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Abstract – This paper presents several experiments with a 
genetic algorithm (GA) for designing combinational logic 
circuits. The study addresses the population size and the 
processing time for achieving a solution in order to establish a 
compromise between the two parameters. Furthermore, it is 
also investigated the use of different gate sets for designing 
the circuits namely RISC and CISC like gate sets.  
 

I. INTRODUCTION 
 

It is well known that GAs are widely used as search and 
optimization techniques that have many areas of 
application. The success of GAs depends on the right 
parameter setting, such as the population size, and on the 
interaction of the different operators, namely the crossover 
and the mutation operators, which create new individuals 
from existing ones [1]. This paper concentrates on studying 
population sizing for obtaining the minimum processing 
time of GAs applied to the design of combinational logic 
circuits [18]. 

Bearing this fact in mind, this paper is organized as 
follows. Section 2 deals with population sizing 
background. Section 3 presents the GA used in terms of the 
circuit encoding as a chromosome, the genetic operators 
and the fitness function and section 4 develops several 
simulations and analyzes the results. Finally, section 5 
outlines the main conclusions. 
 

II. POPULATION SIZING 
 

Increasing the optimization complexity leads to the need 
for larger population size. Therefore, it is important to 
understand the role of the population in GA processes. 
Goldberg, Deb and Clark (1992) proposed population 
sizing models for different selection schemes. Their model 
is based on deciding correctly between the best and the 
second best building blocks (BBs) in the same partition. 
They incorporate noise arising from other partitions into 
their model. However, they assume that if wrong BBs are 
chosen in the first generation, then the GA is unable to 
recover from the error [3]. Harik, Cantu-Paz, Goldberg and 
Miller (1997) refined the previous model by incorporating 
cumulative effects of decision making over time rather 
than in the first generation only. These authors modelled 
the decision making between the best and the second best 
BBs in a partition as a gambler’s ruin problem [4]. This 
scheme is based on the assumption that the selection 
process consists on a tournament selection without 
replacement. Miller (1997) extended this model to predict 
population sizing in the presence of external noise [7]. 

Bearing these ideas in mind, we observe that the major 
work done in the population sizing of GAs can be divided 
into two main groups, namely the population sizing based 

on initial supply of BBs and the population sizing based on 
good decision making between competing BBs [1]. Both 
issues are combined together in the Gambler’s Ruin model 
[4].  
 
A. Building Blocks supply  
 

The question of how to choose an adequate population 
size for a particular domain is complex. If the population is 
too small, it is not likely that the GA will find a good 
solution for the problem running only on a few 
generations. On the other hand, if the population size is 
increased, in order to find high quality solutions, the GA 
will waste time processing unnecessary individuals, and 
this may result in an unacceptably slow performance. The 
problem consists of finding a population size that is large 
enough to permit a correct exploration of the search space 
without wasting computational resources. 

There are two approaches to the BBs supply question, 
one spatial and one temporal. The spatial approach seeks to 
adjust the population size adequately to ensure, 
probabilistically, that sufficient diversity and numbers of 
BBs are present initially, thereby supplying the genetic 
algorithm with material for subsequent search. The 
temporal approach assumes the existence of a mutation or 
another diversity generator to return sufficient BB diversity 
on an appropriate time scale [5]. 

The issue of BBs supply was raised by Holland (1973) 
that was followed by several others investigators such as 
De Jong (1975), Grefenstette (1986), Goldberg (1985, 
1989), Alander (1992) and Reeves (1993), all of them 
studying and improving population sizing theory. 
Recently, minimum population size that has all raw of BBs 
has been estimated and experimentally verified by 
Goldberg, Sastry and Latoza (2001). 
 
B. Building Blocks decision-making  
 

The building block decision problem is the recognition 
that the GA can make mistakes when deciding between a 
BB and its competitors. Over the years, theoretical models 
have addressed this topic beginning with Holland (1973, 
1975) followed by De Jong (1975) and Goldberg (1989). 
Holland’s work was further analysed by recent studies [16] 
where the population size was calculated in the presence of 
collateral noise leading to an equation that has proved to be 
very conservative. 

The above model was improved by, combining initial 
supply of BBs, and correct selection of the best BB over its 
competitors. The result is an equation that relates the size 
of the population with the desired quality of the solution, 
as well as the problem size and difficulty. 
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C. Building Blocks mixing  
 

The above models have ignored the effect of genetic 
operators on the population sizing. Yet, some work has 
been done in analysing recombination operators in the 
view point of a diversity preservation tool. Only a few 
studies have been performed in developing facetwise 
models to analyze recombination as an innovation operator 
[17]. Therefore, there is an immediate need for a better 
facetwise scheme that addresses the BB mixing problem 
and analyzes fixed recombination to answer the mixing 
question. 

Most of the above models, although accurate, are 
difficult to apply in practice because they rely on several 
assumptions that may not hold for real-world problems. 
 

III. THE ADOPTED GENETIC ALGORITHM 
 
A. Problem definition  
 

In this article a GA strategy is adopted to design 
combinational logic circuits. The circuits are specified by a 
truth table and the goal is to implement a functional circuit 
with the least possible complexity. Several sets of logic 
gates have been defined, as shown in Table 1, being Gset 
1a and 1b the simplest ones (i.e., a RISC-like sets) and 
Gset 6 the most complex (i.e., a CISC-like set). 
 

Table 1 Gate sets 
 

Gate Set Logic gates 
Gset 1a {NAND,WIRE} 
Gset 1b {XOR,WIRE} 
Gset 2 {AND,XOR,WIRE} 
Gset 3 {AND,OR,XOR,WIRE} 
Gset 4 {AND,OR,XOR,NOT,WIRE} 
Gset 5 {AND,OR,XOR,NOT,NAND,WIRE} 
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE} 

 
For each gate set the GA searches the solution space, 

based on a simulated evolution aiming the survival of the 
fittest strategy. In general, the best individuals of any 
population tend to reproduce and survive, thus improving 
successive generations. However, inferior individuals can, 
by chance, survive and also reproduce [2]. In our case, the 
individuals are digital circuits, which can evolve until the 
solution is reached (in terms of functionality and 
complexity). 
 
B. Circuit enconding 
 

In the GA scheme the circuits are encoded as a 
rectangular matrix A (row × column = r × c) of logic cells 
as represented in figure 1. 

Each cell is represented by three genes: 
<input1><input2><gate type>, where input1 and input2 
are one of the circuit inputs, if they are in the first column, 
or one of the previous outputs, if they are in other columns. 
The gate type is one of the elements adopted in the gate 
set. The chromosome is formed by as many triplets of this 
kind as the matrix size demands. For example, the 
chromosome that represents a 3 × 3 matrix is depicted in 
figure 2. 

 

Fig. 1. A 3 × 3 matrix A representing a circuit with input X and output Y. 

 
0 1 2 … 24 25 26 genes 
Input Input Gate … Input Input Gate  

a11  a33 matrix 
element 

 
Fig. 2. Chromosome for the 3 × 3 matrix of figure 1. 

 
C. The genetic operators 
 

The initial population of circuits (strings) is generated at 
random. The search is then carried out among this 
population. The three different operators used are 
reproduction, crossover and mutation, as described in the 
sequel. 

In what concern the reproduction operator, the 
successive generations of new strings are reproduced on 
the basis of their fitness function. In this case, it is used a 
tournament selection [2] to select the strings from the old 
population, up to the new population. 

For the crossover operator, the strings in the new 
population are grouped together into pairs at random. 
Single point crossover is then performed among pairs. The 
crossover point is only allowed between cells to maintain 
the chromosome integrity. 

The mutation operator changes the characteristics of a 
given cell in the matrix. Therefore, it modifies the gate 
type and the two inputs, meaning that a completely new 
cell can appear in the chromosome. Moreover, it is applied 
an elitist algorithm and, consequently, the best solutions 
are always kept for the next generation. 

To run the GA we have to define the number of 
individuals to create the initial population P. This 
population is always the same size across the generations, 
until the solution is reached. 

The crossover rate CR represents the percentage of the 
population P that reproduces in each generation. Likewise 
MR is the percentage of the population P that mutates in 
each generation. 
 
D. The fitness function 
 

The calculation of the fitness function F is divided in 
two parts, f1 and f2, which measure the functionality and 
the simplicity, respectively. In a first phase, we compare 
the output Y produced by the GA-generated circuit with 
the required values YR, according with the truth table, on a 
bit-per-bit basis. By other words, f1 is incremented by one 
for each correct bit of the output until f1 reaches the 
maximum value f10, that is, when we have a functional 
circuit. Once the circuit is functional, in a second phase, 
the GA tries to generate circuits with the least number of 
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gates. This means that the resulting circuit must have as 
much genes <gate type> ≡ <wire> as possible. Therefore, 
the index f2, that measures the simplicity (the number of 
null operations), is increased by one (zero) for each wire 
(gate) of the generated circuit, yielding: 
 

f10 = 2ni × no (1a) 
f1 = f1 + 1 if bit i of Y = bit i of YR, i = 1, …, f10 (1b) 
f2 = f2 + 1 if gate type = wire (1c) 

1 10

1 2 10

,
,

f F f
F

f f F f
<⎧

= ⎨ + ≥⎩
 (1d) 

 
where ni and no represent the number of inputs and outputs 
of the circuit. 
 

IV. EXPERIMENTS AND SIMULATION RESULTS 
 

Reliable execution and analysis of a GA usually requires 
a large number of simulations to provide a reasonable 
assurance that stochastic effects have been properly 
considered [8]. Therefore, in this study are developed 
n = 40 simulations for each case under analysis. 

The experiments consist on running the GA to generate 
a typical combinational logic circuit, namely a 2-to-1 
multiplexer. The circuit is generated with gate sets 
presented in Table 1 for CR = 95%, 5% ≤ MR ≤ 90% and 
6 ≤ P ≤ 104. 
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Fig. 3. PT  versus (P, MR) with CR = 95% using Gset 1a up to Gset 6 for 

the 2-to-1 Multiplexer 
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In order to obtain the processing time PT to achieve the 
solution, the following steps are implemented: 
i. We calculate the median me(Ns) of the number of 

generations to achieve the solution Ns; 
ii. We estimate the processing time for one generation 

PT1 using the average when running five simulations; 
iii. The processing time to achieve the solution PT is: 
 

PT = me(Ns) × PT1 (2) 
 

The 2-to-1 multiplexer circuit has a truth table with 3 
inputs X = {S0, I0, I1} and 1 output Y = {O}. In this case, 
the matrix A has a size of r × c = 3 × 3 and the length of 
each string representing a circuit (i.e., the chromosome 
length) is CL = 27. 

Figure 3 shows the processing time PT for gate sets 1a 
to 6, respectively. With Gset 1b it was impossible to 
achieve a solution. 
 

It is clear that PT decreases with P. However, for very 
small populations the GA has an extreme difficulty in 
obtaining a solution, due to the lack of BBs, which leads to 
an increase of the PT. For P < 50, in 5% of the simulations, 
the GA ends without giving a solution. Therefore, for the 
2-to-1 multiplexer circuit it is better to use population sizes 
50 ≤ P ≤ 100. Table 2 presents the best PT for each gate 
set. 
 

Table 2 
 

Gate Set P MR Minimum PT 
(seconds) 

Gset 1a 70 5% 0.05742 
Gset 2 70 10% 0.11656 
Gset 3 60 5% 0.11109 
Gset 4 70 10% 0.13533 
Gset 5 70 10% 0.19287 
Gset 6 50 5% 0.13400 

 
The best performance goes to Gset 1a with PT = 57.42 

ms for P = 70 and MR = 5%. 
In what concerns MR the conclusion is that its influence 

upon the PT seems to be of minor importance. 
Nevertheless, the best results occur with 5% ≤ MR ≤10%, 
with exception of Gset 6 as can be confirmed by figure 4 
which presents PT for solution versus MR for all the gate 
sets under study. 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

5 10 15 30 60 90

Mutation Rate (MR)

P
T 

fo
r S

ol
ut

io
n

Gset 1a
Gset 2
Gset 3
Gset 4
Gset 5
Gset 6

 
 

Fig. 4.  PT for solution versus MR, with CR = 95% and P = 70, for the 
2-to-1 Multiplexer 

We verify that PT1 increases significantly with P but is 
almost independent of MR. Figures 5 and 6 show PT1 
versus P and MR, respectively, for CR = 95% and 
MR = 5%. 
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Fig. 5. PT1 versus P with CR = 95% and MR=5% for the 2-to-1 
Multiplexer 
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Fig. 6. PT1 versus MR with CR = 95% and P = 70 for the 2-to-1 
Multiplexer 

 
The above experiments were based on the number of 

generations to achieve the solution Ns, for several 
combinations of the parameters CR, MR, P and gate sets. 
The results reveal that the number of generations to 
achieve the solution Ns has a Pareto distribution, that is, 
has a probability density function: 
 

f (ns) = cac / ns
c+1, ns ≥ a (3) 

 
The density function qualitatively resembles that of the 

exponential distribution, but decays far more slowly, i.e., 
has a longer “tail”. It has been much used in economics 
(where Pareto first introduced it as describing the 
distribution of incomes) but is of possible utility as a 
model in any situation demanding a long-tailed one-sided 
distribution. Thus, the probability that a random income, in 
some defined population, exceeds a minimum, a, is 
~Pareto. 

The parameters (a, c), scale and shape parameters, 
respectively, can be estimated through the maximum 
likelihood method: 
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a = min xi (4a) 

∑=
n

x
i

i

axnc
min

)/ln()/1(/1  (4b) 

 
Unfortunately, since the estimation of the Pareto 

parameters are based on a minimum we can get some error 
even after analysing a large volume of data. 
 

The median of the Pareto distribution is calculated by: 
 

me(NS) =a 21/c (5) 
 

In order to evaluate the statistics of NS new experiments 
were developed. In order to compare results we consider 
not only the 2-to-1 multiplexer but also the 4-bit parity 
(even) checker. The 4-bit parity checker has a truth table 
with four inputs X = {A3, A2, A1, A0} and one output 
Y = {P}. The size of the matrix is r × c = 4 × 4 and the 
chromosome length is CL = 48. 

 This experiments consider the gate sets of Table 1 for 
n = 1000 simulations.. Figure 7 presents the results 
obtained comparing the Pareto median with the 
experimental median, for the two circuits. The other gate 
sets lead to similar results.  

For the 4-bit parity checker it is used the Gset 1b (with 
Gset 1a it was not possible to achieve a solution), and 
results are not presented for P = 104 because a solution 
always appears on the initial population. 
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Fig. 7. Medians versus P with CR = 95% and MR = 5% for the 2-to-1 
Multiplexer, using Gset 1a and n = 1000. 
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Fig. 8. Medians versus P with CR = 95% and MR = 5% for the 4-bit 
Parity Checker, using Gset 1b and n = 1000. 

 
 
 

We observe a close agreement but the need of a large 
number of experiments for estimating (a, c). 

Bearing this statistical requirements in mind, figure 9 
depict the parameters (a, c) for CR = 95%, MR = 5%, 
P = 70, n = 1000 and the six gate sets. 

We have inverse monotonic variation of (a, c), with the 
gate set complexity. 
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Fig. 9. Parameters (a, c) versus Gsets with CR = 95%, MR = 5%, P = 70 

and n = 1000 for the 2-to-1 Multiplexer and the 4-bit Parity Checker. 
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Another important aspect consists on the variability of 
the GA to attain the solution. In this line of thought the 
inter-decile interval ID are also calculated in figure 10 for 
both circuits. 
 

2-to-1 Multiplexer

0

100

200

300

400

500

600

700

Gset 1a Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

I D

 
 

4-bit Parity Checker

0

20

40

60

80

100

120

140

160

Gset 1b Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

I D

 
 
Fig. 10. ID versus Gsets with CR = 95%, MR = 5% and P = 70 for the 2-

to-1 Multiplexer and the 4-bit Parity Checker. 
 

We verify again a monotonic-like variation leading to a 
large variability, particularly for Gsets 4, 5 and 6. 
 

VI. SUMMARY AND CONCLUSIONS 
 

This paper studied the influence of the population size 
on the processing time to obtain a solution, in this 
particular case consists on a digital circuit. The results 
demonstrate that, even the GA required number of 
generations decreases as the population size increases, the 
best processing time to achieve a solution occur for small 
population sizes. 

It was also analyzed the performance of several different 
gate sets. Following the RISC vs CISC processor dilemma 
we conclude that the RISC gate sets have superior 
performances to the CISC gate sets. Nevertheless, we have 
to be careful when using gate sets with only one logic gate, 
because it depends of the digital circuit that we are 
generating. Consequently, the extreme case of RISC sets 
can be not robust to distinct circuit demands. 

An important theoretical conclusion is that the number 
of generations to achieve a solution has a Pareto 
distribution. Therefore, we have a mathematical basis to 
evaluate the statistical performance of the GA schemes. 
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