
Characterizing formality

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von

M.Sc. Demen Güler
aus Ludwigshafen am Rhein

Tübingen
2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/195807423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 13. März 2019

Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Klaus-Jörn Lange
2. Berichterstatter: Prof. Dr. Michael Kaufmann

3

Zusammenfassung

Komplexitätsklassen werden durch die quantitative Einschränkung der Ressourcen von
Berechnungsmodellen, wie zum Beispiel der Turingmaschine, definiert. Für Familien formaler
Sprachen hingegen gibt es keine solch uniforme Beschreibung. Sie werden stattdessen
beispielhaft aufgezählt.

Diese Dissertation behandelt Charakterisierungsmöglichkeiten um entscheiden zu können,
was eine Menge von Sprachen zu einer Menge formaler Sprachen macht. Familien formaler
Sprachen, wie beispielsweise die regulären, die kontextfreien und ihre Unterklassen zeigen
Eigenschaften auf, die im starken Kontrast zu der von Komplexitätsklassen stehen.

Zwei dieser Eigenschaften formaler Sprachfamilien sind der Abschluss unter dem Schnitt
mit regulären Sprachen und das Vorhandensein von Pumping Lemmata, welche zu einer
Entscheidbarkeit deren Leerheit führen. Weil Komplexitätsklassen generell kein entscheidbares
Leerheitsproblem haben, war ein erster untersuchter Formalitätsbegriff die Entscheidbarkeit
der Schnittleerheit mit regulären Sprachen (die Entscheidbarkeit von intReg). Wir widerlegen
intReg als solches Kriterium indem wir für jede entscheidbare Sprache L eine Sprache L′
konstruieren welche von gleicher Komplexität ist aber für die intReg entscheidbar ist – die
Schwierigkeit wird verborgen. Da Komplexitätsklassen auf künstliche Weise ein entscheidbares
Wortproblem haben, folgt, dass jede Komplexitätsklasse vollständige Probleme enthält, für
welche die Schnittleerheit mit regulären Sprachen entscheidbar ist.

Ein Zwischenergebnis ist die Entscheidbarkeit von intReg für die Menge der wahren quan-
tifizierten Booleschen Formeln. Alle bekannten Familien formaler Sprachen sind in NP
enthalten. Daher ist dies eine natürliche Sprache, die (wahrscheinlich) außerhalb von NP
liegt für die die Entscheidbarkeit von intReg gelten würde.

Wir führen den Begriff der Protokollsprache ein, welche das Verhalten einer Datenstruktur
beschreibt, das einem Modell formaler Sprachen zugrunde liegt. Sie werden mit einem
Fragment der Prädikatenlogik der zweiten Stufe definiert, in der jede binäre Variable eindeutig
durch ein Wort einer Protokollsprache bestimmt wird und jeder Buchstabe eine definierte
Unterstruktur des Wortes impliziert. Jedes Wort kann als Pfad gesehen werden, in welchem
die Buchstaben die Knoten bilden, die von der Nachfolgerrelation verbunden werden. Durch
die Betrachtung der binären Variablen als zusätzliche Kanten spannt jedes Wort einer
Protokollsprache einen eindeutig definierten Graphen auf. Diese Familie von Graphen kann
durch eine definierte Menge von Tiles, kanten- und notenmarkierter Graphen, gekachelt und

4

somit erkannt werden.

Eine zusätzliche numerische Einschränkung an Mindest- und Höchstzahlen von verwendeten
Tiletypen liefert Kürzbarkeitsargumente (shrinking) für Protokollsprachen: Wenn ein Wort
w einer Protokollsprache eine Mindestlänge überschreitet, so dass der entsprechende Graph
zu dem Wort eine festgelegte Anzahl an Kacheln verwendet, kann man aus w konstruktiv ein
kürzeres Wort w′ aus der Protokollsprache erstellen.

Wir definieren logische Erweiterungen von Protokollsprachen, welche durch die Verundung
von Prädikatenlogik der ersten Stufe oder Monadischer Logik der zweiten Stufe entstehen
und untersuchen diese bezüglich der Trio-Operationen.

Wir stellen Protokollsprachen für die regulären-, kontextfreien- und die Indexsprachen
vor. Für die Protokollsprachen der regulären und kontextfreien zeigen wir, dass sie als
Generatoren der jeweiligen Sprachfamilie dienen. Abschließend zeigen wir, dass die Leerheit
von Protokollsprachen entscheidbar ist.

5

Abstract

Complexity classes are defined by quantitative restrictions of resources available to a com-
putational model, like for instance the Turing machine. Contrarily, there is no obvious
commonality in the definition of families of formal languages – instead they are described by
example.

This thesis is about the characterization of what makes a set of languages a family of formal
languages. Families of formal languages, like for example the regular, context-free languages
and their sub-families exhibit properties that are contrasted by the ones of complexity classes.

Two of the properties families of formal languages seem to have is closure of intersection
with regular languages, another is the existence of pumping or iteration arguments which
yield the decidability of the emptiness. Complexity classes do not generally have a decidable
emptiness, which lead us to a first candidate for the notion of formality – the decidability
of the emptiness of regular intersection (intReg). We refute the decidability of intReg as a
criterion by hiding the difficulty of deciding the emptiness of regular intersection: We show
that for every decidable language L there is a language L′ of essentially the same complexity
such that intReg(L′) is decidable. This implies that every complexity class contains complete
languages for which the emptiness of regular intersection is decidable.

An intermediate result we show is that the set of true quantified Boolean formulae has a
decidable emptiness of regular intersection. As the known families of formal languages are all
contained in NP, this yields a language (probably) outside of NP for which intReg is decidable,
which additionally is a natural language in contrast to the artificial ones obtained by the
hiding process.

We introduce the notion of protocol languages which capture in some sense the behavior of a
data-structure underlying the model of a formal language. They are defined in a fragment of
second order logic, where the second order variables are uniquely determined by each word
in the language and each letter implies a determined sub-structure of a word. Viewing the
letters of a word as vertices and the successor as edges between them, each word can be seen
as a path. The binary second order variables can be viewed as additional edges between word
positions. Therefore, each word in a protocol language defines some unique graph. These
graphs can be recognized by covering them with a predefined set of tiles which are node and
edge-labeld graphs. Additional numerical constraints on the amount of each tile-type yields
shrinking-arguments for protocol languages. If a word w in a protocol language exceeds a

6

certain length such that the numerical constraints are (over-)satisfied, one can constuctively
generate a shorter word w′ from w that is also contained in the protocol language.

We define logical extensions of protocol languages by allowing the conjunction of additional
first order or monadic second order definable formulae and analyze the extensions in regard
to trio operations.

Protocol languages for the regular, context-free and indexed languages are exhibited – for
the first two we give protocol languages which act as generators for the respective family of
formal languages. Finally, we show that the emptiness of protocol languages is decidable.

7

Contents

1 Introduction 11

2 Preliminaries 19

2.1 Essentials . 19

2.2 Words and languages . 19

2.3 Finitely describing infinite languages . 20

2.3.1 Finite automata . 20

2.3.2 Regular expressions . 20

2.3.3 Grammars . 20

2.3.4 Logic on words . 22

2.3.5 Regular languages and their sub-classes 26

2.4 Operations on languages and families of languages 26

2.5 Graphs . 26

3 Regular intersection emptiness 29

3.1 Languages of quantified Boolean formulae . 30

3.2 Encoding quantified Boolean formulae . 31

3.3 Quantified Boolean formulae of bounded quantification depth 34

3.4 The decidability of intReg(LTqbf) . 40

3.4.1 Bounding the quantification depth . 41

3.5 Hiding the difficulty of intReg . 44

3.6 AFL-stability of the intReg property . 46

3.7 Complexity classes and intReg . 48

8 CONTENTS

3.8 Summary . 48

4 Protocol languages 49

4.1 Auto-generative languages . 51

4.2 Tiling auto-generative languages . 54

4.3 Tile shrinkable languages . 59

4.4 Protocol languages . 59

4.5 Logical extensions of protocol languages . 62

4.6 Protocol languages and trio operations . 67

4.7 Protocol languages for some well-known FOFLs 71

4.7.1 Context-free languages . 71

4.7.2 A non-context-free protocol language in unEx1FO[S] 85

4.8 Protocol languages for indexed languages . 86

4.9 Protocol languages for regular languages . 89

4.10 The simulation of letter predicates . 90

4.11 Deciding the emptiness of protocol languages 92

5 Discussion 97

9

Acknowledgements

Now for the third time my foremost thanks go Klaus-Jörn Lange for his guidance, his patience
with me and the freedom I had while working with him. I thank Michael Kaufmann for
supervising me and offering to review this thesis. I am deeply indebted to my friend and
colleague Silke Czarnetzki for carefully proofreading this dissertation and aiding me over
the years with my mathematical shortcomings. My thanks go to Andreas Krebs for the
fruitful discussions and advice he gave me. Michaël Cadilhac and Charles Paperman were
role-models in many aspects – it was an enriching pleasure having them around. I also want
to thank Petra Wolf for working with me on the article which became part of this thesis. I
am deeply grateful to Mariechristin Hähnel and my family for their emotional and moral
support throughout. Finally, I thank my friends and housemates (many in double staffing)
for supporting me and taking over many of my responsibilities over the last year.

10 CONTENTS

11

CHAPTER 1

Introduction

Formal language theory and complexity theory are two of the fundamental research areas of
theoretical computer science and are densely interwoven subjects. The natural connection
between both of these topics are decision problems. In formal language theory this question
turns up when we want to know whether some word is contained in a language. Problems in
complexity theory are often of combinatorial nature which are turned into decision problems
and encoded such that they can be viewed as languages.

Complexity classes are sets of languages which are defined by restricting resources a compu-
tational model might use during its computation. This could be for instance time or space
for a Turing machine, or the size or depth of a circuit family where the limits are most often
set as a function dependent on the input-size.

For families of formal languages, as for instance the regular, context-free or indexed languages
and their sub-classes, there is no such uniform definition. Instead, they are addressed by
example or by common properties like decidabilities and closures. Many decision problems
such as the emptiness are decidable for families of formal languages. This decidability often
is due to the existence of pumping/shrinking and iteration lemmata, which give bounds on
the word-lengths that have to be considered when testing for emptiness.

The resource bounding artificially gives the languages in a complexity class the a decidable
word problem. On the other hand, deciding any other none-trivial property for a complexity
class quickly yield undecidability results with typical Rice arguments.

The following table shows the difference of complexity classes and families of formal languages
in regard to their closure properties.

12

Closure under families of formal languages complexity classes

intersection × X
union X X
many-one reductions × X
homomorphisms X ×
Kleene star X ×

While there is a gap between the closure regarding union and intersection for (non-deterministic)
families of formal languages, complexity classes do not discern between these operations.
Both are closed under inverse morphisms, though complexity classes are in contrast to families
of formal languages not closed under forward morphisms – in particular not regarding erasing
morphisms.

There are examples of language families – the regular, context-free and indexed languages –
that share many common properties with each other which are in contrast to the ones of
complexity classes. We call these families of formal languages and propose a more precise
notion of what makes a set of languages formal, beside listing examples.

A first candidate of such a notion was formed with properties families of formal languages
typically possess and complexity classes generally lack – the closure under intersection with
regular languages together with a decidability of the emptiness. We show that the decidability
of the emptiness of regular intersection is not an adequate characterization for the formality
of a language class, by showing that every complexity class contains complete languages
where this property is decidable.

In a more constructive approach we aim to describe families of formal languages with a
logical framework. Thomas [Tho91] considers MSO-definable structures (e.g. words, graphs
and infinite words) and shows that they are the homomorphic images of the respective first
order definable structures. We focus on words, but consider also non-regular languages. As
regular languages are the ones definable with MSO[S], that is monadic second order logic with
the successor relation we need a stronger logic fragment to describe non-regular languages.
Lautemann et al. [LST94] give a logical characterization of the context-free languages. They
use first order formulae which might adopt a binary second order variable like a relational
symbol, which is semantically constrained to describe solely nestings on word-positions.

We define a logic fragment which allows first order formulae to use (but not to quantify)
multiple binary second order variables, which are semantically constrained to behave like
total functions on the word positions and are uniquely defined for each word. Inside this
fragment we define auto-generative (word-)languages. In these languages each letter defines a
certain sub-structure in a word and vice versa each sub-structure implies a definite letter. The
uniquely determined second order variables define a graph for each word of an auto-generative
language. These graphs can be recognized via tiling, which can be used to define shrinking
arguments for auto-generative languages. We consider logical extensions of such languages
and study them regarding trio operations and show that there are auto-generative deviation
languages for regular, context-free and indexed languages.

Examples for families of formal languages form an inductively defined canonical hierarchy –
the OI-hierarchy [Dam82]. The regular languages are the base level: OI0 = Reg. The level
i+ 1 is the yield of trees where paths are words of languages (called δ- or delta-operation)
in the deterministic version of OIi, named DOIi, i.e. δ(DOIi) = OIi+1 [Eng02]. For instance
OI1 = δ(DReg) = δ(Reg) = CFL and OI2 = δ(DOI1) = δ(DCFL) = Index which correspond to
Fischer’s [Fis68] OI macro languages. Note, that the OI-hierarchy is a true hierarchy.

The word problem is a natural connection between families of formal languages and complexity

CHAPTER 1. INTRODUCTION 13

theory [Lan96]. In the following we give a few examples of families of formal languages being
complete in complexity classes.

Families of formal languages complete in complexity class

Reg NC1

VPL NC1

Lin NL
NOCA NL
CFL SAC1

Index NP
OI-hierarchy NP

For non-deterministic families there seems to be a special relation to complexity classes:
Krebs and Lange [KL12a] introduced the notion of dense completeness. Let C1 and C2 be two
sets of languages. C1 is called densely complete in C2 if C1 ⊆ C2 and for all languages L in
C2 there is a language L′ ∈ C1 such that L and L′ are (DLOGTIME-uniform) AC0-many-one
equivalent, i.e. L and L′ are reducible to each other. They showed that the context-free
languages are densely complete in SAC1, that the one-counter languages are densely complete
in NL and that the indexed languages are densely complete in NP. It was also shown, that
the regular languages and VPL (where non-determinism equals determinism) are not densely
complete in NC1.

The decidability of the emptiness of regular intersection

All known families of formal languages are closed under the intersection with regular languages.
Due to shrinking and iteration arguments the emptiness of these language families is typically
decidable. This implies that the following property is decidable for families of formal
languages:

Definition 1.0.1 (intReg). Let intReg(L) be the problem of deciding, given a finite automaton,
whether its language has a non-empty intersection with L. For a family of languages L we
say intReg(L) is decidable if intReg(L) is decidable for every L ∈ L.

In the first part of this thesis we show that the decidability of intReg is not an adequate
notion of formality.

Van Leeuwen [VL75] showed that Sat (in variable-free encoding) is contained in ET0L. Since
the emptiness is decidable in ET0L and it is closed under intersection with regular sets
we have that intReg(Sat) is decidable. We proved that intReg(Sat) is also decidable when
Boolean formulae are encoded such that variable names are denoted as unary strings – an
encoding previously used by Stockmeyer [Sto76].

All known families of formal languages are contained in NP. We therefore, considered the
complementary problem to Sat – The set of all propositional formulae (in 3-CNF) that are
tautologies Taut, which is ΠP

1 = CoNP-complete. To strengthen our notion of formality, we
expected to show that intReg(Taut) was undecidable.

These attempts were unsuccessful as we proved the converse. In fact we were able show that
the for the set of (appropriately encoded) true quantified Boolean formulae the emptiness of
regular intersection is decidable. This result was published in [GKLW18].

This result means that if given a regular set of encoded quantified Boolean formulae it is
decidable whether one of them evaluates to true. In our proof we make use of pumping

14

arguments which assure that there are repetitions of certain sub-words in words accepted
by the automaton recognizing the regular set. We reduce an infinite regular set to a finite
number of formulae from which we search for true quantified Boolean formulae.

This result implies that there are complete languages for all levels of the polynomial hierarchy
and PSPACE for which intReg is decidable.

We use a technique called hiding which was inspired by [KL12a] to show the dense com-
pleteness results. With this we were able to show that for every decidable language L
there is a language L′ such that L and L′ are AC0-many-one equivalent and intReg(L

′) is
decidable. Since complexity class are closed under AC0-reductions each of them contains
complete problems for which intReg is decidable. These results contradict the decidability of
the emptiness of regular intersection as formality criterion.

We further show that if intReg(L) is decidable for some language L then the intReg is decidable
for the full AFL generated by L. This means every complexity class contains complete
problems for which their full AFLs have a decidable emptiness of regular intersection.

With this we conclude that the decidability of the emptiness of regular intersection seems a
necessary property of families of formal languages, but is not sufficient to characterize them
precisely.

Protocol languages

Engelfriet [Eng14] portrayed the derivations of context-free grammars as “string-generating
[. . .] non-deterministic recursive programs”: Each non-terminal is a subroutine that is built
according to the rules of the grammar. Depending on the rules they will recursively call
other routines or write letters on the output. For example if a context-free grammar contains
the rules B → bCD and B → a for the non-terminal B then the sub-routine of B would be
the schematic procedure denoted in Algorithm 1.

Algorithm 1: Schematic procedure for the non-terminal B
begin

write(b) call(C) call(D);
end
or
begin

write(a);
end

This view-point of procedural generation can be adapted for some other families of formal
languages. The languages in the OI-hierarchy could be procedurally described by passing
parameters when calling subroutines. In case of indexed languages [Aho68] this could be a
sequence of indices, for higher classes in the OI-hierarchy one could pass stacks of stacks . . . of
stacks. Fischer introduced the OI and IO macro languages [Fis68] which apply this idea.

In case of the previously mentioned context-free languages the data-structure or access pattern
could be viewed as a stack of subroutines that have yet to be processed. In the beginning
of the derivation process this stack would only contain the start symbol of the grammar.
In each derivation step the top-most stack symbol would be popped and the corresponding
procedure would be executed. Each call in a procedure would push the respective symbols
onto the stack. The derivation is finished once the stack is emptied.

CHAPTER 1. INTRODUCTION 15

To analyze this structural behavior of a model we have to look at the operations or instructions
it might be equipped with.

If one would for example consider push-down automata, the data-structure used by this
model is the stack. During the computation, symbols are pushed onto and popped from
the stack which is emptied when the PDA accepts the word. Thus, when recording the
data-structure during the computation of an accepted word the resulting stack protocol would
be a well-matched sequence of push and pop-operations – and hence a Dyck word.

Exemplary, we consider derivation languages of (context-free) grammars which are the
sequences of all correct left-derivations of words generated by the grammar. Derivation
languages have been considered before and are also known as Szilard languages [DPS79,
Mäk84].

We begin the analysis with derivation languages of the family of the context-free languages
and consider grammars in Chomsky normal form and Greibach normal form. One of the key
languages we consider in this thesis is the Łukasievicz language Ł which is generated by the
grammar with the two rules S → aSS and S → b. We show that Ł is the derivation language
of the grammar in Chomsky normal form with a single non-terminal and one terminal symbol.

We give a logic framework which is applicable to represent the structural behavior of models,
as for instance derivation languages. The derivation languages of non-regular grammars are
non-regular themself.

Büchi [Büc60], Elgot [Elg61] and Trakhtenbrot [Tra61] showed that the regular languages
are precisely the sets of words definable with monadic second order logic with the successor-
relation (MSO[S]). Therefore, MSO[S] will not be suffice to define protocol languages. For non-
regular languages MSO[S] is therefore too weak. Existential second order logic captures the
languages definable in NP [Fag73, Fag74], though certain fragments of existential second order
logic only capture the same languages as MSO[S] [EGG00]. Lautemann et al. [LST94] gave a
logical characterization of the context-free languages: They consider a fragment of existential
second order logic where they only allow binary second order variables. Furthermore, these
binary second order variables are semantically constrained such that they only describe
matchings or nestings. They define the class of first-order formulae ∃MFO[(Qa)a∈A, <] where
M is the set of second order variables describing matchings which are used by the first order
formulae as atomic formulae. The fragment ∃MFO[(Qa)a∈A, <] is not well suited to describe
the deterministic nature of for instance derivation languages. We build upon the ideas of the
logic fragment introduced by Lautemann et al. by allowing more than one binary second
order variable and not restricting them to define solely nestings. Instead, we require the
binary second order variables to be unambiguously determined by every word that models
the formula. This means that each word implicitly defines a distinct structure on itself. We
call the fragment of logic formulae unExkFO[S] where k is the number of uniquely quantified
and constrained binary second order variables and S is the successor relation. unExkFO[S]
contains first order formulae with the signature over letter predicates, the successor relation
and the k binary second order relations.

We define auto-generative languages which are word languages defined by formulae inside
unExkFO[S]. Each letter γ in an auto-generative language determines a definite sub-structure
in word and vice versa the structure of the binary second order relations uniquely implies
which letter needs to occur. This sub-structure is defined by a sub-formula ψγ which only
uses positional information (i.e. binary second order variables and the successor relation)
and can be used as a substitute for the letter predicate.

The Łukasievicz is an auto-generative language in unEx1FO[S], i.e. definable with one
additional binary second order variable and the successor relation.

16

To decide the emptiness of (word-)automata with auxiliary storage, Madhusudan and
Parlato [MP11] propose a method to transform the behavior of the word recognizer into a
graph recognition problem which is then solved via tiling : A graph is accepted if a set of
patterns can be coherently mapped onto the graph.

Each word of an auto-generative language defines a graph where the nodes are the positions
of the word and the edges are given by the successor relation and the uniquely determined
second order relations. To decide the emptiness of auto-generative (word-) languages we
define tiling on the graphs families generated by them.

Madhusudan and Parlato [MP11] use a simplified version of the tiling more generally defined
by Thomas [Tho91], who additionally counts (up to some constant) the number of instances
of tiles used when defining the acceptance criterion. We make use of this counting to define
shrinking arguments on auto-generative languages. For instance, one might imagine that one
tile covers a push and pop pair on a sequence of stack operations and that removing this
matching pair will yield a valid sequence of operations on a stack. Therefore, an arbitrary
amount of these tiles may be used. On the other hand, such a sequence of operations
must contain precisely one transition which pops the bottom of the stack (at the end of the
computation).

We call languages which are auto-generative which can be tiled with shrinking arguments
protocol languages.

We consider logical extensions of protocol languages. For a protocol language P , first-order
formulae, monadic second order formulae and existential monadic second order formulae
which are in conjunction with a formula that ensures that the structure of a word is in accord
with P yield the classes of languages FO[P], MSO[P] and EMSO[P]. Additionally, we define
the logic classes strongFO[P], strongMSO[P] and strongEMSO[P] as the classes where the
additional formulae might use the binary second order variables defined by the formula of
the protocol language as atomic sub-formulae.

We show that EMSO[P], MSO[P], strongMSO[P] and strongEMSO[P] are closed under length-
preserving morphisms. We compare these extensions with each other and show that the
languages in EMSO[P] coincide with the length-preserving morphic images of languages in
FO[P] (and the analogous relation for strongEMSO[P] and strongFO[P]).

Protocol languages only capture deterministic and visible languages. The determinism is
preserved for languages in FO[P], while homomorphisms applied to languages in FO[P] may
introduce non-determinism. Therefore, EMSO[P] and MSO[P] contain non-deterministic
languages. The strong extensions of a protocol language P , which have access to the binary
second order variables, are outside of the trio of P .

We give several examples for protocol languages in various families of formal languages. The
regular languages are shown to coincide with MSO[a∗] and the context-free languages with
strongMSO[G2] where G2 is a protocol language which is the derivation language of some
special grammar in Greibach normal form. We show that a tagged version of the Dyck
language with k pairs of parenthesis is in strongFO[D̂1] where D̂1 is the tagged version of the
Dyck language with one pair of parenthesis. This result implies that the strong extensions of
a protocol language P are not contained in the trio of P .

Finally, we show how to decide the emptiness and intReg of protocol languages by the
application of tiling and shrinking arguments.

Protocol languages seem a promising candidate to define data-structural skeletons of families
of formal languages. Nevertheless, the conceptualization of protocol languages have not yet
completely matured and definitions might still be subject to change.

CHAPTER 1. INTRODUCTION 17

Also, future work must be put into the analysis of the robustness of protocol languages, in
the sense that they might be used as a tool to discriminate families of formal languages from
complexity classes. Results of descriptive complexity give us upper bounds (from a complexity
perspective) for languages which might be protocol languages. Fagin’s theorem [Fag73, Fag74]
states that the languages definable with existential second order logic precisely capture NP.
This was extended by Stockmeyer [Sto76] who showed that the languages in the Polynomial
Hierarchy (PH) are the ones definable with (arbitrarily quantified) second order logic. Since
protocol languages are defined with a fragment of second order, finding protocol languages
which are considered outside of PH would imply the collapse of complexity classes and
therefore seems rather unlikely.

Structure of this thesis

This thesis aims to find a characterization of families of formal languages beyond exemplary
enumeration.

We begin by fixing our notation and defining the language generators/descriptors we use
formally in our proofs, such as grammars, finite automata and logic on words.

In the third chapter we work on the decidability of the emptiness of regular intersection. We
show that even though it might be a property of families of formal languages, every complexity
class contains complete languages for which the emptiness of the regular intersection is
decidable.

Subsequently, in Chapter 4 we give our notion of protocol languages. We analyze logical
extensions, their relation to each other and regarding to trio operations. The Łukasievicz
language showcases the analysis and the development of protocol languages. We propose
logical extensions of protocol languages and give protocol languages for some important
families of formal languages, such as the regular, context-free and indexed languages. Using
tiling arguments we show how to decide the emptiness of protocol languages.

Finally, in Chapter 5 we discuss our results and state open questions for further research on
this subject.

18

19

CHAPTER 2

Preliminaries

In this chapter we fix our notation and give a brief overview of the definitions of formal
language theory. We point the reader to Hopcroft and Ullman [HU79], where most of the
language theoretic concepts we use are rigidly defined. For the definitions for logic on words
we stick to the notation of Straubing [Str94]. For notions on complexity theoretic basics we
direct the reader to the standard textbooks as [Pap94, AB09, Koz12]

2.1 Essentials

By N we denote the natural numbers excluding 0, by N0 for N ∪ {0} and by Z the set of
integers. For n ∈ N we write [n] for the set {1, . . . , n}. If S is some set, we denote the
power set {I | I ⊆ S} of S by 2S or P(S). For a binary relation R by R∗ we denote the
reflexive, transitive closure of R. We denote the Boolean values true and and false by 1 and
0, respectively.

2.2 Words and languages

An alphabet is a finite set A of symbols, a word is a finite sequence of elements of A. A
language is a set of words. We denote the empty word by λ. Let w = w1 . . . wn be a word.
Then let |w| := n denote the length of a word. By w[i] we denote the i-th letter of w. For
1 ≤ i, j ≤ n we call wiwi+1 . . . wj a factor or sub-string of w and denote it by w[i, j]. If
i > j then let w[i, j] denote λ. Let A∗ denote the set of all languages over the alphabet
A. If L1, L2 are languages of strings in A∗ let L1L2 denote {uv | u ∈ L1 ∧ v ∈ L2}. For a
language L we define L0 := {λ} and Li = LLi−1 for i ∈ N. We define the Kleene star or
Kleene closure of L as L∗ :=

⋃∞
i=0 L

i and by L+ :=
⋃∞
i=1 L

i.

20 2.3. FINITELY DESCRIBING INFINITE LANGUAGES

2.3 Finitely describing infinite languages

Describing finite languages is straight forward – simply enumerate all words in the language.
Of course this approach is not possible for languages with infinitely many words. From the
plethora of ways to finitely define languages we focus on grammars, finite automata, Turing
machines and logic on words.

By Reg, DCFL, CFL, Index, Loc, LTT we denote the the regular , (deterministic) context-free,
indexed, local and locally threshold testable languages respectively. By P, NP we denote the
classes of languages recognized by polynomial time bounded deterministic/non-deterministic
Turing machines. Let PH denote the Polynomial Hierarchy and PSPACE class of languages
recognized by polynomial space bounded deterministic Turing machines.

In the following we give precise definitions of the language descriptors we use in a formal
manner.

2.3.1 Finite automata

A non-deterministic finite automaton (NFA) is a 5-tuple M = (Q,A, δ,Q0, F) where Q is a
finite set of states, A is an alphabet, δ ⊆ Q×A×Q is a transition relation, Q0 ⊆ Q is a set
of initial states and F ⊆ Q is a set of final states. Let δ̂ : Q×A∗ → Q be defined recursively:

1. For q ∈ Q let δ̂(q, λ) = q

2. For w ∈ A and a ∈ A let δ̂(q, wa) = δ(δ̂(q, w), a)

We define the language of M as L(M) = {w ∈ A∗ | ∃q0 ∈ Q0, qf ∈ F : δ̂(w, q0) = qf}. We
call M a deterministic finite automaton (DFA) if δ : Q×A is a total function and there is a
single initial state q0.

2.3.2 Regular expressions

Let A be an alphabet. Regular expressions are defined recursively. Let L(α) denote the
language defined by a regular expression α. ∅ is a regular expression with L(∅) = ∅. λ is a
regular expression L(λ) = {λ}. For all a ∈ A, a is a regular expression with L(a) = {a}. If
α and β are regular expression, then so is

1. αβ with L(αβ) := L(α)L(β),

2. (α | β) with L((α | β)) := L(α) ∪ L(β),

3. (α)∗ with L((α)∗) = L(α)∗.

We sometimes do not differentiate between a regular expression and its language and use
notations like w ∈ α instead of w ∈ L(α).

2.3.3 Grammars

We give a very brief introduction into grammars. For a more detailed view we point the
reader to Hopcroft and Ullman [HU79].

CHAPTER 2. PRELIMINARIES 21

A Chomsky grammar or simply grammar is a tuple G = (N,A, P, S) where N is a finite set
of non-terminals, A is an alphabet, P ⊆ (A ∪N)∗N(A ∪N)∗ → (A ∪N)∗ is a finite set of
rules or productions and S ∈ N is the start symbol. For x, y ∈ (A∪N)∗ we define the binary
relation ⇒G for words over (A ∪N) as

x⇒G y ⇐⇒ ∃(u→ v) ∈ P : ∃s, t ∈ (A ∪ V)∗ : x = sut ∧ y = svt

Let L(G) = {w ∈ A∗ | S ⇒∗G w} be the language defined by G. We call a grammar
G = (N,A, P, S) context-sensitive if for all (u → v) ∈ P we have |u| ≤ |v|. A context-
sensitive grammar is called context-free if for all (u→ v) ∈ P we have |u| = 1. A context-free
grammar is regular if P ⊆ N → (V ∪ V A).

We call the set of languages recognized by context-sensitive grammars the context-sensitive
languages or CS, the languages recognized by context-free grammars context free languages
or CFL and the languages recognized by regular grammars regular languages or Reg.

Normal forms for context-free languages

There are several normal forms for context-free grammars, i.e. constraints to how the
production rules might be formed. We make use of the Chomsky normal form (CNF) and
the Greibach normal form (GNF). For every context-free language there are both grammars
in CNF and GNF.

Chomsky normal form A context-free grammar G = (V,A, P, S) is said to be in Chomsky
normal form if all rules are of the form B → CD or B → a for B,C,D ∈ V and a ∈ A.

Greibach normal form A context-free grammar G = (V,A, P, S) is said to be in Greibach
normal form if all rules are of the form B → aB1, . . . , Bk for k ≥ 0 with B1 . . . , Bk and
a ∈ A.

Indexed grammars

In addition we consider indexed grammars introduced by Aho [Aho68] which are natural
extensions of context-free grammars where non-terminals are equipped with a stack of indices.
We give the formal definition following [HU79].

An indexed grammar is a tuple G = (V,A, F, P, S) where V is a finite set of non-terminals,
A is an alphabet, F is a finite set of indices, S is the start symbol and P is a finite set of
rules of the form

1. B → α

2. B → Cf (index producing rule)

3. Bf → α (index consuming rule)

where B,C ∈ V , f ∈ F and α ∈ (V ∪A)∗. Non-terminals are followed by (possibly empty)
sequence of indices. The derivation relation⇒G on strings in (V F ∗∪A)∗ is defined as follows.
Let s, t ∈ (V F ∗ ∪ T)∗, δ ∈ F ∗ and Xi ∈ (V ∪A)

22 2.3. FINITELY DESCRIBING INFINITE LANGUAGES

1. If B → X1X2 · · ·Xk is a production of form 1.) then

sBδt⇒G sX1δ1X2δ2 · · ·Xkδkt ,

where

δi =

{
δ if Xi ∈ V ,

λ if Xi ∈ A .

This means that the index of a non-terminal is copied over to all the non-terminals it
is derived to.

2. If B ⇒ Bf is an index producing rule then

sBδt⇒G sCfδt ,

that means f is set to be the top-most symbol on C’s stack.

3. If B → X1X2 · · ·Xk is an index consuming rule than

sBfδt⇒G sX1δ1X2δ2 · · ·Xkδkt ,

where

δi =

{
δ if Xi ∈ V ,

λ if Xi ∈ A .

This means that all non-terminals A is derived into inherit A’s stack without its
top-most symbol f .

We define L(G) = {w ∈ A∗ | S ⇒∗G w} as the language defined by the indexed grammar G.

Normal form Let Index be the family of formal languages which are defined by indexed
grammars. For each L ∈ Index there is an indexed grammar G = (V,A, F, P, S) where the
rules in P are of the form

1. B → CD

2. B → a

3. B → Cf

4. Bf → C

for B,C,D ∈ V , a ∈ A and f ∈ F .

2.3.4 Logic on words

We use formal logic to define languages. To this end, we construct formulae that argue over
the realm of positions in a word and use predicates that state that a position has a certain
letter. For example the predicate Qa(x) will be true if the position x will be the letter a.
The formula φ = ∃x∀y : x ≤ y ∧Qa(x) will evaluate to true for all words for which there is
a position x that is smaller than all other positions and there is an a on position x. This
means the formula finitely defines the language of all words that begin with the letter a. For
a comprehensive elaboration we direct the reader to [Str94]. We will first define the syntax
of logical formulae and afterwards present semantics.

CHAPTER 2. PRELIMINARIES 23

Syntax

Formulae are built from variables, relational symbols, letter predicates, Boolean connectives
and quantifiers.

First order variables A first order variable will reference a position in a word and will
typically be denoted by a symbol x, y, x1, . . . , xn.

We call a variable bounded if it is referenced by a quantifier. Otherwise, it is called free. A
logical formula without free variables is called sentence.

relational symbol A relational symbol is a symbol Rl representing an l-ary relation on
word-positions. If x1, . . . , xl are first order variables

Rl(x1, . . . , xl)

is an atomic formula. The formula is true iff the positions (x1, . . . , xl) ∈ Rl, i.e. we do not
discern relational symbols and the relation they represent. Throughout, we only make use of
binary relational symbols.

Letter predicates For a letter a ∈ A and a first order variable x

Qa(x)

is an atomic formula and true iff the word on position x has the letter a.

Monadic second order variables A monadic second order variable is a set of first order
variables and we will typically represent by symbols X,Y,Ay. If x is a first order variable
and X is a monadic second order variable then

x ∈ X

is an atomic formula. The formula is true iff x is contained in the set represented by X.

Binary second order variables A binary second order variable is a binary relation on
positions we will typically represent them by symbols N,N1, . . . , Nk. If x and y are first
order variables and N is a binary second order variable then

(x, y) ∈ N

is an atomic formula. The formula is true iff the tuple (x, y) is in binary relation N .

Boolean operations Formulae are defined inductively. Every atomic formula is a formula.
If φ and ψ are formulae, then so are

φ ∧ ψ ,

φ ∨ ψ ,

¬φ ,

where ∧,∨ and ¬ represent the Boolean operation and, or and negation, respectively.

24 2.3. FINITELY DESCRIBING INFINITE LANGUAGES

Quantification If φ is a formula and x is a first order variable then existentially or
universally quantifying x in φ, denoted as

∃xφ ,

∀xφ ,

yields a formula. Thereby, every occurrence of x in φ is bound by the quantifier. Analogously,
if X is a monadic second order variable (or N is a binary second order variable) then
existentially or universally quantifying X (and N , respectively) in φ, denoted as

∃Xφ ,

∀Y φ ,

∃Nφ ,

∀Nφ ,

yields a formula. Even though we defined how to universally quantify a second order variable
we only make use of them to define unique existential quantification of a sub-formula:

By !∃Nφ we obviate the formula ∃Nφ(N) ∧ ∀N ′ : (N ′ 6= N)⇒ ¬φ(N ′).

Semantics

The previously defined logical formulae include ones with free variables, which by itself will
not precisely describe sets of words. Therefore, we need to consider some form of an extension
of an alphabet called V-structure. We use an inductive way to define V-structures as in
[Sil19]. Let A be an alphabet and n ∈ N and ai ∈ A for i = 1, . . . , n.

• Then, w = (a1, ∅)(a2, ∅) · · · (an, ∅) is a V-structure.

• Let V be a finite set of first order variables and (a1, S1)(a2, S2) · · · (an, Sn) be a V-
structure with S1, . . . , Sn ⊆ V and let x ∈ V be a first order variable not contained in
V. Then for each i = 1, . . . , n the word

wi=x = (a1, S1)(a2, S2) · · · (ai, Si ∪ {x}) · · · (an, Sn)

is a V-structure.

Let V1 be a set of fist order variables, let V2 be a set of monadic second order variables
and let V3 be a set of binary second order variables. Then a (V1,V2,V3)-structure over the
alphabet A is a word in (A× 2V1 × 2V2 × 2V3):

w = (a1, S1, T1, U1)(a2, S2, T2, U2) · · · (an, Sn, Tn, Un) ,

such that (a1, S1)(a2, S2) · · · (an, Sn) is a V-structure.

Let φ be a formula with the set of free first order variables V1, free monadic second order
variables V2, free binary second order variables V3 and let w be a (V1,V1,V3)-structure.

We write w |= φ (read “w models φ”) if

φ = Qa(x) for a ∈ A if and only if w = vx=i for v ∈ A∗ and v[i] = a.

φ = R(x1 . . . , xl) for an l-ary relational symbol Rl if and only if

w = vx1=i1,x2=i2,...,xl=il

for v ∈ A∗ and (i1, . . . , il) ∈ Rl.

CHAPTER 2. PRELIMINARIES 25

φ = x ∈ X if and only if w contains the letter (ai, Si, Ti, Ui) such that x ∈ Si and X ∈ Ti.

φ = (x, y) ∈ N if and only if w contains the letters

(ai, Si, Ti, Ui) and (aj , Sj , Tj , Uj)

such that x ∈ Si, y ∈ Sj and N ∈ Ui ∩ Uj .

φ = ψ ∧ θ if and only if w |= ψ and w |= θ.

φ = ψ ∨ θ if and only if w |= ψ or w |= θ.

φ = ¬ψ if and only if not w |= ψ, which we also denote as w 6|= ψ.

φ = ∃xψ for a first order variable x if and only if

(a1, S1, T1, U1) · · · (ai, Si ∪ {x}, Ti, Ui) · · · (an, Sn, Tn, Un) |= ψ

for some i ∈ [n].

φ = ∀xψ for a first order variable x if and only if w |= ¬∃x¬ψ

φ = ∃Xψ for a monadic second order variable X if and only if there is a (possibly empty)
set I ⊆ [n] and for the (V1,V1,V3)-structure w′ constructed by substituting each
(ai, Si, Ti, Ui) by (ai, Si, Ti ∪ {X}, Ui) for i ∈ I we have that w′ |= ψ.

φ = ∀Xψ for a monadic second order variable X if and only if w |= ¬∃X¬ψ

φ = ∃Nψ for a binary second order variable X if and only if there is a (possibly empty)
set I ⊆ [n] and for the (V1,V1,V3)-structure w′ constructed by substituting each
(ai, Si, Ti, Ui) by (ai, Si, Ti, Ui ∪ {N}) for i ∈ I we have that w′ |= ψ.

φ = ∀Nψ for a binary second order variable N if and only if w |= ¬∃N¬ψ

If a formula φ has no free variables we call φ a sentence. In this case φ can be modeled by
w ∈ A∗ which can be viewed as (∅, ∅, ∅)-structure and we define

L(φ) := {a1 · · · an ∈ A∗ | (a1, ∅, ∅, ∅) · · · (an, ∅, ∅, ∅) |= φ}

as the language defined by φ. For the sake of readability we write w |= φ instead of
(a1, ∅, ∅, ∅) · · · (an, ∅, ∅, ∅) |= φ for a word w = a1 · · · an and a formula φ.

The signature of a formula, written as 〈(Qa)a∈A, R
l1 , . . . , Rlk〉 is the set of relational symbols

and letter-predicates it might use. A formula is called a first order formula if the only
variables it might use are first order variables. Let S ⊆ N2 be the successor relation, i.e.
S = {(i, i + 1) | i ∈ N} A language L ⊆ A∗ is in FO[(Qa)a∈A, S] (or simply FO[S] if the
alphabet is understood in context) if there is a first order formula φ with the signature
〈S, (Qa)a∈A〉 such that L = L(φ).

If we extend a first order formulae by monadic second order variables we call it a monadic
second order formula. The class of all languages defined by monadic second order formulae is
called MSO. If we further allow the use of binary second order variables and their quantification
we have an second order formula and call the defined class of languages SO.

26 2.4. OPERATIONS ON LANGUAGES AND FAMILIES OF LANGUAGES

2.3.5 Regular languages and their sub-classes

The regular languages are a family of formal languages definable in various ways, among
which we consider (deterministic) finite automata, regular expressions, regular grammars
and MSO[S].

The locally threshold testable languages are recognized by logical formulae in FO[S] and are a
proper subset of the regular languages.

A true subset of locally threshold testable languages are the so called local languages. A
language L ⊆ A∗ is called local if (L = PA+ ∪A∗S) \A∗FA∗, for P, S ⊆ S, F ⊆ A2. This
means P (S) is a set that specifies the first (last) letter of words in L and F is the set of
forbidden successors, i.e. specifies which letter must not be followed by some other. We
usually denote local languages in form of triples (P, S, F).

2.4 Operations on languages and families of languages

Let A and B be alphabets. A homomorphism (or morphism) is an function h : A → B∗

that maps a letter of A to a word in B. We extend homomorphisms to words over A
recursively: h(λ) = λ and for w ∈ A∗ and a ∈ A let h(wx) = h(w)h(a). A homomorphism
is called length-preserving if |h(a)| = 1 for all a ∈ A. If h(a) 6= λ for all a ∈ A we call
h non-erasing (or λ-free). For a language L we denote the (homo)morphic image of L
as h(L) := {h(w) | w ∈ L} the application of h to each word in L. For v ∈ B∗ we call
h−1(v) = {w ∈ A∗ | h(w) = v} the inverse (homo)morphic image of v and analogously for a
languageM ⊆ B∗ the inverse homomorphic image ofM is h−1(M) := {w ∈ A∗ | h(w) ∈M}.
For a language L ⊆ A∗ and a homomorphism h : A∗ → B∗ we call h injective over L if for
all u, v ∈ L with h(u) = h(v) it holds that u = v.

A family of languages is a set of languages. We call a family of languages a trio if it closed
under non-erasing inverse homomorphisms, non-erasing homomorphisms and the intersection
with regular languages. This means if L is a trio and L ∈ L ⊆ A∗ then for all regular
languages R and non-erasing homomorphisms h : : A∗ → B∗ and g : B∗ → A∗ we have that
L ∩ R, h(L), h−1(L) ∈ L. If a trio is closed under arbitrary homomorphisms and inverse
homomorphisms we call it full trio.

If a trio is additionally closed under union, concatenation and Kleene star we call it an
abstract family of languages (AFL). This means if L is an AFL and L1, L2 ∈ L ⊆ A∗ then
also L1L2, L1 ∪ L2, L

∗
1 ∈ L. An AFL that is closed under arbitrary homomorphisms and

inverse homomorphisms is called a full AFL.

2.5 Graphs

A graph G is a tuple G = (V,E) where V is a set and E ⊆ V 2. We call V nodes or vertices
and E edges. G is called undirected if for all u, v ∈ V we have (u, v) ∈ E ⇐⇒ (v, u) ∈ E. In
that case we write edges as sets {u, v}. Otherwise, we call G directed. A graph is edge-labeled
(or simply labeled) with a set L if there is a total function E → L. Sometimes we write
E = El1 ∪ El2 ∪ · · ·Eln to denote the labeling of the edges explicitly and without giving
a function. Nodes u and v are adjacent if (u, v) ∈ E or (v, u) ∈ E. Let e ∈ E and v ∈ V .
We call e incident in v if e = (v, u) or e = (u, v) for u ∈ V . The degree of a node v ∈ V
is the number of incident edges in v. By in-degree and out-degree of v ∈ V we denote the
number of incoming and outgoing edges, respectively. A path p in a graph is a sequence of

CHAPTER 2. PRELIMINARIES 27

vertices p = (v1, . . . , vn) such that v1, . . . , vn ∈ V and (vi, vi+1) ∈ E for i = 1 . . . , n− 1. We
call a path (v1, . . . , vn) a cycle if v1 = vn. A path that does not contain a sub-path (with
length > 1) that is a cycle is called simple path. We call a graph connected if for all u ∈ V
there is a path to every v ∈ V . For a directed graph G = (V,E) let undir(G) denote the
graph (V, {{u, v} | (u, v) ∈ E}). A directed graph G is called weakly connected if undir(G) is
connected. A graph without cycles is called a forest. We call a forest that is connected a tree.

28 2.5. GRAPHS

29

CHAPTER 3

Regular intersection emptiness

A main property of families of formal languages seems to be the closure of intersection
with regular languages. This characteristic is (by definition) given as soon as e.g. trios are
considered. Among the decidabilities of families of formal languages we have the decidability
of the emptiness of a language, which is a question that is usually undecidable for complexity
classes.

By combining these two properties into one we are left with the following decision problem:

Definition 3.0.1 (intReg). Let intReg(L) be the problem of deciding, given a finite automaton,
whether its language has a non-empty intersection with L. For a family of languages L we
say intReg(L) is decidable if intReg(L) is decidable for every L ∈ L.

For families of formal languages, e.g. Reg, CFL and Index intReg the property is decidable.
On the other hand, for complexity classes this is generally undecidable: Let C be complexity
class which is defined by restricting resources such as time or space a Turing machine is
allowed to use, as for instance NP, L, PSPACE. Every such complexity class contains a trivial
complete language of the following form:

LT,r,f := {(〈M〉#x#0n) |M is T -TM and recognizes x with f(n) of resource r} ,

where T denotes either “deterministic” or “non-deterministic” and specifies the computation
of the Turing machine, r is the restricted resource space or time and f : N→ N is a function.

For all such LT,r,f we can show that intReg(LT,r,f) is undecidable. Let M0 be an arbitrary,
but fixed Turing-machine. Consider the regular language

R0 := L(〈M0〉#Σ∗#0∗) .

We have, LT,r,f ∩ R0 = ∅ if and only if L(M0) = ∅. Since L(M0) = ∅ is undecidable, so is
intReg(LT,r,f).

These observations led us to the conjecture that the decidability of the intReg-property
distinctly characterizes families of formal languages and might yield a tool to differentiate
them from complexity classes.

30 3.1. LANGUAGES OF QUANTIFIED BOOLEAN FORMULAE

In this chapter we disprove aforementioned conjecture.

The families of languages considered as formal all seem to be inside NP. We analyze (suitably
encoded) sets of true quantified Boolean formulae and show that the intReg property is
decidable. Therefore, we have a language which is PSPACE-complete and therefore likely
to be outside of NP, but still holds the formality criterion. This result was published in
[GKLW18]. Here, we present some of the proofs in a clearer way and give concise definitions
of the used encoding.

We then strengthen this result with a technique called Hiding which was previously applied
in [KL12a]. For any decidable language L we give an AC0-many-one equivalent language L′
such that intReg(L′) is decidable. This means that all classes of languages which are closed
under AC0-reductions have complete problems for which intReg is decidable. Furthermore,
we show that for a language L the property of having a decidable emptiness of intersection
with a regular set is inherited by all members of the full AFL generated by L.

This chapter is structured as follows: We begin with introducing quantified Boolean formulae
and give a suitable encoding. In Section 3.3 we show that intReg for quantified Boolean
formulae with bounded quantifier alternation is decidable. We extend this result to arbitrary
quantified Boolean formulae in Section 3.4. The hiding-technique is presented in Section 3.5.
We finish this chapter with the analysis of the AFL generated by languages for which intReg
is decidable in Section 3.6.

3.1 Languages of quantified Boolean formulae

In the following we will consider sets of true quantified Boolean formulae, which are dependent
on a few restrictions and complete languages for various complexity classes.

Quantified Boolean formulae (QBF) can be defined inductively.

0 is a QBF
1 is a QBF

A Boolean variable x is a QBF

Let φ and ψ be QBFs

¬φ is a QBF
φ ∧ ψ is a QBF
φ ∨ ψ is a QBF

Let x be a Boolean variable and φ be a QBF

∃xφ is a QBF
∀xφ is a QBF

In complexity theory, questions about the satisfiability/universality of quantified Boolean
formulas are usually considered indirectly. Let ψ be a quantified Boolean formula with
free variables x1, . . . , xn. The QBF φ is satisfiable iff φ′ := ∃x1 . . . ∃xnφ evaluates to true.
Analogously, φ is a tautology iff φ′′ := ∀x1 . . . ∀xnφ evaluates to true. Thus, all occurring
Boolean variables will be bound by quantifiers, turning a QBF into a sentence which evaluates
to either 0, or 1.

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 31

A quantified Boolean formula ψ is in prenex-normal-form if

ψ = Q1x1Q2x2Qnxnφ(x1, x2, . . . , xn) ,

where Qi ∈ {∃,∀} are either existential or universal quantifiers, xi are Boolean variables
and φ is a quantifier-free, propositional formula. A propositional formula φ is said to be in
k-conjunctive normal form (k-CNF) if

φ =

n∧
i=1

k∨
j=1

lij ,

where lij are (possibly negated) Boolean variables, called literals and disjunctions of k literals
are clauses.

From a complexity theory perspective quantifier alternations will have an impact on the
difficulty of determining the validity of quantified Boolean formulae. Therefore, we will
introduce the terminology for quantifying vectors of variables. Let X := {x1, x2, . . . , xn} be
a set of Boolean variables and let φ be a propositional formula with n free variables. By ∃Xφ
we denote ∃x1∃x2 . . . ∃xnφ and analogously ∀Xφ we denote ∀x1∀x2 . . . ∀xnφ. Note, that the
order of quantification is minuscule if one solely considers the validity of formulas with a
single type of quantification.

Definition 3.1.1. Let X1, . . . , Xn be sets of variables and let φ be a quantifier-free propo-
sitional formula with

∑n
i=1|Xi| free variables and Q1, . . . ,Qn be a sequence of quantifiers

with Qi 6= Qi+1 for 1 ≤ i ≤ n− 1. If Q1 = ∃ then Q1X1 . . .QnXnφ(X1, . . . , Xn) is called a
Σn-formula. If Q1 = ∀ then Q1X1 . . .QnXnφ(X1, . . . , Xn) is called a Πn-formula.

Deciding validity of quantified Boolean formulae is an expectedly high-complexity problem,
since the NP-complete language Sat is equivalent to evaluating a Σ1 formula.

Stockmeyer [Sto76] showed that for each n ≥ 1, the set of true Σn and Πn formulae form
complete languages for a series of nested complexity classes – the Polynomial Hierarchy (PH.

Definition 3.1.2. Let n ≥ 1. The class ΣPn is the set of all language L ⊆ {0, 1}∗ which are
recognized by a polynomial-time Turing machine M and a polynomial p : N→ N such that
for all x ∈ {0, 1}∗

x ∈ L ⇐⇒ ∃c1 ∈ {0, 1}p(|x|)∀c2 ∈ {0, 1}p(|x|) . . .Qncn ∈ {0, 1}p(|x|)M(x, c1, c2, . . . cn) = 1 .

Here, Qn is ∃ if n is odd and ∀ if n is even.

Another characterization of the Polynomial Hierarchy can be made by using oracle Turing
machines or alternating Turing machines.

Stockmeyer also showed that the set of arbitrarily deep quantified true quantified Boolean
formulae (Tqbf) is PSPACE-complete.

3.2 Encoding quantified Boolean formulae

In this section we will provide a coding for quantified Boolean formulae where the explicit
quantifiers are withdrawn. Thus, we will deal with propositional formulae where each variable
is coded to carry its quantification depth and type.

Let ψ = Q1X1Q2X2 · · · QnXnφ(X1, X2, . . . , Xn) be a quantified Boolean formula in prenex
normal form where the propositional part φ is in 3-CNF with

∑n
i=1|Xi| free variables

32 3.2. ENCODING QUANTIFIED BOOLEAN FORMULAE

and Qi are alternating quantifiers. Let Ψ be the set of such QBFs ψ. Let the function
quant(ψ) = Q1X1Q2X2 · · · QnXn return the sequence of quantifiers of a given QBF and
let prop(ψ) = φ(X1, X2, . . . , Xn) the analogous operator, return the propositional part of a
quantified Boolean formula.

Definition 3.2.1. Let Γ = {a, b,⊕,	, 〈, 〉,∨,∧}. Let dec: Γ∗ → Ψ be defined as follows:
Each literal is a sequence of the form (⊕|)b+a+, where ⊕,	 denote if the literal is positive
or negated, the bs are a unary number encoding of the quantification depth and the as are a
unary number encoding the name of the variable.

dec(⊕biaj) = Qixijxij
dec(biaj) = Qixij¬xij ,

where

Qi :=

{
∃if i is even
∀if i is odd .

Let l1, l2, l3 ∈ (⊕|)b+a+ be literals. A clause is encoded by encoding each of its literals,
where the quantifiers of each literal are merged with the method denoted in Algorithm 2:

dec(〈l1 ∨ l2 ∨ l3〉) = merge(quant(dec(l1)), quant(dec(l2)), quant(dec(l3))))

prop(dec(l1)) ∨ prop(dec(l2)) ∨ prop(dec(l3))

Let c1, . . . , cn ∈ 〈(⊕|)b+a+ ∨ (⊕|)b+a+ ∨ (⊕|)b+a+〉 be clauses. A formula is encoded
by encoding each of its clauses:

dec(c1 ∧ · · · ∧ cn) = merge(quant(dec(c1), . . . ,dec(cn)))

prop(dec(c1) ∧ · · · ∧ dec(cn))

Without loss of generality assume i1 ≤ i2 ≤ · · · ≤ in (otherwise sort the sequence of quantifiers
accordingly) and consider a sequence of quantified variables Qi1xi1j1 ,Qi2xi2j2 , . . . ,Qinxinjn .
Algorithm 2 formally shows how to merge quantified variables into sets.

Algorithm 2: Algorithm to compute merge

Data: Qi1xi1j1 ,Qi2xi2j2 , . . . ,Qinxinjn , sorted by il.
Result: merge(Qi1xi1j1 ,Qi2xi2j2 , . . . ,Qinxinjn)
quantifiers← λ;
for l← 1, . . . , n do

Xl ← {xikjk | ik = il};
if ∀l′ < l : Xl 6= Xl′ then

quantifiers← quantifiers · QlXl;
end

end
return quantifiers

Example 3.2.2. Consider the encoded words w1, w2 and w3

w1 = 〈⊕bbbbaa ∨ ⊕bbaa ∨ 	baaa〉 ,
w2 = 〈	baa ∨ ⊕baa ∨ 	bbaaa〉 ∧ 〈⊕baa ∨ 	bbbbbaa ∨ ⊕baaaa〉 ,
w3 = 〈⊕bba ∨ 	bbbaa ∨ 	bbbba〉 ∧ 〈	bbaa ∨ ⊕bbbbaaa ∨ 	bbaaaaaa〉 .

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 33

Then the decoding of w1, w2 and w3 respectively are

dec(w1) = ∃{x1,3}∀{x2,2}∀{x4,2}(x4,2 ∨ x2,2 ∨ ¬x1,3) ,

dec(w2) = ∃{x1,2, x1,4}∀{x2,3}∃{x5,2}(¬x1,2 ∨ x1,2 ∨ x2,3) ∧ (x1,2 ∨ ¬x5,2 ∨ x1,4) ,

dec(w3) = ∀{x2,1, x2,2, x2,6, }∃{x2,2, x2,6}(x2,1 ∨ ¬x3,2¬x3,1) ∧ (¬x2,2 ∨ x3,3¬x2,6) .

Note that there are two consecutive universal quantifiers in w1. This is due to the fact that
w1 does not contain a literal with b3 and thus there is no existential quantifier between levels
2 and 4. w2 contains literals with the same amount of bs. Thus there are non-singleton
sets of variables that are quantified by the same existential quantifies. Finally, w3 does not
contain any literal with a single b, making X1 empty. This means the literal(s) with the
minimal number of bs decide whether the encoded formula is a Σ- or a Π-formula.

Definition 3.2.3. Let α be a regular expression and k ∈ N be fixed. By α≤k we denote
(α | α2 | α3 | · · · | αk) the repetition of α up to k times.

Definition 3.2.4. Let k ∈ N be fixed and let ± = (⊕|) be a regular expression. We denote
the set of encoded quantified Boolean formulae with k sets of quantified variables (and thus
k − 1 quantifier alternations) as

Lk-Qbf := L

(〈
±b≤ka+ ∨ ±b≤ka+ ∨ ±b≤ka+

〉(
∧
〈
±b≤ka+ ∨ ±b≤ka+ ∨ ±b≤ka+

〉)∗
)

.

Analogously, define

LQbf :=
⋃
k≥1

(〈
±b+a+ ∨ ±b+a+ ∨ ±b+a+

〉(
∧
〈
±b+a+ ∨ ±b+a+ ∨ ±b+a+

〉)∗
)

as the set of encoded quantified Boolean formulae of arbitrary quantification depth.

Lemma 3.2.5. Let LΣk ⊆ Lk-Qbf be defined as

LΣk =

{
w ∈ Lk-Qbf

∣∣∣∣∣the first quantifier of dec(w) is existential and
dec(w) evaluates to true

}

and let LΠk ⊆ Lk-Qbf be defined as

LΠk =

{
w ∈ Lk-Qbf

∣∣∣∣∣the first quantifier of dec(w) is universal and
dec(w) evaluates to true

}
.

For even k the set LΣk is ΣPk complete and for odd k the language LΠk is ΠP
k complete.

Proof. Following Wrathall’s [Wra76] result the set of true Σk is ΣPk -complete for odd k and
the set of true Πk formulae is ΠP

k complete for even k. The decoding function dec works as a
linear time reduction and yields the completeness results for LΣk and LΠk respectively.

Definition 3.2.6. Let Lk-Tqbf := LΣk ∩ LΠk be the set of encoded true quantified Boolean
formulae in 3-CNF with up to k − 1 quantifier alternations. Let LTQBF := {w ∈ LQbf |
dec(w) evaluates to true} be the set of encoded true quantified Boolean formulas in 3-CNF
of arbitrary quantifier alternation.

34 3.3. QUANTIFIED BOOLEAN FORMULAE OF BOUNDED QUANTIFICATION DEPTH

3.3 Quantified Boolean formulae of bounded quantifica-
tion depth

In this section we will show that for each k ∈ N the languages LΣk and LΠk have a decidable
emptiness of regular intersection, i.e. intReg(LΣk) and intReg(LΠk) is decidable. The intReg-
property of these two language sets can be viewed from another perspective, when neglecting
the requirement of the first quantifier being existential/universal:

For a fixed k, given a regular language R, is there a w ∈ R that is a true quantified
Boolean formula with up to k alternating quantifiers in R?

Consider a regular language R. If R ∩ Lk-Qbf = ∅ is decidable then R ∩ LΣk = ∅ and
R ∩ LΠk = ∅ are decidable, too. If Rf is finite, then test for every w ∈ Rf if w is valid. The
intersection with LΣk is non-empty if there is a valid w ∈ Rf such that the first quantifier
of dec(w) is existential. Analogously, if in a valid w the first quantifier is universal we have
Rf ∩ LΠk 6= ∅.

Without loss of generality, in order to decide if a regular language contains true quantified
Boolean formulae we only consider (infinite) regular languages R ⊆ Lk-Qbf. Decoding every
single word and testing its validity is obviously not possible in this scenario. We will describe
a method in which for each infinite regular language R a finite subset {w1, . . . , wn} ⊆ R is
extracted such that R contains a true formula iff there is a valid wi in {w1, . . . , wn}.

Definition 3.3.1. Let k ≥ 1 be a natural number, Γ = {a, b, 〈, 〉,⊕,	,∨,∧} and let M =
(Q,Γ, δ, q0, F) be a deterministic finite automaton with L(M) ⊆ Lk-Qbf. For each pair of
states q, q′ ∈ Q, d ∈ [1, k] and s ∈ {⊕,	} we define the literal transition set from q to q′
with quantification depth d and sign s as

Λd,sq,q′ :=
{
w ∈ (〈, λ)sbda+(∨|〉) | δ∗(q, w) = q′

}
.

Moreover, we define the union of literal transition sets over all signs and depths for two
particular states q, q′

Λq,q′ :=
⋃

s∈{⊕,	}

k⋃
d=1

Λd,sq,q′

A literal transition set from q to q′ with quantification depth d and sign s of an automaton
M recognizing a subset of Lk-Qbf contains all words w that are encoded literals and lead M
from state q to q′.

Example 3.3.2. Consider the following component of a deterministic finite automaton
depicted in Figure 3.1. For i, j ∈ [8] the literal transition sets Λqi,qj are empty, since every
literal is considered to carry its delimiters. Only Λq,q′ is non-empty and it partitioned into
the following non-empty literal transitioning sets.

Λ1,⊕
q,q′ = {〈⊕ba∨}

Λ1,	
q,q′ =

{
〈	b(aa)ia∨ | i ≥ 0

}
Λ2,⊕
q,q′ =

{
〈⊕bb(aa)ia∨ | i ≥ 0

}
Λ4,⊕
q,q′ =

{
〈⊕bbbb(aa)ia∨ | i ≥ 0

}
Lemma 3.3.3. Let M = (Q,Γ, δ, q0, F) be a deterministic finite automaton with L(M) ⊆
Lk-Qbf. For each q, q′ ∈ Q, sign s ∈ {⊕,	} and d ∈ [1, k] the literal transition set Λd,sq,q′ is
regular.

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 35

q

q1 q2 q3

q4

q5 q6 q7

q8 q′

〈

⊕ b

b

b
a

b

b

a

a

a

∨	

Figure 3.1: Illustration of a (partial) transition function of a DFA. In Example 3.3.2 the
respective literal transition sets are denoted.

Proof. Let Mq,q′ := (Q,Γ, δ, q, {q′}) be the deterministic finite automaton that is constructed
from M by taking q as the new initial state and q′ as the single final state. Let l :=
(〈|λ)sbka+(∨|〉) be the regular expression of the literal structure. For each q, q′ ∈ Q, sign
s ∈ {⊕,	} and d ∈ [1, k] we have

Λd,sq,q′ = L(Mq,q′) ∩ L(l) .

Since L(Mq,q′) and L(l) are regular, Λd,sq,q′ is regular as well.

Intuitively speaking, a quantified Boolean formula is more likely to be true, if it contains
fewer universally quantified variables. We try to unite the variables used in the literals
of a formula. To this end we have to test every combination of possible transition sets
intersections.

Definition 3.3.4. Let k ≥ 1 and let M = (Q,Γ, δ, q0, F) be a deterministic finite automaton
with L(M) ⊆ Lk-Qbf and let d ≤ k be an even number. We define

Υd := {Λd,sq,q′ | q, q
′ ∈ Q, s ∈ {⊕,	}}

as the set of all literal transition sets with quantification depth d. Note, that only sets of
universally quantified literals are contained in the Υ sets.

Definition 3.3.5. Define the homomorphism trunc : {a, b, 〈, 〉,⊕,	} → {a, b} with

trunc (σ) :=

{
σ if σ ∈ {a, b},
λ otherwise.

Let Λ ⊆ {a, b, 〈, 〉,⊕,	}∗ and w ∈ trunc (Λ). Define

extend (w,Λ) := trunc−1(w) ∩ Λ

as the operation that reverses trunc for a language Λ and a word in Λ.

36 3.3. QUANTIFIED BOOLEAN FORMULAE OF BOUNDED QUANTIFICATION DEPTH

The trunc function is used to extract the variable out of a literal, i.e. remove positional
information and the sign. The function extend does reverse of trunc – given some variable
and a literal transition set, it returns all literals in the transition set that use this variable.

Example 3.3.6. Consider the following literal transition set Λ1 = L((⊕|)bbb(aa)∗a∨) and
w = 〈⊕bbaaaaa∨. Then we have trunc (〈⊕bbaaaaa∨) = bbaaaaa and extend (Λ1, bbaaaaa) =
{〈⊕bbaaaaa∨, 〈	bbaaaaa∨}.

Definition 3.3.7. Define for every even d with 1 ≤ d ≤ k

P d :=

p ∈ Υd |
⋂
Λ∈p

trunc (Λ) 6= ∅

 .

P d contains sets of literal transition sets which share common variables.

If there are no shared variables between any p ∈ P d then there are only singleton sets in P d.

In the following we will construct a finite representative set for each (possibly infinite) literal
transition set.

Definition 3.3.8. Let rep: {a, b, 〈, 〉,⊕,	}∗ → {a, b, 〈, 〉,⊕,	}∗ be defined by considering
both, odd and even quantification depths.

1. If d is odd, then Λd,sq,q′ contains only literals that are existentially quantified.

rep(Λd,sq,q′) :=

 extend(bdal,Λd,sq,q′) if
∣∣∣Λd,sq,q′∣∣∣ =∞ ,

Λd,sq,q′ otherwise ,

where for infinite Λd,sq,q′ the length l of the a-factor is set to a unique value such that we
have for infinite and odd quantification depth literal transition sets Λ and Λ′ so that

#b(rep(Λ)) = #b(rep(Λ′))⇒ Λ = Λ′ .

2. For even d we deal with literal sets of universally quantified variables. We compute
representatives for all literal transition sets of quantification depth d, i.e. for Υd

simultaneously with Algorithm 3. For a language L the operation min
lex

(L) gives the
lexicographic minimal element of L. Any other deterministic operation extracting a
definite element from a set. This means for every universal literal set we extract the
variables they contain. We then look at the power set of these variable sets and pick a
representative for each non-empty element. This way we test every combination of a
literal transition set with each other.

Lemma 3.3.9. For every d with 1 ≤ d ≤ k, s ∈ {⊕,	} and q, q′ ∈ Q the representative set
rep(Λd,sq,q′) is finite.

Proof. For odd d and finite Λd,sq,q′ the representative is the set itself and therefore finite. If it is
infinite, rep(Λd,sq,q′) is a singleton. For even d Algorithm 3 is used to compute representatives.
There, for every p ∈ P d we compute a single representative and possibly add it to the
representative set for Λd,sq,q′ . Since |P d| ≤ |P(Υd)| ≤ 2|Q|

2

, we have that rep(Λd,sq,q′) is
finite.

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 37

Algorithm 3: Algorithm to compute merge

Data: Υd, literal transition sets Λ of quantification depth d.
Result: Finitely many representative for each Λ of quantification depth d.
forall Λ ∈ Υd do

rep(Λ)← ∅;
end
forall p ∈ P d do

rep(p)← min
lex

(⋂
Λ∈p trunc(Λ)

)
;

end
forall Λ ∈ p do

rep(Λ)← rep(Λ) ∪ extend(rep(p),Λ)
end

The notion of representatives is now lifted to more general literal sets and to clauses
respectively.

Definition 3.3.10. For each pair of states q, q′ ∈ Q define rep(Λq,q′) as the set of represen-
tatives from q to q′:

rep(Λq,q′) :=
⋃

s∈{+,−},d≤k

rep
(

Λd,sq,q′
)

The literals may now have arbitrary quantification depth and sign.

Since we only consider regular languages which are subsets of Lk-Qbf, we know that each
literal transition set contains only mutually exclusive first, second or third literals in a clause.
Thus, we can partition the set of literal sets into three disjunctive sets.

Definition 3.3.11. Let the set of first, second and respectively third literals be defined as

L1 := {Λq,q′ | q, q′ ∈ Q,Λq,q′ 6= ∅ and all w ∈ Λq,q′ start with 〈}
L2 := {Λq,q′ | q, q′ ∈ Q,Λq,q′ 6= ∅ and all w ∈ Λq,q′ contain neither 〉, nor 〈}
L3 := {Λq,q′ | q, q′ ∈ Q,Λq,q′ 6= ∅ and all w ∈ Λq,q′ end with 〉}

Definition 3.3.12. For every q, q′ ∈ Q define the clause transition sets Cq,q′ as

Cq,q′ :=
⋃

q1,q2∈Q,Λq,q1∈L1,Λq1,q2∈L2,Λq2,q′∈L3

rep(Λq,q1) · rep(Λq1,q2) · rep(Λq2q′) .

Lemma 3.3.13. For every q, q′ ∈ Q clause transition sets are Cq,q′ finite.

Proof. Every clause transition set is a finite concatenation of elements of finite sets and thus
is finite itself.

Definition 3.3.14 (Condensed automaton). Let M = (Q,Γ, δ, q0, F) be an DFA with
L(M) ⊆ Lk-Qbf. Define the condensed automaton of M as condense(M) = (Q,Γ′, δ′, q0, F),
where the alphabet Γ′ consists of whole clauses and junctors

Γ′ =
⋃

q,q′∈Q
Cq,q′ ∪ {∧} ,

and

δ′ =
{(q, w, q′) | q, q′ ∈ Q,w ∈ Cq,q′}∪
{(q,∧, q′) | q, q′ and (q,∧, q′) ∈ δ} .

38 3.3. QUANTIFIED BOOLEAN FORMULAE OF BOUNDED QUANTIFICATION DEPTH

The condensed automaton recognizes formulae where each literal is a representative. Therefore,
for each finite automaton M we have that L(condense(M)) ⊆ L(M). In the following we
will show that the condensation preserves containment of valid formulae.

Lemma 3.3.15. Let M be a DFA with L(M) ⊆ Lk-Qbf. If L(condense(M)) ∩ Lk-Tqbf 6= ∅
then also L(M) ∩ Lk-Tqbf 6= ∅.

Proof. The condensed automaton condense(M) recognizes a subset of M . Thus, if

L(condense(M)) ∩ Lk-Tqbf 6= ∅

then also L(M) ∩ Lk-Tqbf 6= ∅.

Lemma 3.3.16. Let M = (Q,Γ, δ, q0, F) be an DFA with L(M) ⊆ Lk-Qbf. If L(M) ∩
Lk-Tqbf 6= ∅ then also L(condense(M)) ∩ Lk-Tqbf 6= ∅.

Proof. Assume that L(M) ∩ Lk-Tqbf 6= ∅. Then, there is some w ∈ L(M) that is a true
quantified Boolean formula. Since L(M) ⊆ Lk-Qbf the formula w can be factorized in the
following way

w = w0w1w2 ∧ w3w4w5 ∧ · · · ∧ wn−2wn−1wn ,

such that for qj ∈ Q we have

• wi ∈ Λqi,qi+1
for i 6≡ 0 mod 3,

• wi ∈ Λqi,q′i for i ≡ 0 mod 3,

• δ(qi,∧) = q′i for i ≡ 0 mod 3,

• w0 ∈ Λq0,q1 and

• wn ∈ Λqn,qf for qf ∈ F .

There is a w′ ∈ L(condense(M)) which can be factorized the same way as w into

w′ = w′0w
′
1w
′
2 ∧ w′3w′4w′5 ∧ · · · ∧ w′n−2w

′
n−1w

′
n ,

such that if wi ∈ Λqiqi+1 then wi ∈ rep(Λqiqi+1). We make a case distinction over the factors
wi to show that there is a w′ that is a true quantified Boolean formula:

1. If Λqi,qi+1 is finite then Λqi,qi+1 = rep(Λqi,qi+1) and therefore we can pick w′i = wi ∈
rep(Λqi,qi+1

).

2. If Λqi,qi+1
contains infinitely many existentially quantified variables then pick w′i such

that it is uniquely occurring in w′. Every existentially quantified variable that occurs
uniquely in a quantified Boolean formula equals to the Boolean constant 1.

3. If Λqi,qi+1
contains universally quantified variables we have to consider every possible in-

tersection of Λqi,qi+1
with other literal transition sets that contain universally quantified

variables. For wi let the index set J = {j | j ∈ 1, . . . , n and trunc(wj) = trunc(wi)}
contain the indices of all factors in w in which the universally quantified variable in
wi also occurs. Let d := #b(wi) be the number of bs in wi (and therefore its quantifi-
cation depth). Then by definition we have that, {Λqj ,qj+1

|j ∈ J} ∈ P d = {p ∈ Υd |⋂
Λ∈p trunc (Λ) 6= ∅}. Then, with the construction of Algorithm 3 we assign to each

wj with j ∈ J a label pj which yields a consistent renaming of the variable names and
preserves validity of the quantified Boolean formula.

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 39

The substitutions preformed on each factor wi of w yield the same valuation. Therefore,
w′ ∈ L(condense(M)) is also a true quantified Boolean formula

The condensation process of an automaton recognizing encoded quantified Boolean formula
now restricts the number of variables in a formula. Formulae recognized by a condensed
automaton are limited to a finite amount of variables. Therefore, deciding whether such an
automaton recognizes a true quantified Boolean formula is decidable.

Lemma 3.3.17. Let M = (Q,Γ′, δ′, q0, F) be the condensed automaton of some deterministic
finite automaton and w = w1 . . . wn ∈ L(M) such that δ̂(q0, w1 . . . wi) = q = δ̂(q0, w1 . . . wj)
for 1 ≤ i < j ≤ n. Let w′ = w1 . . . wiwj+1 . . . wn i.e. w without the factor read in the loop
from i to j. If w evaluates to true, then so does w′.

Proof. Since M is a condensed automaton the true formula w ∈ L(M) is of the form
c1 ∧ · · · ∧ cm for disjunctions of literals cl for 1 ≤ l ≤ m. Each factor wi+1 . . . wj induces for
the sub-formula cs ∧ · · · ∧ ct with 1 ≤ s ≤ t ≤ m. The conjunction of clauses implies that
each cl evaluates to true such that w does. Therefore, we have that

c1 ∧ · · · ∧ cm ≡ 1⇒ c1 ∧ cs−1 ∧ ct+1 ∧ · · · ∧ cm ≡ 1 ,

i.e. we can remove clauses from w while preserving validity.

Corollary 3.3.18. Let M = (Q,Γ′, δ′, q0, F) be the condensed automaton of some determin-
istic finite automaton and w = w1 . . . wn ∈ L(M) be a true quantified Boolean formula. Then
there is a true quantified Boolean formula ws ∈ L(M) such that the accepting path in M with
the label ws is simple.

Proof. A suited ws can be obtained by iterative application of Lemma 3.3.17 on w.

Therefore, if there are words in a condensed automaton that represent true quantified Boolean
formulae, there are also true ones which are accepted via simple path.

Lemma 3.3.19. Let R be a regular language and M be a deterministic finite automaton
with L(M) = R. It is decidable whether condense(M) recognizes a true quantified Boolean
formula. In particular we can decide

1. L(condense(M)) ∩ LΣk = ∅ and

2. L(condense(M)) ∩ LΠk = ∅.

Proof. Assume R ⊆ Lk-Qbf, otherwise consider the regular set R ∩ Lk-Qbf. Let w1, . . . , wn
be finitely many words that are labels of simple accepting paths in condensed(M). Evaluate
each quantified Boolean formula wi. If for all 1 ≤ i ≤ n we have that wi evaluates to false,
then both L(condense(M)) ∩ LΣk = ∅ and L(condense(M)) ∩ LΠk = ∅. The intersection
condense(M) ∩ LΣk is non-empty, if there is an i such that wi evaluates to true and the first
quantifier of wi is existential. If there is a true wi where the first quantifier is universal the
intersection of R and LΠk is non-empty.

Putting together the previous lemmata we obtain the desired decidability result.

Theorem 3.3.20. Let R be a regular language and k be a natural number. It is decidable if
R ∩ LΣk = ∅ and R ∩ LΠk = ∅.

40 3.4. THE DECIDABILITY OF INTREG(LTQBF)

Proof. Assume R ⊆ Lk-Qbf, otherwise consider the regular set R ∩ Lk-Qbf. Let M be the
minimal deterministic automaton recognizing R and let M ′ := condense(M). Following
Lemma 3.3.19 it is decidable if L(M ′) ∩ LΣk = ∅ and L(M ′) ∩ LΠk = ∅. Lemma 3.3.15 and
Lemma 3.3.16 together state that

L(M) ∩ Lk-Tqbf ⇐⇒ L(M ′) ∩ Lk-Tqbf .

Therefore, it is decidable if R ∩ LΣk = ∅ and R ∩ LΠk = ∅.

Theorem 3.3.20 yields for every level k of the polynomial hierarchy languages that are
complete for ΣPk and ΠP

k for which we can decide the emptiness of intersection with regular
sets.

3.4 The decidability of intReg(LTqbf)

We can extend the result of the previous section to decide whether regular sets of quantified
Boolean formulae unbounded in their quantification depth contain true formulae. This means
we show that intReg(LTqbf) is decidable.

Lemma 3.4.1. Let X = (x1, . . . , xn) and Y = (y1, . . . , ym) be vectors of Boolean variables,
let φ be a propositional Boolean formula with |X|+|Y | free variables and let ψ be a propositional
Boolean formula with |X| free variables. Then, we have

1. ∃X∀Y φ(X,Y)⇒ ∀Y ∃Xφ(X,Y)

2. ∀Xψ(X)⇒ ∃Xψ(X)

3. ∃X∃Y φ(X,Y)⇒ ∃Y ∃Xφ(X,Y)

4. ∀X∀Y φ(X,Y)⇒ ∀Y ∀Xφ(X,Y)

Proof. 1. Let ∃X∀Y φ(X,Y) ≡ 1. Then there is a Boolean vector (i.e. an assignment to
the variables in X) C = (c1, . . . , cn) ∈ {0, 1}n such that ∀Y φ(C, Y) ≡ 1. Then,
for ∀Y ∃Xφ(X,Y) we can assign ci for each xi for 1 ≤ i ≤ n and obtain that
∀Y ∃Xφ(X,Y) ≡ 1.

2. Let ∀Xψ(X) ≡ 1. Then for all Boolean vectors C = (c1, . . . , cn) ∈ {0, 1}n the formula
ψ(C) ≡ 1. Therefore, we can pick any C to find a satisfying assignment for ψ and thus
∃Xψ(X) ≡ 1.

3. If ∃X∃Y φ(X,Y) ≡ 1 then there are Boolean vectors C = (c1, . . . , cn) ∈ {0, 1}n and
D = (d1, . . . , dm) ∈ {0, 1}m such that ψ(C,D) ≡ 1. We can assign ci for each xi for
1 ≤ i ≤ n and therefore have ∃Xφ(X,D) ≡ 1. By also assigning dj for each yj for
1 ≤ j ≤ m we are left with ∃Y ∃Xφ(X,Y) ≡ 1.

4. Analogous to 3.

This means, that we do not falsify quantified Boolean formulae, by pulling out universally
quantified variables. It is also more likely that a QBF is true if existential quantifiers are
used instead of universal ones. Furthermore, the order of consecutive variables with the same
kind of quantification is interchangeable.

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 41

3.4.1 Bounding the quantification depth

In the following we will reduce deciding intReg(LTqbf) to deciding intReg(Lk-Tqbf) for some
fixed k.

Definition 3.4.2. LetM = (Q,Γ, δ, q0, F) be a deterministic finite automaton with L(M) ⊆
LQbf, let q, q′ ∈ Q be states and let s ∈ {⊕,	} ⊆ Γ be a sign symbol. We define Gsq,q′ as
the set of complete quantification depths that can be between q and q′, when a literal with
sign s is read M :

Gsq,q′ := {n ∈ N | ∃q1, q2 ∈ Q : δ(q1, s) = q ∧ δ(q, bn) = q′ ∧ q′ ∧ δ(q′, a) = q2}

q1 q q′ q2

∧〈 a∗∨

s bn a

Figure 3.2: Visualization of n ∈ Gsq,q′ . The states q1 and q2 ensure that only complete
bn-sequences are read between q and q′.

For pairs of states and a sign the set Gsq,q′ is empty if there is some q′′ ∈ Q such that either
δ(q′′, b) = q or δ(q′, b) = q′′. See Figure 3.2 for an illustration of Gsq,q′ .

Lemma 3.4.3. Let M = (Q,Γ, δ, q0, F) be a deterministic finite automaton with L(M) ⊆
LQbf, let q, q′ ∈ Q be states and let s ∈ {⊕,	} ⊆ Γ be a sign symbol. If there is an n1 ∈ Gsq,q′
such that n1 ≥ |Q| and n1 is odd, then there are infinitely odd n in Gsq,q′ .

Proof. Assume there is an odd n1 ≥ |Q| in Gsq,q′ . Since n1 ∈ Gsq,q′ we have that δ(q, bn1) = q′.
The path from q to q′ with the label bn1 must contain some loop, say of lengthm < n0, because
n1 ≥ |Q|. Therefore, for all i ∈ N we obtain that n + mi ∈ Gsq,q′ . This particularly holds
for i′ = 2i, hence n + mi′ mod 2 ≡ n + m2i mod 2 ≡ n mod 2 ≡ 1, which consequently
proofs the claim.

Lemma 3.4.4. Let M = (Q,Γ, δ, q0, F) be a deterministic finite automaton with L(M) ⊆
LQbf. Let Z ⊆ Q2 be the set of all pairs of states between which complete quantification
depth are read:

Z :=
{

(q, q′) ∈ Q2 | ∃s ∈ {⊕,	} : Gsq,q′ 6= ∅
}

Let NE := {n ∈ N | n ≡ 0 mod 2} be the set of even natural numbers. For all s ∈ {⊕,	} ⊆ Γ
and for all S ⊆ Z if

NE ∩
⋂

(q,q′)∈S

Gsq,q′ 6= ∅ ,

then there is an even n0 ∈
⋂

(q,q′)∈S G
s
q,q′ such that n0 ≤ 2|Q|

|Q|2

.

Proof. For Gsq,q′ let M
s
q,q′ = (Q,Γ, δ, q, {q′}) be a deterministic finite automaton constructed

from M by setting q to the initial state and q′ to the single final state. Then for all n ∈ N
we have

n ∈ Gsq,q′ ⇐⇒ bn ∈ L(Ms
q,q′) ,

42 3.4. THE DECIDABILITY OF INTREG(LTQBF)

and therefore

NE ∩
⋂

(q,q′)∈S

Gsq,q′ 6= ∅ ⇐⇒ {bn | n ∈ NE} ∩
⋂

(q,q′)∈S

L(Ms
q,q′) 6= ∅ .

Since all Ms
q,q′ are finite automata and {bn | n ∈ NE} is regular (and can be recognized by

a DFA with two states) we can build for each S ⊆ Z a deterministic finite automaton MS

recognizing
⋂

(q,q′)∈S L(Ms
q,q′) with the standard intersection construction. Intersections of

finite automata are built with Cartesian products of the states, wherefore MS operates as
the state set 2×Q× · · · ×Q︸ ︷︷ ︸

|S|

= 2 ·Q|S|.

Since |S| ≤ |Z| ≤ |Q|2 the number of states in MS is at most 2|Q||Q|2 . Now, if NE ∩⋂
(q,q′)∈S G

s
q,q′ 6= then {bn | n ∈ NE} ∩

⋂
(q,q′)∈S L(Ms

q,q′) 6= ∅ and therefore L(MS) 6= ∅. If
L(Ms

q,q′) 6= ∅, there is an n0 such that bn0 is accepted by Ms
q,q′ along a simple path, and

therefore n0 ≤ 2|Q||Q|2 and n0 is an even number in
⋂

(q,q′)∈S G
s
q,q′ .

Lemma 3.4.4 states that there is an upper bound of 2|Q||Q|2 for the quantification depth
when testing if variables of the same quantification depth can be read at multiple positions.

Definition 3.4.5. LetM = (Q,Γ, δ, q0, F) be a deterministic finite automaton with L(M) ⊆
LQbf and Q = {q0, q1, . . . , qn−1}. Let G∆,s

q,q′ := Gsq,q′ ∩ {i ∈ N | i ≥ |Q|} be the complete
quantification depths in Gsq,q′ that must read along a loop in M . We define the level of
G∆,s
q,q′ as the set of all finite subset of G∆,s

q,q′ that needs to be regarded when searching for true
quantified Boolean formula in accepted by M .

If there are existential quantification depths in G∆,s
q,q′ then we can establish a unique quantifica-

tion depth. Otherwise we will use the upper bound of Lemma 3.4.4 to cap the quantification
depth at 2|Q||Q|2 for universal variables. We use the levels computed with Algorithm 4 to

Algorithm 4: Algorithm to compute level(G∆,s
q,q′). Each level is a finite set. If G∆,s

q,q′

contains an existential level it is uniquely chosen. Otherwise, all depths up to the upper
bound are assigned.
Data: M = (Q,Γ, δ, q0, F), a deterministic finite automaton with L(M) ⊆ LQbf and

Q = {q0, q1, . . . , qn−1}.
Result: level(G∆,s

q,q′) for all pairs of states q, q′ and signs s.
uniqueExistentialLevel← 2|Q||Q|2 + 1
for i← 0, . . . , n− 1 do

for j ← 0, . . . , n− 1 do
for s← ⊕,	 do

if G∆,s
qi,qj ∩ {i ∈ N | i ≡ 1 mod 2} 6= ∅ then

level(G∆,s
qi,qj)← min

(
G∆,s
qi,qj ∩ {odd i | i ≥ uniqueExistentialLevel}

)
uniqueExistentialLevel← level(G∆,s

qi,qj) + 2

end
level(G∆,s

qi,qj)← G∆,s
qi,qj ∩ {even i | 2 ≤ i ≤ 2|Q||Q|2}

end
end

end

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 43

construct for a given automaton M a modified deterministic finite automaton that recognizes
a true quantified Boolean formula if and only if M does.

Definition 3.4.6. LetM = (Q,Γ, δ, q0, F) be a deterministic finite automaton with L(M) ⊆
LQbf. We define the modified deterministic finite automaton restrict(M) = (Q′,Γ, δ′, q0, F)
as follows: The set of transitions δ′ is constructed by first removing any transitions of the
form δ(q, b) = q′ for any q, q′ ∈ Q. In particular any b-loops in M are removed in process.
Now, for each m ∈ level(G∆,s)q,q′ and m ∈ Gsq,q′ ∩ {1, . . . , |Q| − 1} we add m − 1 states
q1, . . . , qm−1 into the state set Q′ and introduce transitions δ(q, b) = q1, δ(qi, b) = qi+1 for
i = 1, . . . ,m− 2 and δ(qm−1, b) = q′.

Lemma 3.4.7. Let M = (Q,Γ, δ, q0, F) be deterministic finite automaton. Then L(M) ∩
LTqbf 6= ∅ ⇐⇒ L(restrict(M)) ∩ LTqbf 6= ∅.

Proof. “⇒” If L(M) ∩ LTqbf 6= ∅ then there is a w ∈ L(M) such that dec(w) evaluates to
true, i.e. w ∈ LTqbf. There is an n ∈ N such that w can be separated into a list of 3n
literals, each in {⊕,	}b+a+:

s1b
β1aα1 , s2b

β2aα2 , . . . , s3nb
β3naα3n ,

where si ∈ {⊕,	}, and βi, αi ∈ N for i = 1, . . . , 3n. We denote sibβiaαi as lit i. Now,
consider the literals lit i of w where βi ≥ |Q|, i.e. the factor bβi of lit i takes loop while
being read in M . Let qi, q′i ∈ Q be the two states in M between which bβi is read. We
give substitution for such literals lit i in a fixed order (say successively from i = 1 to
3m), distinguishing the following four cases:

1. If βi is odd (and therefore dec(lit i) is an existentially quantified literal), then
following Lemma 3.4.3 there are infinitely many odd n ∈ N in Gsiqi,q′i

. For β′i
defined as

β′i := min

n ∈ Gsiqi,q′i
∣∣∣∣∣∣∣
n is odd,
n > βj for j = 1, . . . , 3n and
n > β′l for l = 1, . . . , i− 1

 ,

we construct the substituted literal lit ′i = sib
β′iaαi . Since the quantification depth

β′i is unique to the literal lit ′i and the variable in it is existentially quantified, it
can be evaluated to true without interfering with the validity of other literals.

2. If βi is even (and hence dec(lit i) is a universally quantified literal) and there is
some odd o ∈ Gs0qi,q′i ∩ {|Q|, |Q|+ 1, . . . , 2|Q| − 1} then liti can be substituted by
a literal containing an existentially quantified variable in the same way as in case
1, yielding lit′i = sib

β′iaαi .

3. If βi is even and βi ≤ 2|Q||Q|2 and Gs0qi,q′i ∩ {|Q|, |Q|+ 1, . . . , 2|Q|} = ∅ we leave
lit i unchanged.

4. If βi is even and βi > 2|Q||Q|2 and Gs0qi,q′i ∩ {|Q|, |Q|+ 1, . . . , 2|Q|} = ∅ we identify
all j for j = 1, . . . , 3m with βj = βi and pairs of states (qj , q

′
j) such that the

b-factor in βj is read between qj and q′j (i.e. βj ∈ G
sj
qj ,q′j

). Let J be the set of all

such indices j. Since βi ∈
⋂
j∈J G

sj
qj ,q′j

the intersection is non-empty and following

Lemma 3.4.4 there is some even n0 ≤ 2|Q||Q|2 in
⋂
j∈J G

sj
qj ,q′j

. For each j ∈ J
substitute litj by lit ′j = sjb

n0aαj .

44 3.5. HIDING THE DIFFICULTY OF INTREG

Let w′ be the result of the application of the above described substitutions to w. Clearly,
we still have w′ ∈ L(M) and following Lemma 3.4.1 all substitutions made preserve
the validity of w. Furthermore, every level of universal quantification is lower than
2|Q||Q|2 and (ignoring ordering of the states of M) existential levels above 2|Q||Q|2 are
assigned uniquely, which yields that w′ ∈ L(restrict(M)).

“⇐” By definition restrict(M) recognizes a (proper) subset of M . In particular every
w ∈ L(restrict(M)) such that dec(w) is a true quantified Boolean formula is also also
in L(M).

Theorem 3.4.8. For any regular languages R it is decidable if R ∩ Lk-Tqbf = ∅.

Proof. LetM be the minimal deterministic finite automaton with L(M) = R. In restrict(M),
let k be the length of the longest (simple) path of b-edges. Following Theorem 3.3.20 we can
decide if L(restrict(M)) ∩ Lk-Tqbf = ∅. Lemma 3.4.7 states that L(restrict(M)) ∩ LTqbf =
∅ ⇐⇒ L(M) ∩ LTqbf = ∅. Therefore, we can decide whether R ∩ Lk-Tqbf = ∅.

3.5 Hiding the difficulty of intReg

The previous section showed the existence of PSPACE-complete problems for which the
intersection of regular intersection is decidable. Since all (known) families of formal languages
lie within NP we have languages (most probably) outside of NP for which intReg is decidable.

In this section we show that for every decidable language L there is an AC0-many-one
equivalent language L′ for which the regular intersection emptiness is decidable. Since
(almost) all complexity classes (disregarding non-uniform circuit classes) are decidable and
all complexity classes above AC0 are closed under AC0-reductions, this implies that all of
these classes contain complete problems for which intReg is decidable. This, of course, means
that intReg is not an adequate characterization of families of formal languages.

The technique used to obtain this result is similar to the dense completeness results from
Krebs and Lange [KL12a] which we call hiding.

It preserves the complexity of a language but makes it very easy to decide the emptiness
of regular intersection. Hiding the difficulty of intReg for a language L is done in two steps.
First, we expand the words in L in a highly redundant manner. We then enrich the resulting
language with all misshaped words. Each infinite regular set has then (independent of L) a
non-empty intersection with the set of misshaped words. Therefore, we only have to consider
intersections with finite sets, which equals testing finitely many membership queries for L. If
L is decidable so are these finitely many tests, which together results in decidability of the
emptiness of regular intersection.

Definition 3.5.1. For Γ = {0, 1} let T : Γ∗ → Γ∗ be the mapping defined as

T (w) = w10|w| ,

and for some language L ⊆ Γ∗ let

T (L) = {T (w) | w ∈ L} ,

be the application of T to each word in L. Let

Lbad := Γ∗ \ T (Γ∗)

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 45

be the set of words not in the image of T . We define the intReg-hiding function φ : 2Γ∗ → 2Γ∗

as

φ(L) = T (L) ∪ Lbad .

Remark 3.5.2. Lbad is recognizable by a non-deterministic 1-counter automaton, but is
not contained in DOIn for any fixed n.

Lemma 3.5.3. If L is decidable and L 6= ∅ then φ(L) ≤AC0

m L ≤AC0

m φ(L).

Proof. L ≤AC0

m φ(L) We first construct a circuit family CTn with n inputs and 2n+ 1 outputs
for the mapping T : {0, 1}n → {0, 1}2n+1. For an input word w = w1 . . . wn the first
n outputs are wired to the input gates in a linear fashion (i.e. wi to the i-th output).
The last n + 1 outputs are only dependent on the input length but not the wi. All
output bits are only dependent on a constant number of inputs, which means that
T is an NC0 function and thus an AC0 function. For w ∈ {0, 1}∗ the output of the
application of CT|w|(w) on w is w01|w|. If w ∈ L then w01|w| ∈ T (L) and therefore
CT|w|(w) ∈ φ(L). If otherwise w /∈ L then w01|w| /∈ T (L). But since w01|w| ∈ T ({0, 1}∗)
we have w01|w| /∈ Lbad and therefore w01|w| /∈ φ(L).

φ(L) ≤AC0

m L Since L 6= ∅ there is some ŵ ∈ Γ∗ with ŵ ∈ L. Define the (sub-)circuit CT
−1

n

that behaves as follows: For n = 2m + 1 for some m ∈ N test for an input word
w = w1 . . . w2m+1 if wm+1 = 0 and wm+2 = wm+3 = · · · = w2m+1 = 1 and returns 1
on the single output gate. If the input has no 01m-suffix or there is no such m ∈ N, the
circuit CT

−1

n returns 0. Let the circuit Cφ
−1

n now test for an input of length n if AC0

circuit CT
−1

n outputs 1, and if so returns the first m bits of the input for n = 2m+ 1.
Otherwise, return the hard-wired (and independent from the input) word ŵ. Therefore,
Cφ
−1

n is the following mapping:

w1 . . . wm . . . wn 7→

{
w1 . . . wm if w1 . . . wm = T (w1 . . . wn) ,

ŵ otherwise .

Clearly Cφ
−1

n can be constructed with constant depth and hence an AC0-circuit. For
w ∈ φ(L) we have either w = w1 . . . wm01m or w ∈ Lbad. If w = w1 . . . wm01m then
CT

−1

n (w) = 1 which implies Cφ
−1

n (w) = w1 . . . wm with w1 . . . wm ∈ L. For w ∈ Lbad

we have CT
−1

n (w) = 0 and thus Cφ
−1

n (w) = ŵ, which is by assumption in L. If
w /∈ φ(L), then w ∈ T ({0, 1}∗) \ T (L), and hence w = w1 . . . wm01m. Therefore we
have CT

−1

n (w) = 1 and Cφ
−1

n (w) = w1 . . . wm with w1 . . . wm /∈ L.

Lemma 3.5.4. If L is decidable then intReg(φ(L)) is decidable.

Proof. Let R ⊆ {0, 1}∗ be a given regular language for which we have to decide whether
φ(L)∩R = ∅. We make the following case distinction to decide the emptiness of intersection:

R finite Since L is decidable and L and φ(L) are AC0-many-one equivalent, φ(L) is decidable,
too. Thus, to decide whether L ∩ R = ∅, test for each w ∈ R if w ∈ φ(L). The
intersection is non-empty, if we have at least one w ∈ R that w ∈ φ(L).

R infinite We show that each infinite regular language R has a non-empty intersection with
Lbad ⊆ φ(L). Assume that R ∩ Lbad = ∅. Then R ⊆ {0, 1}∗ \ Lbad = T ({0, 1}∗). This

46 3.6. AFL-STABILITY OF THE INTREG PROPERTY

implies for all w ∈ R that w = u01|u| for some u ∈ {0, 1}∗. Since R is infinite, for
every n ∈ N there is some w ∈ R with |w| ≥ n. We can now use a standard pumping
argument to pump up either the u-part or the 1-block of a large enough w to obtain a
word that does not have the form required by T ({0, 1}∗). Thus, R 6⊆ T ({0, 1}∗) and
therefore R ∩ Lbad 6= ∅ which yields independently of L that R ∩ φ(L) 6= ∅ if R is
infinite.

Theorem 3.5.5. Let L ⊆ {0, 1}∗ be a non-empty decidable language. Then, there is a
decidable language L′ with L ≡AC0 L′ and intReg(L

′) is decidable.

Proof. Let L′ = φ(L). If L is decidable, following Lemma 3.5.3 L ≡AC0 L′ and L′ is also
decidable. Lemma 3.5.4 yields the decidability of intReg(L′), which together proves the
claim.

Since all complexity classes that include AC0 are closed under (DLOGTIME-uniform) AC0

reductions, we can construct complete problems for any of these classes for which intReg is
decidable by applying Theorem 3.5.5 to arbitrary complete languages. Thus, in order to
describe a family of formal languages the decidability of the intersection emptiness with
regular sets might be a property that is necessary, but not sufficient.

3.6 AFL-stability of the intReg property

In this section we show that the set of languages for which the intersection emptiness with
regular sets is closed under the full AFL-operations. In context of the formality question
and the result of Theorem 3.5.5 this means that every complexity class (that includes AC0)
contains complete languages for which the emptiness of regular language intersection is
decidable and the AFLs of these languages inherit this property too.

Theorem 3.6.1. Let L be a language for which intReg(L) is decidable. Then, the emptiness
of regular intersection is decidable for the full AFL of L, i.e. intReg(fullAFL(L)) is decidable.

Proof. To show that the intReg-property is decidable for fullAFL(L) we need to show that intReg
is decidable for every AFL-operation, namely union, intersection with regular languages,
homomorphisms, inverse homomorphisms, and the Kleene star. Assume that intReg(L),
intReg(L1) and intReg(L2) is decidable.

union For a given regular language R the intersection R ∩ (L1 ∪ L2) is empty if and only if
the intersection with both languages individually is empty. Since both, intReg(L1) and
intReg(L2) is decidable, so is intReg(L1 ∪ L2).

intersection with regular languages Consider the intersection of L∩R for a regular lan-
guage R. Since intReg(L) is decidable, intersection of sets is associative and commutative
and regular languages are closed under intersection intReg(L ∩R) is decidable.

Kleene star We show that it is decidable to test if L∗ ∩ R = ∅ for a given regular set R.
Let M = (Q,Γ, δ, q0, F) be the minimal deterministic finite automaton recognizing R.
We call a sequence of states p = (qt0 , . . . , qtn) in M simply accepting if

• qt0 = q0, it starts in the initial state,

CHAPTER 3. REGULAR INTERSECTION EMPTINESS 47

• qtn ∈ F , ends in a final state,

• 0 ≤ i < j ≤ n⇒ qti 6= qtj , that is p is loop-free.

For a simply accepting path p = (qt0 , . . . , qtn) we construct n new deterministic finite
automata in the following way:

For 1 ≤ i ≤ n define Mi = (Q,Γ, δ, qti , qti+1) as the automaton recognizing precisely
the words w ∈ Γ∗ such that M transitions from qti to qti+1 when reading w. In case
λ ∈ L(M), we consider the additional automaton Mλ = (Q,Γ, δ, q0, {q0}). Note, that
the number of simply accepting paths is finite for every DFA. Let P be the finite set of
all simply accepting paths in M . Now, we have L∗ ∩R 6= ∅ if and only if

∨
(qt0 ,...,qtn)∈P

(
n−1∨
i=0

L ∩ L(Mi) 6= ∅

)
,

which is decidable, since intReg(L) is decidable and we only make finitely many inter-
section emptiness tests with regular languages.

homomorphism and inverse homomorphism Let R be a given regular language and
h be a homomorphism. Let M,N be arbitrary sets and f : M → N be any mapping
between them. Note that for all A ⊆M and B ⊆ N we have the following equivalence:

f(A) ∩B 6= ∅ ⇐⇒ A ∩ f−1(B) 6= ∅ .

We can use the previous equivalence to decide intReg(h(L)) and intReg(h
−1(L)) in the

following way:

h(L) ∩R 6= ∅ ⇐⇒ L ∩ h−1(R) 6= ∅ and

h−1(L) ∩R 6= ∅ ⇐⇒ L ∩ h(R) 6= ∅ .

Regular languages are closed under both, homomorphisms and inverse homomorphisms.
Therefore, intReg(h(L)) and intReg(h

−1(L)) are decidable.

concatenation The closure under concatenation is a consequence of the closures under
union, intersection with regular languages, (inverse) morphisms and the Kleene star, as
noted in [HU79, Theorem 11.6]

The closure under union uses the distributivity of intersection and union. Note, that there is
no similar technique to show that the set of languages which intReg is decidable is not closed
under intersection.

Lemma 3.6.2. There are L1 and L2 for which intReg(L1) and intReg(L2) is decidable, but
intReg(L1 ∩ L2) is undecidable.

Proof. Assume that L1, L2 ⊆ Γ∗ are context-free languages. CFL are closed under the
intersection with regular languages and the emptiness is decidable. For the regular language
Γ∗ we have

Γ∗ ∩ (L1 ∩ L2) = ∅ ⇐⇒ (L1 ∩ L2) = ∅ .

which is undecidable for context-free languages and therefore yields the undecidability of
intReg(L1 ∩ L2).

48 3.7. COMPLEXITY CLASSES AND INTREG

3.7 Complexity classes and intReg

Definition 3.7.1. Let C be a complexity class which is closed under AC0-reductions. We
denote the set of all languages in C for which intReg is decidable as

CintReg := {L ∈ C | intReg(L) is decidable} .

Proposition 3.7.2. If C and D are complexity classes, closed under AC0-many-one and
C ⊆ D then

C = D ⇐⇒ CintReg = DintReg .

Proof. “⇒” If C = D then L ∈ C if and only L ∈ D. In particular this holds for all L ∈ C
for which intReg(L) is decidable which implies that CintReg = DintReg .

“⇐” Assume that CintReg = DintReg . Let D ∈ D be complete for D under AC0-reductions. If
D 6= ∅ then according to Lemma 3.5.3 there is a φ(D) ∈ DintReg with φ(D) ≡AC0 D.
Now, CintReg = DintReg implies that φ(D) ∈ CintReg ⊆ C, i.e. C contains a D-complete
language from which we can follow that C = D.

A direct application of Proposition 3.7.2 yields for instance P = NP if and only if PintReg =
NPintReg and NP = PSAPCE if and only if NPintReg = PSPACEintReg .

3.8 Summary

In this chapter we disproved our conjecture that families for formal languages can be distinctly
characterized with the intReg-property.

We showed that there are natural PSPACE-complete languages, as well as languages that
are complete for each level of the Polynomial Hierarchy for which intReg is decidable. These
languages were encoding of true quantified Boolean formulae. By restricting the alternation
depth of the formulae we obtained the complete languages for the polynomial hierarchy.

We applied a technique called Hiding to show that for every decidable language L there
is a language L′ with same complexity such that intReg(L′) is decidable. Therefore, every
complexity class contains complete problems for which intReg is decidable.

Furthermore, we showed that the full AFL of languages for which intReg is decidable also has
a decidable regular intersection emptiness.

This means, even though the decidability of intReg seems to be a necessary property a family
of formal languages should have, it is not a sufficient property for a class of languages to be
formal.

49

CHAPTER 4

Protocol languages

In this chapter we introduce the notion of protocol languages. These protocol languages will
express in some sense the data-structure underlying a typical family of formal languages.
This will be expressed via logical formulae.

Grammars seem to be one of the foundations for families of formal languages. The data-
structure of a grammar is recognizable in the derivation process: In each derivation step
there is a list of non-terminals which have yet to be processed. Once this list is worked
through and emptied the derivation process is finished and we are left with the word. Since
the data-structure of grammars seem to be found in the derivation process, we consider the
derivation language of a grammar.

When analyzing regular grammars the data-structure is unsurprisingly simple. In each step of
the process there can only be a single non-terminal which has to be handled. This observation
concurs with the fact that the machine model of regular languages are finite automata, which
are equipped with only a finite amount of memory in form of their state set.

For context-free grammars the data-structure becomes a bit more involved and cannot be
managed with finite memory anymore. Since the rules in context-free grammars allow
arbitrary (but finite) lengths on the right hand side the list of non-terminals which are added
to the data-structure might increase unboundedly. We give an order to the data-structure
by considering left-derivations, e.g. if we use some rule B → CD and hence add C and D to
the front list of active non-terminals, the next derived non-terminal would be C.

To simplify a first analysis we consider a very stripped-down context free grammar in Chomsky
normal form G = ({S}, {t}, {S → SS | t}, S) with a single terminal and non-terminal symbol.
The derivation tree of each w ∈ L(G) is a full binary tree. Consider the exemplary derivation
tree for ttttt ∈ L(G) where the rule S → SS is abbreviated by a and S → t is abbreviated
by b. Dealing with left derivations means that we recursively first handle the left sub-tree
before the right sub-tree, i.e. we consider pre-order-traversals of derivation trees.

50

a

a a

a b b b

b b

The pre-order traversal of the derivation tree of w = ttttt yields the derivation word d(w) =
aaabbbabb. Applying this to all words in L(G) yields the language accepted by the grammar
GŁ = ({S}, {a, b}{S → aSS | b}) which is known as the Łukasievicz language [Ber79]. We
refer to the Łukasievicz language as Ł.

The usage of monadic second order logic will not be enough to describe Ł, since the languages
definable in MSO are precisely the regular languages [Jul61, Elg61, Tra61], and Ł is a non-
regular context-free language. Lautemann, Schwentick and Thérien [LST94] gave a logical
characterization of context-free languages in form of a fragment of existential second order
logic, with binary second order variables which define nestings, i.e. semantically constrained
numerical relations M such that for all (i, j) ∈M we have i < j and if (i, j), (k, l) ∈M and
i < k < j then l < j. As Ł is a context-free language is expressible with aforementioned
logical fragment. But it would not reflect the highly deterministic structure of grammar
derivations very well that the Łukasievicz language represents. We utilize a logical fragment
which is built upon the idea of the formulae used by Lautemann et al. [LST94] to express
the deterministic character of for instance derivation languages or other protocol languages.
Our formulae use a fixed number of binary second order relations, which we require to be
uniquely induced by each word that models the formula. We constrain these relations to
behave like pointers which define the data-structure underlying the word, i.e. to be total
mappings.

Assume, we had additional edges N in the derivation tree that would point to the end of its
derivation. For our example w = ttttt we would have the following:

a

a a

a b b b

b b

N

NN

N

N N N

N N

This would yield the following the derivation word with additional structure on it.

CHAPTER 4. PROTOCOL LANGUAGES 51

a a a b b b a b b

1 2 3 4 5 6 7 8 9

N

N

N N

NNN N N

S S S S S S S S

This additional pointer relation N is unique for every w ∈ Ł. We give a formula for Ł, which
uses the successor relation as well as the N relation. Since N is constrained to be a total
mapping we use the notation N(x) = y for (x, y) ∈ N .

w ∈ Ł ⇐⇒ (w,N) |= ∀x : (Qa(x) ⇐⇒ N(x) = N(S(N(S(x)))))∧
(Qb(x) ⇐⇒ N(x) = x)

We can identify all positions in a word that have the letter b (i.e. the terminating rule of
the grammar) by the N -self-loop. There is an a on a position (i.e. a bifurcation rule which
implies two sub-trees in the derivation tree) iff the N -pointer points to the same position as
its right sub-tree. The right sub-tree itself begins after the left sub-tree ends.

As seen in this example, each letter in a word implies a definite sub-structure of the word. Vice
versa, each sub-structure implies which letter has to be on a position. We call languages which
have this equivalence between letters and uniquely determined structures auto-generative
languages.

Madhusudan and Parlato [MP11] analyzed various automata on words with various auxiliary
storage models in regard to the decidability of the emptiness problem. To this end, they
encode the mechanisms of the (word-)automata Our use of additional N -pointers on words is
therefore very similar to this approach. Madhusudan and Parlato then define graph acceptors,
based on a concept called tiling, to decide the emptiness of the original word-language. Tiling
was previously introduced more generally by Thomas [Tho91].

We adopt Thomas’ idea of tiling for auto-generative languages. Each word in an auto-
generative language is linked to a uniquely determined graph and therefore each auto-
generative language defines a family of graphs which can be recognized with tiling arguments.

This chapter is structured as follows. We begin with the formal definition of the logical
fragment used by us and introduce auto-generative languages. In Section 4.2 we fix our
concept of tiling auto-generative languages and shrinking arguments on them, followed by
our notion of protocol languages. We consider several logical extensions of auto-generative
languages in Section 4.5. Section 4.6 addresses trio operations which are applied to auto-
generative languages and their logical extensions. We give protocol languages for some
well-known families of formal languages in Section 4.7 and finally, analyze the emptiness
problem of various extensions of protocol languages in Section 4.11.

4.1 Auto-generative languages

In this section we define a logical fragment of binary second order logic we going to use
through this chapter and will define auto-generative languages.

52 4.1. AUTO-GENERATIVE LANGUAGES

Definition 4.1.1 (unExkFO[S]). Let Γ be an alphabet. For k ∈ N we say that a formula Φ
is in unExkFO[S] if there are k binary second order variables N1, . . . , Nk and Φ is built from
quantified first order variables, the successor relation S, letter predicates (Qγ)γ∈Γ, Boolean
operations and the binary second order variables N1, . . . , Nk, but does not quantify any second
order variable. We say a language L ⊆ Γ∗ is in unExkFO[S] if there is a Φ ∈ unExkFO[S]
such that for all words w ∈ Γ∗ we have

w ∈ L ⇐⇒ w |=

!∃N1 . . .!∃Nk :

k∧
i=1

(∀x∃y : (x, y) ∈ Ni)∧

k∧
i=1

(∀x∀y∀z : ((x, y) ∈ Ni ∧ ((x, z) ∈ Ni)⇒ y = z))

∧ Φ(N1, . . . , Nk)

For readability reasons we omit the explicit quantification and restriction of the binary second
order variables Ni and write w |= Φ for w ∈ L, or write (w,N1, . . . , Nk) |= Φ.

This means if formula Φ is in unExkFO[S] it might use the binary second order variables
like additional relational symbols. Hence the signature of Φ defining a language over Γ is
〈(Qγ)γ∈Γ, S,N1, . . . , Nk〉. Note, the binary second order variables Ni are uniquely quantified
and hence are uniquely defined for each word in L. Each Ni is semantically constrained
such that it maps each position x in a word to some other position y, i.e. the second order
relations behave like a total functions on word positions. We often refer to Ni as pointer
relations.

When defining formulae in unExkFO[S] we make a few notational adjustments for readability
reasons: Let x, x0, x1, . . . , xn, y, z be first order variables let N be a pointer relation.

1. We often write N(x) = y instead of (x, y) ∈ N .

2. By N(N(x)) = z we denote the formula ∃y : N(x) = y ∧N(y) = z.

3. For some fixed n ∈ N we write Nn(x0) = xn for the formula

∃x1 · · · ∃xn :

n∧
i=1

N(xi−1) = xi .

4. We apply the same functional notation for the successor relation S on word positions.
Instead of (x, y) ∈ S we write S(x) = y.

5. We write x = max for the formula ¬∃y : S(x) = y and x = min for ¬∃y : S(y) = x.

6. Let R = {S,N1, . . . , Nk} the set of relations in the signature for some formula Φ. Let
W = W1 · · ·Wn ∈ R∗ and V = V1 · · ·Vm ∈ R∗. We write W (x) = V (x) for the formula

∃x1 · · · ∃xn∃y1 · · · ∃ym : W1(x) = x1 ∧ V1(x) = y1∧
n∧
i=2

Wi(xi−1) = xi∧

m∧
j=2

Vj(yj−1) = yj∧

xn = ym

CHAPTER 4. PROTOCOL LANGUAGES 53

Intuitively speaking W and V define a path through the graph induced by N1, . . . , Nk
starting at position x. We write W (x) = V (x) if the paths end at the same position.

Definition 4.1.2 (Auto-generative language). Let Γ denote a finite alphabet. We call
P ⊆ Γ∗ over Γ an auto-generative language if there is a formula ΦP ∈ unExkFO[(Qγ)γ∈Γ, S]
with

ΦP = ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

where for each γ ∈ Γ there is a sub-formula ψγ(x). Each ψγ(x) is a conjunction of terms
W (x1) = V (x2) or W (x2) 6= V (x1) for x1, x2 ∈ {x,min,max} and W,V ∈ {N1, . . . , Nk, S}∗
where N1, . . . , Nk are the k binary second order variables quantified outside of ΦP such that
P = {w ∈ Γ∗ | w |= ΦP }.

In an auto-generative language each sub-formula ψγ just uses information about positions in
a word and can be used as a substitute for the letter predicates Qγ . Further, each ψγ formula
defines a certain substructure on a word. When defining some auto-generative language
P ⊆ Γ∗ we can do this by giving a ψγ for each γ ∈ Γ. Note that for γ 6= γ′ we have that
ψγ ∧ ψγ′ is false, since otherwise this would imply that two letter predicates would be true
at the same position, i.e. there must not be two letters which behave the same way in an
auto-generative language.

Example 4.1.3. We can now give the formal definition of the formula recognizing the
Łukasievicz language by giving ψa and ψb formulae:

ψa(x) : N(x) = N(S(N(S(x)))) ,

ψb(x) : N(x) = x ∧N(min) = max

Therefore, Ł is an auto-generative language in unEx1FO[S].

In Section 4.5 we will give logical extensions of a auto-generative languages which will be
defined as conjunctions with the shell of an auto-generative language.

Definition 4.1.4 (Shell). Let P ⊆ Γ∗ be an auto-generative language recognized by a
formula

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x)

in unExkFO[(Qγ)γ∈Γ, S]. We call the shell of a protocol language P the formula

Φshell
P = ∃N1 . . . ∃Nk :

k∧
i=1

(∀x∃y : (x, y) ∈ Ni)∧

k∧
i=1

(∀x∀y∀z : ((x, y) ∈ Ni ∧ ((x, z) ∈ Ni)⇒ y = z))∧

∀x
•∨

γ∈Γ

ψγ(x)

The shell formula of a protocol language does not test for any letters but constructs letter
predicates implicitly with the N -structure.

54 4.2. TILING AUTO-GENERATIVE LANGUAGES

Lemma 4.1.5. Let P be an auto-generative language recognized by a formula ΦP ∈
unExkFO[S] and Φshell

P its shell. If w ∈ P then for any letter a we have that a|w| |= Φshell
P .

Proof. If w ∈ P then there are N1, . . . , Nk such that (w,N1, . . . , Nk) |= ΦP which is of the
form ∀x

∧
γ∈Γ ψγ(x) ⇐⇒ Qγ(x). Since every position of w is quantified and at each position

precisely one letter predicate can evaluate to true, at each position precisely one ψγ formula
is true. Therefore, these particular binary second order variables N1, . . . , Nk can be picked
such that a|w| |= Φshell

P . Note that if there are several w ∈ L of the same length the binary
second order variables are not unique.

The extension of auto-generative languages by ψγ formulae with disjunction yields letters with
some ambiguity in their behavior. Intuitively speaking, Proposition 4.1.6 states that for every
such language P there is an auto-generative language I where each letter is unambiguous
and P is the length-preserving morphic image of I.

Proposition 4.1.6. Let P ⊆ Γ∗ be a language recognized by a formula ΦP ∈ unExkFO[S]
with

ΦP = ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

where each ψγ(x) is Boolean combination of statements of the form W (x) = V (y) or
W (x) 6= V (y) for W,V ∈ {N1, . . . , Nk, S}∗. Then there is an alphabet Y and an auto-
generative language I ⊆ Y ∗ recognized by a formula ΦI with and a length preserving morphism
h : Y → Γ that is injective over I such that h(I) = P .

Proof. Assume without loss of generality that each ψγ(x) is in exclusive disjunctive normal
form:

ψγ(x) =
∨̇lγ

i=1
Cγi (x)

where each of the lγ many clauses Cγi is a conjunctions of statements W (x) = V (y) or
W (x) 6= V (y) for W,V ∈ {N1, . . . , Nk, S}∗. We define an alphabet Y with |Y | =

∑
γ∈Γ lγ

and the length preserving morphism h : Y → Γ such that h(yγi) = γ for i = 1, . . . , lγ for all
γ ∈ Γ. Then I is recognized by the formula

ΦI = ∀x :
∧
yγi ∈Y

(
Qyγi (x)⇔ Cγi (x)

)
.

and h(I) = P .

4.2 Tiling auto-generative languages

Each word of an auto-generative language models a formula in unExkFO[S] and therefore
uniquely implies k binary second order relations. Thus, we can view each such word as a
graph, where the binary second order relations introduce additional edges to the successor.
Therefore, each auto-generative (word) language implicitly defines a family of graphs.

In this section we introduce the concept of tiling which is a way to finitely describe (possibly
infinite) sets of graphs according to Thomas [Tho91]. We consider a finite set of tiles which
are directed graph with edge- and node-labels.

CHAPTER 4. PROTOCOL LANGUAGES 55

Intuitively speaking a graph G can be recognized by a set of tiles if we can place instances of
tiles onto G such that G is covered and the tiles overlap coherently. We extend the notion of
tiling by introducing constraints which require or forbid a certain number of instances of
a tile. This is then used to define a shrinking property for auto-generative languages: The
idea is that if the graph of some word is long enough we can remove a part of the graph and
therefore shrink the reflected word to obtain a shorter one still in the language.

Definition 4.2.1 (Tile). Let Γ be a finite alphabet and let L = {S,N1, . . . , Nk} be a set of
labels. We call the directed graph t = (V,E, τcore, τport) a tile where

1. V = Vcore∪̇Vport is a set of nodes divided into disjoint sets Vcore and Vport

2. E = ES ∪ EN1
∪ · · · ∪ ENk is a set of directed edges labeled with S,N1, . . . , Nk and

each Ei ⊆ V × V such that every node has precisely one outgoing edge with each label
N1, . . . , Nk.

3. τcore : Vcore → Γ is a total mapping assigning each core-node a letter from Γ

4. τport : Vport → 2Γ is a total mapping assigning each port-node a set of letters from Γ

and t is weakly connected and every node in Vport is adjacent to some vertex in Vcore.

Note that tiles might contain loops (v, v) ∈ ENi for v ∈ V , i.e. tiles might not be simple
graphs which prohibit such edges.

Definition 4.2.2 (Tiling sets of graphs). Let T be a (finite) set of tiles with the label set
{S,N1, . . . , Nk} and let G = ([n], ES ∪ EN1 · · · ∪ ENk) be the graph with node labels over
Γ, i.e. there is a function w : [n]→ Γ. We say that G can be tiled with T if there is a total
mapping ξ : [n]→ T ×

⋃
t∈T Vcore(t) with

ξ(i) =

(V ticore ∪ V
ti
port, E

ti , τ ticore, τ
ti
port
)︸ ︷︷ ︸

=ti

, vi


where ti ∈ T and vi ∈ V ticore such that

1. For all i ∈ [n] we have

τ ticore(vi) = w(i) .

2. For all i ∈ [n] and for all u ∈ V ticore if there is a path with label α ∈ {S,N1, . . . , Nk}∗ in
ti from vi to u (respectively u to vi) there is a j ∈ [n] such that there is a path from i
to j (or from j to i) in G with tj = ti and vj = u.

3. For all i, j ∈ [n] and paths from j to i (or from i to j) in G with label α ∈
{S,N1, . . . , Nk}∗ and a node u ∈ V

tj
port such that there is a path with label α in

tj from vj to u (respectively u to vj) we have

τ ticore(vi) ∈ τ
tj
port(u) .

4. For all i ∈ [n] if v ∈ V ticore is reachable from vi with label α ∈ {S,N1, . . . , Nk}∗ in ti
(respectively vi reachable from v with α) and there is a path from j to i (or i to j
respectively) in G with label α then tj = ti and vj = v where ξ(j) = (tj , vj).

56 4.2. TILING AUTO-GENERATIVE LANGUAGES

We say a set of graphs G can be with T if every G ∈ G can be tiled with T .

Definition 4.2.3 (Graph of w). Let P ⊆ Γ∗ be a auto-generative language recognized by
ΦP ∈ unExkFO[S] and let w ∈ P be a word with |w| = n. Then, there are k unique binary
second order relations N1, . . . , Nk ⊆ [n]2 such that w,N1, . . . , Nk |= ΦP . We call the directed
graph with edge labels S,N1, . . . , Nk

Gw =

(
V = [w],

E = (ES ∪ EN1 ∪ · · · ∪ ENk)

)
,

where

ES = {(i, i+ 1) | i ∈ [n− 1]}

and

ENl = {(i, j) | 1 ≤ i, j ≤ n and (i, j) ∈ Nl}

for 1 ≤ l ≤ k the graph of w. Let U ∈ {S,N1, . . . , Nk}∗ be a sequence of edge labels
and v, v′ ∈ V nodes of Gw. We say there is a path from v to v′ with label U if there
is a path p = (v, v1, . . . , vn, v

′) in Gw such that (v, v1) ∈ EU [1], for i = 1, . . . , n we have
(vi, vi+1) ∈ EU [i] and (vn, v

′) ∈ EU [|U |].

Definition 4.2.4 (Tiling auto-generative languages). Let P ⊆ Γ∗ be an auto-generative
language in unExkFO[S] and let T be a (finite) set of tiles with the label set {S,N1, . . . , Nk}.
We say that P can be tiled with T if for all w ∈ P the graph of Gw can be tiled with T .

When tiling a graph of a word with a set of tiles each position of the word is assigned a
tile and is anchored a core-vertex with a matching label. All word positions are covered by
core-vertices of tiles, which means that port-vertices of one tile overlap with the core of a
neighbor -tile. Condition 2.) verifies that all core vertices of are tile are used. With condition
3.) make sure that the labels of overlapping agree in regard to their label assignments.

Note, that the neighborhood of a core is definite. This means if the core of a tile does not
have an S-predecessor it may only be placed on the first position of a word. Similarly, if it
has no S-successor then the only place it might fit is the last position of a word.

Example 4.2.5. For w = aaabbbabb with w ∈ Ł the graph Gw is depicted in Figure 4.1.

a a a b b b a b b

1 2 3 4 5 6 7 8 9

N

N

N N

NNN N N

S S S S S S S S

Figure 4.1: The graph of the word aaabbbabb.

CHAPTER 4. PROTOCOL LANGUAGES 57

The Łukasievicz language can be tiled with the set TŁ = {t1, t2, t3, t4} depicted in Figure 4.2
and following mapping ξ for the word aaabbbabb (with the graph in Figure 4.1 and the tiling
in Figure 4.3a:

ξ(1) = (t1, c1)

ξ(2) = (t2, c1)

ξ(3) = (t2, c1)

ξ(4) = (t2, c2)

ξ(5) = (t2, c2)

ξ(6) = (t1, c2)

ξ(7) = (t2, c1)

ξ(8) = (t2, c2)

ξ(9) = (t3, c1)

c1 c2
a

b

a, b

S N S

N
N

(a) Tile t1. Note that c1 has no S-predecessor
and therefore only fits on the first position of
a word.

c1 c2
a

b

a, b

a, b

S N S

N
N

S

(b) Tile t2 matches as and bs which can be
shrunk.

c1

b

a

N

S
N

(c) Tile t3. The core c1 has S-successor and
can therefore only be placed on the last posi-
tion of a word

c1

b

N

(d) Tile t4 – can only be used to tile the word
b ∈ Ł.

Figure 4.2: Tiles for Ł. Black nodes denote core vertices and white nodes port vertices. Each
node is connected to a gray rectangle that shows what label τcore and τport assign to it. t1
and t2 both match an a and b together. Tile t3 covers the final position of each word. Finally,
t4 is a tile that is only used when tiling the word b ∈ Ł.

With this definition of tiling we can not make any statements about words that are not
contained in an auto-generative language. To cope with this we constrain tilings numerically.
This allows so saturate the set of tiles (with bad tiles) such that every graph could be tiled
when disregarding the constraints.

Muller and Schupp used in their seminal article [MS85] the idea of tiling to show that the
MSO-theory of configuration graphs of pushdown automata is decidable. When defining
languages they take the inverse approach of ours: Instead of tiling graphs that represent
words in the language, they give a set of forbidden patterns that, if placed on a graph Gw
imply that that w is not in the considered language. In [Tho91] Thomas defines graph
acceptors which are defined via tiling. He extends the definition of Muller and Schupp by
giving both, allowed and forbidden tiles and allows finite counting of tiles, i.e. Boolean

58 4.2. TILING AUTO-GENERATIVE LANGUAGES

combinations of statements “there are ≥ n instances of tiles of type t in graph G”. We adapt
Thomas’ definition and constrain tilings with such statements. It is noteworthy to mention
that our tiles differ from [Tho91] in the sense that Thomas works on graphs with bounded
degrees. Our graphs have too a bounded out-degree, but there might be vertices that have
an unbounded degree of incoming Ni-edges.

Using the statements “there are ≥ n instances of tiles of type t in graph G” of Thomas [Tho91]
we separate our set of tiles into two subsets:Good tiles which might be used and bad tiles
which are forbidden.

Definition 4.2.6 (Trivial tiles). We call a tile

t = (Vcore ∪ Vport, E = (ES ∪ EN1 ∪ · · · ∪ ENk) , τcore, τport)

trivial if there is precisely one core node c in t. For k ∈ N0 let Tk be the set of all trivial tiles
with edge labels S,N1, . . . , Nk.

Remark 4.2.7. Every N1, . . . , Nk-structure can be tiled with Tk.

In Definition 4.2.3 we introduced the graph Gw for some w in an auto-generative language
P . In the following we extend the notion of such graphs by explicitly giving edges ENi for
words w′ /∈ P and denote them as GN1,...,Nk

w′ .

Definition 4.2.8 (Tiling with constraints). Let T be a set tiles. A (tiling-) constraint is a
Boolean combination of statements

“there are ≥ nt instances of tile t ∈ T ” ,

denoted as #(t) ≥ nt. An auto-generative language P ⊆ Γ∗ in unExkFO[S] can be tiled with
T satisfying C if

1. for all w ∈ P the graph Gw can be tiled with T satisfying C and

2. for all w′ /∈ P and N1, . . . , Nk ⊆ [|w|]2 the graph GN1,...,Nk
w′ can not be tiled with T

satisfying C but GN1,...,Nk
w′ can be tiled with T ∪ Tk.

We use some notational shortcuts when defining constraints. For tiles t, t1, . . . , tm and
n ∈ N0 some fixed number we use statements #(t) ≤ n , #(t) = n, #(t) > n, #(t) < n
and n =

∑m
i=1 ti with self-explanatory meanings, which can be constructed by Boolean

combinations of basic statements.

Example 4.2.9. The Łukasievicz language Ł can be tiled with the previously defined set
TŁ = {t1, t2, t3, t4} satisfying the following constraint CŁ:

CŁ =

(
#(t4) = 1 ∧

3∧
i=1

#(ti) = 0

)
∨

(#(t4) = 0 ∧#(t3) = 1 ∧#(t1) = 1 ∧#(t2) ≥ 0)

The first clause of CŁ tiles the word b ∈ Ł. The second one is satisfied for every other word
in the Łukasievicz language. There is precisely one tile without a predecessor t1 and one tile
without a successor t3. Unboundedly many t2 might be used in-between.

CHAPTER 4. PROTOCOL LANGUAGES 59

4.3 Tile shrinkable languages

Integrative arguments, like pumping and shrinking seem to be important properties of families
of formal languages. We give a notion of shrinking auto-generative languages by removing
certain tiles.

Definition 4.3.1 (Shrinking). Let P be an auto-generative language in unExkFO[S] that
can be tiled with T satisfying C such that:

1. If there is a w ∈ P such that there is a (non-negated) statement #(t) ≥ tn in C and w
could be tiled with T satisfying C ∧ (#(t) ≥ (tn + 1)) with l := |vcore(t)|, then there is
a w′ ∈ P with |w′| = |w| − l that can be obtained by shrinking w by the core of an
instance of t: Let i1, . . . , il ∈ [|w|] with i1 < i2 < · · · < il−1 < il be the positions in the
word w that are mapped to the core nodes of the same instance of tile t. Then we have
that

w′ = w[1, i1 − 1] · w[i1 + 1, i2 − 1] · · · · · w[il−1 + 1, il − 1] · w[il + 1, |w|] .

Since w′ ∈ P it can be tiled with T satisfying the constraint C.

2. If w /∈ P then there are N1, . . . , Nk ⊆ [|w|]2 such that GN1,...,Nk
w can be tiled with

T ∪ Tk but not with T alone. Let N̂1, . . . , N̂k ⊆ [|w|]2 be some pointer relations such
that GN̂1,...,N̂k

w can be tiled with T ∪ Tk. If there is a t ∈ Tgood such that a statement
#(t) ≥ tn in C is satisfied and the tiling of GN̂1,...,N̂k

w uses more then tn instances of t,
then there is a w′ /∈ P with |w′| = |w| − |vcore(t)| that can be obtained by shrinking
w by the core of an instance of t: Let l := |vcore(t)| and let i1, . . . , il ∈ [|w|] with
i1 < i2 < · · · < il−1 < il be the positions in the word w that are mapped to the core
nodes of the same instance of tile t. Then we have that

w′ = w[1, i1 − 1] · w[i1 + 1, i2 − 1] · · · · · w[il−1 + 1, il − 1] · w[il + 1, |w|] .

If there is such a set of tiles T and a constraint C we call P tile-shrinkable.

Example 4.3.2. The graph of aaabbbabb ∈ Ł is depicted in Figure 4.3a with previously
denoted tiling. The tiling would satisfy the stronger constraint CŁ ∧#(t2) ≥ 2. Therefore,
we can shrink aaabbbabb by the core of one tile t2 and end up with a Łukasievicz word. We
give an exemplary shrinking of a and b on positions 2 and 5 respectively in Figure 4.3b The
word w = aaabbbabba is not in Ł, thus there is no tiling with TŁ satisfying CŁ. We can use
extra trivial tiles ta and tb from T1, depicted in Figure 4.4 to tile GN̂w maximally with tiles
from TŁ. The maximal tiling of w is shown in Figure 4.5a. We can remove the core of one tile
t2 from the graph GN̂w which yields the word aabbabba /∈ Ł and is illustrated in Figure 4.5b.

4.4 Protocol languages

With these requirements we can finally define protocol language.

Definition 4.4.1 (Protocol languages). We call P a protocol language if P is auto-generative
and tile-shrinkable.

With protocol languages we try to model data structures, and so each word of a protocol
language represents the behavior for instance a stack, queue, etc. of a computation model
processing some input word. Accordingly, each γ ∈ Γ acts as an operation or instruction of
the considered description or computation model.

60 4.4. PROTOCOL LANGUAGES

a a a b b b a b b

t2

t2

t2

t1

t3

1 2 3 4 5 6 7 8 9

N

N

N N

NNN N N

S S S S S S S S

(a) Tiling the word aaabbbabb ∈ Ł. The blue markings denote positions of core vertices used in the
tiling.

a a b b a b b

t2

t2

t2

t1

t3

1 3 4 6 7 8 9

N

N
N

NN N N

S S S S S S

(b) Shrinking the word aaabbbabb ∈ Ł by t2 with the core on positions 2 and 5. The resulting word
is aabbabb ∈ Ł and can be tiled with TŁ satisfying CŁ.

Figure 4.3: Exemplary tiling and shrinking for the Łukasievicz word aaabbbabb.

c

ab

S
N

(a) Tile ta ∈ T1

c

b

a
N
S S

N

(b) Tile tb ∈ T1

Figure 4.4: Tiles for aaabbbabba /∈ Ł.

CHAPTER 4. PROTOCOL LANGUAGES 61

a a a b b b a b b a

t2

t2

t2

t1

tb ta

1 2 3 4 5 6 7 8 9 10

N

N

N N

NNN N N N

S S S S S S S S S

(a) Maximally tiling the graph GN̂
w of word w = aaabbbabba /∈ Ł with TŁ ∪ T1 by guessing N̂ . The

blue markings denote positions of core vertices of tiles in TŁ. The red ones are tiles from T1.

a a b b a b b a

t2

t2

t2

t1

tb ta

1 3 4 6 7 8 9 10

N

N
N

NN N N N

S S S S S S S

(b) Shrinking the word aaabbbabba /∈ Ł by t2 with the core on positions 2 and 5. The resulting word
is aabbabba /∈ Ł and can be tiled with TŁ ∪ T1 (violating CŁ).

Figure 4.5: Exemplary tiling and shrinking for aaabbbabb /∈ Ł.

62 4.5. LOGICAL EXTENSIONS OF PROTOCOL LANGUAGES

4.5 Logical extensions of protocol languages

In this section we consider several logical extensions of protocol languages. To this end, we
disregard the tiling properties of such languages and focus on the underlying auto-generative
characteristics.

First order logic with protocol languages

Definition 4.5.1 (FO[P]). Let P ⊆ Γ∗ be a protocol language recognized by a formula

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x)

in unExkFO[(Qγ)γ∈Γ, S]. We define the class of formulae φ ∈ FO[P] over some alphabet A
inductively.

• Φshell
P is in FO[P]

• φ = Φshell
P ∧ θ is in FO[P] for atomic formulae

θ = ψγ(x) for γ ∈ Γ and a first order variable x ,

θ = Qa(x) for a ∈ A and a first order variable x ,

θ = S(x1, x2) for first order variables x1 and x2 .

• For Φshell
P ∧ θ1 and Φshell

P ∧ θ2 ∈ FO[P] the formulae

Φshell
P ∧ (θ1 ∧ θ2) ,

Φshell
P ∧ (θ1 ∨ θ2) ,

Φshell
P ∧ (¬θ1) ,

Φshell
P ∧ (∃x θ1) ,

Φshell
P ∧ (∀x θ1)

are in FO[P].

We say that a language L ⊆ A∗ is in FO[P] if there is a formula φL ∈ FO[P] such that

w ∈ L ⇐⇒ w |= φL .

This means that a language L ∈ FO[P] is a first order formula with a numeric successor
predicate, letter predicates, the ψγ-formulae in conjunction with the shell of some protocol
language P .

Example 4.5.2. The formula

Φshell
Ł ∧ ∃x : ∃y : S4(y) = x ∧ ((Qc(x) ⇐⇒ ψa(x)) ∧ (Qd(x) ⇐⇒ ψb(x)))

is in FO[Ł] and recognizes all Łukasievicz words of length at least 5 where as are substituted
by cs and bs are substituted by ds.

If we further allow the logical formulae to make use of the binary second order variables we
end up in the class we call strongFO[P].

CHAPTER 4. PROTOCOL LANGUAGES 63

Definition 4.5.3 (strongFO[P]). Let P ⊆ Γ∗ be a protocol language recognized by a formula

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x)

in unExkFO[(Qγ)γ∈Γ, S]. We define the class of formulae φ ∈ strongFO[P] over some alphabet
A inductively.

• Φshell
P is in strongFO[P]

• φ = Φshell
P ∧ θ is in strongFO[P] for atomic formulae

θ = ψγ(x) for γ ∈ Γ and a first order variable x ,

θ = Qa(x) for a ∈ A and a first order variable x ,

θ = S(x1, x2) for first order variables x1 and xj ,
θ = Ni(x1, x2) for i ∈ [k] one of the binary second order variables Ni

and first order variables x1 and x2 .

• For Φshell
P ∧ θ1 and Φshell

P ∧ θ2 ∈ strongFO[P] the formulae

Φshell
P ∧ (θ1 ∧ θ2) ,

Φshell
P ∧ (θ1 ∨ θ2) ,

Φshell
P ∧ (¬θ1) ,

Φshell
P ∧ (∃x θ1) ,

Φshell
P ∧ (∀x θ1)

are in strongFO[P].

We say that a language L ⊆ A∗ is in strongFO[P] if there is a formula φL ∈ strongFO[P] such
that

w ∈ L ⇐⇒ w |= φL .

We already mentioned that the Łukasievicz language is the derivation language of the
context-free grammar in Chomsky normal form with one terminal and one non-terminal
symbol. Theorem 4.7.10 can be viewed as an example for a language that is in strongFO[Ł].
There we show that the derivation languages of arbitrary context-free grammars in Chomsky
normal form are in strongFO[Ł].

Monadic second order logic with protocol languages

Analogously to FO[P] and strongFO[P] we can define logic classes which may use monadic
second order variables.

Definition 4.5.4 (MSO[P]). Let P ⊆ Γ∗ be a protocol language recognized by a formula

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x)

in unExkFO[(Qγ)γ∈Γ, S]. We define the class of formulae φ ∈ MSO[P] over some alphabet A
inductively.

64 4.5. LOGICAL EXTENSIONS OF PROTOCOL LANGUAGES

• Φshell
P is in MSO[P]

• φ = Φshell
P ∧ θ is in MSO[P] for atomic formulae

θ = ψγ(x) for γ ∈ Γ and a first order variable x ,

θ = Qa(x) for a ∈ A and a first order variable x ,

θ = S(x1, x2) for first order variables x1 and x2 ,

θ = x ∈ X for a first order variable x and
and a monadic second order variable X .

• For Φshell
P ∧ θ1 and Φshell

P ∧ θ2 ∈ MSO[P] the formulae

Φshell
P ∧ (θ1 ∧ θ2) ,

Φshell
P ∧ (θ1 ∨ θ2) ,

Φshell
P ∧ (¬θ1) ,

Φshell
P ∧ (∃x θ1) ,

Φshell
P ∧ (∀x θ1) ,

Φshell
P ∧ (∃X θ1) ,

Φshell
P ∧ (∀X θ1)

are in MSO[P].

We say that a language L ⊆ A∗ is in MSO[P] if there is a formula φL ∈ MSO[P] such that

w ∈ L ⇐⇒ w |= φL .

If we limit the quantification of monadic second order variables to solely existential quantifi-
cation we end up with existential monadic second order logic over P .

Definition 4.5.5 (EMSO[P]). Let P ⊆ Γ∗ be a protocol language recognized by a formula

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x)

in unExkFO[(Qγ)γ∈Γ, S]. We define the class of formulae φ ∈ EMSO[P] over some alphabet
A inductively.

• Φshell
P is in EMSO[P]

• φ = Φshell
P ∧ θ is in EMSO[P] for atomic formulae

θ = ψγ(x) for γ ∈ Γ and a first order variable x ,

θ = Qa(x) for a ∈ A and a first order variable x ,

θ = S(x1, x2) for first order variables x1 and x2 ,

θ = x ∈ X for a first order variable x and
and a monadic second order variable X .

CHAPTER 4. PROTOCOL LANGUAGES 65

• For Φshell
P ∧ θ1 and Φshell

P ∧ θ2 ∈ EMSO[P] the formulae

Φshell
P ∧ (θ1 ∧ θ2) ,

Φshell
P ∧ (θ1 ∨ θ2) ,

Φshell
P ∧ (∃x θ1) ,

Φshell
P ∧ (∀x θ1) ,

Φshell
P ∧ (∃X θ1)

are in EMSO[P].

• For Φshell
P ∧ θ ∈ EMSO[P] where θ does not contain a sub-formula of the form ∃Xψ,

i.e. any existential quantification of a monadic second order variable X the formula
Φshell
P ∧ (¬θ) is in EMSO[P].

We say that a language L ⊆ A∗ is in EMSO[P] if there is a formula φL ∈ EMSO[P] such that

w ∈ L ⇐⇒ w |= φL .

Example 4.5.6. Monadic second order variables allow to define closures of available relations.
The closure of the successor is the <-relation (and hence MSO[S] = MSO[S,<]). Therefore,
we can define the language a+b+a+b+ which is in MSO[S] but not in FO[S]:

θ := ∃x1∃x2∃x3 : x1 < x2 < x3∧∀y :

(y < x1 ⇒ Qa(y))∧
(¬(y < x1) ∧ y < x2 ⇒ Qb(y))∧
(¬(y < x2) ∧ y < x3 ⇒ Qa(y))∧
(¬(y < x3)⇒ Qb(y))

Since a+b+a+b+ ∩ Ł = {aibjakbl | i+ k+ 1 = j + l ∧ i ≥ j} = {w ∈ {a, b}∗ | w |= θ ∧Φshell
Ł },

we can follow that {aibjakbl | i+ k + 1 = j + l ∧ i ≥ j} ∈ MSO[Ł] but not in FO[Ł].

Definition 4.5.7 (strongMSO[P]). Let P ⊆ Γ∗ be a protocol language recognized by a
formula

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x)

in unExkFO[(Qγ)γ∈Γ, S]. We define the class of formulae φ ∈ strongMSO[P] over some
alphabet A inductively.

• Φshell
P is in strongMSO[P]

• φ = Φshell
P ∧ θ is in strongMSO[P] for atomic formulae

θ = ψγ(x) for γ ∈ Γ and a first order variable x ,

θ = Qa(x) for a ∈ A and a first order variable x ,

θ = S(x1, x2) for first order variables x1 and x2 ,

θ = x ∈ X for a first order variable x and
and a monadic second order variable X ,

θ = Ni(x1, x2) for i ∈ [k] one of the binary second order variables Ni
and first order variables x1 and x2 .

66 4.5. LOGICAL EXTENSIONS OF PROTOCOL LANGUAGES

• For Φshell
P ∧ θ1 and Φshell

P ∧ θ2 ∈ strongMSO[P] the formulae

Φshell
P ∧ (θ1 ∧ θ2) ,

Φshell
P ∧ (θ1 ∨ θ2) ,

Φshell
P ∧ (¬θ1) ,

Φshell
P ∧ (∃x θ1) ,

Φshell
P ∧ (∀x θ1) ,

Φshell
P ∧ (∃X θ1) ,

Φshell
P ∧ (∀X θ1)

are in strongMSO[P].

We say that a language L ⊆ A∗ is in strongMSO[P] if there is a formula φL ∈ strongMSO[P]
such that

w ∈ L ⇐⇒ w |= φL .

An example for strongMSO[P] will be presented in Section 4.7.1. We show that the analog
language to the Łukasievicz language called G2 is a protocol language which describes
deviation languages of grammars in Greibach normal form and show that all context-free
languages without the empty word are in strongMSO[G2].

Again, if we limit the quantification of monadic second order variables to solely existential
quantification we end up with strong existential monadic second order logic over P .

Definition 4.5.8 (strongEMSO[P]). Let P ⊆ Γ∗ be a protocol language recognized by a
formula

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x)

in unExkFO[(Qγ)γ∈Γ, S]. We define the class of formulae φ ∈ strongEMSO[P] over some
alphabet A inductively.

• Φshell
P is in strongEMSO[P]

• φ = Φshell
P ∧ θ is in strongEMSO[P] for atomic formulae

θ = ψγ(x) for γ ∈ Γ and a first order variable x ,

θ = Qa(x) for a ∈ A and a first order variable x ,

θ = S(x1, x2) for first order variables x1 and x2 ,

θ = x ∈ X for a first order variable x and
and a monadic second order variable X ,

θ = Ni(x1, x2) for i ∈ [k] one of the binary second order variables Ni
and first order variables x1 and x2 .

• For Φshell
P ∧ θ1 and Φshell

P ∧ θ2 ∈ strongEMSO[P] the formulae

Φshell
P ∧ (θ1 ∧ θ2) ,

Φshell
P ∧ (θ1 ∨ θ2) ,

Φshell
P ∧ (∃x θ1) ,

Φshell
P ∧ (∀x θ1) ,

Φshell
P ∧ (∃X θ1)

CHAPTER 4. PROTOCOL LANGUAGES 67

are in strongEMSO[P].

• For Φshell
P ∧ θ ∈ strongEMSO[P] where θ does not contain a sub-formula of the form

∃Xψ, i.e. any existential quantification of a monadic second order variable X the
formula Φshell

P ∧ (¬θ) is in EMSO[P].

We say that a language L ⊆ A∗ is in EMSO[P] if there is a formula φL ∈ EMSO[P] such that

w ∈ L ⇐⇒ w |= φL .

Note that by definition we have the following inclusions of the logical extensions for some
protocol language P .

1. FO[P] ⊆ EMSO[P] ⊆ MSO[P]

2. strongFO[P] ⊆ strongEMSO[P] ⊆ strongMSO[P]

3. FO[P] ⊆ strongFO[P]

4. EMSO[P] ⊆ strongEMSO[P]

5. MSO[P] ⊆ strongMSO[P]

4.6 Protocol languages and trio operations

One of the main characteristics of families of formal languages seem to be the closure
under trio operations - homomorphisms, inverse homomorphisms and the intersection with
regular sets. In this section we analyze our protocol languages and their logical extensions
regarding trio operations. Since the tiling aspect again seems disconnected we focus on the
auto-generativity of protocol languages.

Proposition 4.6.1. Let P ⊆ Γ∗ be a protocol language in unExkFO[S] and for some alphabet
Y let f : Y → Γ be a length-preserving morphism. Then f−1(P) is in FO[P].

Proof. Assume P is recognized by

ΦP = ∀x
∧
γ∈Γ

ψγ(x) ⇐⇒ Qγ(x) .

A formula φf−1(P) in FO[P] recognizing f−1(P) can be construed as follows:

φf−1(P) = Φshell
P ∧

∀x :
∧
y∈Y

Qy(x)⇒ ψf(y)(x)



Inverse length-preserving morphic images of protocol languages can be recognized with any
of the logical extensions by using the ψγ-formulae of the protocol language in combination
with letter predicates.

As the locally threshold-testable languages are definable with first order logic and the
successor relation and the regular languages are definable with monadic second order logic we
have the following immediate closure properties of the logical extension FO[P] and MSO[P].

68 4.6. PROTOCOL LANGUAGES AND TRIO OPERATIONS

Proposition 4.6.2. Let P ⊆ Γ∗ be a protocol language in unExkFO[S]. Then FO[P] is
closed under the intersection with LocallyThresholdTestable.

Proof. If I ∈ FO[P] then there is some formula φI ∈ FO[P] with L(φI) = L. Since the
languages definable with FO[S] coincide with LocallyThresholdTestable (cf. [Tho82]), for
every L ∈ LocallyThresholdTestable there is a formula φL ∈ FO[S] recognizing L. Since
φI ∧ φL ∈ FO[P] we have that I ∩ L ∈ FO[P], which proves the claim.

Proposition 4.6.3. Let P ⊆ Γ∗ be a protocol language in unExkFO[S]. Then MSO[P] is
closed under the intersection with regular languages.

Proof. The proof is analogous to Proposition 4.6.2, as the languages definable in MSO[S] are
the regular languages [Jul61].

In Theorem 4.6.4 we show that for a protocol language P the languages definable in EMSO[P]
are the same ones as the length-preserving morphic images of languages definable in FO[P].

To show that length preserving morphic image of a language over the alphabet Y in FO[P]
can be recognized in EMSO[P] the idea is that monadic second order variables can be used to
simulate the letter predicates which appear in the pre-image of the morphism. We introduce
one monadic variable for each letter y ∈ Y and make sure that each position is contained in
exactly one of those variables.

We prove that EMSO[P] every definable language L ⊆ Π∗ is homomorphic image of some
FO[P] definable language I ⊆ Y ∗ by choosing an alphabet Y that encodes Π as well as the
power-set of all monadic second order variables used the formula that recognizes L. The
length-preserving homomorphisms then is defined as the projection onto the Π component of
Y .

Theorem 4.6.4. Let P be a protocol language in unExkFO[S]. Then we have

Hlp(FO[P]) = EMSO[P] ,

that is if I ⊆ Y ∗ is in FO[P] and h : Y → Π is a length-preserving morphism then h(I) is in
EMSO[P] and for L ⊆ Π∗ is in EMSO[P] then there is an alphabet Y , a language I ⊆ Y ∗ in
FO[P] and a length-preserving homomorphism h such that h(I) = L.

Proof. “⇒” We show that if I ⊆ Y ∗ is in FO[P] and h : Y → Π is a length-preserving
morphism then h(I) is in MSO[P].

Let I ⊆ Y ∗ be in FO[P] recognized by a formula φI = Φshell
P ∧ θI and let h : Y → Π

be a length-preserving morphism. We construct a formula φL = Φshell
P ∧ θL ∈ MSO[P]

such that L(φL) = h(I) as follows:

θL = ∃(Ay)y∈Y

 ∧
y′,y′′∈Y
y′ 6=y′′

Ay′ ∩Ay′′ = ∅

 ∧
∀x :

∨
y′′′∈Y

x ∈ Ay′′′

∧
∀x :

∧
y∈Y

Qh(y)(x)⇒ x ∈ Ay

 ∧ θ′I ,

where θ′I is obtained from θI by substituting each letter predicate Qy(x) by x ∈ Ay.

CHAPTER 4. PROTOCOL LANGUAGES 69

Proof of correctness: We show that if I ∈ FO[P] then h(I) ∈ MSO[P].

Let w ∈ I. Then w |= Φshell
P ∧ θI and therefore w |= Φshell

P and w |= θI . If w |= Φshell
P

then h(w) |= Φshell
P since h is length-preserving.

If w |= θI and θI is free of any letter predicates, then θI = θ′I for any valid choice of
the monadic second order variables Ay (e.g. trivially one Ay that contains all positions
and all other second order variables are empty) we have h(w) |= θ. Assume θI uses
n letter predicates Qy1(x1), . . . , Qyn(xn) for y1, . . . , yn ∈ Y and first order variables
x1, . . . , xn. Each Qyi(xi) is covered by the sub-formula xi ∈ Ayi . If a letter predicate
Qy(x) evaluates to true, then for y′ 6= y no other Qy′(x) can be true, which is ensured
for Qh(y)(x)⇒ x ∈ Ay. Therefore, each Ay models the behavior of the letter-predicate
Qy.

So we have h(w) |= θ′I and h(w) |= Φshell
P which implies h(w) |= Φshell

P ∧θL and therefore
h(w) ∈ h(I) with h(I) ∈ MSO[P, (Qπ)π∈Π, S].

“⇐” We show that if L ⊆ Π∗ is recognized by a formula in EMSO[P] then there is an
alphabet Y , a language I ⊆ Y ∗ in FO[P] and a length-preserving homomorphism
h : Y → Π such that h(I) = L.

Assume L is recognized by a formula Φshell
P ∧ θL where θL is w.l.o.g. in prenex-normal,

i.e.

θL = ∃A1 · · · ∃AmQ1x1 · · · QrxrφL(A1, . . . , Am, x1, . . . , xr) ,

where A1, . . . , Am are monadic second order variables and x1, . . . , xr are first order
variables and Qi ∈ {∃,∀} for i ∈ [r].

Then, let Y := {0, 1}m×Π be the alphabet over which we define the first order formula

θI := Q1x1 · · · Qrxrφ′L(x1, . . . , xr) ,

where φ′L is obtained by substituting each atomic formula x ∈ Ai in φL by∨
n∈{0,1}m
n[i]=1
π∈Π

Q(n,π)(x)

and each Qπ(x) by ∨
n∈{0,1}n
π∈Π

Q(n,π)(x) .

We have that , Φshell
P ∧ φ′L is in FO[P]. Let I = L(Φshell

P ∧ φ′L). Define h : Y → Π such
that h((n, π)) = π, i.e. h is the projection onto the second component of each Y . Then,
h(I) = L.

Proof of correctness: If w ∈ L, then w |= Φshell
P ∧ θL. Since h is length-preserving

we have that u |= Φshell
P for all u ∈ h−1(w). Letter predicates in the formula θI play

two roles simultaneously: While the second component handles the letter predicates
of θL the first component simulates the existentially quantified monadic second order
variables. Since w |= θL each of the m monadic second order variables represents a set
of positions of w such that φL evaluates to true. Vice versa, each word position in w
can be contained in the set of positions represented by each of the m monadic second
order variables A1, . . . , Am of θL. For each position this containment can be encoded
as an m-bit vector, which is done in the first component of the alphabet Y . That is,

70 4.6. PROTOCOL LANGUAGES AND TRIO OPERATIONS

the position x is contained in Ai if there is a letter on position x such that the i-th bit
of the first component is The second component of Y are the letters in Π –therefore,
|Y | = 2m · |Π|.

The same idea can be applied to show that length-preserving morphic images of languages of
strongFO[P] are equal to the languages definable in strongEMSO[P].

Theorem 4.6.5. Let P be a protocol language in unExkFO[S]. Then we have

Hlp(strongFO[P]) = strongEMSO[P] ,

that is if I ⊆ Y ∗ is in strongFO[P] and h : Y → Π is a length-preserving morphism then
h(I) is in strongEMSO[P] and for L ⊆ Π∗ is in strongEMSO[P] then there is an alphabet
Y , a language I ⊆ Y ∗ in strongFO[P] and a length-preserving homomorphism h such that
h(I) = L.

Proof sketch. The proof is analogous to Theorem 4.6.4. Formulae, both in strongFO[P] and
strongEMSO[P] might additionally make use of the k available binary second order variables
of the protocol language as atomic sub-formulae, which has no influence on the monadic
second order variables.

The idea of guessing homomorphic pre-images when showing that Hlp(FO[P)] ⊆ MSO[P]
in Theorem 4.6.4 can be applied to show that EMSO[P], MSO[P], strongEMSO[P] and
strongMSO[P] are closed under length-preserving morphisms.

Proposition 4.6.6. Let P be a protocol language in unExkFO[S]. Then EMSO[P], MSO[P],
strongEMSO[P] and strongMSO[P] are closed under length-preserving homomorphisms.

Proof. Let I ⊆ Y ∗ be in MSO[P] (in strongMSO[P], respectively) recognized by a formula
φI = Φshell

P ∧ θI and h : : Y → Π be a length-preserving homomorphisms. A formula for h(I)
can be built by using monadic second order variables Ay for all y ∈ Y to guess the pre-image
for each position.

We construct a formula φL = Φshell
P ∧ θL ∈ MSO[P] (strongMSO[P]) such that L(φL) = h(I)

as follows:

θL = ∃(Ay)y∈Y

 ∧
y,y′∈Y
y′ 6=y′′

Ay′ ∩Ay′′ = ∅

 ∧
∀x :

∨
y′′′∈Y

x ∈ Ay′′′

∧
∧
y∈Y
∀x : Qh(y)(x)⇒ x ∈ Ay

 : θ′I ,

where θ′I is obtained from θI by substituting each letter predicate Qy(x) by x ∈ Ay.

Proposition 4.6.7. Let P∨ be the set of all languages P ⊆ Γ∗ recognized by a formula
ΦP ∈ unExkFO[S] with

ΦP = ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

where each ψγ(x) is a (non-negated) Boolean combination of statements of the form W (x) =
V (y) or W (x) 6= V (y) for W,V ∈ {N1, . . . , Nk, S}∗. Then P∨ is closed under length-
preserving morphisms that are injective over P .

CHAPTER 4. PROTOCOL LANGUAGES 71

Proof. Let P ⊆ Γ be in P∨ and h : Γ→ Π be an length preserving homomorphism that is
injective over P . We show that h(P) ⊆ Π is in P∨ by giving ψπ-formulae. Define ψπ(x) as∨

γ∈Γ
h(γ)=π

ψγ(x) .

The resulting ψπ-formulae are all positive and hence h(P) ∈ P∨ which proves the claim.

4.7 Protocol languages for some well-known families of
formal languages

In this section we will present protocol languages for the regular languages, the context-free
languages and the indexed languages. Since we have considered the Łukasievicz language
as a running example throughout this chapter we begin the analysis with the context-free
languages.

4.7.1 Context-free languages

We provide protocol languages for context-free languages. The Łukasievicz language from
the introduction is revisited and analyzed more thoroughly and it is shown that restricted
real-time one counter languages are MSO[Ł]. We consider deviation languages of grammars
in Greibach normal form Gk and show that the context-free languages (without λ) are in
strongMSO[G2].

Definition 4.7.1 (Derivation language). Let G = (V,A, P, S) be a context-free grammar.
For w ∈ L(G) we define D(w) = p1 . . . pn as the derivation of w, where

α1 →p1 α2 →p2 · · · →pn αn+1 ,

such that

1. pi ∈ P for 1 ≤ i ≤ n

2. αj ∈ (V ∪A)∗ for 1 ≤ j ≤ n+ 1

3. α1 = S,

4. αn+1 = w

5. pi is applied to the left-most non-terminal of αi for 1 ≤ i ≤ n.

We call D(G) := {D(w) | w ∈ L(G)} ⊆ P ∗ the derivation language of G.

Derivation languages are also known as Szilard languages [DPRS97].

We consider derivation languages for context-free grammars in Chomsky normal form. The
most simple grammar in CNF which generates an infinite (but notably regular) language is
GCNF = ({S}, {t}{S → SS | t}, S). Still, the derivation trees for all grammars in Chomsky
normal form are full binary trees and thus the structure D(GCNF) is the same as for any
other such grammar in CNF.

72 4.7. PROTOCOL LANGUAGES FOR SOME WELL-KNOWN FOFLS

Remark 4.7.2. Let GCNF = ({S}, {t}, {S → SS, S → t}, S) and let

a := S → SS

b := S → t

Then D(GCNF) = Ł = D1b ⊆ {a, b}∗, where D1 is the Dyck language with one pair of
brackets.

Lemma 4.7.3. Let w ∈ Ł. Then,

1. |w| is odd

2. Substituting b in w ∈ Ł with the factor abb yields a word w′ ∈ Ł.

3. Substituting a factor abb in w ∈ Ł with the b yields a word w′ ∈ Ł.

4. #b(w) > 0 for all w ∈ Ł

5. Every word w ∈ Ł of length n can be generated from some w′ ∈ Ł with |w′| = n− 2 by
substituting some b in w′ by the factor abb.

Proof. 1. Recall that Ł is recognized by the grammarGŁ = ({S}, {a, b}, {S → aSS | b}, S).
The first rule elongates the derivation by 2, the rule S → b does not change the length.
Since, each derivation is started with a single S each derived word has odd length.

2. Each b in w is derived by an application of the rule S → b. By substituting this rule by
an S → aSS and terminating rules the b can be replaced by abb yielding some w′ ∈ Ł.

3. Analogous to 2.

4. The terminating rules in GŁ produce bs. Therefore, each w ∈ Ł contains at least one b.

5. Follows from 1., 2. and 3.

Proposition 4.7.4. The Łukasievicz language Ł = D(GCNF) is an auto-generative language
in unEx1FO[S].

Proof. We construct formulae ψγ for γ ∈ {a, b} for

ΦŁ = ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x))

such that L(ΦŁ) = D(GCNF)) = Ł:

ψa(x) : N(x) = N(S(N(S(x))))∧
N(min) = max x S N S N

N

ψb(x) : N(x) = x∧
N(min) = max x

N

Correctness of ΦŁ:

CHAPTER 4. PROTOCOL LANGUAGES 73

“Ł ⊆ L(ΦŁ)” We show this via induction over the length of words. Let w ∈ Ł with |w| = 1.
Then w = b and hence ψb(1) holds where the second order variable is N(1) = 1.

Assume the claim holds for some word length n ∈ N. Following Lemma 4.7.3-1 there are
no words of even length in Ł. Therefore, consider n to be odd. Let w ∈ Ł with |w| = n
recognized by ΦŁ and some pointer relation N . Let d ∈ [n] be a position in w such that
w[d] = b. Lemma 4.7.3-4 shows the existence of such a position. Substituting the b at
w[d] by the factor abb in w yields according to Lemma 4.7.3 w′ ∈ Ł with |w′| = n+ 2.
We construct N ′ for w′ from N such that w |= ΦŁ as follows. All positions that were
pointing to the removed b are pointing to the end of the inserted factor. The remaining
pointers are shifted by 2.

N ′(i) =



N(i) if i,N(i) < d ,

N(i) + 2 if i < d,N(i) ≥ d ,

d+ 2 if i = d ,

d+ 1 if i = d+ 1 ,

d+ 2 if i = d+ 2 ,

N(i− 2) + 2 if i,N(i) > d+ 2 .

Therefore, we have a w′ |= ΦŁ with a pointer relation N ′.

“L(ΦŁ) ⊆ Ł” We show this via induction over the length of words. Let |w| = 1 and w |= ΦŁ.
If w = a then ψa(1) can not be true, since 1 has no successors. But, w = b ∈ Ł with
N(1) = 1. Assume the claim holds for any word length n ∈ N. We only consider odd
word lengths since following Lemma 4.7.3-1 Ł only contains words of odd length.

Let |w| = n+ 2 and w |= ΦP with some N . We first show that w contains the factor
abb. We have w[1] = a, since if w[1] = b then, following ψb(1) we would need N(1) = 1
but would violate N(min) = max. Similarly, w[max] = b and w[max−1] = b since
ψa(max) or ψa(max−1) would imply the last position in the word had a successor.
Suppose that w[2, n] does not contain the factor abb, i.e. w[2, n] /∈ Γ∗abbΓ∗.

We have to consider the following cases:

1. If n = 1 then by definition we have w[2, 1] = λ and therefore w = abb.

2. If w[2, n] ∈ {a, b}∗a, it ends on an a then w[n, n+ 2] = abb.

3. If w[2, n] ∈ b+ then w[1, 3] = abb.

4. If w[2, n] ∈ (b|λ)(ab)+ then w[n− 1, n+ 1] = abb.

5. If w[2, n] ∈ (a|λ)(ba)+ then w[n− 1, n+ 2] = abb.

Since (A∗abbA∗)c ⊆ {a, b}∗a ∪ b+ ∪ (b|λ)(ab)+ ∪ (a|λ)(ba)+ the cases distinction is
complete. Thus, w contains the factor abb, say on w[d, d + 2] for 1 ≤ d ≤ n. Then,
following ψb(d+ 1) and ψb(d+ 2) we have N(d+ 1) = d+ 1 and N(d+ 2) = d+ 2, which
together with ψa(d) implies N(d) = d+ 2. We remove the factor ab on w[d, d+ 1] from
w and obtain w′ with |w′| = n. The pointers N are shifted by 2 positions to fit w′
defining N ′ for 1 ≤ i ≤ n as

N ′(i) =


j if i, j < d and N(i) = j ,

j − 2 if i < d, j ≥ d and N(i) = j ,

j if i, j ≥ d and N(i+ 2) = j + 2 .

74 4.7. PROTOCOL LANGUAGES FOR SOME WELL-KNOWN FOFLS

The formula ΦŁ of Proposition 4.7.4 defines a unique binary second order relation N for
each word in Ł. Recall that each Łukasievicz word represents the pre-order traversal of the
derivation tree of some word generated by a grammar in Chomsky normal form. We give an
illustration of the pointer relation in context of the derivation tree in Figure 4.7.

c1 c2
a

b

a, b

S N S

N
N

(a) Tile t1. Note that c1 has no S-predecessor
and therefore only fits on the first position of
a word.

c1 c2
a

b

a, b

a, b

S N S

N
N

S

(b) Tile t2 matches as and bs which can be
shrunk.

c1

b

a

N

S
N

(c) Tile t3. The core c1 has S-successor and
can therefore only be placed on the last posi-
tion of a word

c1

b

N

(d) Tile t4 – can only be used to tile the word
b ∈ Ł.

Figure 4.6: Tiles for Ł. Black nodes denote core vertices and white nodes port vertices. Each
node is connected to a gray rectangle that shows what label τcore and τport assign to it. t1
and t2 both match an a and b together. Tile t3 covers the final position of each word. Finally,
t4 is a tile that is only used when tiling the word b ∈ Ł.

The pointer structure is deeply connected to the derivation tree each word in Ł represents. In
the following we specify a relation on derivation trees of context-free grammars in Chomsky
normal form and show that this structure is captured in the behavior of the Łukasievicz
language.

Definition 4.7.5. Let G = (V,A, P, S) be a context-free grammar in Chomsky normal form
and for w ∈ A+ and let d(w) = p1 . . . pn be the derivation of w. Note that d(w) is the
pre-order traversal of the derivation tree of w. Each letter in d(w) is the root of a sub-tree
of the derivation tree. For 1 ≤ i ≤ n let

Tw(i) := {j ∈ {i, . . . , n} | pj is in the derivation sub-tree of w with root pi}

the nodes of the derivation sub-tree of w induced by pi. Recall that for n ∈ N we write [n]
for the set {1, . . . , n}. We define the relation Nw ⊆ [|d(w)|]× [|d(w)|] for i ∈ [|d(w)|] as

Nw(i) = max(T (i)) .

We define NG := {Nw | w ∈ L(G)} as the set of all N -relations for words generated by G
and

N :=
⋃

G grammar in CNF

NG

Proposition 4.7.6. For the context-free grammar GCNF = ({S}, {s}, {S → SS, S → s}, S)
we have NGCNF = N .

CHAPTER 4. PROTOCOL LANGUAGES 75

a

b

Gw
1

G
w
2

N

S

NS|w1|−1 S
N

N

Figure 4.7: N -structure of a pair of a and b for some word w in Ł. Between a and b are
sub-structures Gw1 , Gw2 (the latter containing b) of sub-words w1, w2 ∈ Ł.

Proof. “⊆” Since GCNF is a context-free grammar in Chomsky normal form NGCNF ⊆ N .

“⊇” We will show that for all context-free grammars in Chomsky normal form G =
(V,A, P, VS) the set of pointer relations generated by it, NG, is contained in NGCNF .
Since G is in Chomsky normal form, each word in L(G) has a derivation tree, which is
a full binary tree. Rules of the form B → CD form the inner nodes of the derivation
tree and leafs are generated by rules of the form B → b for B,C,D ∈ V and b ∈ A.

Replacing all rules of the form B ⇒ CD by S → SS and rules B → b by S → t yields
deviation trees of words w ∈ L(GCNF). Consequently, if N ∈ NG then N ∈ NGCNF .

Proposition 4.7.7. Ł can be tiled with the set TŁ = {t1, t2, t3, t4} depicted in Figure 4.6
satisfying the constraint C with

CŁ =

(
#(t4) = 1 ∧

3∧
i=1

#(ti) = 0

)
∨

(#(t4) = 0 ∧#(t3) = 1 ∧#(t1) = 1 ∧#(t2) ≥ 0)

Proof. We prove this over induction over word length. Let |w| = 1 and w ∈ Ł. Then w = b
and N(1) = 1. Therefore b can be tiled with a single instance of t4 and therefore, satisfy
(#(t4) = 1 ∧

∧3
i=1 #(ti) = 0) and hence CŁ. The only word w ∈ Ł with |w| = 3 is abb with

76 4.7. PROTOCOL LANGUAGES FOR SOME WELL-KNOWN FOFLS

a b b

t1

t3

1 2 3

N

N N

S S

and satisfying #(t4) = 0∧#(t3) = 1∧#(t1) = 1∧#(t2) ≥ 0. Assume the claim holds for any
n ∈ N. We only consider odd word lengths since following Lemma 4.7.3-1 Ł only contains
words of odd length. Let w ∈ Ł with |w| = n. Then w can be tiled with one instance of t1
and t3 and an (n− 3)/2 instances of t2 by some function ξ : [n]→ TŁ ×

⋃
t∈TŁ

V tcore. Let d
be some position with w[d] = b. There are three cases how d can be assigned to a core of
some tile:

1. If d = n then ξ(d) = (t3, c1).

b

t3

d = n

N

S

2. If d = N(S(1)) then ξ(d) = (t1, c2).

a b

t1

1 2 d

N

N

N

S S S

3. Otherwise ξ(d) = (t2, c2) where the matching a is on some position x such that
N(S(x)) = d.

a b

t2

x S(x) d

N

N

N

SS S S

Let w′ with |w′| = n+ 2 be generated from w by substituting the letter b at some position
d in w by abb. Following Lemma 4.7.3-2 we have w′ ∈ Ł. For the three different cases this
yields the following picture.

CHAPTER 4. PROTOCOL LANGUAGES 77

1. If d = n then ξ′(d+ 2) = ξ(d) = (t3, c1).

a b b

t3

t2

n+ 2n+ 1n

NN

N

S SS

2. If d = N(S(1)) then ξ(d) = (t1, c2).

a a b b

t2

t1

1 2 d d+ 1 d+ 2

N

N

N

S S S S S

3. Otherwise ξ(d) = (t2, c2) where the matching a is on some position x 6= 1 such that
N(S(x)) = d.

a a b b

t2

t2

x x+ 1 d d+ 1 d+ 2

N

N

N

SS S S S S

Then, w′ can be tiled with the function ξ′ : [n+ 2]→ TŁ ×
⋃
t∈TŁ

V tcore:

ξ′(i) =


ξ(i) if i < d ,

(t2, c1) if i = d ,

(t2, c2) if i = d+ 1 ,

ξ(i− 2) if i > d+ 1 .

That means the newly introduced a and b are the cores of an extra tile t2. All other positions
in the word keep their previous assignment. Since we insert two letters at position d we have
to account for the offset.

Proposition 4.7.8. The Łukasievicz language Ł is tile-shrinkable.

78 4.7. PROTOCOL LANGUAGES FOR SOME WELL-KNOWN FOFLS

Proof. Following Proposition 4.7.7 every w ∈ Ł can be tiled with TŁ satisfying CŁ. Every
word w ∈ Ł that contains at least one instance of t2 can be shrunk, i.e. all w ∈ Ł with
|w| ≥ 5. Let |w| = n ≥ 5 and let i1 and i2 be positions in w such that i1 is mapped to c1 and
i2 is mapped to c2 of the same instance of a tile t2, i.e. we have N(S(i1)) = i2 and w[i1] = a
and w[i2] = b. Recall that each w ∈ Ł is an pre-order-traversal of binary tree where an a
symbolizes a bifurcation and a b a termination rule.

w[i1] = a

w[i2] = b

w[i 1
+

1,
i 2
− 1] w[i2 +

1, n]

S

NS

N S N

N

N

By removing i1 and i2, i.e. the core of some tile t2 and connecting the right sub-tree i1 into
the hole of i2 in the left sub-tree of i1 we obtain a coherent derivation sub-tree:

w[i 1
+

1,
i 2
− 1]

w[i2 +
1, n]

N

S

S

N

N

Conversely, the pre-order-traversal of this shrunk derivation tree is the word w[1, i1− 1]w[i1 +
1, i2 − 1]w[i2 + 1, n] ∈ Ł.

This same shrinking argument works for words w /∈ Ł: Every core t2 tile can removed by the
structure of w and the resulting word w′ will not be in Ł.

Theorem 4.7.9. Ł is a protocol language in unEx1FO[S].

Proof. Proposition 4.7.4 shows that Ł is auto-generative and Proposition 4.7.8 shows that Ł
is tile-shrinkable which proves the claim.

In the following we show that the derivation languages of all context-free grammars in
Chomsky normal form are definable in strongFO[Ł].

CHAPTER 4. PROTOCOL LANGUAGES 79

Theorem 4.7.10. Let G = (V,A, P, S) be a context-free grammar in Chomsky normal form.
Then D(G) ∈ strongFO[Ł].

Proof. We construct a formula ΦG ∈ strongFO[Ł] which makes use of the ψa(x) and ψb(x)
sub-formulae of ΦŁ and the binary second order variable N as follows.

ΦG = Φshell
Ł ∧ inital(min) ∧ ∀x : bifurcate(x) ∧ terminate(x)

The sub-formula initial verifies that each derivation stats with some rule deviating the
start symbol S:

inital(x) :
∨
p∈P

p=S→β
β∈A∪V 2

Qp(x) ∧ ψf(p)(x)

If a derivation of the form X → Y Z is used, we have to make sure that both Y and Z are
derived at the correct positions.

bifurcate(x) :
∧
p∈P

p=X→Y Z
X,Y,Z∈V


Qp(x)⇔



ψa(x)

∧
∨
q∈P

q=Y→β
β∈A∪V 2

Qq(S(x))

∧
∨
r∈P

r=Z→β
β∈A∪V 2

Qr(S(N(S(x))))




Finally, for terminating rules we have to confirm that we have the correct structure:

terminate(x) :
∧
p∈P

p=X→y
y∈V,y∈A

Qp(x)⇔ ψb(x) .

This formula, recognizes the derivation language of G, i.e.

D(G) = L(ΦG) .

We give the definition of one-counter automata according to Berstel [Ber79].

Definition 4.7.11 (Restricted real-time one-counter automata). A restricted real-time
one-counter automaton (RROCA) is a tuple M = (Q,A,B,∆, Q0, F), where Q is a finite set
of states, A is the input alphabet, B = {b, b0} is the stack alphabet consisting of two symbols
where b0 is the bottom of the stack, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final
states and ∆ ⊆ Q×A×B × (B2 ∪ {λ})×Q the transition relation.

A configuration of M is a triple (q, x, y) ∈ Q×A∗ × ((b∗b0) | λ). For configurations (q, w, y)
and (q′, w′, y′) we write (q, w, y) `M (q′, w′, y′) if there is some transition (q, a, z, γ, q′) ∈ ∆
such that w = aw′ and there is an α ∈ b∗b0 with zα = y and γα = y′. Let

L(M) = {w ∈ A∗ | ∃q0 ∈ Q0 : ∃qf ∈ F : (q0, w, b0) `∗M (qf , λ, λ)}

be the language recognized byM . We say L(M) is a restricted real-time one-counter language.
We denote the family of restricted real-time one-counter languages as RROCL.

80 4.7. PROTOCOL LANGUAGES FOR SOME WELL-KNOWN FOFLS

We will use a Nivat-like [Niv68] argument to characterize the restricted real-time one-counter
languages with Ł.

Proposition 4.7.12. Let L ∈ RROCL. Then L ∈ EMSO[Ł].

Proof. If L ⊆ Π∗ is a restricted one-counter language then there is a RROCA M =
(Q,A, {b, b0},∆, Q0, F) with L(M) = L. Let R ⊆ ∆∗ be the local language

R =

{
(q0, a0, y0, γ0, q

′
0)(q1, a1, y1, γ1, q

′
1) · · · (qn, an, yn, γn, q′n)

∣∣∣∣∣q0 ∈ Q0, q
′
n ∈ F, y0 = b0 and

q′i = qi+1 for i ∈ {0, . . . , n− 1}

}

and let f : ∆→ {a, b} be the length-preserving morphism defined as

f((q, a, y, γ, q′)) =

{
a if |γ| = 2 ,

b if |γ| = 0 .

R being a local language implies that R ∈ FO[S]. Following Proposition 4.6.1 the length-
preserving inverse morphisms of a protocol language P is in FO[P] and Proposition 4.6.2
states that FO[P] is closed under the intersection with FO[S] definable languages. Therefore,
we have that f−1(Ł) ∩R ∈ FO[Ł]. The set f−1(Ł) ∩R describes all accepting computations
of M : The local language R verifies that the states of successive transitions are matching, as
well as that the first transition starts with an initial state and the final transition ends in
an accepting state. f−1(Ł) ensures that the counter is non-negative and that the bottom
of the stack is popped with the final transition. Since M is a real-time automaton every
word w ∈ L(M) is accepted with a computation of length |w|. Define the length-preserving
morphism h : ∆→ A with

h((q, a, y, γ, q′)) = a .

Then h(f−1(Ł) ∩R) = L(M).

When investigating the inverse morphic image of protocol languages for not length-preserving
morphisms we were able to use of additional second-order variables to work with a shorter
image. We define the morphism f that maps c to aa an and d to b and consider the inverse
image of Ł. To simulate the ψγ formulae of ΦŁ we make two copies of the N and S – one
for the first letter of the image of c and one for the second letter. Since d is mapped b all
copies S and N behave like the originals.

Example 4.7.13. Let f : {c, d}∗ → {a, b}∗ the homomorphisms defined as f(c) = aa and
f(d) = b. Then f−1(Ł) is an auto-generative language in unEx4FO[S].

Proof. The ψc and ψd formulae for f−1(Ł) can be constructed as follows:

ψd(x) : N1(x) = x ∧N2(x) = x ∧ S1(x) = S(x) ∧ S2(x) = S(x)

ψc(x) : ψf(c)[1](x) ∧ ψf(c)[2](x) ∧ S1(x) = S(x) ∧ S2(x) = S(x)

where the sub-formulae ψf(c)[1] and ψf(c)[2] are defined as

ψf(c)[1] : N1(S1(N2(S1(x))))

ψf(c)[2] : N1(S1(N1(S2(x)))) .

CHAPTER 4. PROTOCOL LANGUAGES 81

This approach could be generalized: If one would consider a morphism fi(c) = ai and
fi(d) = b then f−1

i (Ł) could be defined with i copies of the N -pointer and i copies of the
successor relation.

Let G = (V,A, P, S) be a context-free grammar in Chomsky normal form. Then there
is an erasing morphism h : P ∗ → A such that L(G) = h(D(G)). The morphism erases
every rule B → CD ∈ P and maps rules B → b ∈ P to b. Since the elements in D(G)
are left-derivations of words in L(G) applying the h to derivation of some word w ∈ L(G)
precisely yields w.

In the following section we will consider another context-free protocol language: For deriva-
tions languages of grammars in Greibach normal form this relations holds for length-preserving
morphisms instead of erasing ones.

Greibach normal form

In the following we will define a series of protocol languages which are derivation languages
of context-free grammars in Greibach normal form.

Definition 4.7.14. For m ≥ 0 let GmGNF denote grammar in Greibach normal form with

GmGNF = ({S}, {t}, {S → t | tS | tSS | · · · | tSm}, S) .

Proposition 4.7.15. For m ≥ 0 let Gm be derivation language of GmGNF, where we abbreviate
the rule S → t with b and for 1 ≤ i ≤ m rules S → tSi with ai. Let Γ = {a1, . . . , am, b}
Then Gm ⊆ Γ∗ is auto-generative and recognizable by a formula ΦGm ∈ unEx1FO[S].

ΦGm := ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

where

ψb(x) : N(x) = x

and for 1 ≤ i ≤ m

ψai(x) : N(x) = (NS)i(x)

Proposition 4.7.16. For m ≥ 0 the auto-generative language Gm can be tiled with the set
of tiles Tm = {t0, t′0, t1, t′1, t2, t′2, . . . , tm, t′m} shown in Figure 4.8 satisfying constraint Cm:

Cm =

(
#(t′0) = 1 ∧#(t0) = 0 ∧

m∧
i=1

#(ti) = 0

)
∨(

#(t′0) = 0 ∧#(t0) = 1 ∧ 1 =

m∑
i=1

#(ti) ∧
m∧
i=1

#(t′i) ≥ 0

)

Proof. The tiling and shrinking arguments are analog to the tiling and shrinking of the
Łukasievicz language.

Corollary 4.7.17. For all m ≥ 0 we have that Gm is a protocol language.

82 4.7. PROTOCOL LANGUAGES FOR SOME WELL-KNOWN FOFLS

c1 c2 c3 ci−1 ci

ai Γ

b

S N

N
N

S N

N

(SN)i−4
N

N

S N

N

(a) Tile ti for i = 2, . . . ,m

c1 c2 c3 ci−1 ci

ai

a1, . . . , am

Γ

b

S S N

N
N

S N

N

(SN)i−4
N

N

S N

N

(b) Tile t′i for i = 2, . . . ,m

c1
a1

b

Γ

S N S

N
N

(c) Tile t1

c1
a1a1, . . . , am

b

Γ

S S N S

N
N

(d) Tile t′1

c1

a1, b b

a1, . . . , am

S
N

N

(e) Tile t0

c1

b

N

(f) Tile t′0

Figure 4.8: Tiles for Gm. Black nodes denote core vertices and white nodes port vertices.
Each node is connected to a gray rectangle that shows what label τcore and τport assign to it.

CHAPTER 4. PROTOCOL LANGUAGES 83

Proof. We showed in Proposition 4.7.15 that Gm is auto-generative and in Proposition 4.7.16
shows that Gm can be tiled with a set Tm satisfying constraint Cm, which together yields
that Gm is a protocol language.

Proposition 4.7.18. Let G = (V,A, P, S) be a grammar in Greibach normal form and let
m := max |{β ∈ V ∗ | ∃A ∈ V : A → aβ ∈ P}| be the length of the longest sequence of
non-terminals a non-terminal in G can be derived to. Then D(G) ∈ strongFO[Gm].

Proof. We construct a formula ΦG ∈ strongFO[Gm] as follows.

ΦG = Φshell
Gm ∧ inital(min) ∧ terminate(x) ∧ ∀x :

k∧
i=1

forki(x)

The sub-formula initial verifies that each derivation stats with some rule deviating the
start symbol S:

inital(x) :
∨
p∈P

p=S→β
β∈AV ∗

Qp(x) ∧ ψf(p)(x)

terminate checks that terminating rules we have the correct structure:

terminate(x) :
∧
p∈P

p=X→y
y∈V,y∈A

Qp(x)⇒ ψb(x) .

For 1 ≤ i ≤ m and rules of the form X → yY1 . . . Yi the sub-formula forki ensures that each
Yj is derived at the correct position:

forki(x) :
∧
p∈P

p=X→yY1...Yi
X,Y1,...Yi∈V,y∈A

Qp(x)⇔ ψai(x)∧

i∧
j=1


∨
q∈P

q=Yj→βj
βj∈AV ∗

Qq((NS)j(x))


This formula then recognizes the derivation language of G, i.e.

D(G) = L(ΦG) .

Remark 4.7.19 ([HU79]). For every context-free language that does not contain λ there is
a grammar G = (V,A, P, S) in Greibach normal form such that

max{|β| | ∃B ∈ V,∃b ∈ A,∃β ∈ V ∗ : B → bβ} = 2 ,

that is every rule on the right-hand side has at most two non-terminals.

Lemma 4.7.20. Let G = (V,A, P, S) be a context-free grammar in Greibach normal form.
Then, for all w ∈ L(G) we have |w| = |D(w)|.

Proof. Each p ∈ P has precisely one non-terminal symbol on left hand side and one terminal
symbol on the right hand side. Therefore, a derivation of some word w ∈ L(G) with |w| = n
is derived with n elements in P .

84 4.7. PROTOCOL LANGUAGES FOR SOME WELL-KNOWN FOFLS

Proposition 4.7.21. Let G = (V,A, P, S) be a grammar in Greibach normal form and let
m := max |{β ∈ V ∗ | ∃A ∈ V : A → aβ ∈ P}| be the length of the longest sequence of
non-terminals a single non-terminal in G can be derived to with a rule in P . Then there is a
length preserving morphism h : P ∗ → A∗ such that h(D(G)) = L(G).

Proof. Let p = X → yβ with X,∈ V, y ∈ A and β ∈ V ∗ We define the homomorphism h as
h(X → xβ) = x. Then h(D(G)) = L(G).

Since G is in Greibach normal form, following Lemma 4.7.20 we have |dw| = |w|. For all
w ∈ L(G) there is a derivation S →p1 α1 →p2 · · · → α|w|−1 →p|w| w with pi ∈ P . We have
that αi ∈ A+V + if |w| > 1. In fact, the one-to-one relationship of non-terminal to terminal
symbol in GNF grammars imply that αi ∈ AiV ∗ for i = 1 . . . , |w|−1. Therefore, we have that
w[1, i] = αi[1, i] for i = 1 . . . , |w| − 1. For all i = 1 . . . , |w| − 1 the first non-terminal in αi is
on position i+ 1. Hence the rule pi+1 = (dw[i+ 1]→ w[i+ 1]βi+1) with βi+1 ∈ V ∗ is applied
to αi[i+ 1] yielding αi+1. Since h(pi+1) = w[i+ 1] we can follow that h(p1 . . . pn) = w.

Theorem 4.7.22. Every context-free language that does not contain λ is in strongEMSO[G2].

Proof. Let L ⊆ Π∗ be a context-free language that does not contain λ. Following Re-
mark 4.7.19 there is a context-free grammar G = (V,Π, P, S) in Greibach normal form
such that the longest sequence of non-terminals on a right-hand side of a rule is at most 2.
Proposition 4.7.18 states that D(G) ∈ strongFO[G2]. Finally, Proposition 4.6.5 states length
preserving morphic images of languages in strongFO[G2] are in strongEMSO[G2] which proves
the claim.

The Dyck language D1

Languages of correctly matched parenthesis are called Dyck languages. In this section we show
that a modified version of the Dyck language with one type of parenthesis is auto-generative.

Definition 4.7.23. The Dyck language with one pair of parenthesis D1 is recognized by the
context-free grammar G = ({S}, {a, b}, {S → aSbS | λ}, S).

Unfortunately, our attempts to show directly that D1 is a protocol language failed. The
similarity between the Łukasievicz and the Dyck language give the impression that D1 should
have protocol properties, too. We succeeded with a tagged version of D1. When an extra
letter for a is introduced into a Łukasievicz word that is matched with the last b and is tagged
as â we obtain (apart from the tagging) a Dyck word.

Definition 4.7.24. The tagged Dyck language with one pair of parenthesis D̂1 is recognized
by the context-free grammar G = ({S, T}, {a, â, b}, {S → aTS | âT, T → aTT | b}, S).

Proposition 4.7.25. Let Γ = {a, b, â}. The tagged Dyck language D̂1 ⊆ Γ∗ is auto-generative
and is recognized by the formula ΦD̂1

∈ unEx1FO[S].

ΦD̂1
= ∀x :

∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

where

ψa : N(x) = N(S(N(S(x)))) ∧N(min) = max

ψb : N(x) = x

ψâ : N(x) = N(S(x)) = max

CHAPTER 4. PROTOCOL LANGUAGES 85

a

a

â

a

b

Gw
3

Gw
1

Gw
2

S
S(N(S))

S

S

N

N

Figure 4.9: N -structure of some word w in D̂1. There are sub-structures Gw1 , Gw2 and Gw3

(the latter containing b) of sub-words w1, w2w3 ∈ Ł.

Analogous to the tagged D̂1 one can define tagged D̂k ⊆ {a1, . . . , ak, b1, . . . , bk, â1, . . . , âk}
language as the Dyck language with k pairs of brackets where the last position in a word
w ∈ D̂k is matched with âi for i ∈ [k] when w[|w|] = bi.

Proposition 4.7.26. For k ∈ N the tagged Dyck language with k pairs of brackets Dk is in
strongFO[D̂1].

Proof. With the formula

φD̂k = φshellD̂1
∧ ∀x :

k∧
i=1

Qai(x)⇒ ψa(x) ∧Qbi(N(S(x)))∧

Qâi(x)⇒ ψâ(x) ∧Qbi(N(x))

we have φD̂k ∈ strongFO[D̂1] and verify that the bracket types are matched correctly and
therefore D̂k = L(φD̂k).

4.7.2 A non-context-free protocol language in unEx1FO[S]

While working with protocol languages in unEx1FO[S] we had the conjecture that solely
context-free languages were definable with an extra binary second order variable. We could
disprove this conjecture by showing that a tagged version of the poster child of non-context-free
languages {anbncn | n ≥ 1} is a protocol language in unEx1FO[S].

Example 4.7.27. The context-sensitive language

Lcs =
{
anâbnb̂cnĉ | n ≥ 1

}
is an auto-generative language in unEx1FO[S]:

ΦLcs = ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

86 4.8. PROTOCOL LANGUAGES FOR INDEXED LANGUAGES

with

ψa(x) = N2(x) = N3(x) ∧ x 6= N(x) ∧N(x) 6= N2(x)∧
N(x) = S(N(S(x)))

ψâ(x) = N(x) = S(x)∧
N2(x) = max

ψb(x) = x 6= N(x) ∧N(x) = N2(x)

N(x) = S(N(S(x)))

ψb̂(x) = N(x) = S(x)

N(x) = N2(x)

ψc(x) = x = N(x) ∧N(S(x)) = S(x)

ψĉ(x) = x = max∧N(x) = x

Therefore, Lcs is an auto-generative language in unEx1FO[S]. An illustration of the N -
structure can be found on Figure 4.10. The set of tiles T for Lcs is given in Figure 4.11. Lcs
can be tiled with T satisfying the following constraint C:

C := #(t1) = 1 ∧#(t2) ≥ 0 ∧#(t3) = 1 ∧#(t4) = 1 ∧#(t5) = 1

The tile t2 contains in its core precise one a, b and c each. Therefore, we can shrink all words
in Lcs with word length at least 6.

an â

bnb̂

cn ĉ

S S Sn−4 S S

SSSn−4SS

S S Sn−4 S S

S

S

N N N N N N

NNNNNN

N N N N N N

Figure 4.10: Visualization of the N -structure for a word anâbnb̂cnĉ in Lcs.

4.8 Protocol languages for indexed languages

In this section we analyze protocol languages for indexed languages. We give only proof
sketches and point the interested reader to the forthcoming thesis [San19]. We extend the
notion of derivation languages to indexed languages.

CHAPTER 4. PROTOCOL LANGUAGES 87

c1 c2 c3

a b c

a, â b, b̂ c, ĉ

N N

S

S

S

S

S

(a) Tile t1

c1 c2 c3

a b c

a, â b, b̂ c, ĉ

N N

S

S

S

S

S

S

(b) Tile t2

c1

âa

b, b̂ b

S

S

N SN

(c) Tile t3

c1

b̂b

c

S

SN

N

(d) Tile t4

c1

ĉc

S
N

(e) Tile t5

Figure 4.11: Tiles for anâbnb̂cnĉ. Black nodes denote core vertices and white nodes port
vertices. Each node is connected to a gray rectangle that shows what label τcore and τport
assign to it.

Definition 4.8.1 (Derivation language). Let G = (V,A, F, P, S) be an indexed grammar.
For w ∈ L(G) we define D(w) = p1 . . . pn as the derivation of w, where

α1 →p1 α2 →p2 · · · →pn αn+1 ,

such that

1. pi ∈ P for 1 ≤ i ≤ n

2. αj ∈ (V ∪A ∪ F)∗ for 1 ≤ j ≤ n+ 1

3. α1 = S,

4. αn+1 = w

5. pi is applied to the left-most non-terminal (and the potential stack symbols successive
to it) of αi for 1 ≤ i ≤ n.

We call D(G) := {D(w) | w ∈ L(G)} ⊆ P ∗ the derivation language of G.

Derivation languages of indexed grammars were considered before in e.g. [Mon87].

We consider the analogous language to the Łukasievicz language, which forms the frame for
context-free derivations to the indexed derivation languages.

88 4.8. PROTOCOL LANGUAGES FOR INDEXED LANGUAGES

Definition 4.8.2. Let Gindex be the indexed grammar Gindex = (V = {S}, A = {t}, F =
{f}, P = {S → SS | t | Sf , Sf → S}, S) and abbreviate the derivation rules in P with

a :=S → SS ,

b :=S → t ,

c :=S → Sf ,

d :=Sf → S .

We define Z := D(Gindex) ⊆ {a, b, c, d}∗, i.e. the derivation language of Gindex.

Proposition 4.8.3. The derivation language of the indexed grammar in normal form with
one non-terminal, one terminal and one stack symbol Z is auto-generative and recognized by
a ΦZ ∈ unEx2FO[S].

Proof sketch. Z is recognized with two additional pointer relations, we reference with N and
V . The N -relation is the same one as the one used in the formula for Ł in Proposition 4.7.4:
Each word in Z is the pre-order-traversal of a derivation tree for a word produced by the
grammar Gindex. The N pointer of each position is constrained such that it points onto the
last position representing the same sub-tree. The newly introduced pointer V indicates for
each position where the top-most stack symbol was pushed on. If the stack of the current
position is empty, the V -relation points to the last position of the word. Let Γ = {a, b, c, d}.
Then Φz can be defined as follows:

ΦZ := ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

with

ψa(x) : = N(x) = N(S(N(S(x)))) ∧N(min) = max

V (x) = V (S(x)) ∧ V (x) = V (S(N(S(x))))

ψb(x) : = N(x) = x∧
V (x) = max

ψc(x) : = N(x) = N(S(x))∧
V (S(x)) = x

ψd(x) : = N(x) = N(S(x))∧
V (S(x)) = V (V (x)) ∧ ψc(V (x))

The correctness of the formula ΦZ is proved in [San19].

In ψa and ψb the requirements to the N -pointers are the same as for Ł. An a on some
position x is a bifurcation rule, where each of its two children will inherit its stack content.
Therefore, the V -pointers of both children point the same location as the V -pointer of x.
A terminating rule b might only occur once its stack is empty, i.e. the V -pointer points to
the last position in the word. In ψc and ψd are index producing and index consuming rules,
respectively. If there is a c on some position x then it must be verified that V -pointer of
the next position points to x. Finally, a d pops one index and points to the position of the
second last c.

Proposition 4.8.4. The derivation language Z is a protocol language.

Proof sketch. A language is a protocol language if it is auto-generative and the tileable with
a set of tiles satisfying some constraint. Proposition 4.8.3 yields the first part, for the second
part we refer to [San19].

CHAPTER 4. PROTOCOL LANGUAGES 89

Proposition 4.8.5. Let G be an indexed grammar in normal form. Then its derivation
language D(G) is in strongFO[Z].

Proof sketch. A strongFO[Z] formula recognizing D(G) may use the ψγ formulae and the
binary second order variables of ΦZ as well as letter-predicates. The proof idea is to use the
Q-predicates in combination with the ψγ-formulae to assure that correct derivation rules are
chosen. The conjunction of the Φshell

Z -formula ensures that the overall structure of the word
is consistent. For a detailed proof see [San19].

4.9 Protocol languages for regular languages

Regular languages can be defined with grammars with rules of the form S → tU and S → t
for non-terminals S,U and terminal symbol t. As before, in the context-free case we consider
derivation languages of regular languages and to that end will first focus on an elementary
grammar with a single terminal and non-terminal symbol.

Definition 4.9.1. Let GReg be the regular grammar ({S}, {t}, {S → t | tS}, S) and abbre-
viate the derivation rules in P with

a :=S → tS ,

b :=S → t .

We define J := {anb|n ≥ 0} = D(GReg), i.e. the derivation language of GReg.

Proposition 4.9.2. The language J is auto-generative and recognized by a formula Φ ∈
unEx0FO[S] with

∀x : ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

and

ψa(x) : x 6= max

ψb(x) : x = max

Proposition 4.9.3. The language J can be tiled with the following set of tiles T =
{t1, t2, t3, t4} which is given graphically in Figure 4.12 satisfying the following constraint C:

C =

(
#(t1) = 1 ∧

4∧
i=2

#(ti) = 0

)
∨

(#(t2) = 1 ∧#(t3) = 1 ∧#(t1) = 0 ∧#(t4) ≥ 0)

Proof. J is equal to G0 and hence tiled analogous to Ł.

Very similarly, we can show that a∗ is a protocol language. Since it is a single letter language,
the ψa(x) formula is the Boolean constant 1. The tiles of a∗ are isomorphic to those of J
and only differ in the sense that each τ maps each node to a.

Proposition 4.9.4. For the protocol language a∗ and its logical extensions there are the
following equivalences:

90 4.10. THE SIMULATION OF LETTER PREDICATES

c1

b

(a) t1

c1 p1

a a, b

S

(b) t2

c1p1

ba

S

(c) t3

c1p1 p2

a a, b

S S

(d) t4

Figure 4.12: The tile set T for J . Black nodes denote core vertices and white nodes port
vertices. Each node is connected to a gray rectangle that shows what label τcore and τport
assign to it.

1. LocallyThresholdTestable = FO[a∗] = strongFO[a∗]

2. Reg = MSO[a∗] = Trio(a∗)

Proof. 1. Since ψa = 1 the formula Φshell
a∗ is the Boolean constant 1 we have that FO[a∗] =

FO[S]. The equivalence of FO[a∗] = strongFO[a∗] is given by the lack of binary second
order variables. Thomas [Tho82] showed that the locally threshold testable language
coincide with the languages definable with first order logic and the successor relation.

2. With the same argumentation as in 1) we have that MSO[a∗] = MSO[S] and MSO[S] =
strongMSO[S]. Büchi [Büc60] Elgot [Elg61] and Trakhtenbrot [Tra61] showed that the
regular languages are precisely the sets of words definable with monadic second order
logic with the successor-relation which proves the claim.

4.10 The simulation of letter predicates

In this section we show that the introduction of more pointer relations allows to simulate
letter predicates. In the language Copy = {(w#)n | n ≥ 1, w ∈ A+} the letters a and b
behave the same way. Therefore, we should not expect that that Copy is auto-generative in
unEx1FO[S].

By introducing a pointer relation for each letter of the copied word w we were to overcome
this hurdle: For each a ∈ A we define a pointer Na(x) that points to x when w[x] = a and
to the last position in the word otherwise. With this technique we were able to show that
the tagged Copy-language

Ĉopy =

{
(w#)nŵ#̂

∣∣∣∣∣n ≥ 1, w ∈ {a, b}+ and

∀i ∈ [|w|] : w[i] = a ⇐⇒ ŵ[i] = â ∧ w[i] = b ⇐⇒ ŵ[i] = b̂

}
is an auto-generative language in unEx4FO[S]. In the last repetition of the word all letters
and the final marker are tagged.

Proposition 4.10.1. Ĉopy ⊆ {a, b,#, â, b̂, #̂}∗ is an auto-generative language in unEx4FO[S].

Proof. We use the binary second order variables N,V,Na, Nb to define the formula ΦĈopy

with L(ΦĈopy) = Ĉopy

ΦĈopy = ∀x :
∧
γ∈Γ

(Qγ(x)⇔ ψγ(x)) ,

CHAPTER 4. PROTOCOL LANGUAGES 91

w

#

w

#

S S|w|−3 S S S S|w|−3 S SS

N

N

N

N

N N

(a) N -pointer structure of Ĉopy.

w # w #

S S|w|−3 S S S S|w|−3 S SS

V V V V V

(b) V -pointer structure of Ĉopy.

Figure 4.13: The N and V pointer structure for two successive repetitions in a word in
Ĉopy.

with

ψa(x) : = cs(x) ∧ cf(x) ∧Na(x) = x ∧Nb(x) = max∧
Na(V (x)) = V (x) ∧Nb(V (x)) = max

ψb(x) : = cs(x) ∧ cf(x) ∧Na(x) = max∧Nb(x) = x∧
Na(V (x)) = max∧Nb(V (x)) = x

ψ#(x) : = cs(x) ∧N(x) = x ∧Na(x) = max∧Nb(x) = max∧
Na(V (x)) = max∧Nb(V (x)) = max

ψâ(x) : = N(x) = x ∧ V (x) = x ∧Na(x) = x ∧Nb(x) = max

ψb̂(x) : = N(x) = x ∧ V (x) = x ∧Na(x) = max∧Nb(x) = x

ψ#̂(x) : = x = max∧N(x) = max∧V (x) = max∧Na(x) = max∧Nb(x) = max

The sub-formulae cs(x) and cf(x) are abbreviations for

cs(x) : N(S(x)) = S(N(x))

cf(x) : N(x) = S(N(S(x))) .

The structural visualizations of cs(x) and cf(x) are depicted in Figure 4.13.

Van Leeuwen [VL75] showed that ET0L contains NP-complete languages by proving that the
satisfiability problem of Boolean formulae could be encoded as an ET0L language. We can
apply this encoding to show that the satisfiability problem is in MSO[Ĉopy].

Proposition 4.10.2. Sat is in MSO[Ĉopy].

92 4.11. DECIDING THE EMPTINESS OF PROTOCOL LANGUAGES

Proof. We can interpret w ∈ {a, b}m as a sequence of m Boolean values such that xi is true
if w[i] = a and xi is false if w[i] = b (analogously for â and b̂). Then, words in Ĉopy is an
be viewed as repetitions of m Boolean values.

Let Y = ({a, b, â, b̂} × {⊕,	, ◦}) ∪ {#, #̂} be an alphabet and f : Y → {a, b, â, b̂,#, #̂} be
the homomorphism

f(y) =

{
γ if y = (γ, s) ∈ {a, b, â, b̂} × {⊕,	, ◦} ,

d if y = d ∈ {#, #̂} .

Following Proposition 4.6.1 we have that f−1(Ĉopy) ∈ FO[Ĉopy] and since FO[Ĉopy] ⊆
MSO[Ĉopy] also f−1(Ĉopy) ∈ MSO[Ĉopy]. Then f−1(Ĉopy) is a sequence of word
w1#w2# · · ·wn#̂ that be viewed as a Boolean formula in conjunctive normal form with |wi|
Boolean constants where each wi is a clause. For γ ∈ {a, b, â, b̂} we have that

1. if wi[j] = (γ,⊕) then xi is positive in the i-th clause.

2. if wi[j] = (γ,) then xi is negated in the i-th clause.

3. if wi[j] = (·, ◦) then xi is not contained in the i-th clause.

Define the regular language R ⊆ Y ∗ that contains all words that contain at least one of
(a,⊕), (â,⊕), (b,), (b̂,) between two # (or #̂). Then, w1#w2# · · ·wn#̂ in R∩f−1(Ĉopy)
represents a sequence of n clauses that all evaluate to true. Let Π = {⊕,	, ◦,#} and define
the length-preserving homomorphism h : Y → Π as:

h(y) =

{
s if y = (γ, s) ∈ {a, b, â, b̂} × {⊕,	, ◦} ,

if y ∈ {#, #̂} .

Then w1#w2# · · ·wn# in h(R∩ f−1(Ĉopy)) is Boolean formula in conjunctive normal form
with |wi| variables that can be satisfied and therefore h(R ∩ f−1(Ĉopy)) = Sat. Since h is
a length-preserving morphism and R ∩ f−1(Ĉopy) is in MSO[Ĉopy] following 4.6.6 we have
that Sat ∈ MSO[Ĉopy].

4.11 Deciding the emptiness of protocol languages

The tiling and shrinking aspect of protocol languages comes to play when deciding their
emptiness.

Theorem 4.11.1. Let P ⊆ Γ∗ be a protocol language in unExkFO[S]. Then the emptiness
of P is decidable.

Proof. Assume P can be tiled with a set T satisfying some constraint C, where C is a
Boolean combination of expressions #(t) ≥ nt. Assume without loss of generality that C is
in disjunctive normal form, i.e. C = c1 ∨ c2 ∨ · · · cn. Then, each of the finitely many clauses
of C can be considered as a way to tile words in P and there is a (not necessarily disjoint)
set cover P = P1 ∪ P2 ∪ · · · ∪ Pm such Pi ⊆ P can be tiled with constraint ci. Let ci consist

CHAPTER 4. PROTOCOL LANGUAGES 93

of |ci| literals which are possibly negated expressions #(t) ≥ nt where t ∈ T and nt ∈ N0.
Then ci is of the form

|ci|∧
j=1

(¬)#(tij) ≥ nij︸ ︷︷ ︸
eij

.

Let li be the number of core nodes that are required for ci to be satisfied:

li :=
∑

j∈[|ci|]
eij is positive in ci

|vcore(tj)| · ntj

Since P is a protocol language it is also tile shrinkable. Thus, if w ∈ Pi and |w| > li and
then w can be shrunk to some w′ ∈ Pi with |w′| < |w|. If w ∈ Pi and |w| = li then there
is no shorter word in Pi. Therefore, by repeatedly shrinking a word in Pi we obtain one of
length li. This gives us an upper bound of words we have to consider for each Pi. Hence,
we can decide the emptiness of P by testing the finitely many words in Γ∗ up to length
min{li | i = 1, . . . , n}.

Theorem 4.11.2. Let P ⊆ Γ∗ be a protocol language in unExkFO[S]. Then intLoc(P) is
decidable, i.e. it is decidable given some local language L if P ∩ L = ∅.

Proof. Assume P be tiled with a set T satisfying a constraint C. Let the local language
L ⊆ Γ∗ be given as triple (SL, EL, FL) with SL, EL ⊆ Γ the allowed first and last letters
respectively and FL ⊆ Γ2 the set of forbidden successors.

If T contains a tile with no S-labeled edges then P contains a word w of length 1. P ∩L 6= ∅
if w ∈ L.

Therefore, assume that in each tile there is at least one path that uses successor edges ES .
Since the nodes are assigned label in Γ these paths define some word(s). When a tile is
placed onto the graph of some word in P , this label sequence has to match the underlying
sub-word. Thus, in order to obtain the intersection of P ∩ L we modify the set of tiles such
that the label sequences of the tiles are factors of words in L.

Let t ∈ T be a tile with t = (V,ES ∪ EN1
∪ · · ·ENk , τcore, τport).

Let p = (v1, . . . , vm) be a directed path in t with (vi, vi+1) ∈ ES for i = 1, . . . ,m− 1 such
that there is neither a v0 ∈ V , nor a vm+1 ∈ V with (v0, v1) ∈ ES or (vm, vm+1) ∈ ES . We
call such a path p maximal. Let Pt be the set of all maximal paths in t. Note, that Pt is
finite. For i = 1, . . . ,m let

ai :=

{
τcore(vi) if vi ∈ Vcore ,

τport(vi) if vi ∈ Vport .

Note that if vi ∈ Vcore then ai is a single letter. Otherwise ai is a finite set of letters. We
build a regular expression of each path: Let L(p) = L(a1 . . . am) be the path language of
a path p = (v1, . . . , vm). Recall that the neighborhood of core nodes in tiles are described
exhaustively: If a core node has no ES-predecessor then it can only be placed on the first
position of a word in P . Alternatively, if a core node has no ES-successor it can only be
placed on the final position of a word.

If v1 ∈ Vcore then t is a tile which is placed on the beginning of some w ∈ P , since v1 has
in-degree 0 and therefore in particular no predecessor concerning the successor relation.

94 4.11. DECIDING THE EMPTINESS OF PROTOCOL LANGUAGES

Conversely, if t is placed on the end of some word, then vm is a core node without a successor.
We intersect the path language of p with the local set L as follows:

I(p) :=


L(p) ∩ (SΓ∗ \ Γ∗FΓ∗) if v1 ∈ Vcore and vm ∈ Vport ,

L(p) ∩ (Γ∗E \ Γ∗FΓ∗) if vm ∈ Vcore and v1 ∈ Vport ,

L(p) ∩ (SΓ∗E \ Γ∗FΓ∗) if v1, vm ∈ Vcore ,

L(p) ∩ (Γ∗ \ Γ∗FΓ∗) otherwise .

Since L(p) is finite, I(p) is finite, too. For each x ∈ I(p) let τx : Vcore ∪ Vport → Γ with
τx(vi) = x[i] for i = 1, . . . ,m. Note that for all v ∈ Vcore and all x ∈ I(p) we have that
τx(v) = τcore(v). Let p and q be maximal paths and let x ∈ I(p) and y ∈ I(q). We say
that x and y agree if for v ∈ {u | p = (p1, . . . , u, . . . , pl) and q = (q1 . . . , u, . . . , qg)} we
have τx(v) = τy(v). Analogously, for maximal paths p1, . . . , pz node labels x1, . . . , xz with
xi ∈ I(pi) agree with each other if all xi and xj agree pairwise with each other. We define
the set of |Pt|-tuples of words

StL :=

{(
x1, . . . , x|Pt|

) ∣∣∣∣∣xi ∈ I(pi) with pi ∈ Pt and
x1, . . . , x|Pt| agree with each other

}

Since the words (i.e. components) of each x = (x1, . . . , x|Pt|) ∈ SL agree with each other
we can now define a finer τport-function which restricts the port nodes labels in t to be in
accord with the local language L:

τxport(v) := τxi(v) ,

such that v ∈ pi and xi is the i-th component of x.

We define a modified set of tiles with restricted port labels.

TL =

{(
V,E, τcore, τ

x
port
) ∣∣∣∣∣t = (V,E, τcore, τport) and

x ∈ StL

}

In C each statement #(t) ≥ nt for t ∈ T is substituted by∑
x∈SLt

#(tx)

 ≥ nt .
Each statement ¬(#(t) ≥ nt) is substituted by nt ≥

∑
x∈SLt

#(tx) , which can be constructed
as a Boolean combination of basic statements #(tx) ≥ nx since nt is fixed. Let CL denote
this modification of C. We now have that w can be tiled with TL satisfying CL iff w ∈ P ∩L.

Therefore, we can then make use of Theorem 4.11.1 and test whether P can be tiled with TL
satisfying CL to decide the emptiness of the intersection of P with the local language L.

Theorem 4.11.3. Let P ⊆ Γ∗ be a protocol language unExkFO[S] and h : Y → Γ be a
length-preserving homomorphism for some alphabet Y . Then h−1(P) = ∅ is decidable.

Proof. Assume that P can be tiled with a set T = T satisfying a constraint C. The idea
to decide the emptiness is the application of the inverse morphisms on the labels of each
tile and subsequently using the results of Theorem 4.11.1. Since core vertices are assigned
exactly one label we need to make copies of each tile.

CHAPTER 4. PROTOCOL LANGUAGES 95

We modify T as follows: For each t ∈ T with t = (V tcore ∪ V tport, E
t, τ tcore, τ

t
port) we construct∏

v∈V tcore
|h−1(τ tcore(v))| different versions of t. We presume that the vertices in V tcore are in

some arbitrary, but fixed order. Let

Dt :=
{(
y1, . . . , y|vtcore|

) ∣∣yi ∈ h−1(τ tcore(vi)) for i = 1, . . . ,
∣∣V tcore∣∣}

be the set of all combinations assigning each core vertex of tile t an element of its label’s pre-
image. For y ∈ Dt let τy : V tcore → Y be the mapping with τy(vi) = yi for i = 1, . . . , |V tcore|.
We define zty := (V tcore ∪V tport, E

t, τy, h
−1 ◦ τ tport). Then the reformed set of tiles T ′ is defined

as

T ′ =
⋃
t∈T
{zty | y ∈ Dt} .

In C each statement #(t) ≥ nt for t ∈ T is substituted by∨
y∈Dt

#(ty) ≥ nt .

which can be constructed as a Boolean combination of basic statements #(ty) ≥ k since nt
is fixed. Following Theorem 4.11.1 we can decide whether there is some w ∈ h−1(P) that
can be tiled with T ′ satisfying C ′ and hence decide the emptiness of h−1(P).

Theorem 4.11.4. Let P ⊆ Γ∗ be a protocol language unExkFO[S] and h : Y → Γ be a
length-preserving homomorphism for some alphabet Y . Then intLoc(h

−1(P)) is decidable, i.e.
it is decidable given some local language L if h−1(P) ∩ L = ∅.

Proof. Assume P can be tiled with a set T satisfying a constraint C. We first apply the
modifications used in Theorem 4.11.3 to T and C. Subsequently, the Theorem 4.11.3 is
applied to determine the intersection emptiness of h−1(P) with the local language L.

Corollary 4.11.5. Let P ⊆ Γ∗ be a protocol language unExkFO[S]. Then intReg(P) is
decidable, i.e. given a regular language R it is decidable if P ∩R = ∅.

Proof. Each regular language is the morphic image of a length preserving homomorphism
applied to a local language [MP71] This means there is an alphabet Y , some local language
L ⊆ Y ∗ and a length-preserving homomorphism h : Y ∗ → Γ∗ such that R = h(L). Then, in
order to decide if P ∩R 6= ∅ we can decide whether P ∩ h(L) 6= ∅. Note that for any function
f : X → Y and A ⊆ X and B ⊆ Y the following equivalence holds:

f(A) ∩B = ∅ ⇐⇒ A ∩ f−1(B) = ∅ .

To decide whether P ∩ h(L) 6= ∅ we therefore can test if h−1(P) ∩ L 6= ∅ which is decidable
following Theorem 4.11.3.

Following Theorem 3.6.1 we have that the full AFL of a language for which intReg is decidable
also has a decidability of the emptiness of regular intersection. Therefore the full AFL of a
protocol language has a decidable emptiness of regular intersection. Corollary 4.11.5 also
implies that protocol languages have a decidable word problem, as the question whether
w ∈ P is equivalent to P ∩ {w} 6= ∅.

96 4.11. DECIDING THE EMPTINESS OF PROTOCOL LANGUAGES

97

CHAPTER 5

Discussion

In the search for a characterization of families of formal languages besides plain enumeration
we analyzed two notions.

The first candidate was that a set of languages is formal if the emptiness of regular intersection
is decidable. It turns out that every complexity class contains complete problems for which
the emptiness of regular intersection is decidable. That is, for any decidable language L we
can construct a language L′ such that L and L′ are AC0-reducible to each other and intRegL

′

is decidable. We call the technique used to obtain this result hiding, which was inspired by
the ideas used to obtain the dense completeness results in [KL12a].

This was made stronger by the result that the full AFL generated by any language for which
intReg is decidable also has a decidable emptiness of regular intersection. Together these
results refute the decidability of intReg as a formality criterion.

An intermediate result when working with intReg was published in [GKLW18]. We showed
for regular sets of encoded quantified Boolean formulae it is decidable whether any true
formulae are contained. The encoding we used is similar to the encoding in [Sto76] who
showed that the Tqbf is PSPACE-complete. Wrathall [Wra76] showed that the set of true
quantified Boolean formulae with quantification depth k are complete for ΣP

k if the first
quantifier is existential and ΠP

k -complete if the first one is universal. Therefore, we obtain
complete languages for every level of the polynomial hierarchy and PSPACE for which intReg
is decidable. In contrast to the PSPACE-complete languages which are obtained from the
hiding process for which intReg is decidable, the sets Lk-Tqbf and LTqbf are more natural.
Even though we have shown the decidability of intReg for quantified Boolean formulae we
have not done a complexity analysis of the methods. Since for all words w we have that
LTqbf ∩ {w} 6= ∅ if and only if w ∈ LTqbf we can expect an actual implementation of our
approach to be of high complexity.

An open question is the role of the encoding of Tqbf – i.e. is there an encoding of quantified
Boolean formulae such that intReg is undecidable? Using for example a binary encoding of
the quantification depth and index would make it still possible to construct literal transition
sets Λqq′ . Also the principle of spreading existentially quantified variables and uniting

98

universally quantified variables in the transition sets would still be applicable and yield finite
representatives and thus yield the decidability of the emptiness.

Following the argumentation in the Cook-Levin theorem, two successive configurations of a
fixed Turing machine differ only at up to three positions from another. Therefore we can
give a regular language which contains only strings of two successive configurations which
are letter-wise shuffled, i.e. for configurations w and v write w[1]v[1]w[2]v[2] · · ·w[n]v[n] and
use placeholders if |w| 6= |v|. Such encodings have been used to show undecidability results
[CK98] and could possibly be applicable to encode literals of quantified Boolean formulae to
obtain an undecidable intReg property. Our co-author Wolf in [GKLW18] analyzes several
natural languages regarding intReg in [Wol18].

The main contribution of this thesis is the introduction of the notion of protocol languages.
They capture in some sense the data-structure underlying a family of formal languages and
are visible in transition or derivation languages.

We build upon the ideas of Lautemann et al. [LST94] who give a logic characterization of
the context-free languages by second order relations which are semantically constrained
to describe nestings. We establish the logic fragment unExkFO[S] which allows the use of
k binary second order variables which are semantically constrained to behave like total
mappings and are defined unambiguously by each word. Auto-generative languages are
defined within unExkFO[S] where each letter in a word induces a certain sub-structure. Vice
versa the structure of the binary second order variables defines the letter for each position.
These sub-structures are defined by the ψγ-formulae for each letter γ, which are conjuncted
(un-)equalities of endpoints of paths in the graphs induced by the binary relations and can
be used as a substitute for the letter predicates. Auto-generative languages are therefore
of deterministic nature. If a word models the formula of an auto-generative language there
are k uniquely determined binary second order variables. Regarding the positions of such a
word as nodes and the successor as well as the second order variables as edges each (word)
auto-generative language gives rise to a graph language.

We apply the ideas of [MP11, Tho91] to define tiling on the resulting graphs of auto-generative
languages. Madhusudan and Parlato [MP11] have used tiling-based graph recognizers to
show the decidability of the emptiness problem for (word-)automata with different types
of auxiliary storage mechanisms. They apply a simplified version of tiling introduced by
Thomas [Tho91] which further allows counting (up to constants) the number of instances a
tile was used. Thomas defines his graph recognizers on classes of labeled graphs which have
at most one incoming and one outgoing edge of each label, which results in a bounded degree.
The families of graphs auto-generative (word-)languages induce have a fixed out-degree:
For an auto-generative language in unExkFO[S] the k binary second order variables are
constrained such that they are total functions. As the successor relation defines another edge
the out-degree of each vertex is k + 1 (except for the last position which has no successor).
In contrast, the in-degree, of a node is unbounded: Consider, for instance, the following
subset of the Łukasievicz language {(ab)nb | n ≥ 0} ⊂ Ł which defines the set of all right
degenerate binary trees. There, we have that N(i) = max if w[i] = a, i.e. every position with
an a points to the last position in the word. We adapt the definition tiling with its numerical
constraints of Thomas to tile the graphs of auto-generative languages.

The constraints on the tiles allow us to define shrinking for auto-generative languages and
their complements. If a word of an auto-generative language is long enough such that the
tiling constraints are (over-)satisfied we can constructively shrink it to a shorter word in
the language. Iteratively shrinking a word at some yields a shortest word which cannot be
shrunk anymore. We use this principle to show the decidability of the emptiness of protocol
languages. If a word is not in an auto-generative language the shrinking is defined on the

CHAPTER 5. DISCUSSION 99

(not necessarily uniquely determined) graph of the word that can be tiled with the maximal
number of good tiles. The tiling and shrinking of words in the complement is currently
only defined existentially – future work in this subject might yield constructive shrinking
arguments for complements of protocol languages (cf. [San19]) We define protocol languages
as the tile-shrinkable auto-generative languages.

We propose logical extensions of protocol languages. The shell of a protocol language verifies
that the pointer structure of a word is correct, but does not test for any letters. For a
protocol language P ⊆ Γ∗ we define FO[P], MSO[P], EMSO[P], strongFO[P], strongMSO[P]
and strongEMSO[P]. These extensions are defined by formulae which are in conjunction
with the formula defining the shell of P . All extensions may use the ψγ(x)-formulae as
atomic formulae. The strong classes allow the conjunction of first order and monadic second
order formulae respectively which additionally make use the binary second order variables
defined by the protocol language. This was used to prove for instance that D̂k, the tagged
Dyck language with k pairs of parenthesis is in FO[D̂1]. This implies that the strong logical
extensions of a protocol language P is not contained in the trio of P .

We analyzed these six extensions in regard to trio operations and showed that length-
preserving inverse morphic images of a protocol language P is in FO[P]. It was shown
that Hlp(FO[P]) = EMSO[P]. The direction Hlp(FO[P]) ⊆ EMSO[P] was proved by using
the available monadic variables to existentially guess the morphic pre-image – the same
approach could be applied to prove that Hlp(strongFO[P]) ⊆ strongEMSO[P] and that
EMSO[P], MSO[P] strongEMSO[P] and strongMSO[P] are closed under length-preserving
homomorphisms. The other inclusion, EMSO[P] ⊆ Hlp(FO[P]), was obtained with a standard
technique: To recreate a monadic second order formula with first order means, the alphabet
of the first order formula is chosen as the power-set of the monadic second order variables in
combination with the actual letter predicates.

FO[P] still captures languages which are deterministic/visible. As the homomorphism are
not necessarily injective, MSO[P] also contains non-deterministic languages. Both extensions
are still contained in the trio generated by the protocol language P . This is not the case for
the strong extensions of P , as for instance D̂k is not in the trio generated by D̂1.

P FO[P]

EMSO[P]

MSO[P]

strongFO[P]

strongEMSO[P]

strongMSO[P]

Φshell
P ∧ FO[S,Q, ψγ]

Φ
sh
ell

P

∧ E
MSO

[S,
Q,
ψγ

]

Φ
sh
el
l

P

∧M
SO

[S
,Q
, ψ
γ
]

Φshell
P ∧ FO[S,Q, ψγ , Ni]

Φ shellP ∧ EMSO[S,Q, ψ
γ , N

i]

Φ shell
P

∧
M
SO[S,Q, ψ

γ , N
i]

H
lp

H
lp

HlpHlp

HlpHlp

An open question is whether one can extend the closure of MSO[P] under length-preserving
morphisms to more general morpishms. One approach could be to use monadic variables to
non-deterministically guess for each position some tile’s core and make use of the shrinkabilty
of protocol languages which could be used to give a bound on the length of the pre-image.
Showing the closure under erasing morphisms would yield a language family that stands
in strong contrast to complexity classes, as they are typically not closed under erasing

100

morphisms.

The length-preserving inverse morphisms of a protocol language P are contained in FO[P]
and MSO[P]. In Example 4.7.13 we demonstrate how to construct a formula for an inverse
morphism of Ł which is not length-preserving by using additional pointer relations. We conjec-
ture that for a protocol language P ⊆ Γ∗ in unExkFO[S] and some arbitrary homomorphism
f : Y ∗ → Γ∗ with l := max{|f(y)| | y ∈ Y } the inverse image f−1(P) is auto-generative in
unEx(k+ 1)lFO[S]. A thorough treatment of closures properties regarding inverse morphisms
for fragments of monadic second order logic was done by Kufleitner and Lauser [KL12b],
which might be a fruitful source for techniques applicable for the logic fragment used for
protocol languages.

We gave protocol languages for regular, context-free and indexed languages. Starting with the
context-free languages we have shown that the Łukasievicz language is a protocol language.
We proved that the restricted real-time one counter languages are in MSO[Ł]. As Ł is
the derivation language of the context-free grammar in Chomsky normal form with one
non-terminal and one terminal symbol, we showed that Gk is the derivation language for
analogous context-free grammars in Greibach normal form with right-hand sides up to length
k + 1. We proved that all context-free languages that do not contain λ are in strongMSO[G2].
If one were to show that strongMSO[P] is closed under erasing morphisms, it would yield that
CFL = strongMSO[Ł], the derivation left-derivations of context-free grammars in Chomsky
normal form are in strongFO[Ł] and erasing morphisms could remove any bifurcating rule.

For the regular languages we gave the protocol languages G1 and a∗ in unEx0FO[S] which
is equal to FO[S]. This equivalence yields that Reg = MSO[a∗] = strongMSO[a∗] and
Locally Threshold Testable = FO[a∗] = strongFO[a∗].

We defined the analogous language to Ł for deviation languages indexed grammars in normal
form which we call Z and gave proof sketches that Z is a protocol language in unEx2FO[S].
We point the interested reader to [San19] for the full proofs of the auto-generativity of Z
and how it can be tiled and shrunk.

As we have a series of natural protocol languages which are all deviation based for OI0 = Reg,
OI1 = CFL and OI2 = Index an open question is to find protocol languages for higher levels
in the OI-hierarchy.

We demonstrated that the tagged version of the Copy language is a protocol language and
that the NP-complete problem Sat is in MSO[Ĉopy]. Another open question is if Set, the
set of languages recognized by set automata [LR96] contains protocol languages – a particular
candidate that Set does not contain protocol languages could be Element-Distinctness =
{w1#w2# . . . wn | n ≥ 1, wi ∈ {a, b}∗ ∧ i 6= j ⇒ wi 6= wj} which can be viewed as a
complementary language to the Copy language.

The decidability of the emptiness of a protocol language P was obtained with tiling and
shrinking arguments. We proved that the emptiness of inverse length-preserving morphic
images of protocol languages H−1

lp (P) is also decidable. This was done by constructing a
new set of tiles where the tile-labels were modified according to the homomorphism. The
same idea was used to show that the emptiness of P ∩ Loc and H−1

lp (P) ∩ Loc is decidable
which implies that intReg(P) is decidable. The decidability of intReg(P) implies the that the
emptiness of regular intersection is decidable for the full AFL of P .

It is still an open question whether the logical extensions FO[P] and MSO[P] and their
stronger versions have a decidable emptiness.

The analysis of protocol languages in regard to the question of formality of languages families
is still in its earlier stages. If the series of a∗ and G2 for the regular and context-free languages

CHAPTER 5. DISCUSSION 101

respectively could be generalized to higher levels of the OI-hierarchy and to their sub-families,
one hypothesis could be that every family of formal language F is equal to strongMSO[PF]
for some protocol language PF .

If such a characterization of families of formal languages should be possible, the question
of the robustness of this notion remains open: Can complexity classes be expressed with
extensions of protocol languages? Fagin [Fag73, Fag74] proved that the languages definable
with existential second order logic are precisely the languages in NP, which was extended by
Stockmeyer [Sto76] to SO = PH. Since the logic used to define protocol languages and their
extensions are a fragment of second order logic, showing for a complexity class C with PH ⊆ C
that a C-complete language is a protocol language would imply that PH = C. Therefore, it
is rather unlikely that complexity classes above PH could be characterized by second order
logic. The upper bound PH also gives rise to speculation that there are no hiding-arguments
for protocol language, i.e. it is unlikely that for every decidable language L one can construct
a language L′ of the same complexity such that L′ is a protocol language.

Showing the closure of MSO[P] under erasing morphisms would also strengthen the theory
of describing formality with protocol languages, as complexity classes typically lack this
particular closure property.

102

103

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[Aho68] Alfred V. Aho. Indexed grammars—an extension of context-free grammars.
Journal of the ACM (JACM), 15(4):647–671, 1968.

[Ber79] Jean Berstel. Transductions and context-free languages. Teubner, Stuttgart,
1979.

[Büc60] Julius R. Büchi. Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly, 6(1-6):66–92, 1960.

[CK98] Hugues Calbrix and Teodor Knapik. A string-rewriting characterization of muller
and schupp’s context-free graphs. In International Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 331–342. Springer,
1998.

[Dam82] Werner Damm. The IO-and OI-hierarchies. Theoretical Computer Science,
20(2):95–207, 1982.

[DPRS97] Jürgen Dassow, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. Hand-
book of formal languages, 1997.

[DPS79] Jürgen Duske, Rainer Parchmann, and Johann Specht. Szilard languages of
io-grammars. Information and Control, 40(3):319–331, 1979.

[EGG00] Thomas Eiter, Georg Gottlob, and Yuri Gurevich. Existential second-order logic
over strings. Journal of the ACM (JACM), 47(1):77–131, 2000.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and related arith-
metics. Transactions of the American Mathematical Society, 98:21–51, 1961.

[Eng02] Joost Engelfriet. The delta operation: from strings to trees to strings. In Formal
and natural computing, pages 39–56. Springer, 2002.

[Eng14] Joost Engelfriet. Context-free grammars with storage. arXiv preprint
arXiv:1408.0683, 2014.

104 BIBLIOGRAPHY

[Fag73] Ronald Fagin. Contributions to the model theory of finite structures. University
of California, Berkeley, 1973.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable
sets. Complexity of computation, 1974.

[Fis68] Michael J. Fischer. Grammars with macro-like productions. In Switching and
Automata Theory, 1968., IEEE Conference Record of 9th Annual Symposium on,
pages 131–142. IEEE, 1968.

[GKLW18] Demen Güler, Andreas Krebs, Klaus-Jörn Lange, and Petra Wolf. Deciding regu-
lar intersection emptiness of complete problems for PSPACE and the polynomial
hierarchy. In International Conference on Language and Automata Theory and
Applications, pages 156–168. Springer, 2018.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata and formal
languages. Reading: Addison-Wesley, 1979.

[Jul61] Julius R. Büchi. On a decision method in restricted second order arithmetic.
In Congress on Logic Methodology and Philosophy of Science, pages 133–144.
Stanford University Press, 1961.

[KL12a] Andreas Krebs and Klaus-Jörn Lange. Dense completeness. In International
Conference on Developments in Language Theory, pages 178–189. Springer, 2012.

[KL12b] Manfred Kufleitner and Alexander Lauser. Lattices of logical fragments over
words. In International Colloquium on Automata, Languages, and Programming,
pages 275–286. Springer, 2012.

[Koz12] Dexter C. Kozen. Automata and computability. Springer Science & Business
Media, 2012.

[Lan96] Klaus-Jörn Lange. Complexity and structure in formal language theory. Funda-
menta Informaticae, 25(3, 4):327–352, 1996.

[LR96] Klaus-Jörn Lange and Klaus Reinhardt. Set automata. In Combinatorics,
Complexity and Logic; Proceedings of the DMTCS’96. Springer, 1996.

[LST94] Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics for context-
free languages. In Computer Science Logic, 8th International Workshop, CSL
’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers, pages 205–216,
1994.

[Mäk84] Erkki Mäkinen. On context-free and szilard languages. BIT Numerical Mathe-
matics, 24(2):164–170, Jun 1984.

[Mon87] Burkhard Monien. About the complexity of the Derivation Languages of Index
Grammars. manuscript, 1987.

[MP71] Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T.
Research Monograph No. 65). The MIT Press, 1971.

[MP11] Parthasarathy Madhusudan and Gennaro Parlato. The tree width of auxiliary
storage. In ACM SIGPLAN Ntotices, volume 46, pages 283–294. ACM, 2011.

[MS85] David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37:51–75, 1985.

BIBLIOGRAPHY 105

[Niv68] Maurice Nivat. Transductions des langages de chomsky. Ann. Inst. Fourier,
18(1):339–455, 1968.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[San19] Magdalena Sannwald. N -structures and protocol languages. Master’s thesis,
Eberhard Karls Universität Tübingen, 2019. Forthcomming.

[Sil19] Silke Czarnetzki. Duality in Computer Science. PhD thesis, Eberhard Karls
Universität Tübingen, 2019. Forthcoming.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1–22, 1976.

[Str94] Howard Straubing. Finite automata, formal logic, and circuit complexity.
Birkhäuser, Boston, 1994.

[Tho82] Wolfgang Thomas. Classifying regular events in symbolic logic. J. Comput. Syst.
Sci., 25(3):360–376, 1982.

[Tho91] Wolfgang Thomas. On logics, tilings, and automata. In International Colloquium
on Automata, Languages, and Programming, pages 441–454. Springer, 1991.

[Tra61] Boris Avraamovich Trakhtenbrot. Finite automata and the logic of single-place
predicates. In Doklady Akademii Nauk, volume 140, pages 326–329. Russian
Academy of Sciences, 1961.

[VL75] Jan Van Leeuwen. The membership question for ETOL-languages is polynomially
complete. Information Processing Letters, 3(5):138–143, 1975.

[Wol18] Petra Wolf. Decidability of the Regular Intersection Emptiness Problem. Master’s
thesis, Universität Tübingen, 2018.

[Wra76] Celia Wrathall. Complete Sets and the Polynomial-Time Hierarchy. Theoretical
Computer Science, 3(1):23–33, 1976.

	Introduction
	Preliminaries
	Essentials
	Words and languages
	Finitely describing infinite languages
	Finite automata
	Regular expressions
	Grammars
	Logic on words
	Regular languages and their sub-classes

	Operations on languages and families of languages
	Graphs

	Regular intersection emptiness
	Languages of quantified Boolean formulae
	Encoding quantified Boolean formulae
	Quantified Boolean formulae of bounded quantification depth
	The decidability of intReg(LTqbf)
	Bounding the quantification depth

	Hiding the difficulty of intReg
	AFL-stability of the intReg property
	Complexity classes and intReg
	Summary

	Protocol languages
	Auto-generative languages
	Tiling auto-generative languages
	Tile shrinkable languages
	Protocol languages
	Logical extensions of protocol languages
	Protocol languages and trio operations
	Protocol languages for some well-known FOFLs
	Context-free languages
	A non-context-free protocol language in unEx 1 FO[S]

	Protocol languages for indexed languages
	Protocol languages for regular languages
	The simulation of letter predicates
	Deciding the emptiness of protocol languages

	Discussion

