

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Growth and Characterization of SnSe₂ by selenization of sputtered metallic precursors

P.A. Fernandes^{a,b}, M.G.Sousa^a, P.M.P. Salomé^c, J.P. Teixeira^a, J.P.Leitão^a, A.F. da Cunha^a

^aI3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal ^bDepartamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal ^cInternational Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal

ABSTRACT

In the present work, we present a process to grow tin diselenide thin films by selenization at a maximum temperature of 470 °C, of tin metallic precursor layers deposited by dc magnetron sputtering.

For this maximum temperature, disklike grain morphologies were observed. Prominent XRD reflections at 20= 30.75°, 40.10° and 47.72° and vibration modes located at 119 cm⁻¹ and 185 cm⁻¹ were observed.

These results allowed concluding that the dominant phase is SnSe₂. The composition analysis, done by energy dispersive spectroscopy (EDS), showed that the films were close to being stoichiometric SnSe₂ with a Se to Sn ratio of 1.95.

Photoluminescence characterization was performed and revealed a dominant band at 0.874 eV and two other bands at ~0.74 and 1.08 eV with a lower relative intensities. The observed radiative transitions depend critically on the temperature.

MORPHOLOGICAL ...

SEM analysis reveals disk-like grains morphologies.

This feature is well explained by the SnSe₂ layered structure.

SEM/EDS Hitach SU-70 equipped with a Rontec EDS system operated at an acceleration voltage of 4.0 KV

... STRUCTURAL

The films are composed of the hexagonal-SnSe₂ phase. The peaks are sharp which suggests that the samples have good crystalline quality.

The peak located at a diffraction angle,

 $2\theta = 14.44^{\circ}$, corresponds to the (001) plane.

The formation of this phase from metallic

Sn precursors and Se vapour may be

interpreted as the result of the association

 $Sn(s) + 2Se(g) \longrightarrow SnSe_2(s)$

reaction defined:

GROWTH METHOD

The growth method used in this work is constituted by two stages:

- 1) Deposition of the metallic precursor layer, Sn, by DC magnetron sputtering;
- 2) Chalcogen incorporation, Se, and the annealing process, which allow the crystalline phase formation.

Selenezation system:

- Tubular furnace;
- Graphite box with 240 mg of high purity Se pellets;
- N_2 + 5% H_2 atmosphere at an operating pressure of 600 mbar;
- Heating rate: 10 Kmin⁻¹;
- Maximum selenization temperature: 470 °C.

GROWTH Reaction schematics of the formation of SnSe₂

XRD X'Pert MPD Philips PW 3710 system equipped with a CuK source

Raman scattering analysis allowed the assignment of peaks at 119 cm⁻¹ and 185 cm⁻¹ to the hexagonal-SnSe₂ phase and at 108 cm⁻¹ corresponding to the orthorhombic-SnSe phase.

Traces of condensed amorphous Se with a characteristic Raman peak located at 255 cm⁻¹ were observed.

RAMAN LabRam Horiba, HR800 UV spectometer, 532 nm excitation laser

... AND OPTICAL PROPERTIES OF TIN DISELENIDE THIN FILMS

At 7 K, three bands are +0.135observed: ~0.74, ~0.874 and . - 0.108 (îs ~1.08 eV. As temperature (T) is - 0.03 r 0.081 increased non-radiative deexcitation channels are 0.02 S . 0.054 ຫຼັ thermally activated: the Inte <u>ء</u> ر 0.027 dominant band at 0.874 eV 0.01 disappears for $T \sim 130$ K, whereas the intensity of the band at 0.74 eV increases; that band extinguish for T~170 K. 3

1.1

1.2

CONCLUSIONS

At low excitation power (P) values just the dominant band at 0.874 eV is observed; as P is increased, no saturation is present and the other two bands start to be observed

Two-step method can be used to grow SnSe₂ films. This method is based on the deposition of tin metallic layer and a post annealing process in a selenium atmosphere.

Selenization temperatures at 470 °C leads to films where SnSe₂ is the dominant phase.

Morphological analysis confirms the SnSe₂ disk-like grain morphology.

Optical analysis, at 7K, showed three bands located at 0.74, 0.874 and 1.08 eV.

ACKNOWLEDGMENTS

The portuguese science and technology

foundation (FCT) for sponsoring this work through grants

PTDC/CTM-MET/113486/2009, Pest-C/CTM/LA0025/2011 and RECI/FIS-NAN/0183/2012.

Bruker IFS 66v FTIR spectometer, equipped with a Ge diode detector