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Abstract 
 

Telecommunications are part of people’s daily lives. Also, nowadays, a complete 

"technological illiteracy" is hard to be found in the so-called developed countries. To the point 

of being almost a necessity in everyday life, telecommunications must evolve to meet this need. 

One of the most widely used transmission techniques in mobile communications today 

is Orthogonal Frequency-Division Multiplexing (OFDM). Adopted in the fourth generation of 

mobile communications (4G), much for its ability to deal with frequency-selective channels and 

good spectral efficiency, it is one of the candidate schemes to be in the fifth generation of 

mobile communications (5G). Despite the advantages, OFDM signals have high envelope 

fluctuations, making them sensitive to nonlinear effects. Several techniques were proposed to 

reduce these fluctuations, however they required nonlinear operations that worsened the 

performance of receivers. Nevertheless, it has recently been shown that the distortion effects 

caused by nonlinearity is no longer seen as a problem, but as information. In fact, with this 

discovery, it becomes possible to employ optimal receivers in order to improve the 

performance.  Despite that, these receivers have a very high complexity and, to try to solve this 

problem, sub-optimal receivers have been proposed. 

The sub-optimal receiver presented in this thesis is based on an optimization algorithm 

called Fireworks Algorithm (FWA). The thesis includes: a study of the parameters of the 

algorithm in order to understand its true impact on Bit Error Rate (BER) performance; a 

comparison of the BER for different channels: Additive White Gaussian Noise (AWGN) and 

Frequency-Selective; and a proposal for an FWA variant that tries to reduce the receiver’s 

complexity even more. 

 

Keywords: OFDM, nonlinear effects, sub-optimal receivers, FWA, BER performance, 

complexity. 
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Resumo 
 
As telecomunicações fazem parte do quotidiano das pessoas. Nos dias de hoje, é já 

muito raro existir uma completa “analfabetização tecnológica” nos países ditos desenvolvidos. 

Chegando ao ponto de ser quase uma necessidade no dia-a-dia, as telecomunicações têm de 

evoluir para poderem acompanhar essa necessidade. 

Uma das técnicas de transmissão mais utilizadas actualmente nas comunicações móveis 

é o Orthogonal Frequency-Division Multiplexing (OFDM). Adoptado na quarta geração de 

comunicações móveis (4G), muito pela sua capacidade de lidar com canais selectivos na 

frequência e boa eficiência spectral, é um dos esquemas candidatos para estar na quinta geração 

de comunicações móveis (5G). Apesar das vantagens, os sinais OFDM têm elevadas flutuações 

de envolvente, tornando-os sensíveis a efeitos de distorção não lineares. Várias técnicas foram 

propostas para reduzir essas flutuações, no entanto exigem operações não lineares que pioram o 

desempenho dos receptores. Contudo, foi recentemente demonstrado que os efeitos de distorção 

causados pela não linearidade deixaram de ser vistos como um problema, passando a ser tidos 

como informação. De facto, com esta descoberta, tornou-se possível utilizar os receptores 

óptimos com o objectivo de melhorar o desempenho. Todavia, este receptores apresentam uma 

complexidade muito elevada, sendo que para tentar resolver este problema, foram propostos os 

receptores sub-óptimos.  

O receptor sub-óptimo apresentado nesta tese baseia-se num algoritmo de optimização 

chamado Fireworks Algorithm (FWA). Esta tese inclui: um estudo dos parâmetros do algoritmo 

de forma a entender qual o seu verdadeiro impacto no desempenho do Bit Error Ratio (BER); 

uma comparação desse mesmo desempenho entre dois canais diferentes: Additive White 

Gaussian Noise (AWGN) e Selectivo na Frequência; e uma proposta de uma variante do FWA 

que tenta reduzir ainda mais a complexidade no receptor. 

 

Palavras Chave: OFDM, efeitos não lineares, receptors sub-óptimos, FWA, 

desempenho do BER, complexidade. 
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1 Introduction 

1.1 Context 

In recent decades, we have witnessed a great evolution, and also revolution, in the wireless 

communications industries. The fact that these industries have grown so much in a short time is due to 

the ever-increasing human need to be in touch with the rest of the world, anytime, anywhere. In 

addition to the growth of demand for users’ mobility, this type of communications remains a 

challenging area due to the constant need of higher data rates and spectral efficiencies. These needs 

are also coupled with the desire for wireless devices with low power consumption (i.e., a long battery 

life) and low complexity. 

In order to achieve higher data rates and spectral efficiencies, and due to their good 

performances over severely time-dispersive channels and low complexity receivers’ implementations, 

Orthogonal Frequency-Division Multiplexing (OFDM) transmission schemes emerged as one of the 

most popular techniques in wireless communications. However, OFDM based schemes have high 

envelope fluctuations, which make them very prone to nonlinear distortion effects [1], and High Peak-

to-Average Power Ratio (PAPR), which leads to amplification difficulties and high-power 

consumption [2]. To reduce PAPR, several techniques were proposed for wireless communication 

systems. Some simple techniques that directly limit the peak envelope of the transmitted signal were 

introduced to deal with this problem. Still, the main problems of these techniques are the nonlinear 

distortion effects that degrade the Bit Error Ratio (BER) performance and reduce spectral efficiency. 

Other techniques to reduce PAPR do not introduce nonlinear problems but all of them have high 

computational complexities and very complex receivers, which is undesirable [3].  

So, the best choice is to deal with nonlinear problems instead of complexity problems. In order 

to accomplish that, optimal receivers, like the maximum likelihood (ML) receiver, were designed and, 

in fact, they outperformed the conventional receivers used in linear conditions. The reason for this is 

related to the fact that the noise created by nonlinear distortion effects has some information on the 

transmitted signals, which can help to improve the performance [2]. However, the computational 

complexity of this type of receivers is still very high even considering a low number of subcarriers. To 

deal with the complexity and the lack of optimization of the optimal receivers, a sub-optimal receiver 

based on the Fireworks Algorithm (FWA) [2] [4] was proposed. It was shown that this FWA-based 
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technique allows excellent results in both performance and low-complexity, considering OFDM 

schemes with strong nonlinear distortion effects. This technique proved that the BER performance is 

even better when comparing to conventional receivers. [2] 

 

1.2 Objectives 

It was already shown that the use of FWA in nonlinear OFDM receivers leads to an 

improvement both in the BER performance and spectral efficiency [2]. So, the main objective of this 

thesis is to approach the optimal performance of nonlinear OFDM systems by understanding how each 

parameter influences the BER. Another objective is to compare the proposed sub-optimal receiver in 

two different channels: Additive White Gaussian Noise (AWGN) Vs. Frequency-selective. Finally, an 

FWA variant is proposed to try to reduce the complexity of the algorithm. For these purposes, all the 

practical aspects of this thesis will be simulated in the Matlab software. 
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2 Nonlinear OFDM 

This chapter begins by describing the fundamentals of the OFDM transmission technique and 

its several applications in today’s world. Section 2.2 discusses the PAPR problems of OFDM 

transmission and some techniques that help solve these problems. Yet, these techniques create another 

problem: Strong nonlinear distortion effects. Section 2.3 concludes this chapter by presenting a sub-

optimal receiver that can deal with OFDM signals with strong nonlinear distortion effects. 

 

2.1 OFDM fundamentals and applications 

OFDM is a multicarrier transmission technique that divides a high data rate stream, placing 

them onto many low rate parallel subcarriers orthogonal to each other. Thus, each subcarrier occupies 

less bandwidth. Since 𝑇! =
!
!!

, the symbol duration increases, which makes OFDM schemes less 

sensitive to multipath delay spread [6] [15]. In Figure 2.1, it is possible to see the difference in spectral 

efficiency between OFDM and Frequency Division-Multiplexing (FDM). 

 

 

 

Figure 2.1 - a.) FDM b.) OFDM; source: [16]. 
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An OFDM signal also offers robustness against selective fading, because, in the presence of 

interference in certain frequencies, the multicarrier system ensures that only a few subcarriers will be 

affected. Another advantage of OFDM is its resilience against Inter-symbol Interference (ISI). When 

the data is being transmitted at high rate, the bandwidth of the signal may exceed the coherence 

bandwidth of the channel, being the bandwidth over which the channel transfer function remains flat, 

causing distortion in the signal and, consequently, ISI. To deal with this problem, a guard band is 

added to all OFDM symbols. This guard band, called cyclic prefix (CP), consists in a part of the end of 

the OFDM symbol that is copied and inserted at the beginning of the next OFDM symbol in time 

domain. Figure 2.2 shows the OFDM symbol with CP. 

 

 

 

 

Figure 2.2 - OFDM symbol with cyclic prefix in time domain; source: [15]. 

 

 

The main concept in OFDM is the orthogonality of the subcarriers. The orthogonality between 

the subcarriers allows them to be partially overlapped to each other without interference. This is, for 

sure, one of the best advantages that OFDM can offer: spectral efficiency. By only using an Inverse 

Fast Fourier Transform (IFFT) for modulation, the spacing between the subcarriers is implicitly 

chosen in such a way that the frequency the received signal is being evaluated at, all the other signals 

are zero [7]. Figure 2.3 shows the orthogonal subcarriers in frequency and time domain. 
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Figure 2.3 - a.) Spectrum of orthogonal subcarriers; b.) Time domain representation of 
orthogonal subcarriers; source: [17]. 

In order to obtain a better understanding of the OFDM scheme structure, Figure 2.4 shows a 

general OFDM scheme. This scheme is composed by the transmission block and a receiver block. 

Both blocks have the same structure but work in reverse order. 

In OFDM transmission, the data stream of input bits is converted from serial to parallel and, in 

the next block, each parallel subcarrier is mapped into symbols in a process called modulation. 

Subsequently, the inverse discrete Fourier transform (IDFT) block will convert the modulated 

subcarriers to time domain samples. The modulated subcarriers in frequency domain are represented 

by {𝑆!;  𝑘 = 0, 1,… ,𝑀𝑁 − 1} and the time domain samples of the OFDM symbols by its IDFT 

{𝑆! = 𝐼𝐷𝐹𝑇 𝑆!; 𝑛 = 0, 1,… ,𝑀𝑁 − 1}, where M is the oversampling factor and N the number of 

subcarriers. Already in the time domain, the OFDM signal is converted back to serial and, thereafter, 

the CP is added. The OFDM signal is converted from digital to analog through a Digital-to-Analog 

Converter (DAC). Finally, the OFDM signal is amplified by a High-Power Amplifier (HPA), which, 

in this case and for the purpose of this thesis, has a nonlinear behavior, which will be explained in 

detail in 2.2, and transmitted to the channel. In the receiver, as already mentioned above, the OFDM 

signal goes through the same process in the transmission block but in reverse. 
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Figure 2.4 - General OFDM scheme. 

 

In the 1990’s, OFDM was exploited for wideband communications and, currently, it’s used in 

several systems and applications that are part of people’s daily lives, such as: 

 

• Digital Video Broadcasting (DVB) 

• Wireless Personal Area Network (WPAN) access technologies IEEE 802.15.1/2/3  

• Fourth generation networks as Long-Term Evolution (LTE) 

 

The OFDM transmission technique offers not only advantages over spectral efficiency with 

high-data rates, but also robustness against selective fading and multipath delay spread, which makes 

this multicarrier modulation a major candidate for the fifth generation of wireless systems and 

communications [8].   
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2.2 Nonlinear OFDM problems 

Despite the advantages that OFDM can offer, there are some obstacles to using this 

modulation scheme. One key problem of the OFDM signals is its high envelope fluctuations in time 

domain, which make them very sensitive to nonlinear distortion effects (Figure 2.5).  

 

 

Figure 2.5 - OFDM signal envelope; source: [19]. 

However, the main source of nonlinear distortions is usually created by radio frequency (RF) 

amplifiers that deal with these high peaks, which leads to amplifications difficulties and, most 

important, to high power consumption. 

The most classic and widely used metric to quantify the envelope fluctuations is the PAPR [9]. 

The PAPR is the relation between the maximum power of a sample in a certain OFDM transmitted 

symbol divided by the average power of that same OFDM symbol. Large PAPR occurs when the 

OFDM subcarriers are in-phase with each other. So, an OFDM signal consists of independently 

modulated subcarriers that, when added coherently, give a large PAPR. In fact, when N subcarriers are 
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added, they produce a peak power N times the average power, which leads to a very large PAPR and, 

consequently, making OFDM signals very prone to nonlinear distortion effects [3]. 

Several solutions were proposed in order to reduce the PAPR of the OFDM signals. One of the 

simplest solutions to deal with this problem is the clipping and filtering technique, which basically 

clips the OFDM signal before amplification. It was shown [10] that the lower the clipping ratio (CR) 

is, the greater the reduction in PAPR becomes. However, the clipping technique is a nonlinear process 

that may cause in-band signal distortion, resulting in BER performance degradation, and out-of-band 

noise, which reduces spectral efficiency. Filtering after clipping can reduce out-of-band noise but may 

also cause some peak re-growth. Thus, small clipping ratios reduce the effects of PAPR but, in 

contrast, increase nonlinear distortion effects. Other techniques without nonlinear operations were 

proposed in order to reduce PAPR effects in OFDM signals, such as Selective Mapping (SLM) and 

Partial Transmit Sequence (PTS) [11]. There are some differences between these techniques but, in 

general terms, both scramble an input data block of the OFDM symbols and transmit one of them with 

the minimum PAPR in order to reduce the probability of high PAPR. However, the computational 

complexity required for these techniques is extremely high, which is, for practical reasons, 

undesirable. Therefore, it is preferable to deal with nonlinear distortion effects than deal with high 

complexities. 

Let us consider a nonlinear OFDM transmission. Taking the scheme shown in Figure 2.4 into 

account, the real and imaginary parts of OFDM time domain samples 𝑆! can be modeled by a 

Gaussian random variable 𝑆 ~ 𝒩 (0,𝜎!), whose variance is 𝜎! = 1/𝑁𝑀!. An OFDM signal has an 

approximately Gaussian distribution when N is sufficiently large. Therefore, the absolute value of the 

random variables {𝑟! = 𝑆! ; 𝑛 = 0, 1,… ,𝑀𝑁 − 1} has Rayleigh distribution, i.e., 

 

𝑝 𝑟 =
𝑟
𝜎!
𝑒
!!!
!!! ,    𝑟 > 0                (1) 

 

Before the signal amplification, the time domain signal is submitted to an envelope clipping, 

which is modeled as a band-pass memoryless nonlinearity and represented by 

𝑓 𝑆! = 𝐴 (𝑟!)𝑒(! !"# !! ), where 𝐴 (𝑟!) is the amplitude modulation/amplitude modulation 

(AM/AM) conversion function [2], 

 

               𝐴 𝑟! = 𝑟!,         𝑟! ≤   𝑆!
𝑆! ,       𝑟! >   𝑆!

    ,         (2)  
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, where 𝑆! is the clipping level. At the clipping output, the time domain samples of the nonlinearly 

distorted OFDM signal can be written as {𝑦! = 𝑓 𝑆! ;  𝑛 = 0, 1,… ,𝑀𝑁 − 1}. Due to the Gaussian-

like nature of OFDM signals, the Bussgang theorem [18] is applicable. The theorem states that the 

cross-correlation of a Gaussian-signal before and after it passes through a nonlinear component is 

proportional. Therefore, the nonlinearly distorted OFDM signal can be expressed as, 

 

 

𝑦! = 𝑓 𝑆! = 𝛼𝑆! + 𝑑! ,         (3) 

 

, where {𝑑!;  𝑛 = 0, 1,… ,𝑀𝑁 − 1} are the nonlinear distortion terms and 𝛼 is the scale factor given by 

𝛼 = 𝔼 !!!!∗]
𝔼 |!!|!]

. In the receiver, by applying a discrete Fourier Transform (DFT) to {𝑦! = 𝑓 𝑆! ;  𝑛 =

0, 1,… ,𝑀𝑁 − 1}, {𝑌!;  𝑘 = 0, 1,… ,𝑀𝑁 − 1} is obtained and, for the 𝑘!! subcarrier, 

 

𝑌! =  𝛼𝑆! + 𝐷!  ,           (4) 

 

, where {𝐷!;  𝑘 = 0, 1,… ,𝑀𝑁 − 1} are the frequency domain distortion terms. Since 𝛼 < 1, the 

received frequency domain block, 𝑆!, is shrunk compared to the original signal and distorted by 

“additive noise” terms {𝐷!;  𝑘 = 0, 1,… ,𝑀𝑁 − 1}, which can lead to a large performance degradation. 

In the following section, a sub-optimal receiver based on the FWA is presented in order to counteract 

the nonlinearities caused by signal clipping. 

 

 

 

2.3 FWA-based sub-optimal receiver 

As mentioned in section 1.1, it was recently shown that OFDM signals with strong nonlinear 

distortion effects do not necessarily degrade the BER performance, because the nonlinear component 

has, in fact, some information on the transmitted signals that can be used to reduce performance 

degradation [12]. Surprisingly, nonlinear OFDM schemes can outperform linear OFDM schemes 

when optimal receivers are employed, such as the ML receiver [13] [14]. However, the optimal 

receivers are extremely complex and require a very large computer effort. Therefore, it was necessary 
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to approach the optimal performances of nonlinear OFDM schemes without all the inherent 

complexities of the optimal receivers. 

The optimal receivers’ goal is to find the possible transmitted sequence that minimize the 

squared Euclidean distance (SED) relative to the received signal. However, the main problem of the 

optimal receivers is the lack of optimization when searching that transmitted sequence. So, to solve 

this problem, an FWA-based, sub-optimal receiver for nonlinear OFDM schemes was recently 

proposed [2].  

Basically, the FWA is an iterative algorithm that consists of two phases: 1) the selection 

strategy phase and 2) the explosions phase. At first, P fireworks (possible transmitted sequences) are 

“strategically” selected from the search space s (set of all possible transmitted sequences). After the 

selection of the fireworks, we have a set of explosions. In each explosion, both amplitude (number of 

different bits) and the number of generated sparks associated with a given firework are defined by its 

SED, in other words, by its fitness value.  

The number of generated sparks and their amplitudes play a pivotal role in this algorithm. 

While in the case of the number of explosions it becomes possible to exploit the search space S more 

than once (depending on the number of explosions), the sparks and their amplitude can be interpreted 

as a quality control, indicating whether the firework has a good fitness value or not. A good firework 

means that the explosion occurred in a location close to the optimal location of the transmitted signal. 

Thus, in the presence of a good firework, the use of more sparks with small amplitudes is appropriate 

because the solution is nearby. A bad firework means the optimal location may be far away from the 

location where the explosion occurred. Contrary to a good firework, a bad firework produces less 

sparks and larger amplitudes [2]. Figure 2.6 shows the two types of explosions that can occur. 

Therefore, this algorithm has the advantage of exploring the search space and, at the same time, it 

discards the fireworks with worse fitness values. So, with the FWA, it is possible to reduce the 

computational complexities of the optimal receivers. 
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Figure 2.6 – a.) Good Firework; b.) Bad Firework; source: [4]. 

 

In a more detailed explanation of this algorithm, as it was mentioned before, the first stage of 

FWA is the selection of the initial fireworks. There are many ways to select the initial fireworks but, in 

this study, the first firework is always the hard-decision sequence 𝑆!, which is the sequence associated 

with the conventional receivers. The hard decision mentioned is related to the detection at the level of 

each subcarrier (subcarrier to subcarrier detection). After estimating the data of all the subcarriers, we 

get a sequence called “hard-decision”, being one of the sequences analyzed by sub-optimal detection. 

The rest of the initial fireworks are composed of 𝑁!"#  variations of 1-bit and Δ𝑝 random variations of 

B bits of the hard sequence. Therefore, 𝑃 = 𝑁!"# + 𝛥! + 1. The second stage of FWA is the 

explosions. For each explosion, both the number of sparks and their amplitudes (number of different 

bits) associated with any firework 𝑝 {𝑆!
(!);  𝑘 = 0, 1,… ,𝑀𝑁 − 1} are generated according to its fitness 

value, which is given by its SED relative to the received signal, i.e.,  

 

𝐷!! = |𝑌! − 𝑌!
(!)|!

!"!!

!!!

 ,          (5) 

 

where {𝑌!
(!);  𝑘 = 0, 1,… ,𝑀𝑁 − 1} is the nonlinear distorted version of {𝑆!

(!);  𝑘 = 0, 1,… ,𝑀𝑁 − 1}. 

In the same explosion and for each firework, its SED is compared to the distance of the generated 

sparks, saving the new firework as the spark with the lower SED. In the next explosion, the sparks and 

their amplitudes are generated through the same process, but the new fireworks may have smaller SED 
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compared to the old ones. The cycle continues until the round of explosions is over. After a more 

detailed explanation on the operation of the algorithm, there are two things that should be emphasized: 

1) the more explosions occur, the more likely it is to find the best possible firework; 2) the greater the 

variation in the number of sparks and their amplitudes is, the greater the differentiation between a 

good and a bad firework may be, allowing the desired transmitted sequence more easily.   

In [2] it is concluded that the FWA technique applied to OFDM signals with strong nonlinear 

distortion effects allows better BER performances, compared to linear OFDM schemes, as well as low 

complexity. 
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3 FWA-Based Detection for Nonlinear OFDM 

This chapter is meant to study the impact of variation of Fireworks algorithm parameters on 

BER performance. In addition, the BER performance of this sub-optimal receiver will always be 

compared with the performance for the linear case and also for the nonlinear case but with 

conventional receivers. The table below presents the FWA parameters to be studied: 

 

FWA parameter Description of parameters 

E Number of explosions. 

𝜟𝑷 

Variation in the number of fireworks. It is the 

only variable that varies in 𝑃 = 𝑁!"# + 𝛥! + 1, 

being 𝑁!"# a fixed value. 

B 
Number of bits of the hard-decision sequence to 

be randomly changed. 

𝜟𝑾 
Maximum variation of the number of sparks 

relative to the minimum number of sparks. 

𝜟𝑨 
Maximum variation of the amplitude of sparks 

relative to the minimum amplitude of sparks. 

Table 3. 1 - FWA parameters and their description. 

 

 

Each time a parameter is studied, all other parameters are reduced to the minimum in order to 

obtain its real impact on BER performance results of this FWA-based, sub-optimal receiver. Both the 

following results and those of chapter 4 were obtained through Monte Carlo simulations, where both 

perfect channel estimation and perfect frequency and time synchronization are assumed. For each 

Monte Carlo slot, the bit errors for the two nonlinear cases are counted, varying !!
!!

 from 1 to 15, 

resulting in a BER plot composed by all bit error probabilities (!!
!!

 functions) occurred during the 

Monte Carlo simulations. Unless otherwise stated, we consider OFDM signals with Quadrature Phase-
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Shift Keying Modulation (QPSK) modulation transmitted over an AWGN channel with N = 128 useful 

subcarriers, oversampling factor M = 4 and a normalized clipping level 𝑆! 𝜎  =  1.0. Since this 

variance is not constant, normalization of the clipping level is obtained by the variance of the OFDM 

signal. A change, for example, in the number of subcarriers N, causes 𝜎 to vary, which, in turn, 

changes the power of the OFDM signal, making it imperative to have such normalization in order to 

have a “fair” clipping level for all the cases. The minimum number and amplitude of the sparks 

generated in each explosion are unitary, i.e., 𝐴!"#  = 𝑊!"# = 1, and they are the only parameters that 

do not change during the entire study. 

 

 

 

3.1 Explosions 

 

One of the most important parameters of FWA is the explosions parameter. The explosions 

allow to determine, through the variation of the amplitude and the number of generated sparks, if the 

firework associated with these variations has a good fitness value or not, according to its SED to the 

received signal. More important than the explosion itself is the number of the explosions. The greater 

the number of explosions is, the greater is the possibility that the algorithm finds the best sequence 

according to its fitness value, having the capacity to deeply explore the search space and, at the same 

time, to prevent the sub-optimal receiver from an early convergence. However, the increase in the 

number of explosions also entails an increase in the complexity and duration of the algorithm. That 

being so, it is necessary to study what the best trade-off between performance and complexity will be. 

Considering the importance of this parameter in the fireworks algorithm, it was necessary to 

verify how the BER performance varies according to the number of explosions applied. Therefore, 

Figure 3.1 shows the BER performance results of the FWA-based, sub-optimal receiver when different 

numbers of explosions are considered and with all other parameters reduced to the minimum, plus the 

BER performance of a linear OFDM receiver for comparison purposes. 
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Figure 3.1 - Sub-optimal receiver’s BER when 𝐸 = 1, E = 10,𝐸 = 20 and E = 30.  

Considering the performance results shown in the figure above are just the result of the 

variation in the number of explosions, it is expected not to reach the full potential of the FWA. Even 

so, it was possible to obtain interesting results. Looking at the three curves that represent the variation 

in the number of explosions, the one that stands out is the curve associated with the 30 explosions, 

which corresponds to the pink color. Although not the best curve for all Signal-to-Noise Ratio (SNR) 

values due to the minimization of the remaining parameters, it gives good results especially for high 

SNR values. At 𝑃! = 10!!, it can reach approximately 8.8 dB, having a performance gain of 1 dB 

compared to the curve associated with 𝐸 =  1. 

Even though E is probably the most important parameter of the FWA, the results shown in the 

previous figure prove that the “help” of the other parameters is necessary to demonstrate the real effect 



 

 

16 

 

 

 

in BER performance when a considerable increase in the number of explosions is applied to the 

algorithm. 

 

 

3.2 Fireworks 

 

As it was mentioned in section 2.3, 𝑃 fireworks are the possible transmitted sequences, and 

the initial selected fireworks considered are: the hard-decision sequence (𝑆!), 𝑁!"# variations of 1-bit 

of 𝑆! and 𝛥! random variations of B bits of 𝑆!. In the following figures, BER performance results of 

the impact of FWA receivers considering different values of 𝛥! are shown and compared to the case 

of a linear OFDM transmission and a nonlinear OFDM transmission with conventional receiver. 

 

 

Figure 3.2 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 10,𝐵 = 1,𝛥! = 1 and 𝛥𝐴 = 1. 
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Figure 3.2 shows the performance of the FWA-based, sub-optimal receiver when 𝐸 = 1,𝛥! =

10,𝐵 = 1,𝛥! = 1 and 𝛥! = 1. The first value for Δ𝑝 is relatively small but it still allows some 

variety to the initial fireworks. Even with all other parameters reduced to 1, with special emphasis on 

the explosions parameter, the performance relative to the sub-optimal receiver with FWA is better than 

the performance associated with the conventional receivers. At 𝑃! = 10!!, the SNR is 10.2 dB, 

whereas the performance gain in relation to those conventional receivers is approximately 2.4 dB.  

 

Figure 3.3 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 1,𝛥! = 1 and 𝛥𝐴 = 1. 

 

When the 𝛥! parameter is increased to 50, there is no improvement in the performance gain 

over conventional receivers, as shown in Figure 3.3. Now with 𝛥! = 50, the performance gain reaches 

again 2.4 dB. However, for high SNR values, there is a slight improvement comparing to Figure 3.2. 
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Figure 3.4 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 100,𝐵 = 1,𝛥! = 1 and 𝛥𝐴 = 1. 

In the case of Figure 3.4, where Δ𝑝 has been increased 2 times (𝛥! = 100) in relation to the 

value of the previous figure, it is possible to detect a considerable improvement in BER performance. 

When 𝛥! = 100, the sub-optimal receiver performance gain relative to the conventional receiver 

curve, at 𝑃! = 10!!, reaches 3 dB, registering an increase of 0.6 dB compared to the two previous 

cases. In Figure 3.5, 𝛥! increases up to double (𝛥! = 200). 
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Figure 3.5 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 200,𝐵 = 1,𝛥! = 1 and 𝛥𝐴 = 1. 

Comparing the BER performance results when Δ𝑝 = 100 with the results when 𝛥! = 200, the 

performance gain increased at 𝑃! = 10!!, being 3.1 dB.  

With the increase in the number of fireworks, the possibility of having a firework with a good 

fitness value grows. However, the amount of fireworks with a bad fitness value also grows, which 

indicates that increasing the number of fireworks without raising the rest of the parameters can be 

inefficient. This scenario can be interpreted as a way to find the best possible transmitted sequence 

amongst hundreds of sequences but in only an attempt and the maximum of two hints for trying to find 

the next sequence, making the analogy to the fact that the fireworks algorithm is exploding only once 

and generating a maximum of two sparks per firework. 

The results obtained from this variation initially made to the Δ𝑝 parameter prove what was 

mentioned in the paragraph above. If only the number of fireworks increases and all other parameters 

keep to the minimum, the performance gain will barely be affected. Both increases and decreases in 
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gain registered in the last four figures are due to the fact that the algorithm is fortunate or not to find 

fireworks with good fitness value, taking into account that only one explosion is being carried out. 

Therefore, it is clear that only one explosion is not enough to deal with so many fireworks and the 

need to increase the number of explosions turns essential to better explore the search space S, which 

contains all the possible transmitted sequences. In what concerns the other parameters, they will be 

dealt later, remaining minimized. 

In the next three figures, the 𝛥! parameter will vary again but differently: the explosions 

parameter is no longer kept to a minimum and is also varied without changing the other parameters.  

 

Figure 3.6 - Sub-optimal receiver’s BER when 𝐸 = 3,𝛥! = 10,𝐵 = 1,𝛥! = 1 and 𝛥𝐴 = 1. 

Figure 3.6 shows the BER performance of this sub-optimal receiver when 𝛥! = 10 but with 

𝐸 = 3. The distinction between BER performances of Figure 3.2 and the Figure 3.6 becomes evident. 

At 𝑃! = 10!!, the performance gain over conventional receivers is, approximately, 3.3 dB, which is 

almost 1 dB better than the gain in Figure 3.2. Taking into account the improvement in BER 
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performance with the increase in the number of explosions from one to three, it is expected that a 

greater increase in the same parameter will benefit its performance. So, the next figure shows the 

performance results of varying 𝛥! from 10 to 100 and E from 3 to 5. 

 

 

Figure 3.7 - Sub-optimal receiver’s BER when 𝐸 = 5,𝛥! = 100,𝐵 = 1,𝛥! = 1 and 𝛥𝐴 = 1. 

Figure 3.7 shows the performance results of the proposed sub-optimal receiver when 

𝐸 = 5,𝛥! = 100,𝐵 = 1,𝛥! = 1 and 𝛥! = 1. For this simulation, it was decided to increase the 

number of fireworks a bit more than the number of explosions relative to the value of those same 

parameters used in Figure 3.6. While 𝛥! increased 10 times, as it was made in Figure 3.4, the number 

of explosions only increased from 3 to 5. Now, at 𝑃! = 10!!, the performance gain over conventional 

receivers is 2.8 dB, which is 0.5 dB lower than when 𝐸 = 3 and 𝛥! = 10. Compared to Figure 3.6, the 

disproportionate increase previously achieved in the parameters in question minimized the effect of 

the small increase in the number of explosions in BER performance. So, for the next simulation, both 
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parameters will be increased to double the value they already had, more specifically 𝛥𝑝 = 200 and 

𝐸 =  10. 

 

Figure 3.8 - Sub-optimal receiver’s BER when 𝐸 = 10,𝛥! = 200,𝐵 = 1,𝛥! = 1 and 𝛥𝐴 = 1. 

The BER performance result of this sub-optimal receiver shown in Figure 3.8 improved a little 

compared to the one in the last figure. At 𝑃! = 10!!, the performance gain over the conventional 

receiver is approximately 3 dB, only 0.2 dB above when 𝐸 = 5 and 𝛥! = 10. However, this gain does 

not exceed the gain obtained in Figure 3.6. Even with ten explosions, the high number of 𝛥! prevented 

a large increase in gain, becoming exaggerated for the situation, not to mention the small influence of 

the other parameters derived from their minimization. At the end of the study of the impact of 

variation in the number of fireworks, and considering the benefits in increasing the number of 

explosions, it is possible to verify that only varying the 𝛥! parameter does not have as great relevance 

as when also varying E. Nonetheless, a good conjugation in the variation of these two parameters can 

result in a better performance of the BER, further decreasing the value of 𝛥! and, on the contrary, 
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increasing even more the number of explosions. From now on and for the rest of the simulations in 

this section, except when it is purposely varied, 𝛥! = 50. 

 

3.2.1 B bits variation of the hard-decision sequence 

In this subsection, parameter B will be varied as well, in order to increase diversity in the initial 

fireworks, by randomly varying B bits corresponding to the hard-decision sequence. For this 

parameter, three simulations of this sub-optimal receiver will be performed: first one with 𝐵 =  5, 

second one with 𝐵 =  20 and the third one with 𝐵 =  20 and 𝐸 =  10. All parameters are minimized 

except 𝛥!, which will be, from now on, 𝛥! = 50. 

 

Figure 3.9 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 5,𝛥! = 1 and 𝛥𝐴 = 1. 
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By checking the result of BER performance of Figure 3.9, it is natural that the first comparison 

to be made is with the case of Figure 3.3, where the same values of the parameters are applied, except, 

of course, for parameter B. In relation to performance gains over conventional receivers, at 𝑃! =

10!!, the situation did not change very much, being at 2.5 dB. The random variation of only 5-bit 

made to the hard-decision sequence, which is introduced in the selected initial fireworks, was not 

shown to be ideal for a greater performance gain. It should also be borne in mind that increasing the 

number of explosions boosts all other parameters. However, for the next figure, the impact of 

parameter B will continue to be tested without making any change in the number of explosions. 

 

Figure 3.10 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 20,𝛥! = 1 and 
𝛥𝐴 = 1. 

The performance gain shown in Figure 3.10, for the same bit error probability and when 

𝐵 = 20, reaches 3.1 dB, which is 0.6 dB above the SNR value for 𝐵 = 5 and 0.7 dB more than the 

gain registered for when 𝐵 = 1, 𝐸 = 1 and 𝛥! = 50 (Fig. 3.3). Even if the introduction of more 
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diversity, varying 20 bits instead of 5, gave rise to positive results, it is expected that the increase in 

the number of explosions will greatly improve BER performance, which can be visualized through 

Figure 3.11. 

 

 

Figure 3.11 - Sub-optimal receiver’s BER when 𝐸 = 10,𝛥! = 50,𝐵 = 20,𝛥! = 1 and 𝛥𝐴 = 1. 

Figure 3.11 shows the sub-optimal BER when 𝐵 = 20 and 𝐸 = 10. From the figure a 

performance gain of 4.3 dB over conventional receivers can be observed, which is the highest gain so 

far. The combination between a high number of explosions and a low number of 𝛥! with a high 

number of bits to be randomly changed relative to the hard-decision sequence becomes a good 

solution to obtain great performance gains. However, in order to release the full potential of the FWA, 

it is necessary to vary the number of sparks as well, hoping that a greater differentiation between what 

is a good or a bad firework, caused by that same variation, will benefit the performance of BER. 
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3.3 Sparks 

 

The next parameter to be studied is the sparks one, more precisely their variation (𝛥!) relative 

to the minimum number of sparks associated with each explosion, which, for this thesis, is always 

𝑊 =  1.  The sparks are probably the second most important parameter besides explosions. As it was 

mentioned before, the number of sparks generated by each explosion is given by the minimum SED of 

the previous fireworks. Figure 3.12 shows a more intuitive way of perceiving the purpose and 

importance of sparks in the system. 

 

 

 

Figure 3.12 - Selection of initial fireworks, explosion and selection of the next fireworks made 
out of the sparks with the lower SED 

From Figure 3.12, it is possible to verify the importance of the number of sparks in the 

algorithm. If the maximum variation of the number of sparks (𝛥!) in relation to their minimum value 

(𝑊!"# = 1) is small, for example 𝛥! = 1, which is the value that was used, the maximum number of 
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sparks generated in each explosion and for each firework will only be two. Therefore, with a 

maximum of two sparks generated for each firework, in each explosion, the difference between a good 

and a bad firework will not be enlightening, which means that the algorithm does not select the 

following firework with the highest accuracy. For example, if the algorithm manages to find a 

firework with an excellent fitness value but only two sparks are generated, the difference from this 

firework and the fireworks with only a good fitness value will be very little. So, the trend will always 

be to have a considerable 𝛥! value that does not limit the differentiation between a good and a bad 

firework. 

 As it happened in the study of the impact of the variation in the number of fireworks, a 

variation of the 𝛥! will be firstly chosen with all other parameters equal to one, except the 𝛥! that 

will always be 50 until the end of this chapter. Then, the same variation of the 𝛥! will be repeated but 

with the number of explosions varying at the same time. 

Therefore, the next three figures will show the BER performance results when 𝛥! is 5, 10 and 

20, respectively. 

 

Figure 3.13 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 1,𝛥! = 5 and 𝛥𝐴 = 1. 
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Figure 3.13 shows the BER performance results of the proposed FWA-based, sub-optimal 

receiver when 𝐸 = 1,𝛥! = 50,𝐵 = 1,Δ𝑊 = 5 and 𝛥! = 1. At 𝑃! = 10!!, the performance gain over 

the conventional receivers is, approximately, 2.1 dB.  

 

Figure 3.14 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 1,𝛥! = 10 and 𝛥𝐴 = 1. 

In Figure 3.14, when 𝛥! = 10, it is possible to analyse an evolution in BER performance 

compared to the results obtained in the previous figure. Now, when 𝑃! = 10!!, the performance gain 

reaches 2.4 dB, which is 0.3 dB above the performance results when 𝛥! = 5. The following figure 

will show what happens to BER performance when 𝛥! parameter is changed to 20.  
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Figure 3.15 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 1,𝛥! = 20 and 𝛥𝐴  =
1. 

 

Comparing these last three figures with their counterparts in the fireworks study (Figure 3.6, 

Figure 3.7 and Figure 3.8), it is shown that the increase of 𝛥! has the potential to greatly benefit BER 

performance. However, the performance gain recorded in these first 𝛥! variations was not that great, 

and, in case of Figure 3.13, it was even worse than in Figure 3.6 when 𝛥! = 50 and 𝛥! = 1. Even if 

the variation of 𝛥!, in general, showed better results than the 𝛥! variation, the importance of sparks 

was not fully verified, because the number of sparks is not the only parameter that determines the 

firework quality. The amplitude of the sparks, which will be studied in the next subsection, is also an 

influential element in this aspect. This reason also explains the strange result of Figure 3.15 where, for 

the same bit error probability, there are two gains. The total discrepancy between 𝛥! and 𝛥! caused 
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instability in the algorithm, which did not know how to perfectly distinguish, at a certain point, the 

difference between a good and a bad firework. 

Considering the results obtained so far in the study of the impact of sparks variation, it is 

imperative that the variation of this parameter is also accompanied by a variation in the amplitude of 

sparks. Nevertheless, before 𝛥! parameter is introduced, the impact of the variation in the number of 

sparks will also be studied while the number of explosions is also changed, as it was done for the other 

parameters. Repeating the same process carried out in 3.1.2, three BER graphs will be simulated with 

𝛥! = 5 and 𝐸 =  3, 𝛥! = 10 𝐸 =  5, 𝛥! = 20 and 𝐸 =  10, respectively. 

 

 

Figure 3.16 - Sub-optimal receiver’s BER when 𝐸 = 3,𝛥! = 50,𝐵 = 1,𝛥! = 5 and 𝛥𝐴 = 1. 

Comparing the results shown in Figure 3.16 with those in Figure 3.13, it is concluded that the 

increase in the number of explosions significantly improve BER performance, reaching an increase of 
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2.3 dB to the performance gain observed in the case of Figure 3.13, at 𝑃! = 10!!. Even knowing that 

the algorithm, at this stage, does not differentiate the quality of fireworks perfectly, it is possible to 

conclude that by increasing the number of explosions, the variation in the number of sparks has a very 

great potential for improving BER performance.  

As previously mentioned, the second case in this series of figures, which also combines both 

the variation in the number of explosions and the maximum variation in the number of sparks 

generated with respect to its minimum value, is when 𝛥! = 10 and 𝐸 =  5. 

 

 

Figure 3.17 - Sub-optimal receiver’s BER when 𝐸 = 5,𝛥! = 50,𝐵 = 1,𝛥! = 10 and 𝛥𝐴 = 1. 

Figure 3.17 shows a slight improvement in the overall gain, however, at 𝑃! = 10!!, the 

performance gain over conventional receivers didn’t get better, quite the contrary. With the increase of 

the two parameters in relation to those in Figure 3.16, a lower gain was obtained, decreasing from 4.1 
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to 3.7 dB. Even so, the relevance of the number of explosions applied to the algorithm continues to 

leave its mark, always registering better results than when 𝐸 =  1. The last figure will demonstrate 

what happens when 𝛥! = 20 and 𝐸 =  10. 

 

Figure 3.18 - Sub-optimal receiver’s BER when 𝐸 = 10,𝛥! = 50,𝐵 = 1,𝛥! = 20 and 𝛥𝐴 = 1. 

 

The Figure above shows the sub-optimal receiver’s BER when 𝐸 = 10,𝛥! = 50,𝐵 =

1,𝛥! = 20 and 𝛥! = 1. The performance gain achieved is huge, reaching 5 dB, which is the best so 

far. Yet, from 9 to 14 dB, due to the minimization of the rest of the parameters, the sub-optimal 

receiver clearly degrades. Comparing it with the gain of Figure 3.8, where 𝛥! = 200, E = 10 and 

𝛥! = 1, it is definitively concluded that the number of sparks applied into the algorithm is much more 

preponderant than the variation in the number of fireworks. Even taking into account that there is still 

another parameter that helps to better determine the firework quality, it is concluded that it is 
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preferable to apply an intermediate 𝛥! value together with a high 𝛥! value, like Figure 3.18, than to 

exaggeratedly increase 𝛥! and minimize 𝛥!, which is the situation in Figure 3.8. 

 

 

 

3.3.1 Maximum variation (𝜟𝑨) relative to the minimum amplitude of sparks 

 

 

𝛥! parameter is one of two sparks parameters that also help the algorithm to better distinguish 

a good firework from a bad one. If a firework generates a lot of sparks with small amplitudes, it is 

considered to be a firework with good fitness value or, in other words, with a small SED relative to the 

received signal, as it was mentioned before. Taking the results obtained into consideration when only 

the number of sparks was varied, it does not make sense in this study to only vary the amplitude of the 

sparks. The idea, in this case, is to vary both the number of sparks and their amplitudes, in order to 

obtain better BER performance results. Therefore, the next three figures will show the sub-optimal 

receiver’s BER performance results when 𝛥! = 5 and 𝛥! = 5, 𝛥! = 10 and 𝛥! = 5, 𝛥! = 15 and 

𝛥! = 10, respectively, with the number of explosions reduced to one. In addition, B will be 

incremented to five in order to add more diversity to the fireworks. 
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Figure 3.19 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 5,𝛥! = 5 and 𝛥𝐴 = 5. 

Comparing Figure 3.19 to Figure 3.13, when 𝛥! = 1, the performance gain over conventional 

receivers, at 𝑃! = 10!!, increased to 2.5 dB, which is a difference of 0.4 dB. An overall gain 

improvement of 6 dB can be seen through the comparison of these two figures. Even though the 

performance gain didn’t increase considerably with the last variation of parameters, it was proven that 

the simultaneous variation between 𝛥! and 𝛥! helps the algorithm choose the next firework better. 
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Figure 3.20 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 5,𝛥! = 10 and 𝛥𝐴 = 5.  

Figure 3.20 shows that increasing the maximum number of sparks generated by each firework 

to its double while maintaining its maximum range variation benefits the overall performance gain. 

Now, at 𝑃! = 10!!, the gain over conventional receivers is 2.8 dB. 
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Figure 3.21 - Sub-optimal receiver’s BER when 𝐸 = 1,𝛥! = 50,𝐵 = 5,𝛥! = 15 and 
𝛥𝐴 = 10.  

In Figure 3.21, 𝛥! and 𝛥! were incremented to 10 and 15, respectively. It is observed that the 

performance gain for the same bit error probability is equal to the previous one. At this stage, the 

number of explosions must be increased again at the same time 𝛥! and 𝛥! are varied, in order to 

increase the chances of finding fireworks with better fitness values. 
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Figure 3.22 - Sub-optimal receiver’s BER when 𝐸 = 5,𝛥! = 50,𝐵 = 5,𝛥! = 5 and 𝛥𝐴 = 5. 

By adopting the same combination of parameters used in Figure 3.19, except for the variation 

in the number of explosions from 1 to 5, in Figure 3.22, it is possible to observe the important impact 

that this variance has on BER. At 𝑃! = 10!!, the performance gain increases by 1 dB compared to the 

situation in Figure 3.19. 

Previous results showed that the right combination of parameters is often more important than 

simply increasing them in the same proportion. Therefore, for the next figure, both the number of 

explosions and the maximum number of sparks generated will be increased to 10, while the maximum 

variation of amplitude remains the same value used in the latter case, just like the other parameters. 
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Figure 3.23 - Sub-optimal receiver’s BER when 𝐸 = 10,𝛥! = 50,𝐵 = 5,𝛥! = 10 and 𝛥𝐴 = 5. 

This sub-optimal receiver’s BER performance results shown in Figure 3.23 demonstrate that 

the combination of parameters chosen is much better than the previous one. Even though at 𝑃! = 10!! 

the gain over conventional receivers only increased 0.5 dB from the previous figure, the overall gain 

was much better. It is also important to point out the small difference in relation to the linear curve, 

being, for the same probability of error, 1.2 dB, which is an excellent result. 

At the end of the study of the impact of each parameter, there are a few things to point out: the 

number of explosions is, by far, the parameter that most influences BER performance. On the 

contrary, the number of fireworks applied to the algorithm is the least influential one. Even if an 

increase of diversity (B) in fireworks benefits BER, it is a parameter that depends a lot on the 

combination adopted for the other parameters. The second most important element of the algorithm is 

the sparks that, as previously mentioned, are divided into two parameters (𝛥! and Δ𝑊) that test the 

firework quality. A good combination of 𝛥!, 𝛥! and E generates excellent results in terms of 

performance gain, both in relation to the curve for conventional nonlinear OFDM receivers and the 

curve corresponding to the linear OFDM receiver. 
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4 FWA’s Effects in: AWGN vs. Frequency-Selective 
Channels 

 

As mentioned in 2.1, OFDM can combat the multipath effect encountered in frequency-

selective channels, which turns out to be the main reason why this transmission technique was 

designed and implemented. A channel is said to be frequency-selective when it exhibits constant gain 

and linear phase over a smaller bandwidth (coherence bandwidth) rather than the bandwidth of the 

signal. In other words, in frequency domain, frequency-selective channels are the ones that have a 

much smaller coherence bandwidth than the bandwidth of the signal. In time domain, this 

phenomenon is characterized by the delay spread, which is inversely proportional to the coherence 

bandwidth. So, the shorter the delay spread is, the larger the coherence bandwidth is. 

Due to the fact that OFDM transmissions are robust against frequency-selective channels, it 

becomes imperative to know how the sub-optimal receiver proposed in this thesis behaves when the 

channel is frequency-selective. For each transmission, there will again be a comparison between the 

curves previously used in this thesis: linear OFDM, nonlinear OFDM with conventional receivers and 

nonlinear OFDM with sub-optimal receiver based on FWA, but for two types of channels: frequency-

selective channels and AWGN channels. So, the idea of this section is to generate BER curves for the 

three cases mentioned above, comparing them both for frequency-selective channels and for AWGN 

channels, and also changing, in each simulation, the combination of the FWA parameters in order to 

obtain better performances. 
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Figure 4.1 - Sub-optimal receiver’s BER when 𝐸 = 4,𝛥! = 10,𝐵 = 5,𝛥! = 5 and 𝛥𝐴 = 5. 

Figure 4.1 shows the BER performance of the proposed sub-optimal receiver when 𝐸 =

4,𝛥! = 10,𝐵 = 5,𝛥! = 5 and 𝛥! = 5. From these results it can be noted that for the case of ideal 

AWGN channels, the performance gain over conventional receivers is much better, being it 2.5 dB, at 

𝑃! = 10!!. For the same error probability, the gain of the linear curve over the sub-optimal receiver’s 

curve is approximately 2 dB. Regarding frequency-selective channels, even with a combination of 

parameters with small values, the performance of this FWA-based, sub-optimal receiver can be even 

better than the performance of linear OFDM, particularly from 9 to 15 dB. For the next figure, the 

combination of parameters adopted is practically the same as the previous one, being only different in 

two parameters: 𝐸 = 5 and 𝛥! = 50. 
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Figure 4.2 - Sub-optimal receiver’s BER when 𝐸 = 5,𝛥! = 50,𝐵 = 5,𝛥! = 5 and 𝛥𝐴 = 5. 

 

As expected, the results of the BER performance of Figure 4.2 are not so different from the 

results obtained in Figure 4.1. At 𝑃! = 10!!, the gain over conventional receivers increased slightly, 

being approximately 3 dB, but there were no significant changes, even for frequency-selective 

channels. This is further evidence that a large variation in the number of fireworks only has some 

impact when the other parameters also accompany this variation. 
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Figure 4.3 - Sub-optimal receiver’s BER when 𝐸 = 7,Δ𝑝 = 75,𝐵 = 5,𝛥! = 10 and 𝛥𝐴 = 5. 

Figure 4.3 shows the sub-optimal receiver’s BER performance when 𝐸 = 7,𝛥! = 75,𝐵 =

5,𝛥! = 10 and 𝛥! = 5. Note that, for this situation, both the number of explosions and 𝛥! were again 

slightly increased, with the difference that, this time, the number of sparks was also increased 

compared to the two previous cases. Clearly, when these three parameters are varied together, the 

performance of this sub-optimal receiver improves considerably. In the case of AWGN channel, the 

performance gain over a conventional receiver increased to 4.2 dB, while the linear OFDM gain over 

this sub-optimal receiver decreased to 1.2 dB. In relation to frequency-selective channels, the sub-

optimal receiver’s BER performance now exceeds the linear curve at 6 dB, which is a great 

improvement. From now on, it is expected that, with the continuous variation in the parameters, the 

performance of the sub-optimal receiver will be closer to the performance of linear OFDM receivers. 
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Figure 4.4 - Sub-optimal receiver’s BER when 𝐸 = 10,𝛥! = 100,𝐵 = 5,𝛥! = 15 and 
𝛥𝐴 = 10. 

 

The performance results shown in Figure 4.4 were obtained by applying the following 

combination of parameters: 𝐸 = 10,𝛥! = 100,𝐵 = 5,𝛥! = 15 and 𝛥! = 10. When 𝑃! = 10!!, the 

performance gain over conventional receivers practically did not change. However, it is possible to 

note that the curve concerning the performance of the sub-optimal receiver in ideal AWGN channels 

almost reaches the linear case. For frequency-selective channels, the sub-optimal receiver’s curve 

surpasses the linear one at 5 dB. 

For the final figure, a more ambitious posture was adopted, increasing the parameters to the 

following values: 𝐸 = 20,𝛥! = 100,𝐵 = 20,𝛥! = 20 and 𝛥! = 10. 
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Figure 4.5 - Sub-optimal receiver’s BER when 𝐸 = 20,𝛥! = 100,𝐵 = 20,𝛥! = 20 and 
𝛥𝐴 = 10. 

 

The results presented in Figure 4.5 are excellent. At AWGN channels, the performance gain of 

the sub-optimal receiver compared to the conventional receivers reached 6.3 dB, while between 4 and 

6 dB, the sub-optimal receiver’s performance surpassed the BER performance of linear OFDM 

receivers. Regarding frequency-selective channels, the sub-optimal performance result achieves very 

large performance gain over linear OFDM, even attaining a considerable gain in relation to the 

conventional receivers in AWGN channels. 

In the end, it is concluded that the fireworks algorithm offers excellent trade-offs between 

performance and complexity, especially for frequency-selective channels. A more accurate 

combination of the FWA parameters allows excellent BER performances. However, an exaggerated 

increase in all parameters, but especially more in explosions, will make the complexity much higher, 

which is to be avoided. 
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4.1 FWA’s Variant Effects 

 

One of the great dilemmas of optimal receivers was always the inherent high complexity of 

the system. In order to solve this problem, the sub-optimal receivers appear, such as the receiver used 

in this thesis, whose objective is to reduce the complexity of receivers while, at the same time, they 

practically achieve optimal performance. Even if it is possible to reduce the complexity of optimal 

receivers by substituting them for sub-optimal ones, this solution does not eliminate complexity 

totally, being it still a difficult and time-consuming process. In view of the above and with the aim of 

further reducing complexity, it is essential to create a FWA variant. 

The variant proposed in this thesis is related to the stopping criterion of the algorithm. 

Originally, the FWA ends when E explosions are carried out and, in this case, the stopping criterion is 

always fixed. However, in terms of efficiency, it turns out not to be a good criterion because, 

oftentimes, as the number of explosions goes from 1 to E, no better fireworks are found, i.e., the 

minimum SED relative to the received signal does not decrease. Therefore, the possible optimization 

is to make the algorithm’s stopping criterion dynamic, terminating the algorithm whenever the 

distance does not decrease after some explosions.  

Knowing that one of the main characteristics of the FWA is to save the best sequence for each 

explosion by comparing the distance of that sequence with the distance of the old one, it is important 

to apply the FWA variant by making the necessary modifications immediately after the comparison 

between these two distances. In order to make sense of this scenario, Figure 4.6 shows a flowchart 

with the main steps of the FWA, as well as the modifications made from the original algorithm to the 

variant. 
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Figure 4. 6 - FWA basic flowchart with the variant modifications. 
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As the flowchart of Figure 4.6 explains, after each explosion, all the sequences are saved as 

the sparks with the lowest SED. Subsequently, the sequence in distances is compared to the distances 

of the old fireworks. If the distance decreased, the algorithm follows for the next explosion. If the 

distance didn’t decrease, it is checked whether this pattern was repeated for the fourth time, i.e., if four 

explosions occurred without the existence of a smaller distance, no more explosions are carried out, 

which makes the algorithm come to an end. The reason for the choice to put an end to the algorithm in 

this specific number was the analysis performed during simulations, where it was verified that if there 

were four explosions in a row and the distance didn’t diminish, it would very hardly diminish in the 

following explosions. 

In order to test this new modification in the FWA, six different combinations of the FWA 

parameters will be used in detection. From combination to combination, each parameter will be 

gradually increased, and particular attention will be paid to the number of explosions in each round, 

which will no longer be fixed by the initial input; instead it will be dynamic and dependent on the 

reduction in SED. The FWA parameters defined for the six FWA variant-based detections of nonlinear 

OFDM transmissions that will be performed are as follows: 

 

 

• FWA’s parameters simulation 1: 𝐸 = 6,𝛥! = 20,𝐵 = 5,𝛥! = 5 and 𝛥! = 5. 

• FWA’s parameters simulation 2: 𝐸 = 8,𝛥! = 30,𝐵 = 5,𝛥! = 5 and 𝛥! = 5. 

• FWA’s parameters simulation 3: 𝐸 = 10,𝛥! = 40,𝐵 = 5,𝛥! = 10 and 𝛥! = 5. 

• FWA’s parameters simulation 4: 𝐸 = 15,𝛥! = 80,𝐵 = 5,𝛥! = 10 and 𝛥! = 10. 

• FWA’s parameters simulation 5: 𝐸 = 20,𝛥! = 130,𝐵 = 5,𝛥! = 15 and 𝛥! = 10. 

• FWA’s parameters simulation 6: 𝐸 = 30,𝛥! = 180,𝐵 = 10,𝛥! = 20 and 𝛥! = 10. 

 

 

 

The idea is to use these combinations of parameters in order to calculate the average number 

of explosions occurred during the detection of the OFDM signal, since the modification made to the 

algorithm will allow the stopping criterion, which is the number of explosions per round, to be 

variable. 
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Figure 4. 7 - FWA with dynamic stopping criterion: Explosions Input Vs. Average number of 
performed explosions in a OFDM transmission. 

Figure 4.7 shows the average number of explosions for the different OFDM transmissions 

with this modified FWA-based, sub-optimal receiver as a function of the number of fixed explosions 

that is initially defined for the algorithm. As expected, the average number of explosions, resulting 

from the fact that the stopping criterion is dynamic, increases with the increase of the number of 

explosions initially defined for each round. In simulation 1, when 𝐸 = 6 for each round, the FWA 

variant allowed to reduce the average number of explosions to 5, being, more precisely, 𝐸 = 5,04. In 
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simulation 2, where the number of explosions was increased to eight, the modification of the FWA 

ensured that the receiver only needed to perform an average of 5,91 explosions per round of 

explosions. The difference between 𝐸 and 𝐸 in simulation 2 is two explosions, increasing practically 

one explosion per round compared to the previous case. When 𝐸 = 10, in simulation 3, the average 

number of explosions reaches 6,67, which is approximately 𝐸 = 7. For simulation 4, it was decided to 

further increase the number of explosions compared to the increases that had been made previously. 

This time, when 𝐸 = 15, the mean number of explosions recorded was 7.28, being it approximately 

𝐸 = 7, as in simulation 3. For simulation 5, when 𝐸 = 20, 𝐸 = 8,39, which is approximately 8 

explosions per round and registers an increase of one explosion compared to simulation 4. For the last 

simulation, the decision was more ambitious and the fixed number of explosions that is initially 

defined before the simulation was set to 𝐸 = 30. Now, in simulation 6, the average number of 

explosions per round of explosions is 9,45, which is approximately 𝐸 = 10. Even with a large number 

of explosions, this variant of the FWA can significantly reduce the average number of explosions per 

round and achieve reductions of 2/3 with respect to the number of explosions used when stopping 

criterion is fixed, as can be seen in simulation 5. 

With the modification made in the FWA, it is possible to greatly reduce the complexity in the 

receiver. It is also important to mention that this variant has much more influence when a large 

number of explosions are used, since it is the parameter that contributes more to the still high 

complexity that this sub-optimal receiver offers. 
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5 Conclusions 

 

This study aimed at approaching the optimal performance using sub-optimal receivers based 

on the fireworks algorithm for OFDM signals with strong nonlinear effects. 

In Section 2, one can find a brief introduction on the OFDM transmission technique, focused 

on its fundamentals as well as on its numerous applications. Its main advantages are clarified, such as 

the high spectral efficiency and its robustness against frequency-selective channels, making this 

technique one of the most popular nowadays. It is also recognized that OFDM signals are extremely 

sensitive to nonlinear effects due to their high envelope fluctuations. Many of the techniques used to 

try to combat the problem of nonlinearity eventually ended up adding even more nonlinear effects; 

that’s why they were eliminated. However, with optimal receivers, it is possible to use the noise from 

nonlinear effects to the benefit of performance, instead of considering them a harmful element. 

Despite the advantages of these receivers, they are extraordinarily complex, which led to the 

emergence of sub-optimal receivers, such as the receiver presented in this thesis based on the 

fireworks algorithm. 

In Section 3, the impact of the individual variation of FWA parameters is studied, in order to 

understand its real contribution to the BER performance. It is clarified that there are combinations of 

parameters that best favor good results, like the fact that both the number of explosions and the two 

parameters of the sparks that determine the quality of the firework end up being considered the 

elements that best influence the performance of this sub-optimal receiver. 

Since OFDM signals can cope with strongly frequency-selective channels, it became 

necessary to simulate OFDM transmissions with sub-optimal FWA-based receivers in this type of 

channel, comparing them with the performance obtained in AWGN channels at the same time. In 

Section 4, contrary to what was expected, it is shown that with the implementation of this receiver, it 

is possible to obtain better BER performances of nonlinear OFDM transmissions than the 

performances of linear OFDM transmissions. Although this goal was achieved for both channels, the 

performances obtained for frequency-selective channels are enlightening. Even with a combination of 

relatively low parameters values, it is possible to achieve great trade-offs between complexity and 

performance. 
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In Section 5, a variant of the original FWA is presented in order to further reduce the 

complexity in the receiver. The main idea of this variant is to prevent the algorithm from executing all 

the explosions initially defined, but rather to verify, before executing the next explosion, whether a 

firework with lower SED is found. If the distance does not reduce in four explosions in a row, the 

cycle of explosions comes to an end and the algorithm stops. With this variant, it is possible to greatly 

reduce the complexity in the receiver, especially when a lot of explosions are applied to the algorithm. 
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