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ABSTRACT- Servo valve controlled hydraulic differential cylinders are non-linear, strongly coupled multivari-

able electromechanical tools applicable for driving e.g. manipulators. When the piston has finite but considerable 

velocity with respect to the cylinder the system’s behavior can be “linearized” because the viscous friction i.e. 

the main source of disturbance is smooth function of this velocity and causes linear damping. When this velocity 

is in the vicinity of zero the effect of adhesion is the dominating disturbance force that abruptly changes direc-

tion depending on the sign of this velocity. Furthermore, at zero relative velocity adhesion can compensate arbi-

trary forces within certain limits keeping the piston fixed. In the paper a concise application of the Stribeck 

model of friction and adhesion is reported in an adaptive control in which varying fractional order derivatives are 

used to reduce the hectic behavior of friction in the case of “critical” trajectories that asymptotically converge to 

a fixed position and zero velocity. Simulation results made by INRIA’s Scilab are presented. It is concluded that 

the combined application of the two adaptive techniques reported accurate control can be achieved without 

knowing the accurate model of the piston-cylinder system. 

 

Keywords: Adaptive Control; Fractional Order Derivatives; Nonlinear System’s Control; Positive Displacement 

Hydraulic Systems. 

 

 

INTRODUCTION 

Hydraulic servo valve controlled differential cyl-

inders are strongly coupled non-linear electro-

mechanical devices of multiple parameters which 

are difficult to be kept under perfect control. The 

viscosity of the oil in the pipe system is very sensi-

tive to the temperature that normally increases due 

to the friction in the circulation. Oil compressibility 

depends on the amount of air or other gases solved 

in it. Adhesion of the piston at the cylinder intro-

duces rough non-linearity into the behavior of the 

system. The combination of these effects with the 

not always measurable external disturbance forces 

can make a quite complex control task arise. 

The problem of driving a flexible robot arm un-

der external disturbances by a hydraulic servo valve 

controlled differential cylinder was studied and 

solved in two alternative manners by Bröcker and 

Lemmen in [1]. Their first approach was based on 

the “disturbance rejection principle”, the other one 

on the “partial flatness principle”, respectively. In 

each case it was necessary to measure the distur-

bance force and its time-derivative as well as to 

know the exact model of the hydraulic cylinder 

they developed in details and identified for a par-

ticular robot arm-drive system. However, the iden-

tification of such a system needs a lot of laboratory 

work the result of which may also be temporal. A 

serious problem is the need for measuring the ex-

ternal disturbance forces, too.  

In general it seems to be expedient to apply 

adaptive control instead of trying to measure the 

ample set of unknown and time-varying parameters. 

This adaptive control need not to be too intricate, 

actually should not be much more complicated than 

an industrial PID controller. For this purpose Soft 

Computing (SC) based approaches would be more 

attracting than detailed analytical modeling. Unfor-

tunately traditional SC (both fuzzy systems, and 

neural networks) suffer from bad scalability proper-

ties: the number of either the network nodes or the 

fuzzy rules is drastically increasing function of the 

degree of freedom of the system to be controlled. 

In order to get rid of the scalability problems of 

the classical Soft Computing a novel approach was 

initiated that is based on a compromise between the 



need of generality and scalability in [2]. It was 

shown by the use of perturbation calculus that this 

method can be applied for a quite wide class of 

physical systems, e.g. in the case of Classical Me-

chanical Systems, too [3]. This approach uses far 

simpler and far more lucid uniform structures and 

procedures than the classical ones: various alge-

braic blocks originating from different Lie groups 

can be incorporated into the “model”.  

Hydraulic cylinders also have a very important 

property: due to the compressibility of the working 

fluid and elastic deformation of the pipe system the 

pressures in its chambers cannot abruptly be 

changed. It is the time-derivative of the oil pressure 

related to the 3
rd

 time-derivative of the piston’s dis-

placement can abruptly be prescribed. The hectic 

behavior (drastic time-derivative) of friction forces 

also are related to this 3
rd

 derivative, that is the con-

trol has to be developed for ab ovo noisy signals. 

In order to reduce noise-sensitivity the approach 

described in this paper allows a PID
var

 control for 

the piston’s trajectory, in which the order of deriva-

tion depends on the past fluctuation of the piston’s 

velocity that generates harsh modification in the 

friction forces. In the sequel the main point of the 

scalable soft computing is very briefly outlined. 

Following that the analytical model of the differen-

tial hydraulic servo cylinder is presented together 

with the new control approach applied. The paper is 

closed by the simulation results and the conclu-

sions. 

 

ON THE ADAPTIVE CONTROL APPLIED 

The concept of Complete Stability is often used 

as a practical criterion for the controlled system. It 

means that for a constant input excitation the sys-

tem’s output asymptotically converges to a constant 

response. If the variation of the input is far slower 

than the system's dynamics, with a good accuracy, 

it provides us with a continuous response corre-

sponding to some mapping of the time-varying in-

put [5]. From purely mathematical point of view the 

here presented learning adaptive control can be 

formulated as follows. There is given some imper-

fect model of the system on the basis of which 

some excitation is calculated to obtain a desired 

system response i
d
 as e=ϕϕϕϕ(id). The system has its 

inverse dynamics described by the unknown func-

tion ir=ψψψψ(ϕϕϕϕ(id))=f(id) and resulting in a realized re-

sponse ir instead of the desired one, id. Normally 

one can obtain information via observation only on 

the function f() considerably varying in time, and 

no any possibility exists to directly "manipulate" 

the nature of this function: only i
d
 as the input of f() 

can be “deformed” to id* to achieve and maintain 

the id=f(id*) state. On the basis of the modified Re-

normalization Transformation the following itera-

tion was suggested for finding the proper deforma-

tion. Let the Sn matrices be certain linear transfor-

mations. These matrices map the observed response 

to the desired one, and the construction of each ma-

trix corresponds to a step in the adaptive control as 

follows: 
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It is evident that if this series converges to the 

identity operator just the proper deformation is ap-

proached, therefore the controller „learns” the be-

havior of the observed system by step-by-step 

amendment and maintenance of the initial model. 

For making the problem mathematically unam-

biguous (1) can be transformed into a matrix equa-

tion by putting the values of f and i into well-

defined blocks of bigger matrices as e.g. 
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in which the dots … denote the other columns of 

the matrices that contain the arbitrary parameters of 

this ambiguous task, and d is a “dummy”, that is 

physically not interpreted constant value in order to 

evade the occurrence of the mathematically dubious 

0→0, 0→finite, finite→0 transformations. If the 

“columns of the arbitrary parameters” are well de-

fined continuous functions of the first column and a 

set of linearly independent initial set of vectors, 

then the f=i
d
=0 case evidently results in Sn=I that 

cannot cause computational problems. Via comput-

ing the inverse of the matrix containing f the prob-

lem becomes mathematically well-defined. For this 

purpose it is expedient to choose special matrices of 

fast and easy invertibility. There are various alge-

braic possibilities to meet this requirement. Let G 

be nonsingular, quadratic, otherwise arbitrary con-

stant matrix! The set of the V matrices for which  

 GVGVGGVVV TT 11  ,1det −− =⇒==  (3) 

trivially forms a Lie group that contains elements in 

arbitrary close vicinity of the unit matrix. The satis-

factory condition for the convergence of (1) can be 

determined on the basis of the classic Perturbation 

Theory. Suppose that there is given an unknown, 

differentiable, invertible function f(x) for which 

there exists an inverse of x
d
 as ( )$x f x= ≠−1

0
d

. Let 

the Jacobian of f that is ( )′ ≡f x
f

x
$

∂
∂

 be positive 

definite and of norm considerably smaller than 1. 

Furthermore, let us suppose that the actual estima-

tion of the deformed input x is quite close to f
-1

(x
d
). 

Consequently there must exist two near-identity 

linear transformations in the group for which 



Tx x$ = , ( )Sf x x= d
. If ξ is chosen as the “small 

variable” of perturbation calculation the above op-

erators can be written as T I G S I H= + = +ξ ξ,   

in which G and H are certain generators of the 

group. Taking into account only the 0
th

 and the 1
st

 

order terms in ξ the following estimations can be 

obtained: 
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For the convergence decreasing error is needed, 

that is the restriction ( ) ( ) dd
K xxfxSxf −≤−  has 

to be satisfied with 0≤K<1, which means that ac-

cording to (4) and (5) 
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Now take it into account that in the case of a perfect 

dynamic model dxx =ˆ . For an approximate one at 

least an acute angle can be expected between these 

vectors. For a finite generator H Hx Hx$  and d must 

be approximately of the same norm and direction 

that is the angle between them is acute, too. Due to 

the positive definite nature and small norm of 

xff ∂∂=′ /:  multiplication with it also results in 

acute angle between Hx
d

and ( ) xHxf ˆ/ ∂∂− . This 

leads to a simple geometric interpretation: these 

vectors have approximately opposite directions, and 

the 2
nd

 term serves as a little correction of the 1
st
 

one. Therefore the requirement expressed by (7) 

can be met. Consider now the Euler-Lagrange 

equation of motion of the Classical Mechanical sys-

tems and its time-derivative in a wider context! 
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in which M is the positive definite inertia matrix, C 

describes the Coriolis and gravitational terms, and 

Q denotes the generalized forces. For the servo 

valve controlled hydraulic cylinder in the roles of 

the “excitation” and the “response” the time-

derivative of Q, and the third time-derivative of q 

stand as abruptly modifiable variables, therefore the 

above described conditions of convergence possibly 

can be satisfied. In this paper Special Symplectic 

Transformations detailed in [4] are applied.  

 

THE MODEL OF THE HYDRAULIC 

CYLINDER 

The operation of the differential hydraulic cylin-

der was described in details e.g. in [1]. Let x denote 

the linear position of the piston in m units. The ac-

celeration of the piston is described by (1) as 
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in which pA and pB denotes the pressures in cham-

ber A and B of the piston in bar, ϕ=AA/AB, that is 

the ratio of the “active” surfaces of the appropriate 

sides, m is the mass of the piston in kg, Ff denotes 

the internal friction acting between the piston and 

the cylinder, Fd denotes the external disturbance 

force.  

For practically acceptable modeling of friction 

partly the Stribeck model is used as in [1], that 

states, that there is a functional relationship be-

tween the relative piston-cylinder velocity v and the 

friction forces as 

 ( ) ( )( )( )
sscvif

/cv-abs+FFvv-=-fF expsign  (10) 

in which fvi describes the viscosity coefficient, 

0<(Fc+Fs) is the force that is necessary for bringing 

the piston at rest into motion, and Fc<(Fc+Fs) 

means the stabilized value of the adhesion forces 

when the velocity is considerable. Eq. (10) de-

scribes the transition of the sticking forces between 

the very small and the considerable values of the 

relative velocity if v≠0. When v=0 the piston sticks 

in the cylinder and friction/adhesion can compen-

sate any external force in the [-(Fc+Fs), (Fc+Fs)] 

region without letting it be accelerated. Numerical 

modeling of this behavior is quite difficult because 

the “exact” value of zero seldom occurs in a nu-

merical finite element calculation. In the present 

paper we supposed that within the  

v∈[-kcs, kcs] region (0<k=0.1<<1) the piston has 

zero acceleration if the external forces acting on it 

are within the interval [-(Fc+Fs),(Fc+Fs)]. For a ve-

locity value v∉[-kcs, kcs] simply (10) was applied. 

This model qualitative well describes the everyday 

experience we have about the behavior of friction 

forces. The pressure of the oil in the chambers also 



depends on the piston position and velocity as 
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where Bv denotes the flow resistance, Kv is the 

valve amplification, U is the normalized valve volt-

age. The oil volume in the pipes and the chambers 

can be expressed as 
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(H is the cylinder stroke.) The hydraulic drive has 

two stabilized pressure values, the pump pressure 

p0, and the tank pressure pt. Under normal operat-

ing conditions (that is when no shock waves travel 

in the pipeline) these pressures set the upper and the 

lower bound to pA and pB. The functions a1 and a2 

are defined in (14). Under “normal conditions” 

sign(a1)≥0, and sign(a2)≥0, too, according to the 

limiting role of the pump and tank pressures. 
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In the sequel the control of this complex system is 

considered. 

 

THE PARTICULAR CONTROL TASK 

For the tracking error e:=(x
R
-x

Nom
) a simple PID 

controller was constructed in the following manner: 
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The appropriate P, D, and I coefficients were de-

termined simply by substituting an expected 

e=exp(αt) type relaxation into the time-derivative 

of (15) that results in a third order polynomial for 

α. For this polynomial three, slightly different 

negative real roots were prescribed in the form of  

(α-α1)(α- α2)(α- α3). Substituting this into (15) P, 

D, and I can conveniently be determined. The time-

derivative of (15) therefore leads to the desired 

third time-derivative of the piston's trajectory as 

 IeeDePxx
Nomd −−−= &&&&&&&&&  (16) 

The very rough approximate model of the cylinder 

was obtained by omitting the friction forces and the 

external disturbance forces in (9) as 
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into which the desired time-derivative of the pis-

ton's acceleration was substituted and the desired 

value for dpA/dt was set to 0.. Eq. (17) thus imme-

diately yields an “expected” value for  

d(pA-pB/ϕ)/dt. Via computing [(11)-(12)/ϕ] this de-

termines the proposed control signal U, and from 

the known current state of the system and (11) and 

(12) the actually obtained dpA/dt, and dpB/dt values 

can be computed. This can be substituted into the 

time-derivative of (9) yielding the “actual” third 

time-derivative of the piston’s displacement. Here 

special attention has to be paid to the problem of 

observing d
3
x/dt

3
, which, in the case of the presence 

of friction forces, may be critical. For filtering out 

the noisy part of this signal Caputo's definition of 

the fractional order derivatives can be applied. It re-

integrates the integer order derivative with a kernel 

function of long tail acting as a frequency filter. 

According to that (16) can be modified as 
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In the practical realization of that the lower limit of 

the integration is replaced by a finite memory t-T. 

In the numerical approximation of the integral with 

singular integrand the full interval of the integration 

of length T is divided into small ones of length δ
during which the reintegrated derivative is sup-

posed to be approximately constant (details are 

given in e.g. in [6]).  

The next essential point is setting the order of 

derivation. Since according to (10) changing sign of 

the velocity generates drastic changes in the friction 

forces, due to the controller's feedback this force 

can oscillate whenever zero-transmission happens 

in the velocity. That is, β≅1 is needed for non-zero 

velocities, and β<1 whenever the velocity is in the 

vicinity of zero. In the present paper the following 

adaptive formula was applied, in which instead of 

the velocity, the observed 3
rd

 time-derivatives are 

used, because this signal is directly related to the 

controller's feedback:  
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In (19) there are various parameters as A, T, δ, and 

γ the actual values of which numerically concern 

the quality of control.  

In the simulations δ=1 ms was chosen as a fixed 

value. The value of A varied between 0.1 and 10, T 

was investigated between 2 to 20 ms, and γ was in-

vestigated between 1×10
-4

 and 4×10
-4

. It was found 

that it is expedient to choose very sharp reduction 

of the order of derivation, i.e. γ=1×10
-4

 was found 

to be optimal. The actual value of A was not very 

important, eventually it was set to A=1. The “opti-

mal length of memory” of the fractional order deri-

vation was found to be equal to T=6 ms. Due to the 

shortage of free room only certain comparative fig-

ures belonging to this optimum are presented in the 

sequel. 

 

SIMULATION RESULTS 

With the exception of the parameter Eoil all the 

other parameters given by Bröcker in [1] were used. 

For Eoil Bröcker used 1800×10
6 

Pa, which is a huge 

value representing the approximate incompressibil-

ity of liquids. However, in a pipe system, due to the 

elasticity of the pipe walls, or due to complemen-

tary components intentionally built into the system 

to reduce this huge stiffness (e.g. via using hydrau-

lic accumulators, flexible hoses) this value can be 

considerably smaller. In this paper 18×10
6 

Pa was 

used in the simulations. In the top of Fig. 1 the non-

adaptive control’s results are described. As it can be 

expected the dynamic parts of the trajectory are 

badly tracked, but the static tail is well approxi-

mated, apart from the sticking of the piston. How-

ever, as the integrating term yields enough contri-

bution to bring the piston into motion it gets enough 

momentum to produce some overshot, etc., there-

fore some oscillation is formed in the trajectory 

tracking. According to the graph in the middle of 

this figure application of the adaptive fractional or-

der derivatives makes this tail smoother but to some 

extent “conserves” the tracking errors for a long 

time. Turning on full adaptivity “amends” both the 

“dynamic part” and the “tail” of trajectory tracking. 

Fig. 2 reveals the friction forces that are very 

“hectic” in the case of the non-adaptive control, be-

come relatively “calm” due to the application of the 

fractional order derivatives, and obtain again hectic 

parts due to the zero transition of the velocity of the 

fully adaptive control. (The periodic part is the con-

sequence of the sinusoidal external force of 200 N 

amplitude also applied in the simulations.)  

 

CONCLUSIONS 

In this paper a possible improvement of an adap-

tive control developed for electrical servo valve op-

erated differential hydraulic cylinders was consid-

ered. In the case of trajectories having asymptoti-

cally zero velocity the piston’s friction is a consid-

erable nonlinear disturbing factor. It was found that 

the proposed adaptive PID
var

 control can efficiently 

defy this difficulty.  
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Figure 1: Trajectory tracking without any 

adaptivity (top), with adaptive fractional order 

control only (middle), and fully adaptive case 

(bottom), displacement and time in m and ms 

units, respectively 
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Figure 2: Friction forces without any adaptivity 

(top), with adaptive fractional order control only 

(middle), and fully adaptive case (bottom), 

force and time in N and ms units, respectively 

 


