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Abstract – Detailed investigation of a simple nonlinear, active, 

adaptive approach of controlling the oscillation of a car 

proceeding on a bumpy road is presented. Its key idea is a 

frequency dependent control of the strictness of a traditional 

PID controller by applying fractional order derivatives in a 

simple kinematic design without any respect to the dynamic 

model of the system. The adaptive part of the controller 

relieves the designer of dealing with the system’s dynamics 

within the frames of some linear control, and guarantees the 

implementation of this design. The operation of the approach 

is illustrated by the use of INRIA’s scientific co-simulator 

Scicos for a rough model of a car. Well interpretable trends 

were revealed regarding the effect of the variation of the 

order of derivation, and that of the sampling time of the 

adaptive loop. These results seem to be promising for actively 

damping the vibration of systems having unmodeled, 

uncontrolled internal degrees of freedom. 
 

I. INTRODUCTION 
 

Externally excited oscillation normally is undesired 
phenomenon that occurs in various physical systems 
therefore its efficient damping is of great practical 
significance. In the practice the task has the „delicate” 
nature that the controller cannot be provided with the 
“exact”, and/or with complete information on the actual 
physical state of the system to be controlled. The 
immediate antecedent of this paper [1] reported on the 
preliminary application of a novel branch of soft 
computing for solving such problems by the use of ideas 
and methods reported e.g. in [2] and [3].  

As an input, this control method requires the desired 
trajectory of the generalized coordinates of the system that 
has to directly be controlled. In our case some more or less 
“free” variation of the distance between the chassis and the 
wheel has to be allowed within certain limited range. 
Whenever the motion of the wheel is of limited amplitude 
and high frequency it passes through small bumps or dips, 
and relieving the chassis of such oscillation is desirable. 
However, when the elevation of the wheel is relatively big 
and slow, the car has to climb or climb down a bigger hill 
and the height of the position of the chassis has to follow 
this motion. The most plausible means of control would be 
the application of a simple PID terms to keep a finite error 
at bay. A small integrating term of this controller does not 
„forget” the past, and for an even small but constant error 
it generates infinite signal for feedback, so it can be used 
for eliminating small, constant trajectory tracking errors. 
However, for the compensation of “abrupt” changes in the 
tracking error the proportional and the derivative terms are 

responsible. Due to these terms the vibration of the wheel 
would be transmitted to the chassis.  

As generalization of the concept of the traditional 
derivative the concept of fractional order derivative found 
more and more physical applications. The problem of 
designing fractional order control systems within the 
frames of linear control obtained considerable attention 
recently, e.g. [4]. The French expression invented by 
Oustaloup „CRONE: Commande Robuste d’Ordre Non 

Entier” [5] hallmarks a well-elaborated design 
methodology that obtained application in vibration control 
[6]. Understanding and application of this method requires 
deep engineering knowledge in the realm of linear systems, 
frequency spectrum analysis, the use of Laplace transforms 
and complex integrals, various typical diagrams, etc.  

The aim of the present paper is to demonstrate an 
alternative approach not strictly restricted to the traditional 
“linear” way of thinking. Tackling the problem from a 
more general nonlinear basis requires less amount of 
profound and specific engineering knowledge, the 
application of which can be evaded by the controller’s 
adaptive nature or learning abilities. The operation of the 
approach is illustrated by the use of INRIA’s scientific co-
simulator Scicos for a rough model of a car. Well 
interpretable trends are revealed regarding the effect of the 
variation of the order of derivation, and that of the 
sampling time of the adaptive loop. These results seem to 
be promising for actively damping the vibration of systems 
having unmodeled, uncontrolled internal degrees of 
freedom. 

 
II. APPLICATION OF FRACTIONAL ORDER 

DERIVATIVES 
 
In the case of a normal PID-type controller the desired 

trajectory reproduction can be prescribed in a purely 
kinematics based manner. For the second time-derivative 
of the actual coordinate errors the desired relation can be 
formulated as: 
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The use of a quite small integrating term in (1) is expedient 
whenever very accurate and slow tracking of the nominal 
trajectory is needed, because even for very small 
permanent error sooner or later it yields quite considerable 
feedback. Therefore, in contrast to the approach presented 
in [1] a small integrating term also is applied. For the 



 

desired acceleration of the controlled generalized 
coordinates (1) then yields 
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in which the superscript “N” refers to the nominal 
coordinates prescribed. If the dynamics of the system to be 
controlled is not very well known the feedback force 
calculated on the basis of (2) cannot be accurate enough, 
therefore very big gains (i.e. P, and D coefficients) has to 
be applied. Normally such a choice results in a noisy 
control. This situation can be improved by using fractional 
order derivative in (2) as 
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in which the symbol ββ
dtd  denotes some fractional order 

derivative. As in [1], the numerical approximation of the 
definition by Caputo  
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is applied. In [4] the full 1st order derivative is “causally 
reintegrated” by the use of a kernel function having slowly 
forgetting nature (the contribution of the far past becomes 

more and more negligible in it), while its singularity in τ=t 

enhances the relative weight of the contribution of the τ≅<t 

instants. The slowly decreasing “tail” of this function also 
acts as a frequency filter that rejects the high-frequency 
components of the traditional 1st derivative. Furthermore, 
to introduce symmetry against the translation of the signal 
in time in [5] we can go back in time only to some time t-T 
instead of 0. In the numerical simulations in this paper 

δ=4 ms, T=30×4 ms were chosen, and the appropriate 

value for β was as well as the sampling time of the 
adaptive loop were varied.  
 

III. THE MODEL OF THE CAR AND ITS CONTROL 
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Fig. 1. The rough model of the suspension system 

The model of the system considered is described in Fig. 1. 
The mass of the wheel is supposed to be negligible with 
respect to that of the chassis of mass Mc=100 kg the model 
value of which was supposed to be 150 kg. (This value 
cannot exactly be known a priori since one or more than 
one travelers of even 100 kg weight each can sit in the car.) 
The passive suspension system consisted of a spring of 
stiffness k=2×104 N/m and viscosity of v=1×104 N/(m/s). 
The force of the active suspension Fa was supposed to be 
generated according to the control law. The coordinates xc 
and xw in m units describe the height of the chassis and the 
wheel, respectively, with respect to an inertial frame, i.e. 
with respect to the sea level, so they are not available as 
direct data for the controller. The nominal height of the 
chassis while rigidly following the wheel was prescribed to 
be xcnom=xw+L0 with L0=0.5 m. In the case of loose 
trajectory tracking little humps and dips need not be traced 
by the chassis, but climbing a higher hill or deeper valley 
must be traced. However, the error of this trajectory 
tracking is available via local measurements within the car 
as e=xc-xcnom=(xc-xw)-L0. The 1st order time-derivative of 
the error can be numerically estimated by finite element 
methods. Because xw and xc are measured with respect to 
an inertial frame their second traditional time-derivatives 
also are measurable even by the use of micro-sensors 
developed on a chip.  

Eq. (3) represents a tracing requirement expressed by the 
use of purely kinematic terms. The main expectation 
behind it is the supposition that for small proportional 
coefficient P some loose tracking can be achieved the 
accuracy of which is increased by the “filtered” integrals at 
low frequency (that is for hill climbing), while for the 
higher frequency components occurring when small dips 
are passed it remains loose. By the use of the approximate 
dynamic model of the system the appropriate active force 
can be estimated. Due to the approximate nature of the 
dynamic model exertion of this force will not result in the 
desired acceleration of the chassis. For the realization of 
(3) adaptive control is needed. Its main principles are given 
in the following part. 
 

IV. THE ADAPTIVE CONTROL 
 

For the adaptive control there is given an imperfect 
system model as a starting point. On the basis of that some 
excitation is calculated to obtain a desired system response 

i
d as e=ϕϕϕϕ(id). This model is step by step refined in the 

following manner. If we apply the above approximate 
excitation, according to the actual system’s inverse 
dynamics described by the unknown function a realized 

response ir=ψψψψ(ϕϕϕϕ(id))=f(id) is obtained instead of the desired 
one, i

d. Normally one can obtain information via 
observation only on the function f() considerably varying 
in time, and no any possibility exists to directly 
"manipulate" the nature of this function: only i

d as the 
input of f() can be “deformed” to i

d* to achieve and 
maintain the i

d=f(id*) state. The following "scaling 
iteration" was suggested for finding the proper 
deformation: 
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in which the Sn matrices denote some linear 
transformations that map the observed response to the 
desired one, and the construction of each matrix 
corresponds to a step in the adaptive control. It is evident 
that if this series converges to the identity operator just the 
proper deformation is approached, and the controller 
„learns” the behavior of the observed system by step-by-
step amendment and maintenance of the initial model. 
Since (6) does not unambiguously determine the possible 
applicable quadratic matrices, we have additional freedom 
in choosing appropriate ones. In this paper the Special 
Symplectic Transformations were chosen as algebraic 
means. Due to their special structure these matrices 

automatically approach the unit matrix as f→i0. In the lack 
of enough free space, regarding the details we refer to [3]. 
 

V. SIMULATION RESULTS 
 

The new version of INRIA’s SCILAB 3.0 was issued 
about the end of the summer of 2004. This software 
package is freely usable for scientific research. In its basic 
form it corresponds to a programming language and a 
development system that makes it possible to develop and 
use user-defined functions in similar way as its own built-
in functions. Scicos an application developed in SCILAB 
to support programming via defining block diagrams and 
symbolic “wires”. Besides this graphical possibility its 
main virtue is the use of sophisticated program packages 
for solving Ordinary Differential Equations (ODEs) either 

in explicit ( ) ( )
0

yyxfy ==
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 ,, tt&  or in implicit form as 
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00
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“graphically” at first, then it is compiled to bring about an 
ODE system that is solved by the use of one of these 
packages automatically. The user-developed functions can 
be given as common SCILAB instructions that are 
“interpreted” by Scicos. To speed up the operation of the 
simulator an alternative method is loading and compiling 
the user-defined functions instead of directly writing them 
into the user blocks. (In this case the user block contains 
only a simple call for the compiled function.) The 
compilation of the necessary user functions at the 
beginning can be prescribed in the so-called “Context” box 
of the simulator. The here defined variables behave as 
“global” ones. They can be referred to as “global” 
variables in the heading (beginning lines) of the user’s 
functions.  

At the time being Scicos has not very extended 
documentation. Regarding the reproduction of the 
simulation results it has been found “experimentally” that 
the option of loading a “New Scilab” before running the 
simulation program always leads to the same results. Most 
probably the ODE solver is loaded according to its default 
settings when it is called at the first occasion. These 
settings can vary in time as the program runs, and remain 
in the memory after finishing it. (Since the package has to 
adapt itself to solve various problems it probably adapts 
itself to the last task solved within this SCILAB session, 
this supposition is reasonable. Even quitting Scicos within 
the SCILAB window seems to leave the last settings 
valid.)  

The absolute and relative error of the ODE solver 
(0.0001 and 0.00001 respectively, in the here presented 

simulations), the accuracy in computing time (“Tolerance 
on time” 1.000D-06 in our case), and the maximal 
allowable step size in the integration (“maximum step 
size” 0.0001 s in our case) can be prescribed before 
running the program. In the simulation examples the car 
was supposed to move with a velocity of 10 m/s (36 km/h) 
while climbing a hill covered by a bumpy road as given in 
the figures containing the results. The bumps/dips were 

modeled by a Fourier series containing ω=1,2,…,314 
circular frequencies with equal weights. For the highest 
frequency component this corresponds to Tmin=2×10-2 s 
period (frequency of 50 Hz), which, at 10 m/s velocity 
means a combination of pairs of 10 cm wide dips and 
bumps that corresponds to a road built up of granite blocks 
of this size. 

Fig. 2: Passive vibration control only: 1st box: the 
norm of the S-I matrices (now identical to 0); 2nd box: 
the position of the wheel (lower line) and that of the 
chassis minus L0 [m] (upper line); 3rd box: tracking 

error (xc-L0-xw) [m]; 4th and 5th boxes: zoomed details 
of the trajectory of the wheel and chassis and that of 

the tracking error vs. time [s] 

Fig. 3. Passive vibration control: the phase space of 
the (xc-L0-xw) distance [m, m/s] 



 

In Fig. 2 typical results are given for the passive 
suspension when no active force is applied. It is evident 
that in this case it results in a poor oscillation damping. 
The vibration of the wheel is transmitted to the chassis. 
Besides this the imprecise estimation of the load leads to 
the appearance of a “static error” in the distance between 
the wheel and the chassis .Fig. 3: reveals the phase space 
of the (xc-L0-xw) distance.  

The adaptive version of this control with δ=4 ms 
sampling time for the internal and the adaptive loops and 

β=0.01 order of derivation is given in Fig. 4. The 
improvement in decreasing the vibration of the chassis is 
evident from the zoomed part of the graph. Furthermore, 
the mean value of the (xc-L0-xw) distance has been moved 
to around 0, too.The results belonging to the non-adaptive 
active counterpart of the same controller are given in Fig. 
5. While the high-frequency terms are well suppressed due 
to the filtered goal of the control, the lack of adaptivity 
constrains the controller to compensate the modeling error 
within the frames of the linear controller. This leads to a 
typical oscillation in the tracking error. 

It interesting question to what extent the sampling time 
of the “outer” adaptive loop can be increased, in order to 
reduce the computational burden of the controller. 

According to the simulations 3δ=12 ms for this value does 
not reveal significant differences in comparison with the 
results given in Fig. 4. However, further increase in the 
sampling time of the adaptive loop seems to approach the 
results of the non adaptive control (Figs. 6-7).  

It is also interesting to see the effect of increasing the 
order of derivation in the adaptive control. Figs. 8 and 9 

belong to the case of δ=4 ms, of sampling time 3δ=12 ms, 

and β=0.14. The adaptive control still is stable but shows 
considerable oscillations. The non-adaptive control seems 
to lose its stability.  

 
VI. CONCLUSIONS 

In this paper the combination of the concept of fractional 
order derivatives and a novel branch of soft computing was 
applied for vibration suppression purposes in the case of a 
simple car model.  

The main contribution of the non-integer order 
derivatives lies in providing the controller with appropriate 
causal goal functions of significantly filtered high-
frequency components.  

The adaptive law gives help in implementing the result 
of this essentially purely kinematic design without 
requiring a priori accurate information on the dynamics of 
the system. It takes away the burden of dealing with 
dynamic effects from the linear fractional order controller. 
Furthermore, in this case no particular suppositions are 
needed for the nature of the vibration that assumptions 
used to be typical in the traditional control literature, e.g. 
that vibration can be treated with low order Taylor series 
expansion around some equilibrium position, or that the 
suspension system and the external excitation have 
characteristic eigenfrequencies or peaks in their Fourier 
spectra for the absorption of which the eigenfrequency of 

Fig. 4. Active, adaptive vibration control: 1st box: the 
norm of the S-I matrices; 2nd box: the position of the 

wheel (lower line) and that of the chassis minus L0 [m] 
(upper line); 3rd box: tracking error (xc-L0-xw) [m] vs. 
time [s]; 4th box: Phase space of (xc-L0-xw) [m, m/s], 

order of derivation: β=0.01 

Fig. 5. Active, non adaptive vibration control: 1st 
box: the norm of the S-I matrices (now equals to 0); 2nd 
box: the position of the wheel (lower line) and that of 
the chassis minus L0 [m] (upper line); 3rd box: tracking 
error (xc-L0-xw) [m] vs. time [s]; 4th box: Phase space of 

(xc-L0-xw) [m, m/s], order of derivation: β=0.01 



 

the damping medium has to be properly tuned.  
It needs the possibility only for fast feedback signals the 

characteristic time of which was found equal to be equal to 

with δ=4 ms. It was also found that for the external 
adaptive loop this sampling time can be tripled. 

Regarding the order of derivation it cropped up that 

choosing a relatively small value as β=0.01 seems to be 
expedient. 

For further research the active adaptive vibration control 
of physical systems having unmodeled internal degrees of 
freedom can be considered for which the adaptive 
approach was also found to be applicable. 
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