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ABSTRACT
Fractional Calculus (FC) goes back to the beginning of
the theory of differential calculus. Nevertheless, the
application of FC just emerged in the last two decades,
due to the progress in the area of chaos that revealed 
subtle relationships with the FC concepts. In the field of
dynamical systems theory some work has been carried out
but the proposed models and algorithms are still in a
preliminary stage of establishment. Having these ideas in 
mind, the paper discusses a FC perspective in the study of
the dynamics and control of some distributed parameter
systems.
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1.  Introduction 

The generalization of the concept of derivative D [f(x)] to 
non-integer values of  goes back to the beginning of the
theory of differential calculus. In fact, Leibniz, in his
correspondence with Bernoulli, L’Hôpital and Wallis
(1695), had several notes about the calculation of 
D [f(x)]. Nevertheless, the development of the theory of 
Fractional Calculus (FC) is due to the contributions of
many mathematicians such as Euler, Liouville, Riemann
and Letnikov [1-3]. The adoption of the FC in control
algorithms has been recently studied using the frequency
and discrete-time domains [4,5]. Nevertheless, this
research is still giving its first steps and further
investigation is required.
This article studies the dynamics and control of classical
distributed parameter linear systems. In this perspective,
the paper is organized as follows. Section 2 presents the
main mathematical aspects of the theory of FC. Section 3 
analyzes the dynamics of partial differential equations,
corresponding to electrical transmission lines and to heat
diffusion systems, on the perspective of FC. Finally, 
section 4 draws the main conclusions.

2. Theory of Fractional Calculus 

2.1. Main Mathematical Aspects 

Since the foundation of the differential calculus the
generalization of the concept of derivative and integral to
a non-integer order has been the subject of several
approaches. Due to this reason there are various
definitions of fractional-order integrals (Table I) which
are proved to be equivalent.
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Based on the proposed definitions it is possible to
calculate the fractional-order integrals/derivatives of
several functions (Table II). Nevertheless, the problem of 
devising and implementing fractional-order algorithms is
not trivial and will be the matter of the next sections.

2.2. Approximations to Fractional-Order Derivatives

In this section we analyze two methods for implementing
fractional-order derivatives, namely the frequency-based
and the discrete-time approaches, and its implication in
control algorithms.
In order to analyze a frequency-based approach to D
0 < < 1, let us consider the recursive circuit represented
on Figure 1 such that: 
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where  and  are scale factors, I is the current due to an
applied voltage V and Ri and Ci are the resistance and 
capacitance elements of the ith branch of the circuit.
The admittance Y(j ) is given by:
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Figure 2 shows the asymptotic Bode diagram of 
amplitude of Y(j ). The pole and zero frequencies ( i

and ) obey the recursive relationships:i
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From the Bode diagram of amplitude or of phase, the
average slope m  can be calculated as: 

loglog
logm  (4)

Consequently, the circuit of Figure 1 represents an 
approach to D  0 <  < 1, with m , based on a 
recursive pole/zero placement in the frequency domain.
As mentioned in section II, the Laplace definition for a 
derivative of order C is a ‘direct’ generalization of 
the classical integer-order scheme with the multiplication
of the signal transform by the s operator. Therefore, in
what concerns automatic control theory this means that
frequency-based analysis methods have a straightforward
adaptation to their fractional-order counterparts.
Nevertheless, the implementation based on the Laplace
definition (adopting the frequency domain) requires an 
infinite number of poles and zeros obeying a recursive 
relationship [4]. In a real approximation the finite number
of poles and zeros yields a ripple in the frequency
response and a limited bandwidth.
The mathematical definition of a derivative of fractional
order has been the subject of several different approaches
[1]. For example, Eq. (5) and Eq. (6), represent the
Laplace (for zero initial conditions) and the Grünwald-

Letnikov definitions of the fractional derivative of order
of the signal x(t)
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where  is the gamma function and h is the time
increment. This formulation [5] inspired a discrete-time
calculation algorithm, based on the approximation of the
time increment h through the sampling period T, yielding
the equation in the z domain:
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An implementation of (7) corresponds to a r-term
truncated series or to a Padé fraction.
An important aspect of fractional-order controllers [4] can 
be illustrated through the elemental control system 
represented in Figure 3, with open-loop transfer function
G(s) = Ks  (1 < < 2) in the forward path. The open-
loop Bode diagrams (Figure 4) of amplitude and phase
have a slope of 20 dB/dec and a constant phase of

/2 rad, respectively. Therefore, the closed-loop 
system has a constant phase margin of /2) rad that
is independent of the system gain K.
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Fig. 1. Electrical circuit with a recursive association of 
resistance and capacitance elements.
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Fig. 2. Bode diagrams of amplitude of Y(j ).
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Fig. 3. Block diagram for an elemental feedback 
control system of fractional order 
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Fig. 4. Open-loop Bode diagrams of amplitude and
phase for a system of fractional order

3. Distributed Parameter Systems

3.1. Electrical Transmission Lines

The main responsible for a complete mathematical
analysis of signal propagation on transmissions lines was
Olivier Heaviside that published a book, in 1880, based
on Maxwell electromagnetic theory [6].
During the twenty century electrical power transmission,
telecommunication and microwave engineering, and the
subsequent development of innumerable applications,
made popular the introduction of transmission line theory
in electrical engineering curricula [7,8]. 
The differential equations for a uniform transmission line
are found by considering an infinitesimal length dx
located at coordinate x.

This line section has series inductance and resistance Ldx
and Rdx and shunt conductance and capacitance Gdx and 
Cdx as depicted in Fig. 5. The application of the
Kirchoff’s laws to the circuit leads to the set of PDEs:
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where t represent time, v voltage and i electrical current.
A few simple calculations allow us to eliminate one
variable and to explicit the differential equation either to v
or to i, yielding:
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It is interesting to note that when L = 0 and G = 0
equation (9) reduces to the equivalent of the heat diffusion
equation (see section 3.2), where v and i are the analogs of
the temperature and the heat flux, respectively.
To analyze the transmission lines in the frequency domain
it is considered the Fourier transform operator F such that 
I(x,j ) = F{i(x,t)} and V(x,i ) = F{v(x,t)} (with 
j = ( 1)1/2) and equations (8) are transformed to:
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where Z(i ) = R + j L and Y(i ) = G + j C. In the same
line of thought equations (9) are transformed to:
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which as a solution in the frequency domain of the type:
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Fig. 5. Electrical circuit of an infinitesimal portion of a uniform transmission line.
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These expressions have two terms corresponding to waves
traveling in opposite directions: the term proportional to
e x is due to the signal applied at the line input while the
term e x represents the reflected wave.
For a transmission line of length l it is usual to adopt as 
variable the distance up to the end given by: 

xly (13)

If V2 and I2 represent the voltage and current at the end of 
the transmission line then the Fourier transforms of
equation (8) at coordinate y are given by:
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Therefore, for a loading impedance Z2(j  we have V2(j
= Z2(j I2(j  and the input impedance Zi(j  of the
transmission line results:
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Typically are considered three cases at the end of the line,
namely a short circuit, an open circuit and an adapted line,
that simplify equation (15) yielding:
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The classical perspective is to study lossless lines (i.e.,
R = 0 and G = 0), reasonable in power systems, and
approximations in the frequency domain leading to two-
port networks with integer order elements. This is
surprising because the transcendental equations (15) and
(16) may lead both to integer and fractional-order
expressions. For example, in the case of an adapted line 
(with R, C, L, G +), we can have from half-order
fractional capacitances up to half-order fractional
inductances, that is – /4  arg{Zc(j } /4, according 
with the expressions:
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These results, overlooked in the (integer-order point of
view) classical textbooks, suggest possible strategies for
implementing fractional-order impedances, somehow as 
standard microstrips and striplines work in microwave
circuits. In fact, this hardware strategy of implementing
fractional-order derivatives has been recently pointed out 
in order to avoid computational approximation schemes
[9,10]. Therefore, an alternative to exploring fractal 
geometries [11] and dielectric properties [12] to achieve
fractional capacitors we can also turn our attention to the
distributed characteristics of this type of system in order
to design integrated circuits capable of implementing
directly fractional derivatives.

3.2. Heat Diffusion

In many industrial applications it is important that the
temperature distribution in the work pieces should be as 
uniform as possible. It is clearly difficult to determine the
temperature distribution in the interior of the material or 
system, but the measurement of the surface temperature is
routine. Therefore, we encounter the problem of the
observability and control of the temperature distribution
throughout the material from the available surface 
measurements.
The heat diffusion is represented by a linear partial
differential equation (PDE) [13-14]:
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where k is the diffusivity, t is the time, u is the temperature
and (x,y,z) are the space cartesian coordinates.
This system involves the integration of a PDE of parabolic
type for which the standard theory of parabolic PDEs
guarantees the existence of a unique solution.
For the case of a planar perfectly isolated surface we apply
a constant temperature U0 at x = 0 and we analyse the heat
diffusion along horizontal coordinate x. The heat diffusion,
under the previous conditions, is characterized by a model
of non-integer order. In fact, the PDE solution in the s -
domain corresponds to the expression:
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where x is the space coordinate and U0 is the boundary 
condition.
The corresponding solution in the time domain yields:
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In our study we adopt the Crank-Nicolson implicit
numerical integration based on the discrete approximation
to differentiation, yielding the equation:

r u[j+1,i+1] + (2+r) u[j+1,i] – r u[j+1,i 1] = 
  = r u[j,i 1] + (2 r) u[j,i] + r u[j,i 1] (21)

where r = k t( x2) 1, { x, t} and {i, j} are the increments
and integration indices for space and time, respectively.
We verify that the results obtained through the numerical
approach differ from the analytical results for low
frequencies. This is illustrated in Figure 6, which depicts
the polar diagram of G(j ), for x = 3.0 m and k = 0.042 
m2s 1, both for the theoretical and numerical methods.
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Fig. 6. Polar diagram of G(j ) for x=3.0m,
k =0.042m2s 1.

It is clear that the chart has similarities to those of systems
with time-delay. In this line of thought we consider the
control of the heat system with two types of algorithms. In 
a first phase (Fig. 7 a) we adopt the simple PID controller
(Gc(s) = kp [1+sTd+(sTi) 1]) tuned according with the
Ziegler-Nichols open loop method. In this case the tuning
heuristics leads to an approximate model
W(s) = kBe sT/(s + 1) with kB = 0.52, T = 0.165, = 1.235 
and the PID parameters kp = 0.3484, Td = 0.0825 s,
Ti  = 0.33 s. Figure 8 depicts the step response of the
closed-loop system for R (s) = 1/s and x = 3.0 m.
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Fig. 7. Block diagram of closed-loop system with
a) PID  b) PID and Smith predictor.

In a second phase (Fig. 7 b), we adopt the previous PID
controller but we apply the Smith predictor. This
algorithm a well-known dead-time compensation
technique that is very effective in improving the control of 
processes having time delays. Figure 8 shows the
corresponding time response for R(s) = 1/s.
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Fig. 8. Step response of closed-loop system for
kp = 0.3484, Td = 0.0825 s and Ti = 0.33 s 

It is clear that the Smith predictor leads to a superior
response, revealing that we can adopt with success
classical control algorithms in fractional-order dynamical
systems.

4. Conclusions 

This paper presented the fundamental aspects of the
theory of FC, the main approximation methods for the
fractional-order derivatives calculation and the
implication of the FC concepts on the extension of the
classical systems theory. Bearing these ideas in mind, two 
distributed parameter linear systems were described and
their dynamics was analyzed in the perspective of 
fractional calculus. It was shown that fractional-order
models capture phenomena and properties that classical 
integer-order simply neglect. In this line of thought, this
article is a step towards the development of systems
modeling and control based on the theory of FC.
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