.00E-16 
TCS exposure -427.09 60.42 -7.07 5.13E-08 
Temperature -512.37 60.42 -8.48 1.09E-09 
pH -84.35 60.42 -1.40 0.17 
TCS exposure × Temperature 759.49 85.45 8.89 3.74E-10 
TCS exposure × pH 469.19 85.45 5.49 4.76E-06 
Temperature × pH 75.68 85.45 0.89 0.38 
TCS exposure × Temperature × pH -696.03 120.85 -5.76 2.18E-06 

Tissue: Liver         
Variable: CAT activity         
(Intercept) 17.74 1.42 12.53 7.00E-14 
TCS exposure -1.86 2.00 -0.93 0.36 
Temperature 0.59 2.00 0.30 0.77 
pH -1.77 2.00 -0.88 0.38 
TCS exposure × Temperature -5.59 2.83 -1.98 0.06 
TCS exposure × pH 4.02 2.83 1.42 0.17 
Temperature × pH -2.50 2.83 -0.88 0.38 
TCS exposure × Temperature × pH 9.95 4.00 2.49 0.02 

Variable: SOD activity         
(Intercept) 85.54 1.41 60.81 2.00E-16 
TCS exposure -1.06 1.95 -0.54 0.59 
Temperature -0.64 1.95 -0.33 0.75 
pH 2.29 1.95 1.18 0.25 
TCS exposure × Temperature 4.56 2.75 1.66 0.11 
TCS exposure × pH -17.13 2.75 -6.23 7.01E-07 
Temperature × pH 1.19 2.75 0.43 0.67 
TCS exposure × Temperature × pH 10.94 3.89 2.81 0.01 

Variable: GST activity         
(Intercept) 101.25 8.76 11.56 1.86E-10 
TCS exposure -19.85 11.53 -1.72 0.10 
Temperature 61.55 11.53 5.34 8.80E-06 
pH 28.16 11.53 2.44 0.02 
TCS exposure × Temperature -111.83 16.30 -6.86 1.26E-07 
TCS exposure × pH 39.09 16.30 2.40 0.02 
Temperature × pH -89.20 16.30 -5.47 6.06E-06 
TCS exposure × Temperature × pH 79.69 23.06 3.46 1.65E-03 

Variable: LPO (MDA content)          
(Intercept) 0.00 0.00 2.29 0.03 
TCS exposure 0.01 0.00 3.15 3.53E-03 
Temperature 0.00 0.00 1.26 0.22 
pH 0.00 0.00 0.08 0.94 
TCS exposure × Temperature -0.01 0.00 -2.69 0.01 
TCS exposure × pH 0.02 0.00 4.26 1.66E-04 
Temperature × pH 0.00 0.00 -0.05 0.96 
TCS exposure × Temperature × pH -0.02 0.01 -3.34 2.15E-03 

Variable: HSP70/HSC70 content          
(Intercept) 772.26 55.08 14.02 3.27E-15 
TCS exposure -158.08 77.89 -2.03 0.05 
Temperature -52.97 77.89 -0.68 0.50 
pH 488.23 77.89 6.27 5.01E-07 
TCS exposure × Temperature -71.45 110.16 -0.65 0.52 
TCS exposure × pH -918.32 110.16 -8.34 1.59E-09 
Temperature × pH -1006.93 110.16 -9.14 1.95E-10 
TCS exposure × Temperature × pH 1197.45 155.78 7.69 9.22E-09 
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Table A.8.6. (continuation) Generalized Linear Models (GLM) of tissue biomarker responses 

between different treatments. In p-value column, values in bolt indicate significant differences. 
 

  Estimate Std Error 
Estimate/ 
Std Error 

p-value 

Model: GLMM (Gaussian)     

Random effect: replicate tank     

Final model term(s): Principal effects of TCS 

exposure, pH and temperature 
    

Tissue: Liver         

Variable: Ub content          

(Intercept) 8.41 1.44 5.85 1.69E-06 

TCS exposure 1.42 2.04 0.70 0.49 

Temperature 3.83 2.04 1.88 0.07 

pH 9.17 2.04 4.51 8.32E-05 

TCS exposure × Temperature -3.92 2.88 -1.36 0.18 

TCS exposure × pH 3.24 2.88 1.13 0.27 

Temperature × pH -11.60 2.88 -4.03 3.21E-04 

TCS exposure × Temperature × pH 19.84 4.07 4.87 2.87E-05 

Variable: VTG content         

(Intercept) 62.66 6.70 9.35 1.14E-10 

TCS exposure -48.58 9.47 -5.13 1.37E-05 

Temperature -37.80 9.47 -3.99 3.60E-04 

pH 15.34 9.47 1.62 0.12 

TCS exposure × Temperature 40.80 13.40 3.05 4.63E-03 

TCS exposure × pH -13.75 13.40 -1.03 0.31 

Temperature × pH 7.80 13.40 0.58 0.56 

TCS exposure × Temperature × pH 4.21 18.95 0.22 0.83 
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Table A.8.7. Summary of significant changes (%) induced by TCS exposure, acidification and warming in relation to the average values obtained in Control 
treatment. “↑” before the value indicates a significant up-regulation in relation to the Control treatment, whereas “↓“ indicates a significant down-regulation (p 
< 0.05). Abbreviations: K - Fulton’s condition index; HIS - hepatosomatic index; BBratio - brain-to-body mass ratio; CAT – catalase; SOD – superoxide dismutase; 
GST – glutathione S-transferase; LPO - lipid peroxidation; HSP70/HSC70 - heat shock proteins; Ub - total ubiquitin; AChE – acetylcholinesterase; VTG – 
vitellogenin; NS – No significant alteration (p > 0.05) in relation to the Control treatment; TCS – triclosan exposure; Acid – simulated acidification (i.e. pH = 
7.6 units); Warm – simulated warming (i.e. T = 24 ºC). 

 
  Animal Fitness Tissue molecular responses 

Stressor K HSI BBratio 
  

CAT 

activity 

SOD 

activity 

GST 

activity 
LPO 

HSP70/HSC70 

content 

Ub 

content 

AChE 

activity 

VTG 

content 

Acidification NS NS NS 
Muscle NS NS NS NS NS NS - - 
Liver NS NS NS NS ↑63.2 ↑>100 - NS 
Brain NS NS ↑76.0 NS NS ↓69.5 NS - 

Warming NS NS NS 
Muscle NS ↓9.0 NS NS NS NS - - 

Liver NS NS NS NS NS NS - ↓38.5 

Brain NS NS ↑>100 NS NS ↓46.2 ↓27.6 - 

Acidification+ 

Warming 
NS NS NS 

Muscle NS ↓9.4 NS NS NS ↑85.4 - - 
Liver NS NS NS NS ↓74.0 NS - ↓68.1 

Brain NS NS ↑>100 NS NS NS ↓28.1 - 

TCS NS NS NS 
Muscle ↑54.5 NS NS NS ↓44.6 NS - - 

Liver NS NS NS ↑>100 NS NS - ↓79.9 

Brain NS NS NS NS NS NS ↓23.0 - 

TCS+ 

Acidification 
NS NS NS 

Muscle NS NS NS ↑>100 ↓56.6 NS - - 
Liver NS ↑18.6 NS ↑>100 ↓76.2 ↑>100 - ↓81.9 

Brain NS ↑5.5 NS NS NS ↓34.5 NS - 

TCS+ 

Warming 
NS NS NS 

Muscle NS NS ↓46.8 NS NS ↑66.0 - - 
Liver ↓38.7 NS ↓69.6 NS ↓36.6 NS - ↓60.7 

Brain NS NS NS NS NS ↓39.5 NS - 

TCS+Acidification+ 

Warming 
NS NS NS 

Muscle NS NS NS NS ↑66.5 NS - - 

Liver NS NS NS NS ↓67.6 ↑>100 - ↓78.1 

Brain NS NS NS NS NS ↓53.9 ↓22.4 - 
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ANNEX 9. 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 6.  

Assessing the effects of seawater temperature and pH on the 

bioaccumulation of emerging chemical contaminants in marine bivalves 
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Methodologies 

 
1.1.  Quantification of dechloranes 602, 603 and 604 in seawater and bivalve samples 

1.1.1. Reagents and chemicals 

All reagents and chemicals were of analytical grade or higher. Dec 602 (95 %), Dec 603 (98 %) 

and Dec 604 (98 %) were purchased from Toronto Research Chemical Inc. (Toronto, ON, 

Canada). Internal standard 13C-syn-DP was obtained from Cambridge Isotope Laboratories Inc. 

(Andover, MA, USA). Dichloromethane (DCM), hexane and sulphuric acid were purchased from 

Merck (Darmstadt, Germany). Al-N cartridges were provided by Biotage (Uppsala, Sweden). 

1.1.2. Sample preparation 

Water samples (9 mL) were spiked with 3.2 ng of 13C-syn-DP. After two hours, the extraction 

was carried out by ultrasound assisted extraction using 2 mL of hexane, 15 min sonication and 7 

min centrifugation at 3500 rpm. The hexane was transferred to a vial. The extract was then 

reconstituted with 40 µL of toluene for the instrumental analysis.  

The extraction of dechloranes from bivalve and feed samples was carried out using a 

previously optimized method (de la Cal et al., 2003; Labandeira et al., 2007). Freeze-dried sample 

(1-1.5 g for clams and 0.5 g for feed) was spiked with 3.2 ng of 13C-syn-DP. Pressurized liquid 

extraction (PLE) was used with hexane:DCM (1:1). Then, the lipid content was determined 

gravimetrically. The extract was re-dissolved in hexane and fat was removed with concentrated 

sulphuric acid. The organic phase underwent a solid phase extraction (SPE) using neuter alumina 

cartridges (5 g) and hexane:DCM (1:2) as elution mixture. Extracts were reconstituted in 40 μL 

of toluene for the instrumental analysis. 

1.1.3. Instrumental analysis 

Instrumental analysis was the same for water, biota and feed samples. Extracts were analysed 

with an Agilent 7890A gas chromatograph coupled to an Agilent 7000B triple quadrupole mass 

spectrometer according to previous work (Barón et al., 2012). Chromatographic separation was 

carried out with a DB-5ms column (15 m × 0.25 mm × 0.1 μm of film thickness). For the 

spectrometric determination negative ion chemical ionization (NICI) at 175 °C was used, with 

methane as ionisation gas. Selective reaction monitoring (SRM) mode was used with two 

transitions monitored for each compound. Recoveries for individual compounds ranged 88-99 % 

and relative standard deviations (RSDs) were 12-22 %.  
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1.2.  Quantification of total (seawater) and inorganic arsenic (bivalve samples) 

1.2.1. Reagents and chemicals 

All reagents and chemicals were of analytical grade or higher. <18 MΩ cm water was used 

throughout (Milli-Q-Integral system, Merck, Germany). Nitric acid (PlasmaPure, SCP Science, 

Courtaboeuf, France) and hydrogenperoxide (Merck, Darmstadt, Germany) were used for sample 

preparation. 

1.2.2. Sample preparation 

Determination of inorganic arsenic (iAs) followed the standard (EN 16802:2016) recently 

issued by European Committee for Standardization (CEN, 2016). For extraction of biota, dilute 

acid (0.1 M nitric acid) of samples (0.3-0.5 g) and quantitative oxidation of arsenite (iAsIII) to 

arsenate (iAsV) by hydrogenperoxide (3 % v/v) was applied (Rasmussen et al., 2012).  

Water samples were prepared by simple dilution with 2% (v/v) nitric acid prior to analysis of 

total As (typically x10). 

1.2.3. Instrumental analysis 

Inorganic arsenic was analysed using anion exchange HPLC (High Performance Liquid 

Chromatography) (1100 HPLC Agilent Technologies, Waldbronn, Germany) and detected by the 

on-line coupling to ICP-MS (inductively coupled plasma mass spectrometry) (Agilent 7500ce 

ICP-MS, Santa Clara, USA) in no gas mode. Total arsenic was determined by the ICP-MS in no-

gas mode (m/z 75) with rhodium (m/z 103) as internal standard. For quantification external 

calibration with matrix-matched standards was used. A blank sample was in all series analyzed 

in the same conditions as the samples and was subtracted from results prior to reporting. 

The accuracy of the methods was evaluated using the certified reference materials DORM-4 

(Dogfish muscle) and TORT-2 (Lobster Hepatopancreas) from National Research Council of 

Canada (Ontario, Canada) for total arsenic [DORM-4: certified = 6.87 ± 0.44 mg kg-1, present 

work (n = 2) = 6.73 ± 0.22 mg kg-1; TORT-2: certified = 21.6 ± 1.8 mg kg-1, present work (n = 2) 

= 19.52 ± 0.56 mg kg-1], and ERM-BC211 (rice) from Institute of Reference Materials and 

Measurements (Geel, Belgium) and NMIJ CRM 7405-a (marine algae Hijiki) from National 

Metrology Institute of Japan (NMIJ; Tsukuba, Japan) for iAs [ERM-BC211: 0.124 ± 0.011 mg 

kg-1, present work (n = 1) = 0.150 mg kg-1; NMIJ 7405-a: 10.1 ± 0.5 mg kg-1, present work (n = 

1) = 9.65 mg kg-1]. 

 

 

 

 



Ana Luísa Maulvault 

 

394 
 

1.3.  Quantification of TBBPA in seawater and bivalve samples 

1.3.1. Reagents and chemicals 

All reagents and chemicals were of analytical grade or higher. Tetrabromobisphenol A 

(TBBPA; 99 % purity) and tetrabromobisphenol A ring-13C12 (TBBPA13C12; 99 % purity) used 

as internal standard (I.S.) were purchased from Sigma-Aldrich (West Chester, PA, USA). 

Individual standard solution of the TBBPA was prepared in methanol (MeOH, HPLC grade from 

Sigma-Aldrich) at concentration of 2000 μg L-1. QuEChERS solvents acetonitrile (MeCN, 

gradient grade for HPLC; 78.6 % purity) and anhydrous magnesium sulfate (anhydrous MgSO4; 

99.5 % purity) were purchased from Sigma-Aldrich; formic acid, hydrochloric acid (HCl), sodium 

chloride (NaCl; 99.5 % purity), and ammonium acetate (97 % purity) were purchased from 

AppliChem Panreac ITW Co. (Barcelona, Spain). LLE solvents n-hexane (gradient grade for 

HPLC), tert-butyl methyl ether (MTBE, pro-analysis), and benzene (pro-analysis) were purchased 

from Merck (Darmstadt, Germany). Formic acid (99%) and chloride acid were purchased VWR 

Int. (Radnor, PA, USA). Ultra-pure Milli-Q water was obtained using a Millipore Milli-Q system 

(Millipore, Bedford, MA, USA). 

1.3.2. Sample preparation 

TBBPA in bivalve samples was extracted using the following procedure based on QuEChERS 

– LLE extraction, which was previously described in more detail (Cunha et al., 2017). Briefly, 2 

g of thoroughly homogenized sample were weighed into a 40 mL glass vial tube, and 80 μL of 

TBBPA13C12 at 1000 ng mL-1 (I.S. working solution) were added. Then, 7 mL of ultra-pure 

MilliQ water were added, and sealed tubes were handshaked it for 2 min. 10 mL of MeCN, 100 

μL of HCl 10M (pH = 4.0 units), 4 g of anhydrous MgSO4 and 1 g of NaCl were added. Sealed 

tubes were shaken again vigorously by hand for 10 min. Extracts were centrifuged at 2000 g for 

5 min. Then, a liquid-liquid extraction procedure was performed, by extracting 3 mL of MeCN 

extracts to a 15 mL glass vial tube with 7 mL of ultra-pure MilliQ water, adding 4 mL of n-

hexane:MTBE (3:1, v/v), and handshaking  vigorously again. Subsequently, 3 mL of the upper 

layer were extracted to a new 15 mL vials, and add 4 mL of nhexane:benzene (3:1, v/v) were 

added, followed by handshaking. Once again, 3 mL of the upper layer were transferred to 15 mL 

glass vials. The final extracts were concentrated under a stream of nitrogen (SBH CONC/1 sample 

concentrator from Stuart®, Staffordshire, OSA, USA), reconstituted in mobile phase - 100μL of 

5mM ammonium acetate and 900 μL of MeOH, and transferred to a 2 mL glass vials before LC-

MS/MS analysis. The same procedure was carried out for water samples, using 2 g of each sample. 
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1.3.3. Instrumental analysis 

TBBPA was analysed in seawater by direct injection on LC-MS/MS with prior addition of 80 

μL of TBBPA13C12 (IS, 1000 μg L-1). Bivalve and feed sample extracts were analyzed by LC-

MS/MS, i.e. a high-performance liquid chromatography (HPLC) system Waters Alliance 2695 

(Waters, Milford, MA, USA) interfaced to a Quattro Micro triple quadrupole mass spectrometer 

(Waters, Manchester, UK). Chromatographic separation was achieved using a Kinetex C18 2.6 μ 

particle size analytical column (150 × 4.6 mm) with pre-column from Phenomenex (Tecnocroma, 

Portugal), at a flow-rate of 200 μL min-1. The optimized MS/MS parameters for the target analytes 

are described in Cunha et al. (2017). 

For quality control purposes, matrix-matched calibration curves were achieved by analyzing 

blank samples (free of TBBPA) spiked with known amounts of the analytes. Analytes 

concentration in the analyzed samples was obtained by the I.S. method. 

 

1.4.  Quantification of PFOA and PFOS in seawater and bivalve samples 

1.4.1. Reagents and chemicals 

All reagents and chemicals were of analytical grade or higher. Acetonitrile, acetone, n-hexane, 

hydrochloric acid, sodium hydroxide and methanol were purchased from LGC Standards (Wesel, 

Germany). Ammonium formiate and ENVIcarb were purchased from Sigma-Aldrich 

(Zwijndrecht, Netherlands). Native and 13C4 labelled PFOS and PFOA were purchased from 

Wellington Laboratories (Guelph, Canada). Oasis HLB SPE cartridges were purchased from 

Waters (Etten-Leur, the Netherlands). Sodium sulfate was dried for 20 hours at 450 °C before 

use. Internal solutions consisted of 150 ng mL-1 13C4-PFOS and 13C4-PFOA in acetonitrile. 

1.4.2. Sample preparation 

PFOS and PFOA were extracted and analysed using the methods previously described in 

Kwadijk et al. (2010).  For water samples, 350 µL of internal standard solution was added to 10 

mL samples. HLB cartridges were activated using 10 mL of acetonitrile followed by 10 mL of 

demi water after which the sample was introduced. Then, 10 mL of acetonitrile was used to elute 

the sample. Extracts were dried using sodium sulphate and cleaned with ENVIcarb after which 

they were transferred to a vial for analysis. 

For bivalves, 5 g of sample were weighed in a 15 mL polypropylene (pp) tube and 

subsequently extracted 3 times using acetonitrile. The extract was dried over a filter with sodium 

sulphate and concentrated to 10 mL. The extract was washed 3 times using 10 mL of hexane after 

which the extract was concentrated to 0.7 mL and transferred to a centrifuge tube containing 50 

mg ENVIcarb. The tube was mixed and subsequently centrifuged. The extract was transferred to 

a vial for analysis. 
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1.4.3. Instrumental analysis 

Instrumental analysis was performed using a Thermo Finnigan (Waltham, MA) Surveyor 

Autosampler and an HPLC system coupled with a Thermo Finnigan LCQ advantage Ion-Trap 

MS instrument with electrospray (ESI-MS/MS). Separation was performed by injecting 20 µL of 

extract onto a 100 x 2.10 mm (5µm) Fluorphase RP column using ammonium formate and formic 

acid in acetonitrile as mobile phase A and ammonium formate and formic acid in demi water as 

mobile phase B. Quantification was performed in ESI negative mode monitoring m/z 499 for 

PFOS, 503 for 13C-PFOS, 413-->369 for PFOA and 417 -->372 for 13C-PFOA. 

For quality control purposes, an internal reference sample was analysed along with each set of 

samples. Results were satisfactory for water, as well as biota samples. PFOS and PFOA were < 

LOD in blank samples (< 0.3 µg kg-1 for biota and <0.03µg L-1 for water). 
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TABLES 

 
Table A.9.1. Control and contaminated feeds’ composition. 
 

Ingredients % 

Micronized fishmeal LT701 35.0 
Fish protein concentrate2 35.0 
Squid meal3 10.0 
Wheat gluten4 5.0 
Soy lecithin5 11.0 
Vitamin and mineral premix6 4.0 

 

1 MicroNorse: 72 % crude protein (CP), 11% crude fat (CF), Tromsø Fiskeindustri A/S,Norway. 
2 CPSP 90: 84 % CP, 12 % CF, Sopropêche, France. 
3 Super prime without guts: 82% CP, 3.5% CF, Sopropêche, France; 
4 VITAL: 85.7 % CP, 1.3 % CF, ROQUETTE, France. 
5 LECICO P 700IPM, LECICO GmbH, Germany.  
6 PREMIX Lda, Portugal: Vitamins (IU or mg kg-1 diet): DL-alpha tocopherol acetate, 400 mg; sodium 

menadione bisulphate, 100 mg; retinyl acetate, 80000 IU; DL-cholecalciferol, 8000 IU; thiamin, 120 mg; 
riboflavin, 120 mg; pyridoxine, 80 mg; cyanocobalamin, 0.4 mg; nicotinic acid, 800 mg; folic acid, 60 mg; 
ascorbic acid, 2000 mg; inositol, 2000 mg; biotin, 12 mg; calcium panthotenate, 400 mg; choline chloride, 
4000 mg, betaine, 2000 mg. Minerals (g or mg kg-1 diet): copper sulphate, 36 mg; ferric sulphate, 24 mg; 
potassium iodide, 2 mg; manganese oxide, 38.4 mg; sodium selenite, 0.04 mg; zinc sulphate, 30 mg; sodium 
chloride, 1600 mg; excipient wheat middlings. 
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Table A.9.2. Seawater physical and chemical parameters (mean ± standard deviation) in 
each treatment of Trials I and II. Abbreviations: CTR – control (non-contaminated), 19 ºC, 8.0 
pH units; CONT -  contaminated, 19 ºC, 8.0 pH units; CONT+Acid - contaminated, 19 ºC, 7.6 
pH units; CONT+Warm - contaminated, 23 ºC, 8.0 pH units; CONT+Acid+Warm -  
contaminated, 23 ºC, 7.6 pH units; TA – total alkalinity; P CO2 - partial CO2 pressure; T CO2 - 
Total CO2 concentration; HCO3

- - bicarbonate; CO3
2- - carbonate ion concentrations; ΩCal - 

calcite saturation state; ΩAra – aragonite saturation state.   
 

CTR CONT 
CONT+ 

Acid 
CONT+ 
Warm 

CONT+Acid+ 
Warm Trial I 

Temp 
(°C) 

19.0 ± 0.2 19.0 ± 0.2 19.0 ± 0.2 23.0 ± 0.2 23.0 ± 0.2 

Salinity 
(‰) 

34.8 ± 0.8 35.2 ± 0.9 35.1 ± 0.5 34.9 ± 0.6 34.8 ± 0.9 

pH 
(units) 

8.01 ± 0.01 8.04 ± 0.03 7.62 ± 0.03 8.01 ± 0.04 7.64 ± 0.04 

TA 
(µmol kg-1 ) 

2022.3 ± 110.1 2051.9 ± 80.2 1982.4 ± 100.1 2029.4 ± 90.1 1938.7 ± 122.1 

P CO2 

(µatm) 
386.5 ± 7.5 392.1 ± 4.7 1079.0 ± 56.9 387.9 ± 6.1 1048.5 ± 62.1 

T CO2 
(µmol kg-1) 

1805.5 ± 34.7 1823.7 ± 23.8 1907.9 ± 49.9 1812.4 ± 61.3 1873.3 ± 56.9 

HCO3
- 

(µmol kg-1) 
1643.2 ± 110.3 1653.2 ± 99.8 1804.2 ± 130.5 1649.7 ± 111.9 1774.8 ± 143.6 

CO3
2- 

(µmol kg-1) 
149.7 ± 33.6 158.1 ± 24.5 70.4 ± 6.3 150.0 ± 29.9 64.3 ± 9.9 

Ω Ara 2.3 ± 0.4 2.5 ± 0.2 1.1 ± 0.1 2.3 ± 0.4 1.0 ± 0.2 

Ω Cal 3.6 ± 0.5 3.8 ± 0.3 1.7 ± 0.6 3.6 ± 0.1 1.5 ± 0.7 

Trial II      

Temp 
(°C) 

19.0 ± 0.2 19.0 ± 0.3 19.0 ± 0.1 23.0 ± 0.1 23.0 ± 0.2 

Salinity 

(‰) 
35.1 ± 0.7 35.2 ± 0.6 35.1 ± 0.7 34.8 ± 0.8 34.9 ± 0.6 

pH 
(units) 

8.01 ± 0.02 8.01 ± 0.03 7.63 ± 0.02 8.02 ± 0.03 7.62 ± 0.02 

TA 

(µmol kg-1 ) 
2112.4 ± 111.1 2141.9 ± 100.2 2002.4 ± 120.1 2130.8 ± 100.3 1998.7 ± 90.9 

P CO2 

(µatm) 
404.5 ± 7.9 410.0 ± 6.8 1090.1 ± 99.8 408.1 ± 5.2 1081.5 ± 80.4 

T CO2 

(µmol kg-1) 
1889.2 ± 39.8 1907.0 ± 21.1 1927.5 ± 43.8 1906.7 ± 23.9 1932.3 ± 38.7 

HCO3
- 

(µmol kg-1) 
1719.3 ± 100.8 1728.8 ± 99.3 1822.7 ± 110.3 1735.5 ± 92.4 1830.8 ± 75.6 

CO3
2- 

(µmol kg-1) 
156.7 ± 37.2 165.3 ± 23.4 71.1 ± 13.7 157.8 ± 28.9 66.3 ± 10.8 

Ω Ara 2.4 ± 0.4 2.6 ± 0.2 1.1 ± 0.5 2.4 ± 0.3 1.1 ± 0.1 

Ω Cal 3.7 ± 0.5 3.9 ± 0.2 1.7 ± 0.4 3.8 ± 0.2 1.6 ± 0.2 

 

 
 

 

 


