

Linux Based Ethernet Communication for Xilinx FPGAs

Rodrigo Souza1, Golberi Ferreira1, André Fidalgo2

1IFSC, Florianópolis, Brasil ; 2ISEP, Porto, Portugal
rodrigo.souza@ifsc.edu.br, golberi@ifsc.edu.br, anf@isep.ipp.pt

Abstract

This article presents the implementation of an
Ethernet communication platform for use on Xilinx
FPGAs. The proposed solution relies on a
synthesized embedded system to provide network
data transfer and control capabilities, for use with
synthesizable electronic devices. Most TCP/IP stack
services and protocols were implemented and the
design is flexible to allow adaptation and/or
expansion for different application scenarios.
Currently this platform is being used on the
development of a FPGA based JTAG controller,
with remote access. The embedded system hardware
requires a MicroBlaze softcore microprocessor
running a Petalinux operating system.

1. Introduction

Computer networks and the Internet are

increasingly present in order to meet the demand for
quick real time access to information from remote
locations. This is often true for common electronic
products and particularly important for high-tech
industries, were time-to-market and quality concerns
are a major competitive factor. It can be very
important and sometimes critical that an electronic
device provides access to computer networks for
data communication and remote control. In this
context, the inclusion of network access on
reconfigurable electronic devices is fundamental.

FPGAs are frequently used for prototyping and
actual implementation of electronic devices,
particularly if these are commercialized on small
scale. One good example would be medium
performance digital testers which can be modified to
adapt to different target devices, better FPGAs or
different customer needs. Although several FPGAs
already include Ethernet port support, their use is
often difficult to implement and/or requires
expensive proprietary solutions, which are often
difficult to customize or reuse.

Our objective was the implementation of a
communication platform that would allow network
access via the Ethernet port present on most Xilinx
FPGAs, that could be synthesized together with user
designed electronic devices (in VHDL format) and

requiring only Xilinx development tools and open-
source software. The embedded system concept is
presented on Figure 1.

Fig. 1. System Concept

The Requester represents a generic electronic
device, implemented on the FPGA, which requires
and/or provides network services. The interface
between the requester and the communication
platform requires two FIFO devices for data
buffering, both to address synchronization problems
and avoid loss of data, while maintaining
compatibility with most target devices. For
communication between the Requester and an
external computer it is necessary to implement the
required TCP/IP layers protocols [1]. In our proposal
this is performed by a synthesized embedded
system, developed with Xilinx Platform Studio
(XPS) [2], built around a MicroBlaze softcore
microprocessor [3], running the Petalinux embedded
Linux release [4]. This solution was chosen due to
the academic focus of this implementation, the user-
friendly interface of XPS, which facilitates the
manipulation of MicroBlaze embedded system and
the portability of Petalinux for Xilinx FPGAs.
Furthermore, the wide range of networking features
and the ease of integration of C applications
provided by Petalinux was also relevant. XPS offers
a transparent implementation process, which allows
the direct use of most Xilinx FPGA models and a
direct link with the Integrated Software Environment
(ISE).

The communication platform concept and
features are presented in section II while section III
presents its implementation details. Section IV
presents a brief result analysis, and in section V we
draw some conclusions from the ongoing work.

2. Communication Platform

The communication platform consists of an
embedded system synthesized into a FPGA,
involving hardware and software components [5].
The TCP / IP protocols and most other necessary
functions run on a microprocessor, therefore being
mostly implemented in software.

A. The embedded system hardware

The main hardware component of an embedded
system is the microprocessor. There are several
types of microprocessors available that can be
implemented in Xilinx FPGAs as the ZPU, MB-Lite,
Wishbone High Performance Z80, among others.
However, an embedded system requires other
components like buses, RAM and ROM memories,
and other specialized devices such as a MAC
network controller. The integration of all these
devices within an FPGA and the synthesis of the
working embedded system is a complex task that
requires considerable effort and/or experience.

The Xilinx XPS tool was selected as a
development environment. It relies on the use of
intellectual property (IP) cores from Xilinx, like the
MicroBlaze softcore microprocessor , the PLB bus,
the MAC network controller (known as Ethernet
Lite), as well as external devices connected to the
FPGA, such as RAM and FLASH memories, to
build all the embedded system hardware.

A critical IP core is the General Purpose
Input/Output (GPIO), which has a configurable
number of data ports, where any device synthesized
in the FPGA can be connected. This allows the use
of the GPIO to interconnect any requester device (or
devices) with the communication platform.

B. The embedded system software

The embedded system performs its functions in
accordance with the software running in the
microprocessor. The operating system and running
applications must implement the required functions
and protocols of the TCP / IP stack and manage
communication with the requesting device. The
Petalinux (from Petalogix) was chosen as the
operating system, being a commercial Linux
distribution for microprocessors implemented on
Xilinx FPGAs, including the MicroBlaze softcore
microprocessor and PowerPC 405 and 440 hardcore.
The Petalinux has drivers for multiple IP cores from
Xilinx, drivers for the GPIO and the Ethernet Lite,
as well as native TCP/IP stack with various
protocols such as ARP, TCP, UDP, ICMP, DHCP,
and services such as HTTP, Telnet, SSH, FTP,
among other valuable network features.

In addition, the Petalinux provides facilities that
allow adding a user space program to its command
list. In this manner it is possible to write a user space

program in C that manages communication with the
requester device.

3. Implementation

The communication platform implementation is

somewhat dependent on the requester device
architecture, because the GPIO ports must be
configured in a way that allows its interconnection.
Given this fact, we defined a common scenario,
where a remote computer uses Telnet and FTP
services (hosted on the embedded system), to send
and receive hexadecimal data (directly or in file
format) to the requester device (synthesized on the
FPGA), via an Ethernet network. This represents the
typical environment and is sufficient for most
applications.

The requester device has its own internal logic,
but must implement, two additional FIFOs, for data
buffering, called GPIO_to_FIFO (input buffer) and
the FIFO_to_GPIO (output buffer). The internal
logic of the requester device receives data from
GPIO_to_FIFO and sends data to FIFO_to_GPIO.

The communication platform implements two
communication ports which can be connected to any
module present on the FPGA, including user made
modules. These are called GPIO_OUT and a
GPIO_IN and are connected respectively, to
GPIO_to_FIFO and FIFO_to_GPIO on the requester
device. The connection thus created allows the
communication of data between the remote
computer and the requester device, via the GPIO
ports and buffer FIFOs. The prototype scenario was
based on a simple requester device, coded in VHDL
and designed to control some LEDs and read the
state of several switches, on the FPGA. This device
and the communication platform were synthesized
together on a Spartan 3E500 Starter Kit, using
Petalinux v0.40 and the ISE and XPS 11.5 version.

A. Hardware Implementation

As explained, the communication platform
hardware is implemented using XPS. However, the
system is not fully synthesized within the FPGA,
and other devices in the Spartan 3E500 Starter Kit
(connected to the FPGA) are also part of the
embedded system (e.g. the Ethernet Port). Even so,
most of the embedded system devices are
synthesized within the FPGA and connected to the
PLB bus. All the devices connected to the PLB are
slaves controlled by the MicroBlaze which is the
master. Figure 2 illustrates the embedded system
architecture on the Spartan 3E Starter kit, showing
how hardware components are connected and which
are synthesized within the FPGA and which are
autonomous ICs.

Fig. 2. Embedded System Architecture

To connect the requester device to the GPIO port
is necessary to export the embedded system design
created in XPS to ISE. This is required to connect
the requester device ports to the embedded system
GPIO port.

B. Software Implementation

In the communication platform, the Petalinux is
responsible for managing and implementing the
communication with the requester device, as well as
executing part of the TCP/IP stack functions. Thus,
its components must be configured and implemented
according to the type of network communications
required and in compliance with the requester device
architecture. The Petalinux System Development Kit
(SDK) is a required tool to configure and compile
Petalinux for the target embedded system. The tool
has, among other features, a setup menu, automation
scripts of Petalinux configuration routines and
implementation and integration with the Xilinx XPS.

1) Configuration of the TCP/IP stack: The Petalinux
has several TCP/IP stack services and protocols that
can be added or removed through the setup menu.
Some of them, such as TCP, UDP, IP, ICMP, DNS,
web server, Telnet server and FTP file transfer
server, are added by default during cross compiling.
However, there are other protocols, which may be
enabled on setup menu (e.g. DHCP). Despite this,
Petalinux implements only a portion of the TCP/IP
stack layers. The remaining are implemented by a
MAC network controller (Ethernet Lite), and by the
IC responsible for the interface with the analogue
environment (Ethernet PHY). The Table 1 shows
which layers are implemented by the Petalinux, the
MAC network controller and the Ethernet PHY, as
well as some of the protocols stipulated, according
to the proposed implementation scenario.

Responsible TCP/IP stack layers Protocols

Petalinux

Application Telnet,
FTP, DHCP

Transport TCP, UDP
Internet IP, ICMP

Host-to-
network

LLC
Ethernet Ethernet Lite MAC

Ethernet PHY Physical

Table 1. TCP/IP stack implementation

2) Implementation of the Translator: The translator
is the software that manages and executes the
communication with the requester device through
the GPIOs. Thus, the two main functions of the
translator are: (1) send and receive data from the
requester device and (2) format it so that it can be
understood by the application layer service used in
communication. To ease the data formatting task for
the application layer service, the translator was
developed in the C programming language, as a user
space application and added to the Petalinux
command list. In this way, the application layer
services can easily access the translator, invoking
the command line that calls it (in Petalinux), in order
to send or receive data, passing the necessary
arguments and handling command returns.
Implemented this way, the translator can be accessed
via Telnet commands. Considering the scenario
proposed for the communication platform, six
separate translator programs were developed, their
functions being shown in Table 2.

Name Function

writereset Reset and clean FIFO IN memory
writefifo Write hexadecimal data in FIFO IN

writefifofile Write hexadecimal data file in FIFO IN
readreset Reset and clear FIFO OUT memory
readfifo Reads hexadecimal data from FIFO OUT

readfifofile Stores in a file the hexadecimal data read
from FIFO OUT

Table 2. Program Translators

These programs were designed to be flexible and

can be directly used (or adapted to) by different
requester hardware. The operational logic of the six
programs is based on the FIFO operation paradigm,
whereas the GPIOs are connected to the FIFOs, and
also adjusted to the function of each program, which
can be the return of a reading or the storage of such
data on a file. To access the GPIO, the program
translators use the IOCTL commands from xgpio
ioctl.h library, which is the C library on Linux for
Xilinx GPIO.

The GPIO speed of operation depends on how
long it takes for MicroBlaze to process the IOCTL
instructions of the translator program. That time is

not deterministic, since the microprocessor may
have to handle multiple tasks that, in a non real-time
operating system, may require a variable number of
machine cycles. Therefore, the speed of reading and
writing data from/to the GPIO is not precise or even
constant. In the proposed scenario, the readfifofile
translator program was able to read data from FIFO
OUT at a speed of up to 3.3 kHz, sometimes
decreasing to 2 kHz.

4. Results

The main outcome from the described work was

the communication platform itself, which provides a
technical path to implement connectivity via a
computer network, for FPGA synthesized devices.
The use of Xilinx tools and the modular design
allows the use of the proposed solution on most
Xilinx FPGAs, requiring only an Ethernet connector
and the necessary logic area. It should be noted that
on a Spartan-3E FPGA, which is a rather small
FPGA for modern standards, the embedded system
required less than 4300 Slice Flip Flops of the target
FPGA. For this purpose, the Microblaze must be
configured on a reduced configuration, without
MMU, thus reducing the logic occupation of the
communication platform. Once the systems is
present, it is possible add additional GPIOs to
connect other synthesized devices to the
communication platform.

The main software contribution is the functional
Petalinux port for the embedded system (created by
XPS), with all required drivers. Petalinux proved to
be robust and reliable, providing various computers
network services and the required flexibility for
applications development. Another important
software contribution is the six translators programs
that access and control the GPIO ports. These are
invoked as Petalinux commands, being accessed by
the application layer services. In practice this means
that they can be invoked via the computer network.

The proposed plataform is curretly being used to
implement a VHDL based JTAG controller, with
network support [6]. Considering the robustness and
flexibility of the platform, it is clear that it
comprehensively addresses the communication
needs of such devices, particularly if synthesized
into FPGAs, which may prove to be an important
contribution for the remote maintenance of
electronic devices.

In short, the proposed communication platform is
a very effective and versatile solution to provide
FPGA synthesized devices with Ethernet network
access, for efficient data communication and remote
online control.

5. Conclusions

The validation of the communication platform
evaluation scenario showed that the implementation
of a TCP/IP stack, using an embedded system was
accomplished. The communication platform
implemented met effectively the required
communication functionalities, using a common
computer network. The use of XPS makes most
concepts of hardware implementation of an
embedded system practically transparent, including
the FPGA model. Combining this with the flexibility
and robustness of Petalinux, allows the creation of a
simple environment, but one that is rich in features
and implementation options. Basing the
communication platform in these two tools allows
the transfer of part of the transparency and ease of
implementation to the communication platform
itself.

If we consider a device that will use the platform
to communicate with a network of computers, our
proposal provides three important solutions: (1) the
configuration of the TCP/IP layer services; (2) the
implementation of the translators and (3) the
configuration of the GPIO. The platform
development has other requirements, which are
related to operation, not functionality. The inclusion
of Petalinux SDK and Xilinx XPS tools makes the
development of the hardware and software included
on the platform simpler and more transparent, which
also translates into making the platform much more
user-friendly (for users and developers).

As future developments on this area it is planned
to automatize several development steps, like the
translator implementation, the platform creation (on
XPS) and the Petalinux compilation, among others.
The GPIO operating frequency, controlled by
Petalinux, is still a problematic factor for the
platform, namely when the requester device requires
high data rate communications. Thus, in order to
improve platform performance, we are currently
analyzing the possibility of connecting the requester
device directly to the embedded system bus (and its
clock signals).

References

[1] Tanenbaum, A.S., Computer Networks, 4 ed., Prentice

Hall PTR, 2003
[2] Xilinx, Xilinx Platform Studio (XPS), 2010 [Online]
[3] Xilinx, MicroBlaze Soft Processor, 2010 [Online]
[4] Petalogix, PetaLinux SDK Docummentation, 2010

[Online]
[5] Rodrigo Neri de Souza, “Plataforma de Comunicacão

Ethernet para dispositivos embarcados em FPGAs da
Xilinx”, Undergraduate Thesis, IFSC, Brazil, 2010

[6] Ricardo Costa, “Controlador Boundary Scan”,
Master’s Thesis, ISEP, Portugal, 2010

