
HFA
Hungarian FuzzyAssociation

Budapest Tech, Hungary

Vienna University of Technology, Austria

IEEE SMC Chapter, Hungary
IEEE NN Chapter, Hungary
IEEE Joint Chapter of IES and RAS, Hungary
IEEE R8
IEEE Systems, Man, and Cybernetics Society

Japan Society for Fuzzy Theory and Intelligent Informatics

John von Neumann Computer Society, Budapest, Hungary

EUROFUSE

Sponsors

IEEE Catalog Number 04EX894
ISBN 0-7803-8588-8

Library of Congress: 2004106480

IE
E

E
 C

a
ta

lo
g

 N
u

m
b

e
r 0

4
E

X
8
9
4

IS
B

N
 0

-7
8
0
3
-8

5
8
8
-8

L
ib

ra
ry

 o
f C

o
n

g
re

s
s
: 2

0
0
4
1
0
6
4
8
0

ICCC 2004

2004 International Conference on
Computational Cybernetics

Proceedings

2
0
0
4
 In

tern
a
tio

n
a
l C

o
n

feren
ce o

n
C

o
m

p
u

ta
tio

n
a
l C

y
b

ern
etics

Hungarian Fuzzy Association

Budapest Tech, Hungary

Vienna University of Technology, Austria

IEEE SMC Chapter, Hungary

IEEE NN Chapter, Hungary

IEEE Joint Chapter of IES and RAS, Hungary

IEEE R8

IEEE Systems, Man, and Cybernetics Society

EUROFUSE

Japan Society for Fuzzy Theory and Intelligent
Informatics

John von Neumann Computer Society,
Budapest, Hungary

Vienna, Austria - August 30 - September 1, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Population Size and Processing Time in a Genetic Algorithm

Cecília Reis 1, J. A. Tenreiro Machado1 J. Boaventura Cunha2
1Institute of Engineering of Porto 2University of Trás-os-Montes and Alto Douro

Polytechnic Institute of Porto Engineering Department
Rua Dr. António Bernardino de Almeida, 4200-072 Porto Apt. 1013, 5000-911 Vila Real

Portugal Portugal
{cecilia, jtm}@dee.isep.ipp.pt jboavent@utad.pt

Abstract – This paper presents several experiments with a
genetic algorithm (GA) for designing combinational logic
circuits. The study addresses the population size and the
processing time for achieving a solution in order to establish a
compromise between the two parameters. Furthermore, it is
also investigated the use of different gate sets for designing
the circuits namely RISC and CISC like gate sets.

I. INTRODUCTION

It is well known that GAs are widely used as search and
optimization techniques that have many areas of
application. The success of GAs depends on the right
parameter setting, such as the population size, and on the
interaction of the different operators, namely the crossover
and the mutation operators, which create new individuals
from existing ones [1]. This paper concentrates on studying
population sizing for obtaining the minimum processing
time of GAs applied to the design of combinational logic
circuits [18].

Bearing this fact in mind, this paper is organized as
follows. Section 2 deals with population sizing
background. Section 3 presents the GA used in terms of the
circuit encoding as a chromosome, the genetic operators
and the fitness function and section 4 develops several
simulations and analyzes the results. Finally, section 5
outlines the main conclusions.

II. POPULATION SIZING

Increasing the optimization complexity leads to the need
for larger population size. Therefore, it is important to
understand the role of the population in GA processes.
Goldberg, Deb and Clark (1992) proposed population
sizing models for different selection schemes. Their model
is based on deciding correctly between the best and the
second best building blocks (BBs) in the same partition.
They incorporate noise arising from other partitions into
their model. However, they assume that if wrong BBs are
chosen in the first generation, then the GA is unable to
recover from the error [3]. Harik, Cantu-Paz, Goldberg and
Miller (1997) refined the previous model by incorporating
cumulative effects of decision making over time rather
than in the first generation only. These authors modelled
the decision making between the best and the second best
BBs in a partition as a gambler’s ruin problem [4]. This
scheme is based on the assumption that the selection
process consists on a tournament selection without
replacement. Miller (1997) extended this model to predict
population sizing in the presence of external noise [7].

Bearing these ideas in mind, we observe that the major
work done in the population sizing of GAs can be divided
into two main groups, namely the population sizing based

on initial supply of BBs and the population sizing based on
good decision making between competing BBs [1]. Both
issues are combined together in the Gambler’s Ruin model
[4].

A. Building Blocks supply

The question of how to choose an adequate population
size for a particular domain is complex. If the population is
too small, it is not likely that the GA will find a good
solution for the problem running only on a few
generations. On the other hand, if the population size is
increased, in order to find high quality solutions, the GA
will waste time processing unnecessary individuals, and
this may result in an unacceptably slow performance. The
problem consists of finding a population size that is large
enough to permit a correct exploration of the search space
without wasting computational resources.

There are two approaches to the BBs supply question,
one spatial and one temporal. The spatial approach seeks to
adjust the population size adequately to ensure,
probabilistically, that sufficient diversity and numbers of
BBs are present initially, thereby supplying the genetic
algorithm with material for subsequent search. The
temporal approach assumes the existence of a mutation or
another diversity generator to return sufficient BB diversity
on an appropriate time scale [5].

The issue of BBs supply was raised by Holland (1973)
that was followed by several others investigators such as
De Jong (1975), Grefenstette (1986), Goldberg (1985,
1989), Alander (1992) and Reeves (1993), all of them
studying and improving population sizing theory.
Recently, minimum population size that has all raw of BBs
has been estimated and experimentally verified by
Goldberg, Sastry and Latoza (2001).

B. Building Blocks decision-making

The building block decision problem is the recognition
that the GA can make mistakes when deciding between a
BB and its competitors. Over the years, theoretical models
have addressed this topic beginning with Holland (1973,
1975) followed by De Jong (1975) and Goldberg (1989).
Holland’s work was further analysed by recent studies [16]
where the population size was calculated in the presence of
collateral noise leading to an equation that has proved to be
very conservative.

The above model was improved by, combining initial
supply of BBs, and correct selection of the best BB over its
competitors. The result is an equation that relates the size
of the population with the desired quality of the solution,
as well as the problem size and difficulty.

127

C. Building Blocks mixing

The above models have ignored the effect of genetic
operators on the population sizing. Yet, some work has
been done in analysing recombination operators in the
view point of a diversity preservation tool. Only a few
studies have been performed in developing facetwise
models to analyze recombination as an innovation operator
[17]. Therefore, there is an immediate need for a better
facetwise scheme that addresses the BB mixing problem
and analyzes fixed recombination to answer the mixing
question.

Most of the above models, although accurate, are
difficult to apply in practice because they rely on several
assumptions that may not hold for real-world problems.

III. THE ADOPTED GENETIC ALGORITHM

A. Problem definition

In this article a GA strategy is adopted to design
combinational logic circuits. The circuits are specified by a
truth table and the goal is to implement a functional circuit
with the least possible complexity. Several sets of logic
gates have been defined, as shown in Table 1, being Gset
1a and 1b the simplest ones (i.e., a RISC-like sets) and
Gset 6 the most complex (i.e., a CISC-like set).

Table 1 Gate sets

Gate Set Logic gates
Gset 1a {NAND,WIRE}
Gset 1b {XOR,WIRE}
Gset 2 {AND,XOR,WIRE}
Gset 3 {AND,OR,XOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}
Gset 5 {AND,OR,XOR,NOT,NAND,WIRE}
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}

For each gate set the GA searches the solution space,

based on a simulated evolution aiming the survival of the
fittest strategy. In general, the best individuals of any
population tend to reproduce and survive, thus improving
successive generations. However, inferior individuals can,
by chance, survive and also reproduce [2]. In our case, the
individuals are digital circuits, which can evolve until the
solution is reached (in terms of functionality and
complexity).

B. Circuit enconding

In the GA scheme the circuits are encoded as a
rectangular matrix A (row × column = r × c) of logic cells
as represented in figure 1.

Each cell is represented by three genes:
<input1><input2><gate type>, where input1 and input2
are one of the circuit inputs, if they are in the first column,
or one of the previous outputs, if they are in other columns.
The gate type is one of the elements adopted in the gate
set. The chromosome is formed by as many triplets of this
kind as the matrix size demands. For example, the
chromosome that represents a 3 × 3 matrix is depicted in
figure 2.

Fig. 1. A 3 × 3 matrix A representing a circuit with input X and output Y.

0 1 2 … 24 25 26 genes
Input Input Gate … Input Input Gate

a11 a33 matrix
element

Fig. 2. Chromosome for the 3 × 3 matrix of figure 1.

C. The genetic operators

The initial population of circuits (strings) is generated at
random. The search is then carried out among this
population. The three different operators used are
reproduction, crossover and mutation, as described in the
sequel.

In what concern the reproduction operator, the
successive generations of new strings are reproduced on
the basis of their fitness function. In this case, it is used a
tournament selection [2] to select the strings from the old
population, up to the new population.

For the crossover operator, the strings in the new
population are grouped together into pairs at random.
Single point crossover is then performed among pairs. The
crossover point is only allowed between cells to maintain
the chromosome integrity.

The mutation operator changes the characteristics of a
given cell in the matrix. Therefore, it modifies the gate
type and the two inputs, meaning that a completely new
cell can appear in the chromosome. Moreover, it is applied
an elitist algorithm and, consequently, the best solutions
are always kept for the next generation.

To run the GA we have to define the number of
individuals to create the initial population P. This
population is always the same size across the generations,
until the solution is reached.

The crossover rate CR represents the percentage of the
population P that reproduces in each generation. Likewise
MR is the percentage of the population P that mutates in
each generation.

D. The fitness function

The calculation of the fitness function F is divided in
two parts, f1 and f2, which measure the functionality and
the simplicity, respectively. In a first phase, we compare
the output Y produced by the GA-generated circuit with
the required values YR, according with the truth table, on a
bit-per-bit basis. By other words, f1 is incremented by one
for each correct bit of the output until f1 reaches the
maximum value f10, that is, when we have a functional
circuit. Once the circuit is functional, in a second phase,
the GA tries to generate circuits with the least number of

X

Y

a11

a21

a31

a12

a22

a32

a13

a23

a33

Inputs Outputs

128

gates. This means that the resulting circuit must have as
much genes <gate type> ≡ <wire> as possible. Therefore,
the index f2, that measures the simplicity (the number of
null operations), is increased by one (zero) for each wire
(gate) of the generated circuit, yielding:

f10 = 2ni × no (1a)
f1 = f1 + 1 if bit i of Y = bit i of YR, i = 1, …, f10 (1b)
f2 = f2 + 1 if gate type = wire (1c)

1 10

1 2 10

,
,

f F f
F

f f F f
<⎧

= ⎨ + ≥⎩
 (1d)

where ni and no represent the number of inputs and outputs
of the circuit.

IV. EXPERIMENTS AND SIMULATION RESULTS

Reliable execution and analysis of a GA usually requires
a large number of simulations to provide a reasonable
assurance that stochastic effects have been properly
considered [8]. Therefore, in this study are developed
n = 40 simulations for each case under analysis.

The experiments consist on running the GA to generate
a typical combinational logic circuit, namely a 2-to-1
multiplexer. The circuit is generated with gate sets
presented in Table 1 for CR = 95%, 5% ≤ MR ≤ 90% and
6 ≤ P ≤ 104.

0
20

40
60

80
100

100

102

104
10-2

100

102

104

Mutation Rate (MR)Population (P)

P
ro

ce
ss

in
g

Ti
m

e
(P

T)

Gset 1a

0
20

40
60

80
100

100

102

104
10-2

100

102

104

Mutation Rate (MR)Population (P)

P
ro

ce
ss

in
g

Ti
m

e
(P

T)

Gset 2

0
20

40
60

80
100

100

102

104
10-2

100

102

104

Mutation Rate (MR)Population (P)

P
ro

ce
ss

in
g

Ti
m

e
(P

T)

Gset 3

0
20

40
60

80
100

100

102

104
10-2

100

102

104

Mutation Rate (MR)Population (P)

P
ro

ce
ss

in
g

Ti
m

e
(P

T) Gset 4

0
20

40
60

80
100

100

102

104
10-2

100

102

104

Mutation Rate (MR)Population (P)

P
ro

ce
ss

in
g

Ti
m

e
(P

T)

Gset 5

0
20

40
60

80
100

100

102

104
10-2

100

102

104

Mutation Rate (MR)Population (P)

P
ro

ce
ss

in
g

Ti
m

e
(P

T)

Gset 6

Fig. 3. PT versus (P, MR) with CR = 95% using Gset 1a up to Gset 6 for

the 2-to-1 Multiplexer

129

In order to obtain the processing time PT to achieve the
solution, the following steps are implemented:
i. We calculate the median me(Ns) of the number of

generations to achieve the solution Ns;
ii. We estimate the processing time for one generation

PT1 using the average when running five simulations;
iii. The processing time to achieve the solution PT is:

PT = me(Ns) × PT1 (2)

The 2-to-1 multiplexer circuit has a truth table with 3
inputs X = {S0, I0, I1} and 1 output Y = {O}. In this case,
the matrix A has a size of r × c = 3 × 3 and the length of
each string representing a circuit (i.e., the chromosome
length) is CL = 27.

Figure 3 shows the processing time PT for gate sets 1a
to 6, respectively. With Gset 1b it was impossible to
achieve a solution.

It is clear that PT decreases with P. However, for very
small populations the GA has an extreme difficulty in
obtaining a solution, due to the lack of BBs, which leads to
an increase of the PT. For P < 50, in 5% of the simulations,
the GA ends without giving a solution. Therefore, for the
2-to-1 multiplexer circuit it is better to use population sizes
50 ≤ P ≤ 100. Table 2 presents the best PT for each gate
set.

Table 2

Gate Set P MR Minimum PT
(seconds)

Gset 1a 70 5% 0.05742
Gset 2 70 10% 0.11656
Gset 3 60 5% 0.11109
Gset 4 70 10% 0.13533
Gset 5 70 10% 0.19287
Gset 6 50 5% 0.13400

The best performance goes to Gset 1a with PT = 57.42

ms for P = 70 and MR = 5%.
In what concerns MR the conclusion is that its influence

upon the PT seems to be of minor importance.
Nevertheless, the best results occur with 5% ≤ MR ≤10%,
with exception of Gset 6 as can be confirmed by figure 4
which presents PT for solution versus MR for all the gate
sets under study.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

5 10 15 30 60 90

Mutation Rate (MR)

P
T

fo
r S

ol
ut

io
n

Gset 1a
Gset 2
Gset 3
Gset 4
Gset 5
Gset 6

Fig. 4. PT for solution versus MR, with CR = 95% and P = 70, for the
2-to-1 Multiplexer

We verify that PT1 increases significantly with P but is
almost independent of MR. Figures 5 and 6 show PT1
versus P and MR, respectively, for CR = 95% and
MR = 5%.

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000

Population (P)

P
T

1 Gset 1a
Gset 2
Gset 3
Gset 4
Gset 5
Gset 6

Fig. 5. PT1 versus P with CR = 95% and MR=5% for the 2-to-1
Multiplexer

0.001

0.01
10 100

Mutation Rate (MR)

P
T

1

Gset 1a
Gset 2
Gset 3
Gset 4
Gset 5
Gset 6

Fig. 6. PT1 versus MR with CR = 95% and P = 70 for the 2-to-1
Multiplexer

The above experiments were based on the number of

generations to achieve the solution Ns, for several
combinations of the parameters CR, MR, P and gate sets.
The results reveal that the number of generations to
achieve the solution Ns has a Pareto distribution, that is,
has a probability density function:

f (ns) = cac / ns
c+1, ns ≥ a (3)

The density function qualitatively resembles that of the

exponential distribution, but decays far more slowly, i.e.,
has a longer “tail”. It has been much used in economics
(where Pareto first introduced it as describing the
distribution of incomes) but is of possible utility as a
model in any situation demanding a long-tailed one-sided
distribution. Thus, the probability that a random income, in
some defined population, exceeds a minimum, a, is
~Pareto.

The parameters (a, c), scale and shape parameters,
respectively, can be estimated through the maximum
likelihood method:

130

a = min xi (4a)

∑=
n

x
i

i

axnc
min

)/ln()/1(/1 (4b)

Unfortunately, since the estimation of the Pareto

parameters are based on a minimum we can get some error
even after analysing a large volume of data.

The median of the Pareto distribution is calculated by:

me(NS) =a 21/c (5)

In order to evaluate the statistics of NS new experiments
were developed. In order to compare results we consider
not only the 2-to-1 multiplexer but also the 4-bit parity
(even) checker. The 4-bit parity checker has a truth table
with four inputs X = {A3, A2, A1, A0} and one output
Y = {P}. The size of the matrix is r × c = 4 × 4 and the
chromosome length is CL = 48.

 This experiments consider the gate sets of Table 1 for
n = 1000 simulations.. Figure 7 presents the results
obtained comparing the Pareto median with the
experimental median, for the two circuits. The other gate
sets lead to similar results.

For the 4-bit parity checker it is used the Gset 1b (with
Gset 1a it was not possible to achieve a solution), and
results are not presented for P = 104 because a solution
always appears on the initial population.

0

5

10

15

20

25

30

35

40

10 100 1000 10000

Population (P)

M
ed

ia
n

Pareto Experimental

Fig. 7. Medians versus P with CR = 95% and MR = 5% for the 2-to-1
Multiplexer, using Gset 1a and n = 1000.

0

1

2

3

4

5

6

7

8

10 100 1000

Population (P)

M
ed

ia
n

Pareto Experimental

Fig. 8. Medians versus P with CR = 95% and MR = 5% for the 4-bit
Parity Checker, using Gset 1b and n = 1000.

We observe a close agreement but the need of a large
number of experiments for estimating (a, c).

Bearing this statistical requirements in mind, figure 9
depict the parameters (a, c) for CR = 95%, MR = 5%,
P = 70, n = 1000 and the six gate sets.

We have inverse monotonic variation of (a, c), with the
gate set complexity.

2-to-1 Multiplexer

0

5

10

15

20

25

Gset 1a Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

a

4-bit Parity Checker

0

2

4

6

8

10

12

14

16

Gset 1b Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

a

2-to-1 Multiplexer

0.5

0.6

0.7

0.8

0.9

Gset 1a Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

c

4-bit Parity Checker

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Gset 1b Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

c

Fig. 9. Parameters (a, c) versus Gsets with CR = 95%, MR = 5%, P = 70

and n = 1000 for the 2-to-1 Multiplexer and the 4-bit Parity Checker.

131

Another important aspect consists on the variability of
the GA to attain the solution. In this line of thought the
inter-decile interval ID are also calculated in figure 10 for
both circuits.

2-to-1 Multiplexer

0

100

200

300

400

500

600

700

Gset 1a Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

I D

4-bit Parity Checker

0

20

40

60

80

100

120

140

160

Gset 1b Gset 2 Gset 3 Gset 4 Gset 5 Gset 6

Gate sets

I D

Fig. 10. ID versus Gsets with CR = 95%, MR = 5% and P = 70 for the 2-

to-1 Multiplexer and the 4-bit Parity Checker.

We verify again a monotonic-like variation leading to a
large variability, particularly for Gsets 4, 5 and 6.

VI. SUMMARY AND CONCLUSIONS

This paper studied the influence of the population size
on the processing time to obtain a solution, in this
particular case consists on a digital circuit. The results
demonstrate that, even the GA required number of
generations decreases as the population size increases, the
best processing time to achieve a solution occur for small
population sizes.

It was also analyzed the performance of several different
gate sets. Following the RISC vs CISC processor dilemma
we conclude that the RISC gate sets have superior
performances to the CISC gate sets. Nevertheless, we have
to be careful when using gate sets with only one logic gate,
because it depends of the digital circuit that we are
generating. Consequently, the extreme case of RISC sets
can be not robust to distinct circuit demands.

An important theoretical conclusion is that the number
of generations to achieve a solution has a Pareto
distribution. Therefore, we have a mathematical basis to
evaluate the statistical performance of the GA schemes.

V. REFERENCES

[1] Nazan, K., “Population Sizing in Genetic and

Evolutionary Algorithms” in Proceedings of the

Genetic and Evolutionary Computation Conference.
[2] Goldberg, D. E., Genetic Algorithms in Search

Optimization and Machine Learning, 1989,
Addison-Wesley.

[3] Goldberg, D., Deb, K. and Clark, J., “Genetic
Algorithms, Noise, and the Sizing of Populations”.
Complex Systems, Vol. 6, 1992, pp 333-362.

[4] Harik, G., Cantu-Paz, E., Goldberg, D. And Miller,
B., “The Gambler’s Ruin Problem, Genetic
Algorithms, and the Sizing of Populations” in
Proceedings of the IEEE International Conference
on Evolutionary Computation, 1997, pp 7-12.

[5] Goldberg, D. E., The Design of Innovation: Lessons
from and for Competent Genetic Algorithms,
Kluwer Academic Publishers, 2002.

[6] De Jong, K. A, “An Analysis of the Behavior of a
Class of Genetic adaptative Systems”, Doctoral
dissertation, University of Michigan, 1975.

[7] Miller, B. L., “Noise, Sampling, and efficient
genetic algorithms”, Doctoral dissertation,
University of Illinois at Urbana-Champaing,
Urbana, IL, 1997.

[8] Morrison, R. W., “Dispersion-Based Population
Initialization” in Proceedings of the Genetic and
Evolutionary Computation Conference – GECCO
2003, pp 1210-1221.

[9] Holland, J., “Genetic Algorithms and the Optimal
Allocations of Trails” in SIAM Journal of
Computing, Vol 2(2), 1973, pp 88-105.

[10] Grefenstette, J. J., “Optimization of Control
Parameters for Genetic Algorithms”, in IEEE-SMC-
16, 1986, pp122-128.

[11] Goldberg, D. E., “Optimal Initial Population Size
for Binary-Coded Genetic Algorithm” in TCGA
Report No 85001, Tuscaloosa: University of
Alabama, 1985.

[12] Alander, J. T., “On Optimal Population Size of
Genetic Algorithms”n Size for Binary-Coded
Genetic Algorithm” in Proceedings of CompEuro
92, IEEE Computer Society Press, 1992, pp 65-70.

[13] Reeves, C. R., “Using Genetic Algorithms with
Small Populations” in Proceedings of the Fifth
International Conference On Genetic Algorithms,
1993, pp 92-99.

[14] Goldberg, D. E., Sastry, K. and Latoza, T., “On the
Supply of Building Blocks”, in Proceedings of
GECCO-2002, 2002, pp 333-362.

[15] Holland, J., “Adaptation in Natural and Artificial
Systems” Ann Arbor, MI:University of Michigan
Press.

[16] Goldberg, D. E. and Rudnick, M., “Genetic
Algorithms and the Variance of Fitness”, in
Complex Systems, Vol 5, 1991, pp 265-278.

[17] Sastry, K., “Analysis of Mixing in Genetic
Algorithms: A Survey”, in IlliGAL Report No.
2002012, 2002, University of Illinois at Urbana
Champaign.

[18] Reis, C. and Machado, J. A. T., “An Evolutionary
Approach to the Synthesis of Combinational
Circuits”, in Proceedings of the IEEE International
Conference on Computational Cybernetics, 2003.

132

