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Abstract— This paper presents a process based on learning 

analytics and recommender systems with the objective of 

analyzing student assessment in order to provide clues that can 

help teachers in scaffolding the students’ performance. For this, a 

set of tests was used to evaluate students' competence in direct 

current circuits. The tests had multiple versions and to solve 

them each student had to use multiple approaches. The results 

indicate a better performance in calculus and simulations 

approaches when compared with hands-on and remote 

laboratories approaches. The analyses also provide support for 

the recommendation step allowing the configuration of a 

knowledge base. The process as a whole is consistent in what 

regards its ability to make suggestions to the students as they 

complete a given test and to provide teachers with information 

that can help them formulate strategies to positively impact 

students’ learning. 

Keywords—personalized student assessment; learning 

analytics; recommender systems 

I.  INTRODUCTION 

The current stage of development of science and 

technology demands the interconnection of different 

approaches in order to make students achieve their best level of 

performance. “Engineering education has solid needs of 

experimental competence developments, regardless the area” 

[1]. In this way, calculus classes, hands-on laboratories, 

simulations and remote laboratories are education resources 

with particularities and complementarities. Considering 

complex scenarios and problems, as stated by [2], students 

have to become fluent in the language of nature and a 

successful designer, and for that (…) must perform numerous 

experiments practice laboratory work. Thus, competencies 

developed along their education process will impact their 

professional carrier. Experimental work has been developed 

traditionally in laboratories. However, the increase in the 

number of higher education students in the last decades has 

pressed for physical structures and resources. Simultaneously, 

researchers started developing computer simulations and 

remote labs, enabling the expansion of learning frontiers. This 

increases the students’ access time to these learning resources, 

respecting their preferences and needs. 

This situation affords new opportunities to improve the 

students’ learning process. With the advent of computation and 

mainly via online systems, the information generated by 

student interactions in online simulations and remote 

laboratories can be collected and analyzed. In this context, 

learning analytics (LA) plays an important role in providing 

tools that can leverage students’ learning experiences in 

addition to insights for teachers to learn and improve their 

classes. Thus, LA as a knowledge discovery paradigm can 

provide valuable findings and help stakeholders to better 

understand the learning process and its interconnections [3]. 

From LA’s perspective, analyzing the collected data allows 

creating opportunities to offer suggestions directed to the 

various stakeholders in educational contexts. In this sense, 

recommendation systems (RS) can provide suggestions aimed 

at increasing students’ performance in learning activities. RS 

aim to recommend items that may be of interest for a particular 

user. Although it emerged in the 1990s focusing on e-

commerce through the collaborative filtering approach [5] [6], 

other approaches have been developed as well. Among them is 

the knowledge-based approach, which uses structures capable 

of representing a particular domain knowledge. In this way, 

recommendations can be targeted to a specific end as they 

consider domain knowledge. Its evolution has provided 

solutions in many areas, among them e-learning. This kind of 

recommender system generally intends to assist students in 

choosing courses, subjects and learning materials or activities 

[4], but can also help them to achieve a better performance on 

tests, for instance. 

This paper presents a process based on learning analytics 

and recommender systems toward personalized student 

assessment. It intends to offer recommendations to students 

during their tests involving multiple class resources such as 

calculus, hands-on laboratory, simulation and remote 

laboratory. Section II presents the background of the study. 

Section III introduces the experimental process. Section IV 

shows the scenario used in the experimental design. The results 

and the analysis of the scenario and a general discussion about 

the process are discussed in section V. Finally, section VI 

draws conclusions. 
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II. BACKGROUND 

A. Class Resources 

1) Calculus Classes and Hands-on Laboratories: These 

kinds of resources provide a face-to-face interaction in a 

specific time and place. Despite the online education growth 

in the last decades, more traditional areas, such as engineering, 

still widely use those resources. Among such resources are 

calculus and laboratory classes. Calculus classes follow more 

abstract and methodic aspects involving mathematics and 

knowledge about the topics [7]. On the other hand, laboratory 

classes can address more complex competences, enabling, for 

instance, the connection between concepts when not provided 

like recipes [7][8]. They can, if well conducted, help students 

to achieve haptic skills and instrumentation awareness [9]. 

Furthermore, considering the fact that physical lab classes are 

usually offered for short periods and regarding the students’ 

questions on technical and operational issues, there is little 

time left to reflect on and interact with experiments [9].   

2) Simulations: As stated by [7], computer simulations 

have advantage over hands-on laboratories once learners can 

deal with them any time without being afraid of damaging or 

being monitored by someone. Learners can use simulations to 

evolve at their own pace. On the other hand, during 

simulations students have to understand that they deal with 

models and not with reality. According to some authors, 

simulations can lead to some problems once learners can face 

some kind of disconnection between real and virtual worlds 

[10]. Other researchers have tried to define the learning 

potential by means of computer simulations. The study carried 

out by Ghang et al. [11] identifies a relation between studends’ 

higher abstract reasoning and computer simulations. In [12], 

evidences are presented supporting the notion that simulations 

can improve laboratory classes in traditional education.     

3) Remote Laboratories: Remote labs can be a step 

forward in the learning process by enabling real experimental 

apparatus, once they require space and devices even without 

the students’ presence. Thus, such conditions increase the 

frequency and places in which experiments can be carried out 

[9]. Authors also mention that experimental devices can be 

shared, hence extending the capability of conventional 

laboratories. Thus, remote laboratories can be seen as 

complementary tools in the students’ learning process and 

may have some of the advantages of hands-on and computer 

simulations. In this scenario, students can access real hardware 

in order to have a learning experience outside the classroom 

[13]. Moreover, for some experiments, availability can be a 

problem, once remote labs must be connected to real 

equipments. On the other hand, simulations are quite common 

and can be easily found on the Internet by students. In this 

way, the educational goals of remote and simulation labs are 

more specific and commonly used to complement other 

teaching resources [9][14].   

B. Learning Analytics 

Learning is a theme with several implications and impact 

on students’ lives. According to [15], learning is increasingly 

distributed across space, time, and media, producing substantial 

volume of data about students and learning. The interaction 

with online education environments leaves traces about the 

students' experiences, enabling more robust analyses. In this 

context, regarding students’ behavior, learning analytics (LA) 

has become a valuable learning tool by attempting to positively 

impact their performance. 

Learning analytics has many definitions, one of the most 

cited being “the measurement, collection, analysis and 

reporting of data about learners and their contexts, for 

purposes of understanding and optimising learning and the 

environments in which it occurs” [16]. In [17], it is stated that 

LA has its basis from business intelligent concepts, which have 

been appropriated by education institutions. Additionally, [18] 

mentions other fields such as web analytics, educational data 

mining and recommender systems. Primarily focused on the 

capture and report of data by educational administrators and the 

performance enhancement of educational institutions, learning 

analytics evolved to a more operational perspective in order to 

provide tools targeted to students and teachers for the 

achievement of a better understanding of student experience. 

C. Recommender Systems 

Recommender Systems (RS) have become an important 

field of research since the mid-1990s [5][6][19]. Their main 

objective is to make suggestions mainly where there is a great 

volume of options, as in such situations the selection process 

can become difficult for the user [20]. RS starts with the 

proposition of the collaborative filtering approach, although 

currently giving support for a wide range of research areas and 

applications. 

What makes this type of system useful for both the user and 

the service provider is its ability to assist in the selection of 

items, making the task more enjoyable and possibly delivering 

better results. Based on these arguments, [21] states that "the 

purpose of RS is to generate valid recommendations for items 

that may be of interest to a set of users". As stated by [22], an 

“item” is a piece of information that refers to a tangible or 

digital object, such as a product, a service or a process that an 

RS suggests to the user in an interaction through the web, email 

or text message. An item is understood as the content of the 

recommendation that will be offered to the user. According to 

[23], “item” is the general term used to designate what the 

system recommends to users. 

Several RS approaches are described in the literature, 

among them, content-based filtering (CBF), collaborative 

filtering (CF) and hybrid filtering [24][25]. Currently, RS have 

taken advantage of semantic web technologies to effectively 

overcome the challenges associated with the incredible growth 

of the web, more precisely addressing the overload of 

information and heterogeneous data sources [26]. These 

systems are gaining maturity and have some different 



approaches. For instance, the approach that uses formal 

structures representing knowledge, such as ontologies, to make 

suggestions is called knowledge-based recommendation [27]. 

Many are the areas of applicability of RS. In the 

educational context, e-learning recommender systems have 

evolved since the 2000s based on the development of 

traditional e-learning systems [4]. These systems aim to help 

learners/students on what courses, subjects or learning 

activities to choose, and assist them in those activities thus 

helping them achieve a better performance. 

III. PROCESS PROPOSITION 

This section presents the process used in the analysis and 
recommendation of possible suggestions during the assessment 
of tests performed by the students. It intends to provide ways to 
scaffold students’ performance on tests. Fig. 1 demonstrates the 
process in which the student takes a test composed of different 
practices. A particular test consists of Calculus, Hands-on 
Laboratories, Simulations and Remote Laboratories practices. 
Each test performed by the students is stored in a database, 
allowing a set of analyses trying to support students’ learning 
and teachers’ understanding. 

 

Fig. 1. Process towards personalized student assessment 

During the process, there are two main phases, consisting 
of data analysis and recommendations. Data analysis has two 
essential functions. The first one focuses on online monitoring 
of student test answers. Each answer provided to a given 
question in a particular test is retrieved from the database and 
stored in a domain ontology, forming a knowledge base. In that 
ontology, there are also the rules that allow inferences in order 
to support the recommendations. The second function is to 
summarize the data in order to provide information that may 
help teachers to better understand the students’ performance. 

In the recommendation phase, the answers are monitored 
and stored into the knowledge base supported by a domain 
ontology. With this, each answer is analyzed through 
inferences in the knowledge base taking into account some 
criteria, and if the criteria do not satisfy some values, the 
student is advised to better re-evaluate the solution provided. 
For example, if the answer is outside a certain acceptable range 
for a particular question, a check of the unit of measure used is 

recommended. By this means, the student has a new attempt 
before definitively confirming the answer to a specific 
question. 

The original answers of each question and the possible 
answer obtained after a given recommendation can provide 
interesting inputs for teachers in order to have information 
about the difficulties faced by the students. It allows an 
analysis of the causes of deficiency in specific questions and 
can therefore guide the teacher in actions of revision or 
improvements in the theoretical and hands-on classes. 

IV. CURRICULAR DESIGN 

The proposal was implemented within a course entitled 
“Electricity” (2013/14), which is part of the 1st year, 2nd 
semester of a 3-year degree on Automotive Engineering, 
following the Bologna model (180 ECTS). The course has 5 
ECTS and comprises 1 hr of recitation classes (lectures, 
hereafter referred to as T classes), and 1 hr of calculus practice 
classes immediately followed by 1 hr of lab classes (hereafter 
referred to as PL classes) per week, during 15 weeks. The 
course had 79 enrolled students, distributed by 3 PL classes 
with 25-26 students. Finally, in the PL classes the students 
were divided into 5 groups of 5 students each, usually during 
hands-on exercises, as the lab is equipped with 5 demo boards. 
During the calculus, simulation, and remote lab exercises, 
students work in pairs (two students per PC, max.) or as they 
wish to (individually or larger groups), as they can use their 
own laptops or tablets. 

A. Methods used in Lectures and Practice Classes - Calculus 

In lectures, the teacher used presentations to explain 
theoretical subjects and the whiteboard to solve theoretical 
problems. Also, students showed the teacher their results from 
some of the simulations. Usually, there were discussions 
among students and with the teacher. During practice classes 
dedicated to calculus, students had to solve a number of written 
exercises, based on a script provided on day 1 through the 
course page on the Moodle learning platform. Students were 
also encouraged to post their results on Moodle so as to 
provide evidence of having completed the homework 
assignment, even though it did not count for the summative 
assessment. 

B. Method used in Lab 

Typically, students are first introduced to the lab where 
they will have the hands-on activities. They are divided into 
working groups (typically of 5 students) and introduced to the 
equipment, devices and demo boards that will be used along 
the 1st part of the semester (DC circuits). This initial class was 
purely illustrative, i.e. students did not mount any circuit or 
make any measurements. In the two following classes, students 
practiced with the simulator and the remote lab to practice 
where to insert the multimeter for doing basic measurements 
(resistance, voltage, and current). During the subsequent 3 PL 
classes, students completed a series of 20 experiments, 
described in a manual that encompasses the demo boards and 
the components donated by Toyota® (Fig. 2) to the 
Automotive Engineering undergraduate course. Finally, 



students were assessed for this initial part through an individual 
lab assignment targeting all competences (calculus, simulation, 
remote lab, and hands-on). 

 

Fig. 2. Example of a circuit that students had to assemble in the Toyota demo 

board 

 Falstad’s Circuit Simulator Applet [28] was used in both T 
and PL classes for simulating the circuit behavior and 
extracting the voltage drops and current flows in any circuit 
component. Also, Virtual Instrumentation Systems in Reality 
(VISIR) [29] was used in both T and PL classes. During one 
theoretical class, the teacher used VISIR and the simulator to 
ascertain a number of calculations made in the circuit that was 
used in the individual lab assessment. This particular circuit 
was an enhancement (i.e. it included one additional  resistor) of 
the circuit used for the homework assignment, where students 
had to obtain and compare results from calculus, 
simulations and remote lab. 

C. Assessment Test Design 

The assessment was designed taking into account the need 
to address all basic concepts and competences developed along 
the classes, namely: to know the Ohm’s law and to know how 
to apply it to calculate voltage/current in any circuit 
component; to distinguish series and parallel connections; to 
know how to calculate an equivalent resistor; to know the 
Joule’s law; to be able to measure voltages and currents in a 
circuit; and to understand resistance variation with heat. The 
assessment test consisted of the analysis of two circuits (Fig. 3 
shows an example of a circuit 1 (C1) - left, and circuit 2 (C2) - 
right).  

 

Fig. 3. Examples of the two types of circuit used in the assessment test 

In C1, it was necessary to develop calculus work, 
simulation and remote lab. In C2, it was required to perform 
hands-on lab and simulation. This test design aimed to verify 
if: (1) students gained the required skills to make simple 
calculations involving simple circuits; (2) students were able to 
simulate the circuit behavior and extract circuit variables such 
as voltages and currents (Fig. 4); (3) students could measure 

voltages and currents in a real circuit, using a multimeter; (4) 
students could quickly mount the circuit in a remote lab and 
measure voltages and currents (Fig. 5); and (5), students could 
understand the benefits and pitfalls of each method. 

 

Fig. 4. Using the Circuit Simulator [28] to read the voltage/current in the 

100Ω resistor, in one of the circuits used in the individual lab assessment 

(in one of the test versions) 

 

Fig. 5. Using VISIR to measure the voltage/current in the 100Ω resistor, in 

one of the circuits used in the individual lab assessment (in one of the test 

versions) 

Since there were 3 classes distributed along several days of 
the week and students were on-line during the assignment, it 
was necessary for the teacher to undertake replication of 
similar tests (with the same difficulty level), but different 
enough to avoid copying. Twenty-four different test versions 
were produced (changing the components’ placement, and/or 
slightly changing the circuits, or changing the component 
under inspection, i.e. asking for the voltage/current of a 
different circuit component – see an example in Table I. This 
fact was communicated to students.   

TABLE I.  EXAMPLE OF A TEST VERSION SOLUTION 

Circuit 1 

Calculus Simulation Remote laboratory 

Reqv 

(Ω) 

Itotal 

(mA) 

Ptotal 

(mW) 

Read 

voltage 
(mV) 

Read 

current 
(mA) 

Ptotal 

(mW) 

Measure 

voltage 
(mV) 

Measure 

current (mA) 

108.7 18.4 36.8 UR82 

896.2 

IR82 

10.93 
36.8 UR82 

895.0 

IR82 

10.70 

Itotal 

18.21 

Circuit 2 

Simulation Hands-on laboratory 

Read voltage (mV) Read current (mA) Measure voltage 
(V) 

Measure 
current (mA) 

UL1 

78.42 

IL1 

98.56 

UL1 

1.049 

IL1 

80.1 

V. RESULTS AND ANALYSIS 

In this section, the main results are summarized after the 
analysis of the data. Additionally, a discussion about the 



recommendation phase is presented, as shown in the process 
described in Section III. 

A. Data Analysis 

A total of 63 students (80%) participated in the 
(compulsory) assessment test. As the test maps different 
competencies, since different resources are used, the results 
were obtained by item and by each student. The test itself 
consists of the analysis of two circuits (Fig. 3) in which each 
circuit has a set of questions, according to Table I. The results 
obtained by the students in each part can be seen in Fig. 6. 

    

Fig. 6. Tests results aggregated by resources 

In general, the students performed well considering C1 and 
C2. As can be noticed, the best results were achieved in the 
simulations and calculus in C1 with 77.78% and 65.61% of 
correct answers, respectively. For C1, the worst performance 
was achieved in the questions referring to the remote 
experimentation, with 50.79%. This indicates a certain 
difficulty that can be explained by the lack of understanding of 
certain concepts and the verification that students who attended 
fewer classes performed worse, which suggests a positive 
correlation between grades and students’ attendance. In C2, the 
worst results obtained were for simulation and hands-on 
laboratory, achieving 50.79% and 48.41% of correct answers, 
respectively. Likewise, in hands-on laboratory a correlation 
between class attendance and the obtained results is noticed. 

As already mentioned, 24 different versions of the test were 
prepared, each one distributed to 2 or 3 students randomly. In 
order to have a clearer understanding of the students’ aggregate 
performance, an analysis of each one of the questions was 
produced verifying the correctness of the answers. An answer 
to be considered correct to a particular question and a test 
version should not surpass the standard deviation of 5%. Above 
this value, the answer was considered wrong. Fig. 7 presents 
the data of each question considering the different test versions. 

The analysis was performed individually considering all 13 
questions (see Table I) for C1 and C2. Taking into account the 
answers provided by the students in each of the 24 versions, the 
standard deviation for each question was determined. 
Questions with up to 5% of standard deviation were considered 
correct. In other words, if the standard deviation of the 
students’ answers in a given test model showed a variation of 
up to 5% in relation to the correct answer, the question in that 
particular model was considered to have been answered 
successfully. Questions of a particular test model with a 

standard deviation greater than 5% were considered incorrect. 
The best results were obtained in C1 (Questions 1 to 9 - See 
Table I), with emphasis on the calculus and simulation 
approaches. The question with the best performance was the 
number 5 with correct answers in 20 (83.33%) of the test 
models. The worst performances were obtained in the 
questions in C2. Question 13 stands out with only 1 (4.17%) 
model in which the students provided answers respecting the 
limit of 5%. It is possible to observe that in general the errors 
occurred due to the use of measure units different from those 
requested in each question in a particular test version. For 
example, when a question whose result should be given in 
milliampere (mA) was instead answered in microampere (μA) 
or ampere (A), or even in volt (V). 

 

Fig. 7. Tests results aggregated by questions taken into account the 24 

versions 

B. Recommendation Approach 

In the second phase of the process, possible 
recommendations occur as the student answers the questions. 
For this purpose, there is an ontology populated with 
information coming from the database (previous phase) to 
create a knowledge base. The knowledge base enables 
inferences in order to make possible that recommendations be 
offered to students. Fig. 8 presents a fragment of the proposed 
ontology that supports this work. The ontology is composed of 
a set of classes representing the student, the test and the 
relationship between student and test. 

 

Fig. 8. Ontology proposed to support the recommendation phase. 

The Test class has a subclass that represents a model 
(Model class) since one test in particular can have several 



models. From the Model class, there is a hierarchical 
relationship with the Question class. The Question class 
allows composing the various instances of questions linked to a 
specific test model. The same hierarchy exists in the 
StudentTest class, which is related with the Student and the 
Test classes through object properties. From this class 
(StudentTest), it is possible to link each test model with a 
specific student thus maintaining students’ answers 
individualized. Considering the answers provided for each 
question, it is possible to analyze the expected results of a 
particular question by inference. Therefore, if the answer is 
outside some predefined boundaries in the ontology, 
recommendations can be provided trying to lead students to the 
correct answer. One of the possible recommendations would be 
to check the expected measure unit of a question when the 
value provided by the student is outside the boundary.  

At the end of the inference, if the answer for a particular 
question is wrong, the property that describes the measure unit 
can be used to provide a recommendation. Therefore, the 
student can accomplish a new attempt to answer that question. 
However, a retry can only be performed once. The new attempt 
is stored in the database to support further analysis of students’ 
performance in the process. This provides teachers with a 
better  understanding of the difficulties identified in each test 
model with possible impacts on the classes and on the students’ 
learning process. 

VI. CONCLUSION 

The current scenario in engineering education demands 
approaches that combine new proposals of teaching with 
sustainability. Better understanding of students’ performance 
on tests can positively impact the learning process. In this 
regard, a process supported by the concepts of Learning 
Analytics and Recommender Systems is presented in this 
paper. The results of a set of tests carried out by 
undergraduates of Automotive Engineering, following the 
Bologna model, were used as a case study. Each test aimed to 
evaluate the student in more than one approach, including 
calculus, simulation, hands-on and remote laboratories. 

The analysis of the tests aimed to obtain an overview of the 
performance on the various test models considering the various 
approaches used. A better performance was verified for circuit 
C1 in the calculus and simulations approaches. However, in the 
remote laboratory approach for C1, a performance inferior to 
that of the other resources was observed. This can be explained 
in part because the resource requires a higher level of training, 
having a greater learning curve. An individual analysis of the 
questions was also carried out. Again, considering the correct 
answers in each test model and with standard deviation of 5%, 
questions regarding circuit C1 for the calculus and simulation 
approaches showed better performance. The negative behavior 
in the questions referring to circuit C2, in which the percentage 
of questions with a standard deviation up to 5% was low, is 
highlighted. A predominance of questions with a standard 
deviation greater than 30% can be observed, as well as the use 
of unit measures incompatible with the expected answer.  

Individually, the analysis of each question also aimed to 
create evidence to establish a knowledge base that could 

support the recommendation phase. To exemplify that, a rule 
that aims to analyze the answer provided by the students to a 
particular question and test is discussed. If the answer remains 
outside of established boundaries, the student receives a 
suggestion to review the measure unit. The suggestion is made 
only once so that the student can make one more attempt to 
improve the final answer. The recording of the original answer 
and the new attempt can generate important inputs to provide 
teachers with information that can improve the classes and 
contribute to the students’ learning process. 
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