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Abstract

Cloud computing is adopted by most organizations due to its characteristics, namely

offering on-demand resources and services that can quickly be provisioned with minimal

management effort and maintenance expenses for its users. However it still suffers from

security incidents which have lead to many data security concerns and reluctance in

further adherence. With the advent of these incidents, cryptographic technologies such

as homomorphic and searchable encryption schemes were leveraged to provide solutions

that mitigated data security concerns.

The goal of this thesis is to provide a set of secure abstractions to serve as a tool for

programmers to develop their own distributed applications. Furthermore, these abstrac-

tions can also be used to support trusted cloud computations in the context of NoSQL

data stores. For this purpose we leveraged conflict-free replicated data types (CRDTs) as

they provide a mechanism to ensure data consistency when replicated that has no need

for synchronization, which aligns well with the distributed and replicated nature of the

cloud, and the aforementioned cryptographic technologies to comply with the security

requirements. The main challenge of this thesis consisted in combining the cryptographic

technologies with the CRDTs in such way that it was possible to support all of the data

structures functionalities over ciphertext while striving to attain the best security and

performance possible.

To evaluate our abstractions we conducted an experiment to compare each secure

abstraction with their non secure counterpart performance wise. Additionally, we also

analysed the security level provided by each of the structures in light of the cryptographic

scheme used to support it. The results of our experiment shows that our abstractions

provide the intended data security with an acceptable performance overhead, showing

that it has potential to be used to build solutions for trusted cloud computation.

Keywords: Trusted cloud computing, Homomorphic Encryption, Searchable Encryption,

Data Abstractions, CRDTs
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Resumo

O paradigma de computação na nuvem é adoptado pela maioria das organizações

devido às suas características, isto é por providenciar recursos e serviços on-demand com

custos de gestão e manutenção mínimos para os utilizadores. Todavia, existem vários

incidentes relativos à segurança dos dados alojados na nuvem. Como tal, surgiram preo-

cupações quanto ao grau de segurança da nuvem o que por sua vez despoletou relutância

a uma maior adesão aos seus serviços. No seguimento dos incidentes, surgiram soluções

que se baseiam em tecnologias criptográficas, como cifras homomórficas e pesquisáveis,

e que permitem mitigar os problemas de segurança.

O objectivo desta tese consiste em disponibilizar um conjunto de abstracções seguras

que permitem desenvolver aplicações distribuidas e seguras e que possibilitem a compu-

tação confiável na nuvem no contexto de bases de dados NoSQL. Para o efeito, tomámos

partido de tipos abstractos de dados replicados e livres de conflito (CRDTs) dado que es-

tes fornecem um mecanismo que garante a consistência de dados quando replicados, sem

recorrer a sincronização, que se conjuga bem em ambientes distribuidos. Para cumprir

os requisitos de segurança, tomámos partido das tecnologias criptográficas previamente

referidas. O principal desafio desta tese consistiu em combinar estas tecnologias com os

CRDTs de forma a ser possível suportar todas as suas funcionalidades sobre texto cifrado

e de forma a garantir o melhor grau de segurança e desempenho possível.

Para efeitos de avaliação experimental, comparamos o desempenho das abstracções

seguras com as suas respectivas abstrações não seguras. Adicionalmente, também efectu-

amos uma análise do nível de segurança providênciado pelas estruturas desenvolvidas

em função das tecnologias criptográficas subjacentes às mesmas. Os resultados obtidos

demonstram que as abstracções cumprem com os requisitos de segurança pretendidos

com uma penelização de desempenho aceitável, o que revela o seu potencial para serem

utilizadas em soluções para computação confiável na cloud.

Palavras-chave: Computação confiável na nuvem, Esquemas de Cifras Homomórficas,

Esquemas de Cifras Pesquisáveis, Abstrações de Dados, CRDTs, SGX
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1
Introduction

1.1 Context

The cloud computing paradigm has received a substantial amount of attention in the

past decade. It emerged as a computational paradigm for on-demand network access to a

shared pool of computing resources such as network, servers, storage, applications, and

services that can be quickly provisioned with minimal management effort and mainte-

nance expenses [42].

Due to its characteristics it sparked a shift of computer processing, storage, and soft-

ware provisioning away from the desktop and local servers into the next generation of

data centers which are hosted by large infrastructure companies such as Amazon, Google,

Yahoo, Microsoft, or Sun. In fact, many applications have been created in or migrated to

cloud environments over the last few years [32].

Parallel to the increase in its popularity, the concern for the security and privacy

issues inherent to cloud computing also grew. From the consumer’s perspective, the

concern stems from the fact that they have little or no control over their data or the

applications and infrastructure involved since the cloud services are delivered by a cloud

service provider and accessed via the Internet. As a consequence, many companies which

deal with more sensitive data became skeptical and refrained further adoption of cloud

solutions. From the perspective of cloud service providers, the security concern derives

from their vulnerabilities to attacks and failure in equipment, software and controls [11].

Amongst its many security issues, data security which refers to the protection of

data privacy and integrity throughout its life cycle is the most pressing one [19]. Its a

particularly challenging issue because besides data owners not having full control of the

data life cycle, data locality and jurisdictional issues can prevent cloud service providers

from protecting personal information.

1



CHAPTER 1. INTRODUCTION

The most common solution to mitigate data security issues is through encryption and

key management [11, 18, 50]. For effective encryption, the encryption algorithm and key

strength must also be taken into consideration.

Intuitively, the encryption solution would consist in the owner encrypting the data,

with conventional encryption before sending it to the cloud and when needed, he would

decrypt the data after retrieving it from the cloud. This solution allows to safely store

the data in the cloud, yet it becomes unsuitable when computations or queries must

be performed over the data, which typically is the case, as it places the burden of such

operations on the client-side and it wastes the cloud’s computation resources that could

be put to use to perform the operations more efficiently.

1.2 Motivation and Problem Statement

Encryption schemes that enable operations over ciphertext, such as homomorphic [13,

48] and searchable [16] encryption schemes, have been leveraged to benefit from cloud

computing while still preserving data security. Furthermore, these schemes enabled

secure computations to be performed in the cloud as they ensure the correctness as well

as the privacy of such operations despite the fact that they are executed in untrusted

cloud servers. Considerable amount of research was done in order to provide solutions

for secure computing, which could then be leveraged for cloud computing based on the

aforementioned encryption schemes like encrypted relational databases such as CryptDB

[51] and Cipherbase [6]. These solutions meet the security requirements with acceptable

overheads to the overall performance of the system.

In the past years with the advance of Web technologies, the integration and prolifera-

tion of sensors in multiple devices and mobile devices that are connected to the Internet

and the increase of volume of data generated by businesses, unprecedented amounts of

data for which storage and processing capabilities are need have been produced [32]. As

traditional relational databases became inadequate to deal with such amounts of data, a

new type of data store emerged — Not Only SQL (NoSQL). These are highly available,

scalable and fault-tolerant and therefore are very suitable to be used within the cloud

context. High availability is mostly provided through replication mechanisms [22], which

raises the issue of maintaining the replicated data consistent and solving conflicts of con-

current manipulation of different copies of the data. Conflict free replicated data types

(CRDT) [64] are data abstractions that address this issue by providing a built-in conflict

resolution mechanism that doesn’t require synchronization. Riak [54] is an example of a

NoSQL data store that provides such structures.

However when compared to the relational database systems, NoSQL data stores offer a

smaller set of security mechanisms [32, 43]. To improve the offer and richness of security

mechanisms in these stores, there has been research efforts to provide solutions for this

issue such as the framework to preserve privacy presented by Macedo et. al. [40]. The

proposed framework enables data processing over multiple cryptographic techniques and

2



1.3. OBJECTIVES AND CONTRIBUTIONS

is composable with many NoSQL engines. This solution can be configured for different

security requirements and is able to meet them with an acceptable overhead to the overall

performance of the system.

In summary, when it comes to the development of secure databases, either relational

or NoSQL, through the use of cryptographic techniques there is a trade off between perfor-

mance and security. Providing strong security might lead to a system that is not available

nor scalable. Conversely, providing low or no security in order to match performance

requirements can lead to data security breaches.

In this thesis the problem we focus on is how can we security enhance NoSQL

databases while keeping to a minimum the impact on the performance of the database

itself and, most importantly, without restricting the ability to perform computations over

the stored data.

In this thesis we focus on the problem of how can we enhance the security of NoSQL

databases while keeping to a minimum the impact on the performance of the database

itself and, most importantly, without restricting the ability to perform computations over

the stored data.

1.3 Objectives and Contributions

This thesis aimed to develop a set of secure abstractions to support secure computations

in the context of NoSQL data stores hosted by cloud services and to serve as a tool for

programmers to develop their own distributed applications. In the scope of this thesis, the

term security refers to the ability of maintaining the data involved in the computations

confidentiality and privacy protected.

To achieve this we leveraged CRDTs as their characteristics make them suitable to

be used in distributed systems or applications and encryption schemes, such as homo-

morphic encryption, to enable operations over the abstractions with security guarantees.

The secure abstractions include typical data-structures that form the backbone of today’s

more complex distributed and cloud applications. The main challenge of this thesis con-

sisted in combining the encryption schemes with the CRDTs in such way that it was

possible to support all of the data structures functionalities over ciphertext while striving

to attain the best security and performance possible.

In our threat model we consider a cloud administrator adversary which is of the type

Honest but Curious (HbC) [19]. This administrator has access to the cloud provider’s

infrastructure and software platforms which consequently provides him access to cus-

tomer data. The HbC administrator main goal is to gather as much information about the

computations and data as possible in order to infer their nature.

To understand the impact the security enhanced CRDTs, we performed micro bench-

marks to compare performance wise each secure abstraction with their non secure counter-

part. Additionally, we also analysed the security level provided by each of the structures

in light of the cryptographic scheme used to support it.

3



CHAPTER 1. INTRODUCTION

In essence, we made the following contributions:

1. Design and implementation of a library of CRDTs;

2. Design and implementation of a library of secure CRDTs, which is a variant of

the aforementioned library, supported by cryptographic primitives with property-

preserving and homomorphic properties;

3. Extensively evaluate the developed contributions regarding both libraries.

1.4 Document Structure

This document is structured in six chapters, including the current one. Chapter 2 contains

the related work of this thesis, which consist in hardware-backed trusted computing

solutions, computing on encrypted data and data stores and models. Along the chapter

there are subsections dedicated to discuss in some capacity each of the addressed topics,

and in at the end of it there is a summary of these discussions. Chapter 3 provides an

overview of our solution, addressing its system and threat model, and Chapter 4 describes

the technical implementation aspects of the solution. On Chapter 5, the description of

the experimental evaluations we performed is given along with their results and critical

analysis. Finally, Chapter 6 presents our conclusion, contributions and future work.

4
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2
Related Work

This chapter is structured in 3 sections. In the first two sections, we will discuss different

solutions which provide privacy, availability and integrity of outsourced data in the cloud.

Section 2.1 discusses trusted computing solutions which are based in hardware, section

2.2 addresses solutions based on cryptography. In the last section (2.3) NoSQL stores are

analysed as a solution for distributed storage systems.

2.1 Hardware-backed Trusted Computing

Trusted computing refers to the expectation of technologies to not compromise their

claimed security properties. These properties are enforced through hardware/software

solutions. The hardware approach to trusted computing is referred to as Trusted Hard-

ware [67].

In this section we will discuss the state of the art of implementations of trusted hard-

ware, focusing on the most relevant solutions for trusted execution environments (TEE)

solutions — Intel’s SGX [20]) and ARM’s Trustzone[8] — while still addressing Trusted

Platform Modules (TPM) [68] as it is at the core of trusted hardware.

2.1.1 Trusted Execution Environments (TEE)

A TEE is a secure, integrity-protected execution environment, consisting of processing,

memory, and storage capabilities that is isolated from the normal execution environment

[10]. In this context, isolation refers to the ability to run security-critical code outside the

control of the normal execution environment which is not trusted.

A TEE architecture may support one or more TEE instances. Architectures based

on dedicated security chips and processor modes (e.g. TPMs [68] and ARM’s TrustZone

[58]), often have only one instance available. In this scenario, the same instance typically

5



CHAPTER 2. RELATED WORK

allows execution of multiple trusted applications. Additionally, an interface that enables

communication with trusted applications and invocation of cryptographic operations

within the TEE is provided to applications from the normal execution environment.

Architectures based on virtualization ( e.g. Terra [29], TCCP [56]) and emerging

processor architectures (e.g. Intel SGX [20]) allow the normal execution environment

application to create or activate a TEE instance when needed through an application pro-

gramming interface (API). This API allows the application to execute trusted applications

and to read and write data to and from them.

2.1.2 Trusted Platform Modules

A TPM is a hardware module incorporated and deployed in a motherboard, smart card or

processor that provides the resources needed for trusted computing. As shown in Figure

2.1, the TPM has several components.

  

 

I/O

Crytographic
co-processor

HMAC
engine

SHA-1
engine

Opt-in

Nonvolatile
memory

Trusted platform module (TPM)

Packaging

Volatile
memory

Execution
engine

Power
detection

Random number
generator

Key
generation

 

Figure 2.1: TPM architecture (taken from [67]).

Through secret sharing and cooperation with other hardware and software compo-

nents, the TPM provisions three services: authenticated boot, certification, and encryp-

tion.

The authenticated boot service allows to verify that the boot of the entire operating

system is made in well defined stages at which only approved versions of the modules

of the OS are loaded. This could be done by verifying a digital signature associated with

each module. Additionally, a tamper-proof log of the loading process is kept by the TPM

that later can be consulted. Tampering is detected using cryptographic hash functions.

It is also possible to configure the TPM to include additional hardware, application and

6



2.1. HARDWARE-BACKED TRUSTED COMPUTING

utility software in its trust computing base (TCB) given some restrictions to prevent

threats. This service can be used to guarantee that the machine which hosts the TPM is

in a well defined and trusted state after booting.

Through the certification service TPMs support attestation. Attestation is a security

mechanism that allows a third party to verify that the contents of a secure container,

provided by trusted hardware, is as expected. Typically the proof consists in a piece of

attestation data signed by the trusted hardware, producing an attestation signature.

In the TPM the attestation data is the log of the loading process produced by the

authenticated boot service. The data is then signed, using a private key exclusive to

attestation, and a digital signature certificate is produced. Upon receiving the certificate,

the third party only needs to verify the signature using the TPM’s public key. The third

party can trust this proof because the TPM is considered trustworthy and only the TPM

possesses its private key. To prevent message replay attacks, a nonce is sent along with

the certification request issued by the third party.

The encryption service enables the encryption of data that can only be decrypted

by a machine with a certain configuration. For this purpose, a secret key is generated

from a never exposed master secret key owned by the TPM and which is unique to each

machine. The key generation algorithm used by the TPM generates keys for every possible

machine configuration and then binds each key to the corresponding configuration. Thus,

the configuration of the machine at the time of encryption must match the configuration

when decryption occurs for it to succeed. Applications can leverage this service to encrypt

data while running in a machine whose configuration is trusted and safe by wrapping

the key used for data encryption with a key provided by the TPM. When decryption of

the data is required, the wrapped key is submitted to the TPM to be unwrapped. The

TPM verifies if the current system configuration allows access for the key required for

unwrapping and if the application that issued the request is authorized to access it. If so,

the original key is returned, and the application can decrypt its data.

TPMs can provide more minimal TEEs. This can be achieved through the certification

service as after the validation of the correctness and integrity of the software stack that

runs on the TPM enabled machine, an trusted execution environment with processing,

memory, and storage capabilities has been secured. This TEE is considered more minimal

as there isn’t complete isolation of the environment.

Santos et. al. [57] leveraged TPMs to provide a policy-sealed data abstraction. This

abstraction allows customer data to be bound to cloud nodes whose configuration is

specified by a customer-defined policy. A configuration consists in a set of attributes that

express features that refer to the node’s software or hardware. A policy expresses a logical

condition over the attributes that must be supported by the provider.

7



CHAPTER 2. RELATED WORK

2.1.2.1 Security Overview

TPM’s can suffer 3 types of attacks: software, reset and timing attacks. Physical attacks

to the TPM are excluded from its threat model [66].

Software attacks target the attestation service. The main issue is that the configuration

that is certified may not be the one that is currently in the system as the measurements are

taken upon loading of the system. Given an application software that has been configured

in the TPM, an adversary can still exploit the difference between the instant when the

software is measured and when it is actually used to induce run-time vulnerabilities [14].

These attacks are classified as time-of-check time-of-use (TOCTOU). A possible solution

is to have the system where the TPM lives monitor the state of memory of the application

it is attesting to. Upon change, either the changes are incorporated in the measurement

or they are reported to the operating system.

Reset attacks [66] are characterized by instructing the TPM to perform a hardware

reset, even if the rest of the system is not instructed to restart, which will make it return

to its uninitialized state. Thereafter, a malicious configuration can be setup on the TPM

as follows. Before instructing the TPM to restart, the attacker obtains copies of the digital

signatures of the trusted configuration which were fed to the authenticated boot service.

Then the attacker swaps the operating system for a malicious one by exchanging the

machine’s hard drive, for example. Upon booting, the hardware reset must be issued

to the TPM and the malicious operating system must feed the TPM with the previously

obtained signatures of the trusted configuration. At the end of the attack, the malicious

operating system will be able to perform whichever operations were bound to the trusted

configuration.

To carry out the previously described attack, its is necessary to record the trusted

boot process. This is achieved through timing attacks, more specifically by snooping

the unsecure communication channel between the TPM and CPU at instances where it

is known sensitive information is being exchanged (e.g. startup) [38]. This attack is

easily circumvented by the creation of an encrypted channel. According to the TPM

specification [68], its possible to create one although there is still doubt if the processor

will be able to secure one with the TPM.

2.1.3 Intel SGX

Intel’s Software Guard Extensions (SGX) is a set of x86 instructions and memory access

changes to the Intel architecture [41, 47]. SGX is leveraged by applications to ensure con-

fidentiality and integrity guarantees, even when the privileged software on the computer

where security sensitive computations are being performed are not trusted.

These guarantees are provided through the use of a TEE referred to as an enclave. An

enclave is a protected physical memory region isolated from the remainder code of the

system, including the operating system and hypervisor. Each enclave contains the code

and the data required to perform the security-sensitive computations which is provided

8
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by the user. Therefore, the trusted computing base (TCB) of Intel’s SGX is composed by

the processor and code chosen by the user [9, 60].

Isolation is achieved by storing the enclave’s code and data, which corresponds to

the security sensitive computation’s data and code, in the Processor Reserved Memory

(PRM) which is memory that can’t be directly accessed by other software. This memory

is encrypted and integrity protected at all times, except when moved to the processor.

Any other enclave specific information is stored in the Enclave Page Cache (EPC),

which is a subset of the PRM and it is managed by the system software (e.g. hypervisor).

This implies that although the system software is not trusted, it is still relied upon to

manage an enclave. Multiple enclaves are supported by having the EPC fragmented in

pages that can be assigned to different enclaves [20]. However, as the enclave’s memory

has an imposed limit of either 64MB or 128MB, the number of active enclave’s, i.e. in

memory, is limited [35].

To leverage Intel’s SGX without compromising the offered security guarantees and

injecting vulnerabilities, the submitted code must comply with the following guidelines:

• It must be divided in two logical components: trusted and untrusted. The trusted

component defines the security sensitive computations. It represents the enclave.

The untrusted component defines the rest of required operations;

• The trusted component should be as small as possible. It should only operate over

secret data;

• The trusted component code may access unprotected memory and call functions in

the untrusted component although there should be a minimal dependency on the

untrusted component.

An enclave’s life cycle can be described as a finite state machine as shown in Figure 2.2.

Table 2.1 describes the most relevant instructions which coincide with state transitions.

Table 2.1: Main instructions of an enclave’s life cycle.

Instruction Description

ECREATE Creates an enclave by setting up the it’s internal data structures, which
are allocated within the PRM, with information retrieved from unsafe
memory regions.

EADD Loads the initial code and data into the enclave from unsafe memory
regions.

EEXTEND Updates the enclave’s measurement which is used in the software attes-
tation process.

EINIT Marks the enclave’s internal data structures as initialized which enables
its for execution.

EREMOVE Terminates an enclave by deallocating all of it’s memory.

9
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Figure 62: A possible layout of an enclave’s virtual address space.
Each enclave has a SECS, and one TCS per supported concurrent
thread. Each TCS points to a sequence of SSAs, and specifies initial
values for RIP and for the base addresses of FS and GS.

Each SSA starts at the beginning of an EPC page, and
uses up the number of EPC pages that is specified in the
SSAFRAMESIZE field of the enclave’s SECS. These
alignment and size restrictions most likely simplify the
SGX implementation by reducing the number of special
cases that it needs to handle.

An enclave thread’s execution context consists of
the general-purpose registers (GPRs) and the result of
the XSAVE instruction (§ 2.6). Therefore, the size of
the execution context depends on the requested-feature
bitmap (RFBM) used by to XSAVE. All the code in an
enclave uses the same RFBM, which is declared in the
XFRM enclave attribute (§ 5.2.2). The number of EPC
pages reserved for each SSA, specified in SSAFRAME-
SIZE, must7 be large enough to fit the XSAVE output for
the feature bitmap specified by XFRM.

SSAs are stored in regular EPC pages, whose EPCM
page type is PT REG. Therefore, the SSA contents is
accessible to enclave software. The SSA layout is archi-

7ECREATE (§ 5.3.1) fails if SSAFRAMESIZE is too small.

tectural, and is completely documented in the SDM. This
opens up possibilities for an enclave exception handler
that is invoked by the host application after a hardware
exception occurs, and acts upon the information in a
SSA.

5.3 The Life Cycle of an SGX Enclave
An enclave’s life cycle is deeply intertwined with re-
source management, specifically the allocation of EPC
pages. Therefore, the instructions that transition between
different life cycle states can only be executed by the
system software. The system software is expected to
expose the SGX instructions described below as enclave
loading and teardown services.

The following subsections describe the major steps in
an enclave’s lifecycle, which is illustrated by Figure 63.

Uninitialized

Initialized
Not in use

Non-
existing ECREATE

Initialized
In use

EINIT
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AEX

EREMOVE

EADD
EEXTEND

EBLOCK
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EREPORT

Figure 63: The SGX enclave life cycle management instructions
and state transition diagram

5.3.1 Creation

An enclave is born when the system software issues the
ECREATE instruction, which turns a free EPC page into
the SECS (§ 5.1.3) for the new enclave.
ECREATE initializes the newly created SECS using

the information in a non-EPC page owned by the system
software. This page specifies the values for all the SECS
fields defined in the SDM, such as BASEADDR and
SIZE, using an architectural layout that is guaranteed to
be preserved by future implementations.

While is very likely that the actual SECS layout used
by initial SGX implementations matches the architec-
tural layout quite closely, future implementations are
free to deviate from this layout, as long as they main-
tain the ability to initialize the SECS using the archi-
tectural layout. Software cannot access an EPC page
that holds a SECS, so it cannot become dependent on
an internal SECS layout. This is a stronger version of

63

Figure 2.2: Intel SGX’s enclave life cycle (taken from [20]).

SGX, similarly to TPMs, also provides attestation. In Intel’s SGX, the proof consists in

a cryptographic signature that certifies a measurement of the secure container contents

which was computed at the creation of the enclave. The signing of the measurement is

performed by a privileged enclave, the Quoting Enclave, that can access the required

attestation key.

Intel’s SGX originally was designed for securing small services but as cloud computing

has become a big trend, it has been leveraged to provide security guarantees to applica-

tions deployed in the cloud. One example is VC3 [60], proposed by Schuster et. al., which

allows users to run distributed MapReduce computations in the cloud while keeping

the data and code private. Another example is the solution developed by Ohrimenko

et. al. [47], which consists in a set of data-oblivious machine learning algorithms for

collaborative data analytics that maintains individual datasets private.

2.1.3.1 Security Overview

The threat model of SGX includes the following category of attacks [20]:

• Privileged software attacks: most Intel processors support hyper-threading which

means that the CPUs, execution units and caches on a single core are shared by two

logic processors (LP), with each having their own state. As SGX doesn’t prevent

hyper-threading, malicious system software may leverage this feature to carry out

an attack. Specifically, it can schedule a thread that is executing the code of an

enclave on an LP that shares its core with another LP that is executing a snooping

thread. This allows for the snooping thread to learn the instructions executed by

the enclave and its memory access patterns;

• Memory mapping attacks: SGX is vulnerable to passive address translation attacks,

due to using the address translation process provided by the system software, which
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can be leveraged to learn the enclave’s memory access patterns at page granularity;

• Software side-channel attacks: SGX doesn’t provide protection against software

side-channel attacks that rely on performance counters which can leak information

about the enclave.

Categories such as physical attacks to the CPU chip, side-channel attacks and cache

timing attacks do not feature in its threat model. Nevertheless, researchers are still

actively proposing new solutions for the last two categories as new forms of attacks are

discovered. This could be due to the popularity of SGX for cloud applications.

In [65], the authors address page-fault-based side channel attacks which allows the

malicious OS to gain complete control over the execution of SGX programs by stopping

the program, unmapping the target’s memory pages and resuming execution. To mitigate

this attack, the Transaction Synchronization Extensions (TSX) of Intel processors are used

to abort ongoing transactions upon unexpected exceptions or interrupts. The authors of

[61] address memory corruption attacks with a new Address Space Layout Randomization

(ASLR) scheme built on top of SGX that secretly bootstraps the memory space layout with

a finer-grained randomization.

2.1.4 ARM Trustzone

ARM’s TrustZone is the security extension made to ARM’s System-On-Chip (SoC) that

covers the processor, memory, and peripherals [58]. It provides a hardware-level isolation

between two execution domains: the normal world and secure world. The secure world

hosts a secure container while the normal world runs an untrusted software stack [15].

These domains have independent memory address spaces and different operating

systems and privileges: while code running in the normal world cannot access the secure

world address space, code running in the secure world can access the normal world

address space.

On boot, the processor initializes in the secure world and then sets up the necessary

environment before switching to the normal world. As such, the TrustZone’s TCB consists

in the boot loader, the processor and the software that will run in the trusted world. When

required, the execution can switch into the secure world using the secure-monitor call

(SMC) instruction. The SMC instruction generates a software interruption that is trapped

by the chosen secure monitor implementation. Additionally, interrupt requests can be

configured to be secure or non-secure and are handled accordingly. Therefore, secure

interrupts will only be handled by the secure world. This mechanism alongside the

supervision of the CPU state through the NS bit, which indicates the current world of the

processor, and the partitioning of the memory address space into secure and non-secure

regions guarantees the isolation between worlds.

To use the secure services provided in the secure world, communication between

worlds is provided through shared memory. This memory is physically allocated in the
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Figure 2.3: Example of a system architecture using the TrustZone API (taken and adapted
from [8]).

normal world’s memory region. Processes within the secure world can still gain access

to it, due to having higher privilege, by mapping a normal world address to its page

table [37]. The shared memory is used to specify which services were required and the

necessary input arguments.

Although ARM’s TrustZone can also be leveraged for cloud applications, it has been

more exploited in mobile devices as its architecture is present in many of them for over a

decade. Examples of such is the API of Ekberg et. al. [23] that provisions trusted applica-

tions and secrets to the device, authorizes trusted applications to access the provisioned

secrets and device keys, and control which normal world application can execute trusted

applications and the system proposed by Santos et. al. [58] that protects confidentiality

and integrity of .NET mobile applications from OS security breaches. Darkroom [15] is

an example of the use of TrustZone for cloud applications. It enables users to securely

process image data in the cloud while preventing the exposure of sensitive data to the

operating system.

2.1.4.1 Security Overview

TrustZone can be configured to provide countermeasures for different threats, therefore

it doesn’t possess a fixed threat model. To build a configuration that meets a threat model

specification, security protocols must be built on top of TrustZone (e.g. attestation) and

combined with parts of the system which are made secure through TrustZone’s architec-

ture.

Nonetheless, attacks to the TrustZone architecture are still studied and identified by
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researchers. For an instance, Jang et. al. [37] addresses the unauthenticated access to

resources in TrustZone which makes the channel used for communication between worlds

vulnerable to an attacker with the normal world’s kernel privilege. The attack can consist

in creating a malicious process that continuously sends requests with crafted arguments

to discover the vulnerabilities of the resources in TrustZone. Another possibility is a

man-in-the-middle attack. To mitigate these attacks, the authors proposed a framework

that allows the creation of a secure channel for cross worlds communication.

2.1.5 Critical Analysis

As there is no specification related to the TPMs minimum performance requirements,

commodity TPMs are slow and inefficient due to the lack of incentive to use faster yet

more expensive internal components. Consequently, the usage of TPMs is limited to use

cases that don’t require fast nor frequent operations.

In general, a drawback of TEEs is the lack of standardization regarding an API for

developers to make use of which has hindered the development of real world applications

which leverage them. Yet, the Global Platform association and the Trusted Computing

Group have made standardization efforts as the interest and demand for greater levels of

security in applications arises [23].

2.2 Computing on Encrypted Data

In the context of cloud environments, computation security may be divided into two

classes — cloud storage security and cloud computing security [69]. Cloud storage se-

curity refers to ensuring the integrity and confidentiality of outsourced data stored at

untrustworthy cloud servers while cloud computing security refers to verifying the cor-

rectness of the outsourced computation performed by untrustworthy cloud servers. In

this section, we will discuss cryptographic schemes (2.2.1) and systems (2.2.2) that pro-

vide solutions for both classes.

2.2.1 Cryptographic Schemes

2.2.1.1 Homomorphic Encryption

Homomorphic encryption designates cryptographic schemes for which, given a fixed key,

it is equivalent to perform operations, specifically addition and/or multiplication, on

the plaintexts or on the corresponding ciphertexts [28]. In other words, these schemes

allow a set of operations to be performed directly over encrypted data with no need for

decryption while still obtaining the correct result.

These schemes enable the outsourcing of resource-intensive computing tasks to the

cloud while maintaining confidentiality. Next, three forms of homomorphic encryption
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will be presented — Fully, Partial and Somewhat Homomorphic Encryption — where the

main difference among them is the set of operations allowed.

Somewhat Homomorphic Encryption Schemes that a allow a variable yet finite num-

ber of operations to performed over ciphertext are referred to as Somewhat Homomorphic

Encryption (SHE or SWHE) schemes. The term somewhat is due to all schemes having the

following property: as the number of operations performed increases, the noise factor

increases exponentially and if a threshold p for this factor is exceeded, decryption of the

ciphertext is no longer possible. An example of such scheme is the one presented by

Boneh et. al. [13], which is a public key encryption scheme that allows addition and (very

limited) multiplication over ciphertexts through quadratic formulas.

Fully Homomorphic Encryption Firstly introduced by Rivest et al. in 1978 [55], Fully

Homomorphic Encryption (FHE) schemes allow an arbitrary number of operations to

be performed over ciphertext. Only in 2009 a feasible scheme was presented by Craig

Gentry [30]. It relied on a ideal lattice based SHE to which a boostrapping procedure was

applied, resulting in a reduction of the noise factor that transformed the SHE into a FHE.

Although it was an important achievement, this scheme is not usable in practice due to is

big overhead. Although other schemes have been proposed since, in general, albeit ideal,

FHE is impractical due to the overhead of the required computations that renders them

unable to meet performance requirements of applications.

Partial Homomorphic Encryption Due to the inefficiency of FHE, researchers devel-

oped Partial Homomorphic Encryption (PHE) schemes which only allow a single opera-

tion over ciphertext. Typically, the operation is either addition or multiplication but never

both. These schemes are much more efficient and practical as they rely in conventional

cryptography such as public-key cryptography and modular arithmetic. An example of

such scheme is Paillier’s [48], which leveraged a trapdoor technique based on composite-

degree residues to allow addition over ciphertexts. Another example is ElGamal’s scheme

[24], which is based on the difficulty of computing discrete logarithms over finite fields

and allows multiplication over ciphertexts.

2.2.1.2 Searchable Symmetric Encryption

Searchable Symmetric Encryption (SSE) is a solution which addresses the problem of

efficiently searching for keywords over remote encrypted data, where the underlying

cryptography is symmetric. In this problem typically there is a user, which owns the

data, and an untrusted server, where the encrypted data is stored [36]. The encryption

of the data is made by the user, who may organize it in an arbitrary way and include

additional data structures to allow for efficient access of relevant data [21]. With the

rise of cloud storage solutions, which motivates storage outsourcing, this problem gained

more attention and consequently so did searchable encryption schemes.

14



2.2. COMPUTING ON ENCRYPTED DATA

To be able to search within ciphertexts, determinism is required both for efficiency

reasons and to actually match the queried keyword. However, determinism reveals in-

formation patterns to adversaries upon execution of certain operations (e.g. searches),

which may conflict with the desirable security guarantees [25].

An example of an SSE scheme is [16] which allows to search over encrypted records.

In this scheme for each record/keyword pair there is pseudo-random label. All labels and

corresponding record identifiers, which are encrypted, are kept in a generic dictionary

data structure in the server. Whenever a query is executed, the client computes a short

key derived from the label associated with the queried keyword. Then, the server uses this

short key to search the dictionary for the matching encrypted record identifiers. After

retrieving the identifiers, the client decrypts them and obtains the result of the query.

Besides searching, this scheme also allows to update the data set stored remotely.

Other examples of SSE schemes, that follow the approach of the aforementioned

scheme but go beyond text search, are BISEN [26] and MuSE [27]. BISEN allows to search

for documents matching a boolean expression with multiple keywords while MuSE allows

cloud-backed applications to dynamically store, update, and search datasets containing

multiple media formats.

2.2.2 Cryptographic Systems

2.2.2.1 CryptDB

CryptDB [51] is a middleware solution that provides confidentiality for applications that

use database management systems (DBMS) by enabling a range of SQL queries to be

made over encrypted data.
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CryptDB is careful about what relations between tuples it 
reveals to the DBMS server. To execute a GROUP BY on column c, 
for instance, the server need not know the order of the items 
in column c, nor any information about other columns. To 
execute an ORDER BY, or to find the MAX or MIN, CryptDB 
reveals the order of items in that column, but not otherwise.

CryptDB incorporates two techniques: SQL-aware encry-
ption and adjustable query-based encryption. SQL-aware 
encryp tion uses the observation that most SQL queries 
are made up of a well-defined set of basic operators, such 
as equality checks, order comparisons, aggregates (sums), 
and joins. CryptDB supports these operators over encrypted 
data. By adapting known encryption schemes (for equality, 
additions, and order checks), and using a new privacy- 
preserving cryptographic scheme for joins, CryptDB encry-
pts each data item in a way that allows the DBMS to execute 
on the transformed data.

The second technique is adjustable query-based encryp-
tion: CryptDB carefully adjusts the SQL-aware encryption 
scheme for any given data item to support different opera-
tions on this data. To implement these adjustments effi-
ciently, CryptDB uses onions of encryption. Onions are a novel 
way to compactly store multiple ciphertexts within each 
other in the database and avoid revealing weaker encryption 
schemes when they are not needed.

CryptDB provides confidentiality for the content of the 
data and for names of columns and tables, but does not 
hide the overall table structure, the number of rows, the 
types of columns, or the approximate size of data in bytes. 
The only information that CryptDB reveals to the DBMS 
server is relationships among data items correspond-
ing to  classes of computation that queries perform on the 
database, such as comparing items for equality, sorting, or 
performing word search. The granularity at which CryptDB 
allows the DBMS to perform a class of computations is an 
entire column (or a group of joined columns, for joins), 
which means that even if a query requires equality checks 
for a few rows, executing that query on the server would 
require revealing that class of computation for an entire 
column. Section 3.1 describes how these classes of com-
putation map to CryptDB’s encryption schemes, and the 
 information they reveal.
CryptDB provides the following properties:

2.1. threat 1: DBmS server compromise
CryptDB provides confidentiality (data secrecy) in the face 
of an attacker with full read access to the data stored in 
the DBMS server. The attacker is assumed to be passive: 
she wants to learn confidential data, but does not change 
queries issued by the application, query results, or the data 
in the DBMS. This threat includes DBMS software compro-
mises, root access to DBMS machines, and even access to 
the RAM of physical machines. With the rise in database 
consolidation inside enterprise data centers, outsourcing 
of databases to public cloud computing infrastructures, 
and the use of third-party DBAs, this threat is increasingly 
important. We focus on confidentiality, not data integrity 
or availability.

CryptDB addresses this threat by executing SQL que-
ries over encrypted data on the DBMS server. As shown in 
Figure 1, CryptDB works by intercepting all SQL queries 
in a trusted proxy; existing applications do not need to be 
modified to use CryptDB, but all queries must go through 
the proxy. The proxy stores a master secret key, which 
it uses to rewrite queries to execute on encrypted data. 
The proxy encrypts and decrypts all data, and changes 
some query operators, while preserving the semantics of 
the query. Because the DBMS server never receives decryp-
tion keys to the plaintext, it never sees sensitive data, 
ensuring that our passive adversary cannot gain access to 
private information.

The main challenge when executing queries on encryp-
ted data lies in the tension between minimizing the 
amount of confidential information revealed to the 
DBMS server and the ability to efficiently execute a vari-
ety of queries. Our strategy is to allow the DBMS server to 
perform query processing on encrypted data mostly as it 
would on an unencrypted database (important for practi-
cality), while restricting the server to computing only the 
functions required to process authorized queries (important 
for confidentiality). For example, if the DBMS needs to 
perform a GROUP BY on column c, the DBMS server should 
be able to determine which items in that column are equal 
to each other, but not the actual content of each item. 
Therefore, the proxy needs to enable the DBMS server to 
determine relationships among data items necessary to 
process a query.

Figure 1. CryptDB’s architecture consisting of two parts: a proxy and an unmodified DBMS. CryptDB uses user-defined functions (uDFs) 
to perform cryptographic operations in the DBmS. Rectangular and rounded boxes represent processes and data, respectively. Shading 
indicates components added by CryptDB. Dashed lines indicate separation between users’ computers, the application server, a server 
running CryptDB’s proxy (which is usually the same as the application server), and the DBmS server. the scope of the two threats CryptDB 
addresses is shown as dotted lines.
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Figure 2.4: CryptDB’s system architecture (taken from [51]).

It addresses two threats (Figure 2.4), specifically (1) an adversary who gains access to

the DBMS server and tries to learn private data and (2) an adversary who gains complete

control over the application and DBMS servers. In the first threat, CryptDB aims to

prevent the adversary of learning private data and on the second threat it aims to protect

the confidentiality of data owned by users which are logged-out of the application during

an attack, providing no such guarantees for logged-in users.

In this solution, a trusted proxy intercepts issued queries and transforms them so that

they may work over the encrypted data stored at the server while preserving the semantics

of the original query. Conversely, upon receiving a query result, the proxy transforms (i.e.
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decrypts) the result so that the application may process it. As such, the transformations

include encryption decryption, change of query operators and obfuscation of names of

columns and tables.

To mitigate information leakage due to some of the encryption schemes used (e.g.

OPE), an onion encryption mechanism is provided. This mechanism consists in compos-

ing different layers of encryption, which allow for different operations to be performed,

over a single data item in such a way that the weaker encryption scheme resides in the

innermost layer and the stronger scheme resides in the outermost layer of the onion.

2.2.2.2 Cipherbase

Cipherbase [6] is a full-fledged SQL database system, that extends Microsoft’s SQL Server,

which allows for organizations to leverage the advantages of cloud computing platforms

while providing data confidentiality by storing and processing encrypted data. It incor-

porates customized secure co-processors at the server side to distribute computations

between trusted hardware, which resides in a Trusted Machine (TM), and untrusted hard-

ware, which resides in an Untrusted Machine (UM). The secure co-processor in this

system is a Field Programmable Gate Array (FPGA).

Client
App

Cipherbase Client
Modified SQL Server
(Untrusted Module)

PCIe

Encryption
Specification

FPGA
(Trusted Module)

Cloud ServerClient Machine

Fig. 3. Cipherbase Architecture

that a weak adversary does not learn any ordering or equality
information. A strong adversary learns equality information
for the queried portion of the index key space.

Transaction Processing: In Cipherbase, query processing hap-
pens in two steps: a one-time prepare step, followed by any
number of parametrized execution steps. During the prepare
step for a query Q, the Cipherbase client first identifies all
the TM programs required to evaluate expressions in Q and
registers these programs with the TM. The Cipherbase client
encrypts the programs to be registered to ensure that an
adversary does not learn their details. In particular, a TM
program can include internal constants and we leverage this to
hide query constants. After the TM programs are registered,
the client rewrites Q to reference the program handles returned
during registration. Consider the following parametrized query
Qex:

UPDATE Accounts SET Balance = Balance + @Amt
WHERE Id = @Id

Assume both Balance and Id columns are strongly en-
crypted, with an equality index on Id. This query requires
a TM program that takes in two strongly encrypted integers
and returns the strongly encrypted sum. Let 21 be the handle
for this program returned by the TM during registration1. The
original query is rewritten2 as Q′

ex:

UPDATE Accounts
SET Balance = TMEval(21, Balance, @Amt)
WHERE Id = @Id

where TMEval is a new built-in function we have added
to SQL Server; TMEval is an n-ary function that invokes
a TM stack program. The rewritten query is PREPAREd in
the Cipherbase UMDBMS (SQL Server), which compiles and
caches the query plan. This PREPARE step has no knowledge
of encryption and is unmodified SQL Server code.

In our example query, assuming an index-based plan, the
equality index identifies the record with Id equal to the
encrypted @Id parameter. The encrypted Balance of this
record and the encrypted @Amt parameter are passed as inputs
to TM stack program 21, which returns the encrypted sum
of the two, which is used to update the Balance field. This
update happens in the UM and the Update operator “thinks”
it is replacing one binary value with another.

1We have added a new built-in function TMRegister() to SQL Server to
register stack programs.

2For simplicity, we show rewritten queries - see Appendix D for more
details.

During query execution, the Cipherbase client encrypts
any query parameters and runs the rewritten query at the
UMDBMS3. Query execution at the UMDBMS proceeds
largely agnostic to encryption, using unmodified SQL Server
code except for the two cases described earlier : (1) index
lookups over strongly encrypted data involve comparisons in
the TM and (2) any calls to the TMEval function are routed to
the TM. To the rest of the query processing system, TMEval
looks like any other n-ary built-in function.

Note that partial homomorphic encryption schemes such as
OPE or DET encryption can help avoid round-trips to the
TM. For instance, in the above example, if the Id column
is deterministically encrypted, then the index lookup does not
need to involve the TM (similar to the case when Id is in
plaintext).

The Cipherbase client ensures that the output of a TM
program is a strongly encrypted value, a cryptographic hash, or
a plaintext boolean. Specifically, the output of a TM program is
plaintext only for boolean operators (equality for joins/group-
by and filter predicates), which are consistent with the data
confidentiality guarantees in Section II-B.

Concurrency and Recovery: One of the main advantages of
our minimal TM design is that we inherit almost all SQL
Server concurrency and recovery features without making
any encryption-related modifications. SQL Server, like most
modern databases, uses a combination of latching and locking
to ensure physical and logical consistency. These primitives
are almost always acquired on physical structures, even for
logical concepts (e.g., physical record address for record level
locking), and work correctly since encrypted data is simply
stored as binary values. One subtlety relates to key-range
locking [20], where locks are obtained on leaf-level key values.
However, the correctness of this scheme relies only on the
keys being unique (the ordering information is implicit in the
position of the keys in the B-tree). Since uniqueness remains
unaffected when we replace plaintext keys with ciphertext
values, we do not require encryption-specific modifications for
key-range locking.

The ARIES-style recovery of SQL Server relies on physical
page-oriented redos and logical undos [21]. The correctness of
page-oriented redos relies only on the binary representation
of data and is unaffected by encryption. Logical undos are
affected by encryption, but use the same code path as regular
transaction processing. Thus, the query processing modifica-
tions described earlier are sufficient.

3We omit details of “type inferencing” to infer @Amt and @Id in the
example require strong encryption.

Figure 2.5: Cipherbase’s system architecture (taken from [7]).

When a client executes a query that requires computation over encrypted columns,

which are specified by the client, tuples are transferred from the UM to the TM. To obtain

and return the query result to the UM, which is encrypted, the tuples are decrypted,

processed and re-encrypted by the TM. To this extend, Cipherbase simulates fully homo-

morphic encryption. However, if the tuples are encrypted with homomorphic schemes

their properties are used to perform the operations on the data in the UM.

2.2.2.3 Depsky

DepSky [12] is a middleware cloud storage solution that leverages different commercial

clouds, forming a cloud-of-clouds, to provide a dependable storage system with avail-

ability, integrity and confidentiality guarantees. To do so, DepSky employs an byzantine

fault-tolerant replication across the different clouds, a secret sharing scheme plus erasure

codes and encryption to store data.
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Content distribution. One of the most surprising uses of
Amazon S3 is content distribution [Henry 2009]. In this sce-
nario, users use the storage system as distribution points for
their data in such a way that one or more producers store
the content on their account and a set of consumers read this
content. A system like DEPSKY that supports dependable
updatable information storage can help this kind of appli-
cation when the content being distributed is dynamic and
there are security concerns associated. For example, a com-
pany can use the system to give detailed information about
its business (price, available stock, etc.) to its affiliates with
improved availability and security.

Future applications. Many applications are moving to the
cloud, so, it is possible to think of new applications that
would use the storage cloud as a back-end storage layer.
Systems like databases, file systems, objects stores and key-
value databases can use the cloud as storage layer as long
as caching and weak consistency models are used to avoid
paying the price of cloud access on every operation.

3. The DEPSKY System
This section presents the DEPSKY system. It starts by pre-
senting the system architecture, then defines the data and
system models, the two main algorithms (DEPSKY-A and
DEPSKY-CA), and a set of auxiliary protocols.

3.1 DEPSKY Architecture
Figure 1 presents the architecture of DEPSKY. As mentioned
before, the clouds are storage clouds without the capacity
of executing users’ code, so they are accessed using their
standard interface without modifications. The DEPSKY al-
gorithms are implemented as a software library in the clients.
This library offers an object store interface [Gibson 1998],
similar to what is used by parallel file systems (e.g., [Ghe-
mawat 2003, Weil 2006]), allowing reads and writes in the
back-end (in this case, the untrusted clouds).

 

Cloud 1                 Cloud 2                      Cloud 3                     Cloud 4 

DepSky cloud-of-clouds

Value 
(data) 

Value 
(data)

DS Client 1                                        DS Client 2

Figure 1. Architecture of DEPSKY (w/ 4 clouds, 2 clients).

3.2 Data Model
The use of diverse clouds requires the DEPSKY library to
deal with the heterogeneity of the interfaces of each cloud
provider. An aspect that is specially important is the format
of the data accepted by each cloud. The data model allow us
to ignore these details when presenting the algorithms.

Figure 2 presents the DEPSKY data model with its three
abstraction levels. In the first (left), there is the conceptual
data unit, which corresponds to the basic storage object
with which the algorithms work (a register in distributed
computing parlance [Lamport 1986, Malkhi 1998a]). A data
unit has a unique name (X in the figure), a version number
(to support updates on the object), verification data (usually
a cryptographic hash of the data) and the data stored on the
data unit object. In the second level (middle), the conceptual
data unit is implemented as a generic data unit in an abstract
storage cloud. Each generic data unit, or container, contains
two types of files: a signed metadata file and the files that
store the data. Metadata files contain the version number and
the verification data, together with other informations that
applications may demand. Notice that a data unit (conceptual
or generic) can store several versions of the data, i.e., the
container can contain several data files. The name of the
metadata file is simply metadata, while the data files are
called value<Version>, where <Version> is the version
number of the data (e.g., value1, value2, etc.). Finally, in
the third level (right) there is the data unit implementation,
i.e., the container translated into the specific constructions
supported by each cloud provider (Bucket, Folder, etc.).

 

 

 

Conceptual Data Unit                             Generic Data Unit                                                Data Unit Implementation 

                 X                                                       Container X 
Version Number 
Verification Data 

Data 

Metadata 
Version Number 
Verification Data 

Other info 

 
Data 

       Amazon S3               Windows Azure 

         Bucket X                 BlobContainer X 

Metadata                   Metadata 

Data                            Data 

     Nirvanix SDN                  Rackspace 

         Folder X                       Container X 

Metadata                    Metadata 

Data                             Data 

Figure 2. DEPSKY data unit and the 3 abstraction levels.

The data stored on a data unit can have arbitrary size,
and this size can be different for different versions. Each
data unit object supports the usual object store operations:
creation (create the container and the metadata file with
version 0), destruction (delete or remove access to the data
unit), write and read.

3.3 System Model
We consider an asynchronous distributed system composed
by three types of parties: writers, readers and cloud storage
providers. The latter are the clouds 1-4 in Figure 1, while
writers and readers are roles of the clients, not necessarily
different processes.

Figure 2.6: Depsky’s system architecture (taken from [12]).

To store a data item in DepSky, first the item is encrypted with a random secret key.

This key will be divided and distributed across the cloud servers with the secret sharing

scheme, which consists in distributing shares of the secret to the servers. The main

property of this scheme is that only a subset of all the shares that form the original secret

is needed to recover it. After encryption, the data item is encoded and distributed among

the servers.

The combination of these techniques ensures that no individual cloud is able to access

the unencrypted item while allowing duly authorized clients to recover the subset of

shares required to recover the original the item. However it adds an overhead of 50% the

amount of storage spaced used in each cloud when compared with the original data size.

2.2.2.4 Cuttlefish

Cuttlefish [59] is a system that ensures the confidentiality of data stored in the cloud.

It enables computations over encrypted data, leveraging both PHE and TEEs for this

purpose, by transforming submitted queries into semantically equivalent ones.

Cuttlefish also provides a set of secure data abstractions (SDTs) with corresponding

annotations. These abstractions capture restrictions on computations with respect to

confidentiality which can significantly improve performance. The SDTs provided are

sensitivity level, data range, decimal accuracy, uniqueness, tokenization, enumerated

type and composite type. Table 2.2 describes the SDTs annotations.

Figure 2.7 ilustrates the main components of this system. To improve expressiveness

and performance while reducing the amount and extent of re-encryption needed, the

Cuttlefish compiler employs the following techniques:

• Expression rewriting: expressions that are not supported by Cuttlefish’s encryption
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2 OVERVIEW
In this section, we first explain the threat model of our system
as well as provide some background on cryptographic primitives
before we present our system design.

2.1 Threat Model
Cuttlefish’s goal is to preserve data confidentiality in the presence
of an honest but curious (HbC) adversary. We assume the adversary
has access to the cloud nodes, and can observe data and computation.
Although, the adversary cannot make changes in the queries, results
or data stored in the cloud. We further assume that the system has
access to a trusted service. This service can run either on some
trusted client nodes, or on some specialized trusted hardware in
the cloud such as Intel SGX [3].

Cuttlefish achieves this goal by utilizing a set of crypto systems
to encrypt sensitive data. The security guarantees offered by each
of these crypto systems vary from strong guarantees offered by
probabilistic crypto systems, to relatively weaker guarantees such
as deterministic crypto systems which reveal duplicate values, and
order-preserving crypto systems which reveal order of values.

Despite improvements [15, 16, 19, 34, 36, 43], OPE and DET
crypto systems remain susceptible to inference attacks such as
frequency analysis attacks [30, 38]. As we discuss in subsequent
sections, Cuttlefish deals with this issue by allowing the program-
mer to assign sensitivity levels to individual data fields and guar-
anteeing that a field is never stored in the cloud unless encrypted
under a crypto system that offers the required security guarantees.
Furthermore, in Section 4.6 we explain how Cuttlefish can apply a
set of compilation techniques that can further improve the security
of queries by limiting the use of less secure crypto systems.

2.2 Cryptographic Primitives
Each of the crypto systems used by Cuttlefish to achieve confi-
dentiality inside an untrusted cloud allows computations over en-
crypted data with respect to some operations. Table 2 summarizes
the set of crypto systems used by Cuttlefish per homomorphic prop-
erty — RND: random, DET: deterministic, OPE: order-preserving
encryption, SRCH: secure search, AHE: additive homomorphic en-
cryption, MHE: multiplicative homomorphic encryption — and the
corresponding operations they support. The operation supported
by each crypto system requires that its operands are encrypted
under the same crypto system.

In addition to this operation, some crypto systems support a
second operation (secondary homomorphic property) as long as
one of the operands is available in plaintext form (i.e., it holds no
sensitive information). For example, the Paillier crypto system is
an AHE crypto system which means its homomorphic property
supports addition between two encrypted values: there exists some
known operation ⊙ s.t. x+y = Dec(Enc(x) ⊙ Enc(y)). Furthermore,
if one of the two operands, say y, is in plaintext form, Paillier can
also perform multiplication between the two operands: there exists
some known operation ⊗ s.t. x × y = Dec(Enc(x) ⊗ y). Similarly,
the ElGamal crypto system supports multiplication between two
encrypted operands and exponentiation between an encrypted
and a plaintext operand. In Section 4.4 we discuss how intrinsic
properties of crypto systems (such as ciphertext size overhead and

Crypto system Property Operations

AES-RND RND –
FNR [21], AES-DET DET =, GROUP, JOIN
Boldyreva et al. [14] OPE <, >, ORDER, MIN
SWP [48] SRCH MATCHES pattern
Paillier [41], ASHE [42] AHE +, −, SUM
ElGamal [25] MHE ×

Table 2: Cuttlefish crypto systems and operations over en-
crypted data they support

Local query 
executor

Untrusted cloud

Trusted 
service

Encrypted
database

Local Query

Compiler

 Results

 Encrypted data 

 Encrypted 
results

Remote query
over encrypted data

 Query

 Encrypted data 

Service
provider

Trusted domain

Figure 1: Cuttlefish architecture

secondary homomorphic property) that otherwise support the same
operations, e.g., Paillier and ASHE are leveraged to reduce query
execution time.

2.3 Cuttlefish Overview
Figure 1 shows the high level architecture of Cuttlefish. Cuttlefish
ensures the confidentiality of computations of submitted queries
by transforming them into semantically equivalent queries that
operate over encrypted data. When a user submits a query, the
Cuttlefish compiler transforms it into a remote query and a local
query. The remote query which operates on encrypted data is de-
ployed on an untrusted cloud. Once the remote query completes,
the encrypted results are returned to the local query executor and
used as the input for the local query which decrypts the results of
the remote query and performs any remaining computations on
plaintext data before returning the final results to the user.

Since PHE schemes allow computations with respect to cer-
tain operations, it is possible that some parts of the query cannot
be executed in the cloud without giving away sensitive informa-
tion. To mitigate this limitation, Cuttlefish utilizes a trusted re-
encryption service that has access to the decryption keys. The
trusted re-encryption service would receive a small amount of data
to decrypt, optionally perform simple computations over the data,
encrypt the result under another crypto system and send the results
back to the cloud service, so that computation can proceed. Cut-
tlefish has two ways of realizing the trusted re-encryption service:
using hardware at the client-side or using trusted hardware (e.g.,
Intel SGX) in the cloud.

Figure 2.7: Cuttlefish’s system architecture (taken from [59]).

schemes are replaced by equivalent and supported one’s. The replacement query is

also written in encryption-sensitive ways in order to reduce execution latency.

• Condition expansion: the compiler expands conditions to improve execution perfor-

mance by eliminating expensive homomorphic encryption and/or re-encryption.

• Selective encryption: fields that do not contain sensitive information are kept in

plaintext to reduce the overhead of operating over encrypted data.

• Efficient encryption: when one field is involved in multiple operations that can

be supported by the same homomorphic encryption scheme, Cuttlefish selects the

homomorphic encryption scheme that allows for a more efficient execution.

Table 2.2: Cuttlefish SDTs annotations (taken and adapted from [59]).

Annotation Description

+ | - Positive or negative numeric values
range(x-y) Values from x to y
accuracy(x) x decimal points preserved
unique No duplicate values
delimiter(char) Tokens separated by char

enum(v1, v2, ...) Enumerated values
composite Composite values

When a user submits a query, first the compiler transforms it into a remote and local

query. The remote query, which operates over encrypted data, is issued to the untrusted

cloud. Upon the remote query completion, the encrypted results are returned to the local

query executer. These results are used as the local query executor input which decrypts

them and performs any remaining computations on the plaintext data before returning

the final results to the user.
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When a query cannot be executed in the cloud without leaking information, the

trusted re-encryption service that as access to the decryption keys is used. If need be,

some transformations are also performed on the data before re-encryption with a dif-

ferent scheme occurs. Afterwards, the re-encrypted data is returned to the untrusted

cloud so that the remote query can be completed. This service can be implemented using

hardware at the client-side or using trusted hardware, namelly Intel SGX, in the cloud.

2.2.3 Critical Analysis

Although cryptographic schemes enable operations to be done over ciphertext, these

schemes leak information about the performed operations (as is the case of SSE) and

they either have a big performance overhead which renders them unusable or only allow

limited operations to be performed (homomorphic encryption).

In the case of SSE, the information that is leaked mainly comprises access and search

patterns [25, 39]. Access patterns reveal which documents contain the queried keyword,

even though the adversary never learns the keyword in plaintext. This can be enough to

disclose sensitive information about the original data, given some prior knowledge about

it. This type of information leakage has been proved impossible to stop by Muhammad

Naveed [45]. A search pattern allows to identify whether any two queries are generated

from the same keyword or not. In [39], the authors present a scheme which hides the

search patterns that is based on a grouping-based construction to transform the underly-

ing SSE scheme into a new one.

As for the cryptographic systems discussed, both CryptDB and Cipherbase rely on

homomorphic encryption, which incurs in an overhead that is only acceptable when

the data set is medium-sized [49], and other deterministic cryptographic schemes that

leak information in the same fashion as discussed above. Due to using specific trusted

hardware that might improve the performance overhead, Cipherbase also suffers from

portability issues. Cuttlefish doesn’t suffer from this issue, despite also relying on trusted

hardware (Intel’s SGX), because it alternatively allows computations to be performed over

encryption schemes such as the ones used by CryptDB and Cipherbase. Nonetheless, by

allowing computations to be performed through encryption schemes or trusted hardware,

Cuttlefish suffers from the vulnerabilities of both solutions. Lastly, DepSky is purely a

storage solution that doesn’t support SSE, thus reducing its practicality.

2.3 Data Stores and Models

In this section we will focus on Not Only SQL (NoSQL) stores, discussing their data mod-

els and briefly highlighting some of the most prominent solutions under each category

by summarizing their characteristics focusing on their security properties.

We particularly focus on Conflict-free Replicated Data Types (CRDT’s) as they can be

used as the underlying representation of the data stored in NoSQL stores, a possibility
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we intend to explore in this thesis.

2.3.1 NoSQL Models and Stores

Analogous as to what is the definition of NoSQL, the classification concerning the NoSQL

data models is not agreed upon. We will adopt the classification and terminology defined

by Hetch et. al. [33]. Accordingly there are four main categories — key-value, column-

family, document and graph.

2.3.1.1 Key-Value Stores

Key-value stores resemble map or dictionaries. The data is stored in key-value pairs

< k,v >, where k uniquely identifies v thus allowing to retrieve it or store it. Key-value

stores provide a schema-free data model as the value is completely opaque to the data

store which means it can hold arbitrary data. This characteristic has the following conse-

quences:

• Key-value stores are not suitable when relations and/or structure is required of the

data. These requirements must be met with the necessary logic at the client side

application;

• They do not support data-level querying nor indexing. Queries are enabled only

through the keys.

Additionally, key-value stores can also be classified as in-memory, which keep the

data mainly in memory, or as persistent, which keep the data on disk [32]. In spite of

keeping the data mainly in memory, this doesn’t mean that in-memory key value stores

aren’t not persistent as data can be periodically backed up into the disk.

Redis [53] and Riak [54] are examples of such stores.

Redis Redis is an in memory key-value store that allows backups of the data to be

made to the disk. It uses asynchronous replication of data, although it is possible to

configure synchronous replication, and provides eventual consistency. It offers some

data structures such as lists, hashes and sets to store data 1. Redis is designed to be

accessed by trusted clients inside trusted environments and as such doesn’t provide many

security capabilities. Nonetheless, a weak form of authentication can be configured by

having Redis only accept connections from clients who provide a correct password which

is set by the administrator in plain text in the Redis configuration files. The security

of the connection is left to the client and the selection of a suitable password is of the

responsibility of the administrator.

1Some of these data structures allow for more refined queries due to secondary indexes, which makes the
classification of Redis rather ambiguous as, although claimed to be a key-value store, one can also classify it
as a document store.
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Riak Riak is a persistent key-value store which uses as asynchronous replication and it

can provide eventual or strong consistency. It offers data structures with built-in conflict

detection and resolution such as counters, sets and maps which essentially are CRDTs.

Unlike Redis, it provides some authorization and authentication mechanisms, like access

control and password based authentication, as well as secure communication channels in

client-to-server communication.

2.3.1.2 Document Stores

In document stores, such as MongoDB [70], the data is stored in key-document pairs

< k,doc >, where k uniquely identifies documents within the store. In this sense, doc-

ument stores are similar to key-value stores. The documents support more complex

data including secondary indexes within a document, different schemas of documents in

the store, nested documents or lists. As such document stores support data-level query

and indexing but, like key-value stores, they do not support relations among documents

which makes them unsuitable for these scenarios.

MongoDB MongoDB is a document store which uses as asynchronous replication and

it can provide eventual or strong consistency. Unlike the solutions discussed so far, Mon-

goDB offers more extensive security mechanisms [44] thus being quite comparable to

relational databases in this regard. It offers mechanisms for authentication, authoriza-

tion, client-to-server and server-to-server secure communication channels for free while

the mechanisms for auditing and encryption of the stored data are only available on its

enterprise edition.

2.3.1.3 Column-family Stores

In these types of stores, data is stored in a column-oriented way, therefore one can think

of them as tables. Column-stores, e.g. Cassandra [5], follow the guidelines of the data

model used in Google’s BigTable [17], where the table is analogous to a sparse, distributed,

persistent multidimensional sorted map.

A data item is represented by a row, which possesses one or more different columns

that in turn can belong to different column families. Each row and column family are

uniquely identified by a key, thus allowing more complex queries and indexing. Nonethe-

less, if the relationships among data are required, they must still be provided by the client

application.

Column-stores resemble relational databases when it comes to their representation,

but they differ when null values must be handled. Where relational databases would

store a null value for each column where no value was provided for, a column family

store will only insert a null value in a row for a column if it is required to do so. In other

words, homogeneity within a dataset is not enforced thus data items may not have certain

attributes specified at all.
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Cassandra Cassandra is a column-family store, where instead of rows there is partitions,

that uses asynchronous replication and which can provide eventual or strong consistency.

It offers its own query language, the Cassandra Query Language (CQL), which supports

a rich set data types. It offers security mechanisms for authentication, authorization,

client-to-server and server-to-server secure communication channels.

2.3.1.4 Graph Stores

In contrast to the previously discussed stores, graph stores such as Neo4j [46] are special-

ized on efficient management of highly correlated data. They rely on graph theory and as

their data model they use a graph which is a set of nodes and the links that connect them.

In these stores the nodes and links have properties, respectively, which are represented

by key-value pairs.

Due to be specialized for correlated data, these stores do not scale very well because

of the overhead imposed by traversing the relations across nodes in different servers.

Neo4j Neo4j is graph store which uses asynchronous replication and it can provide even-

tual or strong consistency. It offers its own query language, the Cypher Query Language

(Cypher), which supports queries through pattern matching of nodes and relationships in

the graph. It offers security mechanisms for authentication, authorization, client-to-server

and server-to-server secure communication channels. Additionally, it offers facilities to

provide mechanisms for auditing through logs.

2.3.1.5 Critical Analysis

Although they were designed to manage massive amounts of data, the characteristics of

these stores must be taken into consideration when choosing which one to use.

Key-value, document and column family gained advantages in distribution by denor-

malizing the stored data. However, if relationships among data is required, they must

be implemented at the client side application which increases its code complexity and

it may provoke performance penalties due to the amount of queries that may be neces-

sary. In these situations, graph stores are more suitable. Another important aspect is the

amount of expressiveness allowed in queries, even when relationship among data is not

required. Typically, key-value stores only have basic operations (i.e. get, put, remove).

Document and column-family stores extend these basic operations by allowing range

queries, "in"and "and/or". Graph stores are the most expressive as they enable queries

to be made using different query languages which leverage different techniques such as

pattern matching and graph transversal [33].

Overall, NoSQL data stores have the following issues [32]:

• Low level query languages. As previously discussed, NoSQL don’t offer rich queries

capabilities;
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• Lack of standardization of APIs. The offered APIs are specific to each store, which

makes scenarios where more that one NoSQL store could be combined to offer the

best solution difficult to achieve;

• Limited security measures. When compared to relational databases, NoSQL stores

offer limited security measures. Relational databases typically offer mechanisms

for authentication, authorization, auditing and several levels of encryption such

as encryption of the data that is stored on the disks (data at rest), client-to-server

communication and server-to-server connection encryption. NoSQL usually only

offer a subset of these mechanisms.

2.3.2 Conflict-free Replicated Data Types

A Conflict-free Replicated Data Type (CRDT) [64] is a data abstraction which provides

guarantees of safety, liveness and convergence to a correct common state upon replication

in a self-stablising manner without need for synchronization, despite any number of fail-

ures. To ensure absence of conflict, simple mathematical properties such as monotonicity

in a semi-lattice and/or commutativity are leveraged.

Replication of CRDT objects is done under Strong Eventual Consistency (SEC). An

object is strongly eventually consistent if it is eventually consistent, i.e. all replicas reach

the same final value if clients stop submitting updates, and if correct replicas that have

delivered the same updates have equivalent state.

The system where the replication of CRDTs occurs, is assumed to have the following

properties:

• There is a finite set Π = p0, ...,pn−1 of non-byzantine processes;

• Processes in Π may crash silently; a crashed process may remain crashed forever, or

may recover with its memory intact. A non-crashed process is said correct;

• The processes of the system are interconnected by an asynchronous network;

• The network can partition and recover.

Similarly to other objects, CRDTs allow for state-based or operation-based replication.

As such, they may be specified with respect to both.

State-based object An state based object is a tuple (S,s0,q,u,m). The replica at process

pi has state si ∈ S, called its payload; the initial state is s0. A client of the object may read

the state of the object via query method q and modify it via update method u. Method m

serves to merge the state from a remote replica. Any method executes at a single replica.

A method whose precondition is satisfied is said enabled and executes as soon as it is

invoked.
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Every replica occasionally sends its local state to some other replica, which merges

the state thus received into its own state. In this way, every update eventually reaches

every replica, either directly or indirectly.

Under the assumption of eventual delivery and termination, a state-based object is

said to be strongly eventually consistent if it also is a monotonic semilattice object. A

monotonic semilattice object is a state-based object equipped with a partial order ≤, thus

noted as (S,≤, s0,q,u,m), with the following properties:

1. The set S of payload values forms a join semilattice ordered by ≤ . A join semilattice

is a partially ordered set that has a least upper bound for any nonempty finite subset.

In other words, it has an element s which is the least element that is greater than or

equal to all elements of S;

2. Merging sate s with remote state s′ computes the least upper bound of the two state;

3. The state is monotonically non-decreasing across updates.

Operation-based object An op-based object is a tuple (S,s0,q, t,u,P ), where S, s0 and

q have the same meaning as in a state-based object. An op-based object has no merge

method. As such, an update is split into a pair (t,u), where t is a side-effect-free prepare-

update method and u is an effect-update method.

The prepare-update executes at the single replica where the operation is invoked (its

source). At the source, prepare-update method t is followed immediately by effect-update

method u. The effect-update method executes at all replicas (said downstream). The

source replica delivers the effect-update to downstream replicas using a communication

protocol specified by the delivery relation P .

Under the assumption of causal delivery of updates and method termination, an op-

based object that satisfies the commutativity property for all concurrent updates, and

whose delivery precondition is satisfied by causal delivery is said to be strongly eventually

consistent.The commutativity property is defined as follows. Updates (t,u) and (t′ ,u′)

commute if and only if for any reachable state s where both u and u′ are enabled:

1. u and u′ remain enabled in states s •u′ and s •u, respectively;

2. s •u •u′ ≡ s •u′ •u 2.

2.4 Summary

With our research we conclude that although there are solutions that follow a somewhat

similar approach to the one we intend to pursuit, like CryptDB [51] and Cipherbase [6]

by storing and computing on encrypted data and Cuttlefish [59] by offering secure data

2In this context two states s and s′ are said to be equivalent, s ≡ s′ , if all queries return the same result
for s and s′ . Note that a query has no side-effects which means (s • q) ≡ s.
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types, there is still room for improvement and to explore new paths to build secure cloud

and distributed computing solutions.

Computing over encrypted data, using mechanisms like homomorphic and search-

able encryption schemes, allows to mitigate data privacy issues in the cloud and other

distributed computing environments. For its practical use, factors like the operation’s

performance requirements and the implications of the data information leakage for the

cloud base application must be taken into consideration. Fully Homomorphic encryption

remains unpractical due to its performance overhead yet partial and somewhat homo-

morphic achieve better performance at the cost of limiting the type and the number of

operations allowed. Searchable symmetric encryption reduces the performance overhead

by revealing information about the queried data.

NoSQL data stores are highly available and perform well in distributed systems such

as the cloud. In an approach similar to the Riak [54] store and its data structures, our

goal is to design secure CRDTs (SCRDTs) libraries that may be incorporated into a NoSQL

data store in order to provide security guarantees over it. The CRDTs can easily be stored

under any of the discussed data models and in the case of key-value stores, they may

increase query expressiveness if the operations they support are exposed by the data

store API.
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3
Solution Design

As previously mentioned, with this thesis we aim at developing a set of secure abstrac-

tions, specifically secure CRDTs or SCRDTs, to support secure computations in the con-

text of NoSQL data stores hosted by cloud services and to serve as a tool for programmers

to develop their own distributed applications. In this context, secure means that the data

stored in these abstractions are confidentiality and privacy protected. The SCRDTs we

designed were implemented with the support of different cryptographic algorithms to

provide the intend security.

In this chapter, Section 3.1 provides an overview of the architecture of the system

where the SCRDTs are intended to be used, which is a cloud-backed NoSQL distributed

data store, and Section 3.2 defines our threat model. Finally, Section 3.3 describes and

discusses all of the CRDTs and correspondent SCRDTs developed within this thesis.

3.1 System Architecture

Figure 3.1 illustrates the architecture of an NoSQL distributed data store where the

SCRDTs would be integrated in. This store uses the key-value data model where the

keys map to the SCRDTs we developed, it is in memory and exports get, put and remove

operations. Each node of the system represents different instances, i.e. replicas, of the

store service running in the cloud which may or may not be located within the same data

center.

Each node is composed by the following components: Storage, Client Interface and

Replication Mechanism.

The Storage component is where data is effectively stored in one of our SCRDT data

structures, which in turn are stored under the key value data model. In other words,

the storage component maps to the memory of the machine where the service replica is
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running.

The Client Interface exports the API necessary to manipulate the data in the storage

component. Although the data store model is of the type key value which typically only

supports an limited amount of operations (e.g.: put, get and remove operations), through

the use of our Stubs component which provides direct support of all of the operations of

each CRDT and SCRDT it is possible to achieve a more expressive API.

The Replication Mechanism is responsible for replicating operations and merging the

state of the stored SCRDTs with the state of other replicas in order to ensure their conver-

gence.

The manipulation of the data on the client side is mediated by the Stubs component.

For each of the structures we designed there is an corresponding Stub that is made avail-

able on the client side. This stub is responsible for:

• Exporting the operations supported by its corresponding CRDT and SCRDT ab-

stractions to the client;

• Applying the operations of its corresponding CRDT and SCRDT abstractions and

propagating their result to the data store service replica through the use of the get,

put and remove operations exported by the data store;

• Encrypting and decrypting data under the appropriate encryption schemes in the

case of manipulation of SCRDTs.

Figure 3.2 shows a sequence diagram of an use case of how the Stub component

intervenes when a client of the system invokes the add operation of an element e over an

set identified by the key S in the data store. The encryption scheme to be used is chosen

based on the following factors:

1. the invoked operation;

2. the selected structure.

It follows that this component is also responsible for managing the required crypto-

graphic keys that must be supplied by the client. If data is shared among clients, it is

assumed that a key sharing protocol was made a priori.

Communication among replicas of the service and between clients and replicas of the

service, signalled by (1) and (2) in Figure 3.1 respectively, are assumed to be made over

secure communications channels such as a TLS channel.

3.2 Threat Model

As we aim the data store system is suported by cloud services, our threat model is com-

prised by a cloud administrator adversary of the type Honest but Curious (HbC) [19].
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Figure 3.2: Use case of an Stub component In this example, a client wishes to add an
element e to an set identified by key S in the data store.
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This administrator has access to the cloud provider’s infrastructure and software plat-

forms which consequently provides him access to customer data. The administrator main

goal isn’t to corrupt the computations but to gather as much information about them as

possible in order to infer their nature.

We do not consider external attacks to the communication channels over the inter-

net (signalled by (1) and (2) in Figure 3.1) in our threat model as we assume that all

communications are made through the use of secure communication channels such as a

TLS channel. External in this context refers to the fact that the attacks are performed by

adversaries external to the cloud provider’s infrastructure.

3.3 Data Structures

To develop our solution, firstly we studied and then selected which of the existent CRDTs

in the literature [52, 63] were the most relevant and important to provide support to data

stores and web applications. These where registers, sets, lists, maps and counters. Regard-

ing the replication method and concurrency conflict resolution polices of the structures,

we opted for state based replication to follow a similar approach as current industry solu-

tions like Riak [54], and the following policies as they are the most common ones and are

valuable in different use case scenarios:

1. Add Wins: given two concurrent update operations of adding and removing an

element to the structure, the add operation persists.

2. Last Writer Wins: given an total order relationship over the update operations, the

update that persists is the one issued by the last writer.

Table 3.1 maps each of the selected data structures in each of the policies.

As our goal was to build secure versions of CRDTs, the SCRDTs, by supporting all

of their operations with the aid of cryptographic algorithms, we analysed which of these

algorithms enabled to support said operations with the maximum security possible for

each of the selected CRDTs. Table 3.2 resumes the results of this analysis.

In the following sections a detailed description and specification of each of the CRDT

data structures is provided along with the methodology used in selecting which crypto-

graphic algorithms will support their respective SCRDT version. The main difference

between SCRDTs and CRDTs is that the former stores encrypted data while the latter

stores non encrypted data, thus no specification is provided for the SCRDTs as it would

be the same as its correspondent CRDT. Finally, Section 3.3.6 provides a critical analysis

regarding the security of the SCRDTs developed.

3.3.1 Set

The set structure behaves just like an mathematical set, i.e. it is a collection of distinct

elements. For this structure, we developed three variants — grow only, last writer wins
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Table 3.1: Mapping of CRDTs and conflict resolution policies.

CRDT Conflict Resolution Policies

Set Last Writter Wins, Add Wins
List Last Writter Wins, Add Wins
Map Last Writter Wins, Add Wins
Register Last Writter Wins
Counter Non Aplicable

Table 3.2: Mapping of CRDTs and cryptographic algorithms.

CRDT Cryptographic Algorithm

Set Deterministic Encryption
List Deterministic Encryption
Map Deterministic and Probabilistic Encryption
Register Probabilistic Encryption
Counter Partial Homomorphic Encryption

and add wins set —that have the following operations:

1. Add: inserts an element in the set;

2. Remove: removes an element from the set;

3. Contains: checks if a given element belongs to the set;

4. Size: returns the number of elements of the set;

5. Getall: returns all the elements within the set.

Operations 1 and 2 are categorized as updates as they modify the structure and the

rest of the operations are categorized as queries. Next we detail three variants of the set

CRDT that we developed.

Grow Only Set (G-Set) The grow only set (Algorithm 1), is an exception within the

developed sets as it only one update operation, the add operation. This property alongside

the uniqueness property of the elements within a set results in the impossibility to have

concurrency conflicts regarding the add operation. Despite being quite simple, this set

is an important pillar stone to build other CRDTs that are more complex. The state of an

G-Set is represented by a set S of elements e. The contains operation simply tests if an

element e belongs to the state S and the merge of two G-Sets consists in the union of their

respective states.
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Last Writer Wins Set (LWW-Set) The last writer wins set (Algorithm 2) is similar to

the specification given by Shapiro et. al. [63]. As in this set there are two update opera-

tions that might lead to a concurrency conflict, there is a need for an conflict resolution

policy. In this case, the policy is the Last Writer Wins. To enforce this policy additional

information, namely a time stamp ts, is kept alongside the elements within the state of

the LWW-Set.

To support the remove operation, the state of the set is represented by two distinct

G-Sets, sets A and R. Whenever an element e is added, or removed, to the LWW-Set at an

instant ts, the pair (e, ts) is inserted in A, or R. An element e is said to be contained in set

if:

1. (e,_) ∈ A∧ (e,_) < R, or

2. (e, ts) ∈ A∧ (e, ts′) ∈ R∧ ts > ts′.

As the state of an LWW-Set is represented by two G-Sets, the merge operation between

two LWW-Sets consists in merging the G-Sets that represent their state.

Add Wins Set The add wins set (Algorithms 3 and 4), also known as observed-removed

set [63], also allows the remove operation. However in this set this operation is supported

through the use of time stamps ts and unique identifiers id which are associated to each

of its elements within its state and, as indicated by the name, the concurrency conflict

resolution policy is Add Wins. Additionally and to enforce the Add Wins policy, a flag

type is also kept to indicate which was the last operation made over the element.

The state representation of an Add Wins Set is a map of associations of type id →
(e, ts, type). Whenever an element e is added to this set at an instant ts, an unique iden-

tifier id is generated and an association id → (e, ts, type) is inserted in the state. As a

consequence, we have that an element may be added multiple times to the set.

Whenever an element e is removed at an instant ts, all of the associations id →
(e, ts′ , type) in the state for which the elements match and the time stamp of the remove

operation is bigger, i.e when e = e′ ∧ ts > ts′, are marked as removed. In other words, all

of the add operations up until the instant of the remove operation are eliminated.

An element belongs to the set if there is an identifier in the state that maps to a tuple

containing this element and if the said tuple hasn’t been marked as removed. Therefore,

although an element may be added to the set under different identifiers, the element is

only visible within the set once.

Unlike the other operations of this set, the contains operation is supported through

an additional data structure. This data structure, represented by the variable mapper in

Algorithms 3 and 4, maps each of the elements of the Add Wins set in the set of all the

elements identifiers. This design choice, which trades storage space and complexity for

performance, avoids iterating over the whole state to find an entry that complies to the

condition of an element belonging to the set.
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Algorithm 1 Grow Only Set

1: function GSet( )
2: state← {}
3:

4: function Add( elem )
5: state← state ∪{elem}
6:

7: function GetAll( )
8: return state
9:

10: function Contains( elem )
11: if elem ∈ state then
12: return true
13: else
14: return false
15:

16: function Size( )
17: return #state
18:

19: function Merge( otherstate )
20: state← state ∪ otherstate

3.3.1.1 Set SCRDT and Stub

For all the described set variants there is an implicit requirement to perform equality

comparisons based on the value of an element to comply with the uniqueness property

of elements within a set. Specifically, it is a frequent necessity to verify if an element

belongs the state of the set variants.

Accordingly, to create a secure version of each of the variants it must be possible

to execute this comparison in the ciphertext. For this purpose, we leveraged property

preserving encryption algorithms to build the said version. In particular, we used deter-

ministic encryption to cipher each of the elements that belong to the sets. Algorithm 5

shows the pseudocode for the stub of all of the set’s SCRDTs.
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Algorithm 2 Last Writer Wins Set

1: function LWWSet( )
2: addSet← GSet()
3: removeSet← GSet()

4:

5: function Add( elem, ts )
6: addSet[elem]← ts
7:

8: function Remove( elem, ts)
9: removeSet[elem]← ts

10:

11: function Cointains( elem )
12: if elem ∈ Filtered() then
13: return true
14: else
15: return false
16:

17: function GetAll( )
18: return Filtered()

19:

20: function Size( )
21: return #Filtered()

22:

23: function Merge( otherAddSet, otherRemoveSet )
24: addSet.merge( otherAddSet )
25: removeSet.merge( otherRemoveSet )

26:

27: function Filtered( ) . Auxiliar method
28: r← {}
29: for (elem,ts) ∈ addSet do
30: if (elem,_) < removeSet then
31: r← r ∪{elem}
32: else
33: (elem’, ts’)← (e,t) ∈ removeSet ∧ elem’ = elem
34: if ts > ts′ then
35: r← r ∪{elem′}
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Algorithm 3 Add Wins Set - Part I

1: function AddWinsSet( )
2: elemns← {} . The actual state representation
3: mapper← {} . Map of elements and the id’s associated with them

4:

5: function Add( id, elem, ts )
6: if elemns[id] =⊥ then . An id we have yet to observe
7: elemns[id]← (elem, ts, 1)
8: if mapper[elem] ,⊥ then
9: mapper[elem]←mapper[elem] ∪{id}

10: else
11: mapper[elem]←{id}
12: else . An id we have observed
13: (elem’, ts’, _ )← elemns[id]
14: if elem′ = elem∧ ts′ ≤ ts then . Checking if it’s associated with this element
15: elemns[id]← (elem, ts, 1)

16:

17: function Remove( elem, ts)
18: idSet←mapper[elem]
19: if idSet ,⊥ then
20: for all id ∈ idSet do
21: (_, ts’, _ )← elemns[id]
22: if ts′ < ts then
23: elemns[id]← (elem, ts, 0)

24:

25: function Cointains( elem )
26: idSet←mapper[elem]
27: if idSet ,⊥ then
28: for all id ∈ idSet do
29: ( _ ,_ , type )← elemns[id]
30: if type = 1 then
31: return true
32: return false
33:

34: function GetAll( )
35: r← {}
36: for all (_, elem,_, type) ∈ elemns do
37: if type , 0∧ elem < r then
38: r← r ∪{elem}
39: return r
40:

41: function Size( )
42: return #GetAll()
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Algorithm 4 Add Wins Set - Part II

1: function Merge( otherState )
2: for (id,elem,ts, type) ∈ otherState do
3: if type = 1 then
4: Add(id,elem, ts)
5: else if type = 0 then
6: Remove (id,elem, ts)

Algorithm 5 Set Stub

1: function SetStub( store, pwd, iv )
2: Kd ← loadKey(store, pwd);
3: IV ← iv;
4: service← getServiceEndpoint();

5:

6: function Add( Key, elem )
7: elem’← detEnc(Kd , IV , elem)
8: service.setAdd(Key, elem’)

9:

10: function Remove( Key, elem ) . This operation is non applicable for the G-Set
11: elem’← detEnc(Kd , IV , elem)
12: service.setRemove(Key, elem’)

13:

14: function Contains( Key, elem )
15: elem’← detEnc(Kd , IV , elem)
16: return service.setContains(Key, elem’)

17:

18: function GetAll( Key )
19: encState← service.setGetAll(Key)
20: state←{}
21: for e ∈ encState do
22: e’← detDec(Kd , IV , e)
23: state← state ∪{e′}
24: return state
25:

26: function Size( Key )
27: return service.setSize(Key)
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3.3.2 List

The list structure behaves like an mathematical sequence, i.e it is an collection of elements

that allows for repetitions and which is enumerated. The list CRDT we developed is built

upon a modified version of the CRDT TreeDoc proposed by Preguiça et. al. [52] and has

the following operations:

1. Insert: inserts an element in the specified position of the list;

2. Remove: removes an element in the specified position from the list;

3. Contains: checks if a given element belongs to the list;

4. Get: returns the element stored in the list in the specified position;

5. Size: returns the number of elements of the list;

6. Getall: returns all the elements within the list.

Operations 1 and 2 are categorized as updates as they modify the structure and the

rest of the operations are categorized as queries. Most of these operations are supported

through the use of indexes which in a distributed environment, where there is different

copies of the list that must present an unique and consistent order of its elements, might

lead to a problem if distinct elements are concurrently inserted in the same position

in distinct copies of the list. In such scenario, upon merging these distinct copies it is

impossible to deterministically order these insertions using only the index in order to

compute the final and correct state for both lists. The TreeDoc CRDT addresses this

concern.

Originally, TreeDoc consists in a sequential shared buffer where each entry of the

vector is associated with an identifier P osId with the following properties:

1. Every element in the buffer has identifier;

2. There is a total order of the identifiers, represented by < that is consistent with the

order of the elements within the buffer.

3. Given any identifiers id1 e id2, it is always possible to define a new identifier id3

between id1 e id2.

These properties are required to ensure that concurrent updates commute thus en-

suring convergence of replicas. The identifier P osId consists in the pair (p,d) where p is

the position the element was intended to be inserted in and d is an disambiguator. The

purpose of this disambiguator is to enable to establish a total order among elements that

were inserted in the same position. It follows that the state representation of the TreeDoc

is an ordered list of (P osId,e) .
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In our list (Algorithms 6 and 7) take leverage the identifiers, where the disambiguator

is of the type simple disambiguator (SDIS) [52], and we associate them to the element

plus some metadata, namely a time stamp ts and the type type of the update operation

that was last performed, similarly to our approach in the Add Wins Set, to help enforce

conflict resolution policies. Thus the state of our list is represented by a map of entries of

the type P osId→ (e, ts, type).

We also maintain two additional data structures to help support the list’s operations

— atoms and ids. The ids structure is an array that in each entry i contains the identifier

P osId of the element that is currently at that position in the lists and it only contains the

identifiers of the elements that effectively are in the list. The atoms structure is a map

of P osId → e entries that maps all of the identifiers of the elements that effectively are

in the list in their elements. These structures allow for better performance of the list’s

query operations (getAll, get, contains) and the remove operation at a cost of using more

memory.

We implemented two variants of the list: add wins and last writer wins. As their

behaviour is similar except for the remove operation, the main algorithm for the list is

shown in Algorithms 6 and 7 whereas the remove operations of the last writer wins and

add wins variants is shown in Algorithms 8 and 9, respectively.

Last Writer Wins List (LWW-List) The Last Writer Wins list, as the name indicates,

applies the last writer wins concurrency conflict resolution policy. Whenever an element

e is inserted in the list at position i at instant ts, an identifier P osId = (i,d) is generated

where the disambiguator d will take a value that is between the disambiguators of the

identifiers in positions i − 1 and i + 1 of the list. After creating the identifier, an entry

P osId→ (e, ts, type) is inserted in the state, a pair (P osId,e) is inserted in atoms and P osId

is inserted in ids.

Whenever a remove is issued for position i in the instant ts, the element to be removed

is selected based on the identifier that is in the position i in ids structure. Afterwards,

if the time stamp ts′ of the last operation associated with this element is bigger or equal

than ts, the element is marked as removed and the auxiliary data structures atoms and

ids are invalidated so that they may be recomputed again. An element is said to be in the

list if it is present in the atoms structure. The merge operation consists in the union of

the state of the two lists, where for the elements stored in the same position the process

described for the insert operation is used.

Add Wins List The Add Wins list, again as the name indicates, applies the add wins

concurrency conflict resolution policy and behaves like the LWW-List in every operation

except the remove. In this list, whenever a remove is issued for position i in the instant

ts, the element to be removed is selected based on the identifier that is at position i in

ids. Afterwards if the time stamp ts′ of the last operation associated with this element is

strictly bigger than ts, the element is marked as removed and the auxiliary data structures
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atoms and ids are also invalidated. If the time stamps ts and ts′ are equal then the

element is only marked as removed if the type type of the last operation associated with

the element is not an insertion.

3.3.2.1 List SCRDT and Stub

Despite the majority of the operations of the list being supported through indexes, the

contains operation is based upon the value of the element. Consequently, for the list there

is a requirement to be able to perform equality comparisons, as with the set. Specifically,

in this structure it is necessary to verify if the element belongs to the atoms auxiliary

structure.

Accordingly, the secure versions of the list’s variants store their elements under a

deterministic encryption scheme. Algorithm 10 shows the pseudocode for the stub of all

of the list’s SCRDTs.
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Algorithm 6 List - Part I

1: function List( )
2: state← {}
3: atoms← {} . Ordered map of position id’s and elements
4: ids← {} . Ordered set of id’s
5:

6: function Insert( elem, ts )
7: Insert( Size(), elem, ts )

8:

9: function Insert( i, elem, ts )
10: id← CreatePosition( i ) . Creates an composite identifier
11: if state[id] ,⊥ then
12: (elem, ts’, type)← state[id]
13: if ts ≥ ts′ then
14: state[id]← (elem, ts, 1) . Inserts are operation type 1
15: atoms← atoms ∪{ (id, elem) }
16: ids← ids ∪{ id }
17: else
18: state[id]← (elem, ts, 1)
19: atoms← atoms ∪{ (id, elem) }
20: ids← ids ∪{ id }
21:

22: function Remove( ts )
23: return Remove( Size()-1, ts ) . See algorithms 8 and 9

24:

25: function Get( i )
26: idArray← GetIdsArray() . Computes and returns all of the ids
27: atoms← GetAtoms() . Computes and returns all of the atoms
28: id← idArray[i]
29: elem← atoms[id]
30: return elem
31:

32: function Cointains( elem )
33: atomsMap← GetAtoms()
34: for all (id,elem′) ∈ atomsMap do
35: if elem = elem′ then
36: return true
37: return false
38:

39: function GetAll( )
40: atomsMap← GetAtoms()
41: r← {}
42: for all (id,elem) ∈ atomsMap do
43: r← r ∪{elem}
44: return r
45:

46: function Size( )
47: return #GetAtoms()
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Algorithm 7 List - Part II

1: function Merge( otherState )
2: for all (id,elem,ts′ , type) ∈ otherState do
3: i← id.GetPosition()
4: if type = 1 then
5: Insert(i, elem, ts)
6: else if type = 0 then
7: Remove(i, elem, ts)

Algorithm 8 Last Writer Wins

1: function Remove( i, ts )
2: idArray← GetIdsArray()
3: id← idArray[i]
4: if state[id] ,⊥ then
5: (elem, ts’, type)← state[id]
6: if ts ≥ ts′ then
7: state[id]← (⊥, ts, 0) . Removes are operation type 0
8: atomsArray← getAtoms()
9: elem← atomsArray[id]

10: Delinearize() . Invalidates the atoms and id’s structures
11: return elem
12: return ⊥

Algorithm 9 Add Wins List

1: function Remove( i, ts )
2: id← GetIdsArray().get( i )
3: if state[id] ,⊥ then
4: (elem, ts’, type)← state[id]
5: if ts > ts′ ∨ (ts′ = ts∧ type , 1) then
6: state[id]← (⊥, ts, 0) . Removes are operation type 0
7: atomsArray← getAtoms()
8: elem← atomsArray[id]
9: Delinearize() . Invalidates the atoms and id’s structures

10: return elem
11: else
12: state[id]← (⊥, ts, 0)
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Algorithm 10 List Stub

1: function ListStub( store, pwd, iv )
2: Kd ← loadKey(store, pwd);
3: IV ← iv;
4: service← getServiceEndpoint();

5:

6: function Add( Key, elem)
7: elem’← detEnc(Kd , IV , elem)
8: service.listInsert(Key, elem’)

9:

10: function Add( Key, i , elem)
11: elem’← detEnc(Kd , IV , elem)
12: service.listInsert(Key, i, elem’)

13:

14: function Remove( Key )
15: service.listRemove(Key )

16:

17: function Remove( Key, i )
18: service.listRemove(Key, i)

19:

20: function Contains( Key, elem )
21: elem’← detEnc(Kd , IV , elem)
22: return service.listContains(Key, elem’)

23:

24: function Get( Key, i )
25: elem← service.listGet(key, i)
26: if elem ,⊥ then
27: return detDec(Kd , IV , elem)

28: return ⊥
29:

30: function GetAll( Key )
31: encState← service.listGetAll(key)
32: state← {}
33: for e ∈ encState do
34: e’← detDec(Kd , IV , e)
35: state← state ∪{e′}
36: return state
37:

38: function Size( Key )
39: return service.listSize(Key)
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3.3.3 Register

A register behaves like a container for some arbitrary value which can be updated at any

given time. The register CRDT implemented (Algorithm 11) is similar to the specification

given by Shapiro et. al. [63], which enforces the last writer wins conflict policy and has

the following operations:

1. Put: updates the value stored in the register;

2. Get: returns the value stored in the register;

Operation 1 is categorized as an update as it modifies the structure’s state and opera-

tion 2 is categorized as a query.

The register CRDT stores a time stamp ts, besides arbitrary value v, that indicates

when the last update to the value was made thus its state is represented by the pair

(v, ts). A put operation of value v′ issued on the instant ts′ consists in updating the value

stored within the register if the time stamp ts is greater or equal the current time stamp

stored in the register, i.e it verifies if ts ≥ ts′. The get operation is very straightforward

and simply returns the current value of the register. The merge operation between two

registers determines which of the values should persist by applying the same logic of the

put operation.

Algorithm 11 Last Writer Wins Register

1: function LWWRegister( )
2: state← (⊥,⊥)

3:

4: function Put( val, ts )
5: ( val’, ts’)← state
6: if ts ≥ ts′ then
7: state← (val, ts)

8:

9: function Get( )
10: (val, ts )← state
11: return val
12:

13: function Merge( otherstate )
14: (val, ts)← state
15: (val’, ts’)← otherstate
16: if ts′ ≥ ts then
17: state← (val’, ts’)

3.3.3.1 Register SCRDT and Stub

As none of the register operations is made through the value there are no requirements

over it, thus the secure version of the register stores the value under a probabilistic
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encryption scheme. Algorithm 12 shows the pseudocode for the stub of the register

SCRDT.

Algorithm 12 Register Stub

1: function RegisterStub( store, pwd, iv )
2: Kr ← loadKey(store, pwd);
3: IV← iv;
4: service← getServiceEndpoint();

5:

6: function Put( Key, v )
7: v’← rndEnc(Kr , IV , v)
8: service.registerPut(Key, v’)

9:

10: function Get( Key )
11: v← service.registerGet(Key)
12: if v ,⊥ then
13: return rndDec(Kr , IV , v)

14: return ⊥

3.3.4 Map

A map is a collection of (key, value) pairs where the key must be unique within the

collection. The map CRDT has the following operations:

1. Put: inserts a key value entry in the map;

2. Remove: removes the entry mapped by the given key from the map;

3. Contains: checks if there is an entry mapped by the given key;

4. Get: returns the value in the entry that is mapped by the given key;

5. Size: returns the number of elements of the map;

6. Getall: returns all the elements within the map.

Operations 1 and 2 are categorized as updates as they modify the structure and the

rest of the operations are categorized as queries. As with the list, for the map two variants

were developed: last writer wins and add wins map.

Last Writer Map (LWW-Map) In the last writer wins map (Algorithms 13 and 14), the

state consists in a map of entries k → rg, where rg is a register CRDT which enforces

the last writer wins policy and is detailed in Section 3.3.3. This composition of CRDTs

enables to simplify the logic required to both enforce the conflict policy and to perform

the merge operation.
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The put operation of a pair (k,v) at an instant ts consists in inserting the entry k→ rg

in the state. The remove operation of a value v associated with a key k at an instant ts

consists in inserting the null value in the register rg associated with the key k so that

this entry is marked as removed. A key k is said to be in the map if there is an entry for

that key in the state and if the value stored in the register associated with this key is not

null. The merge operation between two LWW-Maps is the union of the two maps that

represent their state where for the keys common to both maps, the merge operation of

the associated registers is invoked.

Add Wins Map In the add wins map (Algorithms 15 and 16) the state consists in a

map of entries k→ (e, ts, type), where ts is the time stamp of the last update performed

in this entry and type indicates which was the last update made. For this map, the put

operation behaves just as described for the LWW-Map. The remove operation of a value v

associated with a key k at an instant ts consists in marking the tuple (e, ts′ , type) associated

with the key in the map’s state as removed if the time stamp of the remove operation ts is

strictly bigger to the time stamp ts′ of the last operation performed over this entry. If the

time stamps are equal, then the remove is only effective if the type of the last performed

operation isn’t a put. A key k is said to be in the map if there is an entry for that key in

the state and if its associated tuple is not marked as removed. The merge between two

Add Wins maps is the union of the two maps that represent their state, where for the keys

common to both maps the last operation performed is maintained if there are no conflicts.

If there are conflicts, the same logic used in the put operation is applied to enforce the

Add Wins policy.

3.3.4.1 Map SCRDT and Stub

For the maps, as with the sets and lists, there is also an implicit requirement to be able to

perform equality comparisons. However, in the maps the requirement is only applicable

to the key as it is used to support the majority of its operations. Therefore, the key must

be stored under a deterministic encryption scheme while the value may be stored under a

probabilistic encryption scheme as there are no requirements for it to oblige to. Algorithm

17 shows the pseudocode for the stub of all of the map’s SCRDTs.
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Algorithm 13 Last Writer Wins Map - Part I

1: function LWWMap( )
2: state← {}
3:

4: function Put( key, val, ts )
5: rg← state[key]
6: nRg← LWWRegister(val,ts)
7: if rg =⊥ then
8: state[key]← nRg
9: else

10: rg.merge( nRg )

11:

12: function Remove( key, ts )
13: rg← state[key]
14: if rg ,⊥ then
15: rg.put( ⊥ , ts )

16:

17: function Get( key )
18: rg← state[key]
19: if rg ,⊥ then
20: return rg.get()
21: else
22: return ⊥
23:

24: function Contains( key )
25: rg← state[key]
26: if rg ,⊥ then
27: return true
28: else
29: return false

3.3.5 Counter

A counter behaves like a register for some arbitrary numeric value which can be either

incremented or decremented by some value. The counter CRDT we developed is inspired

by the PN-Counter proposed by Shapiro et. al [63] which has the following operations:

1. Inc: increments the current value of the counter by some specified value;

2. Dec: decrements the current value of the counter by some specified value;

3. Get: returns current value of the counter.

Operations 1 and 2 are categorized as updates they modify the counter’s state and

operation 3 is categorized as a query.

Originally in the PN-Counter there are two vectors that represent the state, vectors P

and N , that have as many entries as the number of copies that exist of the counter. Each
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Algorithm 14 Last Writer Wins Map - Part II

1: function Size( )
2: return #Filtered()

3:

4: function GetAll( )
5: return Filtered()

6:

7: function Filtered( )
8: r← {}
9: for (key, rg) ∈ state do

10: value← rg.get()
11: if value ,⊥ then
12: r← r ∪{(key,value)}
13: return r
14:

15: function Merge( otherstate )
16: for (key, rg) ∈ otherstate do
17: myRg← state[key]
18: if myRg =⊥ then
19: state← state∪ {(key, rg)}
20: else
21: myRg.merge( rg )

copy only manipulates one predefined entry i in both arrays and its only possible to make

unitary increments and decrements, which are registered in the vectors P [i] and N [i]

accordingly.

Specifically, the inc operation issued at a copy that manipulates the entry i consists in

incrementing the entry P [i] and the dec operation consists in incrementing the entry N [i].

The absolute value of the counter is given by
∑
P [i]−N [i], i = 0, ...,N where N represents

the total number of copies of the counter. The merge operation between two PN-Counters

consists in calculating the maximum value for each entry of both vectors of each state.

In our version of the counter (Algorithm 18), we allow increments and decrements

of arbitrary values and, besides the vectors P and N , two auxiliary vectors are also kept,

MP and MN , which also have as many entries as the number of copies that exist of the

counter and each entry contains a time stamp that tracks when was the last update made

to the corresponding entry at vectors P and N respectively.

While the absolute value of the counter is computed exactly the same way as in the

PN-Counter, the inc and dec operation are slightly different in the sense that arbitrary

values for increments and decrements are allowed and that the auxiliary vectors MP and

MN are also modified. Specifically, the inc operation issued at a copy that manipulates

the entry i updates the time stamp stored in the entryMP [i] and the dec operation issued

at a copy that manipulates the entry i updates the time stamp stored in the entry MN [i].
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Algorithm 15 Add Wins Map - Part I

1: function AddWinsMap( )
2: state← {}
3:

4: function Put( key, val, ts )
5: if state[key] ,⊥ then
6: (val’, ts’, type)← state[key]
7: if ts ≥ ts′ then
8: state[key]← (val, ts, 1) . puts are operation type 1

9: else
10: state[key]← (val, ts, 1)

11:

12: function Remove( key, ts )
13: if state[key] ,⊥ then
14: (val, ts’, type)← state[key]
15: if ts ≥ ts′ ∨ (ts′ = ts∧ type , 1) then
16: state[key]← (⊥, ts, 0) . removes are operation type 0

17:

18: function Get( key )
19: if state[nKey] ,⊥ then
20: (val, ts, type)← state[key]
21: return val
22: else
23: return ⊥
24:

25: function Contains( key )
26: if state[key] ,⊥ then
27: (val, ts, type)← state[key]
28: if val ,⊥ then
29: return true
30: else
31: return false
32: else
33: return false
34:

35: function Size( )
36: return #GetAll()

37:

38: function GetAll( )
39: r← {}
40: for (key,val, ts, type) ∈ state do
41: if value ,⊥ then
42: r← r ∪{(key,val)}
43: return r
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Algorithm 16 Add Wins Map - Part II

1: function Merge( otherstate )
2: for (key,val, ts, type) ∈ otherstate do
3: if type = 1 then
4: Put( key, val, ts )
5: else if oT ype = 0 then
6: Remove( key, ts )

3.3.5.1 Counter SCRDT and Stub

The previously explained modifications where made in order to enable the creation of

the secure version of the counter. To support the inc and dec operations, an partial

homomorphic encryption scheme such as Paillier’s [48] is required so that it may be

possible to perform additions and subtractions over the ciphertext. Therefore the data

at vectors P and N must be stored under such scheme. However, as in the original PN-

Counter the merge operation consists in comparing the entries at these vectors in search

of the maximum entry, a problem arises as partial homomorphic encryption schemes do

not allow for such comparison to be made over its ciphertext.

Thus as an alternative, we created the additional vectors MP and MN to support the

merge operation. Specifically, the merge operation between two of our modified counters

consists in calculating the maximum value for each entry of vectors MP and MN and

maintaining the values of the corresponding entries at vectors P and N . This solution

works correctly because each replica only modifies one entry per auxiliary vector and

does so in an monotonically increasing way therefore it follows that given two vectors

MP and MP ′, if at an entry i MP [i] > MP ′[i] then P [i] > P ′[i] ( which is also applicable

for vectors MN and MN ′).

At last, allowing for arbitrary increments and decrements permits to obfuscate to an

extent an adversary that might be monitoring the computations in search for patterns to

learn information, such as a HbC cloud administrator, by hiding the fact that the state of

the counter changes in the same way every time an update operation is performed.

Algorithm 19 shows the pseudocode for the stub of the counter SCRDT.
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Algorithm 17 Map Stub

1: function MapStub( store, pwd, ivD, ivR )
2: Kd ← loadKey(store, pwd);
3: Kr ← loadKey(store, pwd);
4: IVd ← ivD;
5: IVr ← ivR;
6: service← getServiceEndpoint();

7:

8: function Put( Key, k, v )
9: k’← detEnc(Kd , IVd , k)

10: v’← rndEnc(Kr , IVr , v)
11: service.mapPut(Key, k’,v’)

12:

13: function Remove( Key, k )
14: k’← detEnc(Kd , IVd , k)
15: v← service.mapRemove(Key, k’)
16: if v ,⊥ then
17: return rndDec(Kr , IVr , v)

18: return ⊥
19:

20: function Contains( Key, k )
21: k’← detEnc(Kd , IVd , k)
22: return service.mapContains(Key, k’)

23:

24: function Get( Key, k )
25: k’← detEnc(Kd , IVd , k)
26: v← service.mapGet(Key, k’)
27: if v ,⊥ then
28: return rndDec(Kr , IVr , v)

29: return ⊥
30:

31: function GetAll( Key )
32: encState← service.mapGetAll(Key)
33: state← {}
34: for (k,v) ∈ encState do
35: k’← detDec(Kd , IVd , k)
36: v’← rndDec(Kr , IVr , v)
37: state← state ∪{(k′ ,v′)}
38: return state
39:

40: function Size( Key )
41: return service.mapSize(Key)
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Algorithm 18 Counter - Part I

1: function Counter( index )
2: i← index
3: p← {}
4: n← {}
5: mp← {} . Auxiliary structure for the p vector
6: mn← {} . Auxiliary structure for the n vector

7:

8: function Inc( delta )
9: ts←mp[i]

10: p[i]← p[i] + delta
11: mp[i]← generateTimestamp()

12:

13: function Dec( delta )
14: ts←mn[i]
15: n[i]← n[i] + delta
16: mn[i]← generateTimestamp()

17:

18: function Get( )
19: sumP← 0
20: sumN← 0
21: for id ∈ p do
22: sumP← sumP + p[id]

23: for id ∈ n do
24: sumN← sumN + n[id]
25: return sumP - sumN
26:

27: function Merge( p’, mp’, n’, mn’ )
28: for (id′ , ts′) ∈mp′ do
29: ts←mp[id’]
30: if ts′ > ts then
31: p[id’]← p’[id’]
32: mp[id’]←mp’[id’]

33: for (id′ , ts′) ∈mn′ do
34: ts←mn[id’]
35: if ts′ > ts then
36: n[id’]← n’[id’]
37: mn[id’]←mn’[id’]
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Algorithm 19 Counter Stub

1: function RegisterStub( p, q ) . p and q are paillier’s private numbers
2: pl← Paillier(p, q);
3: service← getServiceEndpoint();

4:

5: function Inc( Key, delta )
6: delta’← pl.Enc(delta)
7: service.counterInc(Key, delta’)

8:

9: function Dec( Key, delta )
10: delta’← pl.Enc(delta)
11: service.counterDec(Key, delta’)

12:

13: function Get( Key )
14: ctr← service.counterGet(Key)
15: return pl.Dec(ctr)

3.3.6 Security and critical analysis

Throughout the previous subsections we only discussed the encryption of the data that is

stored in the structures with no mention of the metadata that is also stored, namely the

time stamps and the type of operation. The main reason for this is that this information

is not worth to hide or obfuscate as its very difficult to hide from an adversary which

possesses access to the machines where the data store service is executing and that is

monitoring them in order to deduce information. For instance, this adversary could be

the cloud administrator which is an adversary we contemplate on our threat model.

When it comes to the encryption schemes that we leverage for our SCRDTs, the deter-

ministic encryption scheme is the one more prone to reveal information about the stored

data. Specifically it reveals repetitions in structures that admit repetition among their

elements, such as the list, and overall whether a given encrypted element belongs or not

in the structure. The first case is a direct consequence of the encryption scheme being

deterministic as it will always produce the same ciphertext for the same plaintext. The

second case is also a consequence of determinism but it also requires the adversary to

infer information about the type of computations that are being performed. Nonetheless

when the data is at rest, i.e. when no computations are being performed over it, and

in structures were no repetitions are allowed, the deterministic encryption scheme is as

secure as a probabilistic encryption scheme. If the data is not at rest, then the amount

of information revealed increases with the amount of operations performed. A possible

solution would be to periodically refresh the ciphertext by re-encrypting it with new

parameters. However, if there is a large amount of data this solution is not very practical

and may hinder the system’s availability.

The structures that use partial homomorphic and probabilistic encryption schemes

are by default more secure as these schemes present IND-CPA security levels [51].
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4
Implementation

In this chapter we discuss and present the implementation aspects of our solution. We

implemented our solution incrementally in two phases. First, we developed the library

that contained the data structures discussed in Section 3.3, both the secure (SCRDT) and

non-secure (CRDT) version. We developed our own set of structures as we could not find

an existing library of CRDTs in JAVA that featured the all the necessary structures.

Then we also developed a data store prototype which contained said structures. How-

ever, due to time constraints we could not completely consolidate the implementation

of the prototype in order to experimentally evaluate it. In Section 4.1 of this chapter we

present a description of said prototype.

As a programming language for both the library and prototype we used Java. For the

prototype we used the Akka toolkit [1]. Akka is an implementation of the Actor Model

proposed by Carl Hewitt [34] for the JVM that is geared towards the development of

applications that are highly concurrent, distributed and fault-tolerant. These are common

traits of a data store, hence our decision to us this toolkit for our prototype. Table 4.1

shows a summary of the technologies used.

Table 4.1: Summary of the technologies used.

Technology Version

Java 8
Akka 2.5.4
Google Protocol Buffers 3

The implementation of the library was straightforward given the pseudocode we have

already presented in Section 3.3, therefore we will not address it 1.

1The source code can be found at https://github.com/tavares-jdst/crypto_crdts.
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In Section 4.1 we discuss how we implemented our prototype using the aforemen-

tioned Akka toolkit modules. This prototype follows the system model shown in Section

3.1.

4.1 Data store prototype

To develop our prototype, we used three modules from the Akka toolkit: Distributed

Data, Cluster and HTTP. The Distributed Data module [3] offers eventually consistent,

high read and write available, low latency data (i.e. CRDTs). It also enables the creation

of custom distributed data and provides support for their usage and management in

distributed applications. This module proved to be crucial to integrate our CRDTs and

SCRDTs in our prototype.

The Cluster module [2] offers a membership service that is decentralized, fault-tolerant

and peer-to-peer that uses gossip protocols for communication among the cluster’s nodes

and an automatic failure detector. We took advantage of this module to build, deploy and

manage many replicas of the data store service in a seamless way.

The HTTP module [4], permits exporting the API of the data store service through a

REST web service thus enabling clients to use it.

In the rest of this section, we explain how each of these modules were used to develop

each component of our system.

Storage We developed this component using the Distributed Data module. Specifically,

we integrated our structures in this module by creating custom replicated data by extend-

ing two classes — AbstractReplicatedData and AbstractSerializationSupport. The

former class allowed to create the custom replicated data. The latter was required for

serialization as, per the documentation guidelines, the custom data must comply with the

Akka serializer. This class contains the logic to (de)serialize our structures under Google

Protocol Buffers (protobuf) [31].

Due to protobuf not supporting generic types and because there was an immutability

requirement for the custom replicated data, we had to adapt the implementation of our

structures. The update and merge operations of each structure return a new instance,

when previously they only altered the structure, to comply with the immutability re-

quirement. Then, we altered the CRDT structures so that they store pre-defined types.

In particular the map, register and set structures store strings whilst the counter stores

integers. We consider this last alteration to our solution acceptable as other in memory

key values such as Redis use a similar approach. For the SCRDT structures the imple-

mentation remained the same as they by default store a comparable byte array.

Replication Mechanism This component is fully supported by the Replicator actor

offered by the Distributed Data module. Each node of the system contains an instance of

this actor. Whenever a node of the system receives an operation over some structure from
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the client, the Replicator at that node is invoked and propagates the operation to the

majority of the cluster node’s by communicating with their instances of the Replicator.

If the operation is propagated to the majority of the replicas without a timeout occurring,

then it is considered to be successful.

The Replicator exports two operations for this purpose: update and get. Updates

are to be used whenever a modifying operation of a structure is invoked, in other words

updates are to be used to replicate the update operations of the structures. Gets are to

be used for obtaining the current state of a structure and therefore are to be used for the

query operations of a structure.

Data consistency is enforced through get operations of the Replicator. Upon receiv-

ing the current state of the structure from a majority of the replicas, all of the received

states are merged and the result of this operation is considered to be the current state of

the structure.

Client Interface To provide external access to the store service, each node has a service

endpoint configured which was implemented through extending the AllDirectives class

provided by the HTTP module. This class permits configuring routes that handle specific

requests. In our API we have one route for each the different structures, which in turn

have sub routes to support each of the structures’ operations.

Stubs This component is supported through using the HttpRequest and HttpResponse

provided by the HTTP module. As previously explained, there is a Stub for each type

of structure supported by our service that is responsible for transforming the client’s re-

quests and for issuing the transformed request to a given endpoint of our service through

the API exported by the Client Interface. The transformation consists in encrypting the

operation’s arguments under the appropriate encryption scheme which is selected based

on the structure it was issued upon.

Client The client component is a simple instance of an Akka actor which uses the Stubs

components to interact with the data store service. To issue requests to the system, clients

select at random an endpoint from a list of service endpoints available and then invoke

the intended operation through the Stubs component while providing the endpoint to be

used.
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5
Experimental Evaluation

In this chapter we present our experimental evaluation which consisted in performing

micro benchmarks to the developed structures. The experiment is detailed in Section 5.1

and it focuses on a pure performance comparison between the CRDTs and their SCRDT

counterparts to have an understanding of the impact of enhancing the structures with

security.

5.1 Micro benchmarks

This benchmark focuses on purely comparing the CRDTs and SCRDTs we developed

performance wise to have a first understanding in how they compare.

As such, each micro benchmark was executed in a local environment and each mea-

sured, for a given data structure, the average execution time of 1000 of each of its op-

erations. Beforehand, each data structure was populated with 1000 input data objects.

The benchmarks were performed in a machine running Ubuntu 16.04 with an Intel(R)

Core(TM) i5-5200U 2.20GHz CPU and mSATA 256 GB SSD.

As input for the benchmarks we generated, from a base input string (for the sets, lists

and maps structures) or number (for the counter), a random and simple data set with

the required number of items to perform the operations, namely 1000. For instance, for

the add operation of a set and given an input string "benchmark", 1000 variations of this

string are created by simply adding a number from 1 up to 1000 to the string. All the

operations for each data structure were executed over a single replica, with the exception

of the merge operations where two replicas of the data structure were used.

As the benchmarks regarding the SCRDTs will include the appropriate encryption

and decryption operations, which is done at the client side, a performance penalty is

expected in the results when compared to the performance results of the corresponding
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CRDT.

The results obtained are show on tables 5.1 to 5.5.

Table 5.1: Map micro benchmarks results in µs/op.

Operation CRDT LWW SCRDT LWW CRDT AW SCRDT AW

Put 3.97 80.48 4.43 81.12
Remove 1.2 42.2 1.1 41.95
Get 0.65 46.9 0.8 46.37
Contains 0.78 41.24 0.58 40.09
GetAll 155.92 707.42 162.69 717.57
Merge 208.87 213.17 264.16 270.76

Table 5.2: Sets micro benchmarks results in µs/op (N/A = Non Applicable).

Operation CRDT
GSet

SCRDT
GSet

CRDT
LWW

SCRDT
LWW

CRDT
AW

SCRDT
AW

Add 2.34 45.35 8.4 51.7 43.68 83.55
Remove N/A N/A 1.21 42.83 12.63 57.62
Contains 0.54 43.31 0.96 43.17 3.19 44.17
GetAll 1.15 348.53 0.29 349.12 196.8 530.69
Merge 58.01 183.12 141.5 185.96 409.7 470.54

Table 5.3: Lists micro benchmarks results in µs/op.

Operation CRDT LWW SCRDT LWW CRDT AW SCRDT AW

Insert 197.11 247.54 207.95 256.1
Remove 185.8 229.03 187.64 233.5
Get 44.27 91.98 46.03 94.4
Contains 21.89 63.73 21.91 62.58
GetAll 56.71 368.87 58.3 371.04
Merge 35028.22 35219.48 34848.81 34940.21

5.1.1 Critical analysis

As expected the performance of the SCRDTs is overall worse then its CRDT counterpart.

In the map structure for the all of its operations with the exception of getall, the

execution time overhead of the SCRDT versions in comparison to their CRDT counterpart

is proportional to the number of encryption/decryption operations required and the time

these operations take. This proportion is also observable in the set and list structures.

For the getall operation in the map this observation is not applicable as, unlike the

remaining operations, the decryption of the elements requires to iterate over the whole

structure thus adding up the cost of searching the structures to the cost of the decryption
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Table 5.4: Register micro benchmarks
results in µs/op.

Operation CRDT SCRDT

Put 0.86 41.15
Get 0.37 48.84
Merge 0.87 1.11

Table 5.5: Counter micro benchmarks
results in µs/op.

Operation CRDT SCRDT

Inc 2.86 724.34
Dec 2.44 728.28
Get 18.91 2159.62
Merge 8.51 8.78

of every element. Nonetheless, the search and decryption steps were optimized to be

done in parallel if possible through the use of streams and lambda expressions. Hence

in the best scenario these execution time of these steps is the time of decrypting one

element if total parallelism is possible plus the time to iterate the structure. In the worst

scenario, it takes up to N times the time of decrypting one element if no parallelism is

possible, where N denotes the number of elements in the structure. This observation

is also valid for the getall operations of the the set and list structures. The register and

counter structures have only one query operation — get — that returns a single value,

therefore for these structures the execution time overhead of the SCRDT versions in

comparison to their CRDT counterpart is in fact proportional to the number of decryption

operations required and the time this operation takes.

The merge operation execution time is similar for each variant of the map CRDT

and SCRDT, which is to be expected as it doesn’t require any sort of encryption and it

depends solely on the size of the internal state of the map. When it comes to the merge

operations of the remaining structures, with the exception of the set, the execution times

are also very similar due to the same fact. In the set structure the difference of executions

times of the merge operations between the CRDT and SCRDT versions is unusually steep

and unexpected. Another noticeable aspect in the results of the merge operations, is

the values for the list structure which are very high yet expectable due to collisions of

elements stored at the same position in the different copies of list. For each collision, it is

necessary to compute a new composed identifier which is a fairly complex task (refer to

Section 3.3.2) thus it renders the merge quite slow. A final observation is that the counter

structure presents the biggest execution time disparity between its CRDT and SCRDT

versions. This overhead is expectable as the underlying cryptographic primitive for its

SCRDT version is Pailler’s encryption scheme and each operation performs sums over the

ciphertext using this primitive which is a computationally heavy operation.

Although there is an accentuated performance overhead between the CRDT and

SCRDT variants, the overhead resides at the client side. This means that on the server the

operations over the SCRDT structures have the same amount of execution time as their

CRDT counterparts and, consequently the throughput of the system where the SCRDTs

integrate would not be as hindered as expected. In conclusion, the attained results are

promising and show the potential benefits of the SCRDTs.
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6
Conclusion

The cloud computing paradigm is very popular and is an attractive solution to deploy

services that scale, are highly available and fault tolerant such as NoSQL data stores.

However with the rise of its popularity, the number of security-related incidents also in-

creased. Most of these incidents are associated to the privacy, confidentiality and integrity

of the data stored in the cloud. The attacks that lead to the incidents might not always be

carried out by outside attackers that wish to gain some knowledge about the data stored

in the cloud, but they might also be carried out by the cloud provider itself.

These factors hinder the user’s trust in cloud-based services, especially if the data

is considered to be critical as it would if the user is an health insurance company that

outsources their data in the cloud. For instance NoSQL data stores provide some security

mechanisms, but these are limited when compared to traditional relational databases.

In this thesis we proposed a set of secure data abstractions that enable trusted cloud

computation in the context of NoSQL data stores. Moreover, these abstractions also allow

for programmers to develop their own secure distributed applications. The abstractions

are a new set of secure conflict-free replicated data types, SCRDTs, which are security

enhanced through the use of cryptographic schemes, such as homomorphic and property-

preserving schemes, that enable their operations to be made over ciphertext.

To evaluate our solution we conducted micro benchmarks to compare each secure

abstraction with their non secure counterpart performance wise. The results of our ex-

periment shows that our abstractions provide the intended security requirements with

an acceptable performance overhead, showing that it has potential to be used to build

solutions for trusted cloud computation.
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CHAPTER 6. CONCLUSION

6.1 Contributions

In summary, the main contributions of this thesis where:

• A new design of CRDTs that are security enhanced, SCRDTs, that perform their

operations over ciphertext and that allow to build secure distributed applications

and to perform trusted computations.

• Two libraries, one containing a set of CRDT structures and another containing the

secure version of the previous set of structures, the SCRDTs;

• A paper entitled "SCRDTs: Tipos de Dados Seguros e Replicados sem Conflitos"which

was accepted for the INForum 2018 conference, thus validating the contributions

of our solution for the scientific community.

6.2 Future Work

As in this thesis we focused primarily on state based replicated CRDTs and SCRDT, our

first proposal for future work would be to extend our solution to incorporate operation

based replicated CRDTs and SCRDTs so that it becomes even more rich and complete.

Our second proposal for future work is an iteration of the SCRDTs where instead of

providing security guarantees through only the use of cryptographic techniques, the

guarantees would be also provided through the use of trusted hardware technologies

(refer to Section 2.1).

Briefly, trusted hardware technologies enable the creation of TEEs that provide con-

fidentiality and integrity guarantees both to the input and output data and the compu-

tations that are performed within the environment. We shall focus on Intel SGX as the

trusted hardware technology because as previously discussed (refer to Sections 2.1.4.1

and 2.1.5), TPM’s are slow and inefficient which renders it inappropriate performance

wise and when compared to ARM’s Trustzone, Intel SGX it has a smaller TCB and a well

defined threat model,which are desirable traits.

To combine the cryptographic technologies and TEEs, we have two possible approaches

that differ in the way in which Intel SGX would be used in combination with some crypto-

graphic technology. The first approach would consist in combining partial homomorphic

and property preserving encryption with Intel SGX. Given a cloud provider which offers

nodes as computation resources that run on physical machines, which may or may not

enable the usage of Intel SGX, the update operations of the structures are either carried

out (i) using an enclave and over the encrypted data or (ii) outside an enclave and directly

over the encrypted data.

Naturally, if Intel SGX is available (this can be verified through reading a subset of

CPU registers [62]) then option (i) would take place, otherwise option (ii) would take

place. This approach not only allows for interoperability among both technologies, but
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it permits to obfuscate to a degree the HbC cloud adversary by minimizing leakage of

information upon executing computations. Specifically it allows to hide the nature of the

metadata that is generated upon the invocation of the update operation. This is possible

because the enclave is an environment that is completely isolated from the normal exe-

cution environment, therefore it cannot be monitored by an adversary that aims to infer

this information, such as the HbC cloud administrator.

The second approach would be to combine probabilistic encryption with Intel SGX.

Given a cloud provider which offers nodes as computation resources that run on physical

machines which enable the usage of Intel SGX, the operations of the structures are carried

out using an enclave and over unencrypted data. In this approach, the data is kept

encrypted under the aforementioned scheme if it is at rest. Upon an operation over

a structure, an enclave is created to execute it. Both the instruction to be executed

and the structure with the encrypted data are loaded to the enclave. To execute the

operation, first the data must be decrypted therefore the required cryptographic key

must be provided by the client. This can be done one of two ways, either the client may

send it over with each request through the TLS channel or the key may be already stored

and sealed within an enclave. Then after the instruction is carried out, the data of the

structure is re-encrypted before the structure is stored away. This approach, similarly to

the previous one, permits to obfuscates the HbC cloud adversary by hiding the nature of

the computations being performed as they are carried out within the enclave. But unlike

the previous solution, that uses property preserving encryption schemes, this one hides

completely patterns within the data that is kept in the structures due to the usage of the

probabilistic encryption scheme.
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