
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




FRACTIONAL ORDER CALCULUS ON THE ESTIMATION OF 

SHORT-CIRCUIT IMPEDANCE OF POWER TRANSFORMERS 

W. Malpica Albert
#
, J. Fernando Silva

§*
, J. Tenreiro Machado

+
,

M. T. Correia de Barros
*

# Escuela de Ing. Eléctrica. Facultad de Ingeniería. Universidad Central de Venezuela. 

Caracas. PhD Student, Instituto Superior Técnico, Departamento de Engenharia 
Electrotécnica e de Computadores, Lisboa, Portugal (email: wmalpic@elecrisc.ing.ucv.ve)
§
CAUTL – Centro de Automática da Universidade Técnica de Lisboa, Instituto Superior 

Técnico, Máquinas Eléctricas e Electrónica de Potência, Av. Rovisco Pais, 1, 1049-001 

Lisboa, Portugal  (email: fernandos@alfa.ist.utl.pt)
*
Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1, 1049-

001 Lisboa, Portugal (email: teresa.correiadebarros@mrh.edp.pt)
+
Institute of Engineering of Porto, Dept. of Electrotechnical Engineering, Rua Dr. Antonio 

Bernardino de Almeida, 4200-072 Porto, Portugal (email: jtm@dee.isep.ipp.pt)

Abstract: This paper reports investigation on the use of fractional order calculus to 

analytically estimate the influence of skin and proximity effects in the short circuit 

impedance of power transformers. The aim is to better characterize the medium frequency 

range behavior of leakage inductances of power transformer models, which include terms to 

represent the magnetic field diffusion process in the windings. Comparisons between 

calculated and measured values are shown and discussed. Copyright © 2004 IFAC

Keywords: Transformers, fractional Maxwell equations, fractional diffusion, skin effect, 

proximity effect, leakage impedance, fractional order models. 

 This work is supported by FCT POSI/FEDER contract no. POCTI / 1999 / ESE / 33648. W. Malpica Albert thanks “Consejo de 

Desarrollo Científico y Humanístico” of “Universidad Central de Venezuela” for financial support. 

1.  INTRODUCTION 

Neglecting displacement currents, electromagnetic 

field in conductive media is described by a diffusion 

type equation. In power transformers, a non-linear 

diffusion is considered to occur within their core, 

whereas a linear diffusion is supposed to occur in the 

windings and usually modeled by leakage impedances. 

The precise estimation of these leakage impedances, 

prior to transformer building, is very important to tune 

the transformer de-rating K factor and to calculate or 

optimize several power supply network characteristics, 

such as short-circuit currents, network protection sub-

systems, and assess power quality. 

Conductors, like copper or aluminum, standing 

diffusion process of magnetic fields at frequency 

(  > 0), such as skin and proximity effects, are 

supposed to typically show an impedance Zcond

proportional to the square root of , Zcond
1/2 ei/4,

(i = ( 1)1/2). This behavior can be obtained solving the 

magnetic field diffusion equations within the 

conductor. If measured impedances, including terms 

from diffusion phenomena, show arguments different 

from /4 and magnitudes not proportional to 1/2, the 

diffusion process they represent might be described by 

a differential equation with non-integer derivatives, 

usually called a fractional order differential equation. 



This paper uses the extension of magnetic field

diffusion equations to situations where , the order of 

the time partial derivative in the diffusion equation,

assumes fractional values (Bisquert, Comte, 2001),

leading to conductor impedances taking the form

Zcond
/2 ei /4.

The fractional approach, here proposed, will be shown 

to provide a better description of the transformer

short-circuit impedance behavior with frequency.

The magnetic field diffusion at the power transformer

windings is studied, with Maxwell equations extended

with a fractional order Faraday law. Solving the

fractional order differential diffusion equation

obtained, the voltage drops in the frequency domain

and equivalent leakage impedance components, due to

diffusion, are found. 

From the relevant Maxwell equations, section 2

proposes a magnetic field fractional order diffusion

model. Section 3 applies the fractional order diffusion

model to power transformers, to calculate the winding

fractional dispersion impedance and section 4 give

suitable high and low frequency approximations.

Section 5 shows some results concerning short-circuit

impedances of power transformers.

2. MAGNETIC FIELD FRACTIONAL ORDER 

DIFFUSION

Motionless magnetic field systems, consisting

primarily of magnetizable and conducting materials

with conductivity 1/ , permittivity , permeability

and characteristic length l, operated at frequencies

 << 1/[l ( )1/2] (quasi-steady regime), experience 

mainly magnetic field diffusion. Assuming all

materials to be electrically linear, homogeneous,

isotropic, negligible charges (Johnk, 1996) and

neglecting displacement currents (1/  >> ), when 

compared to conduction currents, the relevant Maxwell

and material equations (Panofsky, Phillips, 1955; 

Perry, 1985), are , , ,

, where  is the nabla operator,  is the

magnetic flux density vector,  is the magnetic field

vector and  is the electrical current density vector. 
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2. 1. Fractional Order Faraday’s Law

Fractional order Faraday’s law (Bisquert, Comte,

2001) is expressed as a differential equation with

fractional order , being an extension of the classical

Electrical field  Faraday’s law: E

, (1)BDE tm

where  represents the time t partial derivative of

fractional order  (Samko, et al., 1993; Kleinz, Osler,

2000; Machado, 2003), defined for t > m (here m = 0), 

or:

tm D

B
t

BDtm  for 0 < < 2   and t > m (2) 

The Riemann-Liouville partial derivative of fractional

order , applied to function f(x,y), regarding variable x,

for x > m, is calculated as: 
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where n is an integer satisfying n ; and 

represents the gamma function (Spiegel,1963).

n1

2. 2. Fractional Order Diffusion Vector Equation for 

 Field Inside Conducting MaterialsH

Applying the curl operator to ,JH

JH , substituting  from ,J JE

EH
1

, and  from (1), it follows that:E

BDH t0
1

 (4) 

As, from  and ,  and  present 

zero divergence, using the vector identity

 in (4), (5) is obtained. 
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The above differential equation describes a magnetic

field “diffusion phenomenon” (Perry, 1985). The 

equation (5) is an ordinary integer order differential

equation if = 1, or a fractional order differential

equation if 1. Therefore, (5) is the fractional 

extension of the classical diffusion equation

02 tHH .

In the following section, (5) will be applied to

transformer windings with cylindrical symmetry, in

order to obtain a better model for the transformer short-

circuit impedance behavior with frequency, specially in

the medium to high frequency range (300-6000 Hz) 

which includes most current harmonics when the

transformer supplies non-linear loads.



3. FRACTIONAL ORDER DIFFUSION EQUATION 

APPLIED TO POWER TRANSFORMERS 

3. 1. Fractional Order Diffusion Vector Equation for 

leakage field  in one turn with circular

cylindrical geometry.

H

This work applies to single-phase transformers, with

coaxial or concentric cylindrical windings, as shown in

fig. 1. The transformer has a ferromagnetic core and 

two windings, with current flowing only in winding 1.

The main induced magnetic flux path (shown in dashed 

line) is assumed to be all inside the core, and links all 

the turns of all windings (unity magnetic coupling).

The leakage flux (shown in solid lines) through the air

or insulators, only partially links the windings turns.

Since, compared to the core, air or insulating material

present constant but much higher reluctance, leakage 

inductances can be assumed to be linear.

Figure 2 depicts the magnetic flux lines at the winding

1 head. Line A represents flux linking all the turns of 

winding 1, but only partly the turns of winding 2.

Therefore, there is magnetic coupling between

windings due to leakage flux (mutual inductance). Flux

represented by line B links only all the turns of

winding 1, meaning a magnetic coupling between all

turns of winding 1. Flux in line C means magnetic

coupling between some turns of winding 1. 

Fig. 3 shows the winding q layers, with m turns in each 

layer, together with a leakage flux path. To calculate

the magnetic field in one turn of layer k, assume the 

turn with internal radius r

H

t,r

k and the magnetic field

direction shown in fig. 4. To obtain a closed solution,

consider the magnetic field with cylindrical geometry,

with vector components only in the z-axis direction.

Then, in cylindrical coordinates,  is .

Its Laplacian, in cylindrical coordinates, is

, giving:

H zat,rHH

HaH z
22

t,rH
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t,rH
r

aH z
1
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2
2  (6) 

Using (6) into (5), it is obtained:
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Fig. 1. Main (dashed line) and leakage (solid line) 
fluxes in the transformer.

1 12 2
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Fig. 2. Main (dashed line) and leakage (solid lines) 
fluxes

Fig. 3. Winding with q layers, and m turns per layer.
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Fig. 4. Cross-sections of turn k in layer k of fig. 3 
winding.
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Equation (7) describes, in cylindrical coordinates, the

fractional diffusion phenomenon of the magnetic field

strength  in one winding turn.t,rH

3. 2. Leakage magnetic field H

Assuming zero initial conditions and applying Laplace

transform (t is the independent variable) to (7), (8) is

obtained, where  is the magnetic field strength in

the Laplace transform domain.

rH

0
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2

2

rHsrH
dr
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r
r

dr

d
 (8) 

Multiplying (8) by r2, and using a new variable x:

rx
i

, (9) 



where i = ( 1)1/2 and  is the fractional skin depth,

s , (10) x

For n = 0, (11) is derived:

022

2

2
2 xHnxxH

dx

d
xxH

dx

d
x  (11) 

The previous identity is a classical Bessel differential

equation (Spiegel, 1963) of order n (n = 0). 

For , (11) has a family of solutions:kk xxdx

 (12) xYBxJAxH 00 F

In these solutions J0(x) and Y0(x) are respectively the 

zero order first and second kind Bessel functions. The 

A and B parameters are calculated using boundary

conditions. The domain of the x variable, in terms of rk

and d (fig. 4) is:

kk rx
i

, drdx kk
i

 (13) 

Boundary conditions can be obtained using the integral 

form of Ampère’s law (Johnk, 1996) and considering

fig. 3 and 4. The magnetic field, at the surface inside 

the turn with radius r = rk, with the current is (in the 

Laplace domain), and considering l as the length of the

leakage flux path out of the core (fig. 3), is:

l

rF
rHikmFsdJldH kmm
ksmm

S

 (14) 

where Fmm is the “magnetomotive force” due to the

currents crossing the surface limited by the integration 

contour. Similarly, the magnetic field in the outside

surface of the turn, H(rk + d), is: 

l

ikm

l

drF
drH skmm

k
1

(15)

Using (10), (12), (13), (14) and (15), the values A and

B of (12) can be determined and substituted in (12), to

obtain the leakage magnetic field strength:

xY
dxYxJxYdxJ

xJdrFdxJrF

l

xJ
dxYxJxYdxJ

dxYrFxYdrF

l
xH

kkkk

krmmkkmm

kkkk

kkmmkkmm

0
0000

00

0
0000

00

1

1

(16)

This equation is difficult to use, since Bessel functions

J0(x) and Y0(x) are given by infinite series. A possible

simplification, suitable for high-frequency modeling of 

leakage inductances, is to use an asymptotic

approximation Jn(x) and Yn(x) (Spiegel, 1963) of 

Bessel functions for high values of x, since, from (9) 

and (10), the argument x of the Bessel functions

increases with increasing frequency. 
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42
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2 n
xxYn

for n = 0, 1, 2, 3, ... (18)

Using (9), (13), (16), (17), (18) and simplifying, the

fractional equation of the leakage magnetic field (in the

Laplace domain)  is obtained for

, being H(r) given by (19), where sinh is

the hyperbolic sinus:
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After calculating the leakage magnetic field, next the

current density vector  in the winding turns is

determined. Both are needed to estimate leakage 

inductances.

J

3. 3. Current Density Vector at the Winding Turns J

The current density vector  is given from

and (12), giving ,

which can be solved, in cylindrical coordinates, to

write:

J JH

Jax zYBxJAH 00

ax
dr

d
xYBxJA

dx

d
J 00  (20) 

Differentiating the Bessel equations (Spiegel, 1963), 

axYBxJAJ 11
1

drrr kk

, and using (9), (10), 

(13), the values A, B of (12), (17), (18), and 

simplifying, in the Laplace domain, is

obtained for , being J(r) given by (21), 

where cosh is the hyperbolic co-sinus. 
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Equations (21) and (19) are useful to calculate the

voltage in each winding turn. 

3. 4.  Voltage per Winding Turn, Considering the

Conductor Resistivity and Leakage Flux

The transformer is first considered to have a two turn

winding (fig. 5). Vector j represents the leakage flux 

linked by the conductor of turn j, k represents the 

leakage flux linked by the conductor of turn k, and a

is the leakage flux across the insulating layers. 



Voltage at k turn due to i) the conductor resistance;
ii) the self leakage flux k. The winding voltage of turn

k depends on i) the conductor resistance; ii) the self-

leakage flux k, iii) the leakage fluxes j and a. The 

voltage of turn j depends also on i) the conductor

resistance; ii) the self-leakage flux j, but leakage 

fluxes k and a do not induce a voltage since they do 

not link the turn j.

The magnetic flux density  has zero divergence,

being defined as the curl of an auxiliary vector, a

potential vector , , or considering (1):

B

A

t

A B

DE 0 (22)A

Rewriting the previous equation 00 ADE t

V

,

it is shown that the curl of the sum of the two vectors is

zero. Therefore, ( ) is a conservative field 

and can be defined as the gradient of the scalar

potential function V, .

ADE t0

DE t0 A

Integrating the potential along a closed path,

00

ll

t

l

ldVldADldE

A

, applying the

Stokes theorem to vector  in the last identity,

00

lS

t

l

ldVsdADldE

AB

, and 

using , it follows that:

0ldVsdBDldE 0

lS

t

l

 (23) 

From the electromagnetism viewpoint, the previous

equation is the fractional Kirchhoff voltage law along a 

closed path. It will be used to calculate the winding

voltage Vkk of turn k in layer k (fig. 4) of the winding

(fig. 3), due to the conductor resistance and to the self-

flux k  (fig. 5). 

Iron

a

kj

j            k 

Two turns

winding

Fig. 5. Transformer with a two-turn winding

The calculation uses Ohm’s law  and (23). 

Considering the integration path l embracing the 

surface S, shown in fig. 4, the voltage V

JE

kk at turn k, in 

Laplace domain, is V .

Solving V

Sl

k,k sdHsldJ

drk

r

kr

z drdaHrsd

2

0

H

kk for :rrk
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skk i
d
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d
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z drdaHr
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V
2

, k coth

j, s

zar
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j

drrj
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12

112

q

kj

,kk,k VV

1 1

 (24) k,kV

2

0

Substituting  from (21),  from (19), and the FJ mm

value from (14) and (15), (25) is obtained, where coth

is the hyperbolic co-tangent, and csch is the hyperbolic

co-secant. Equation (25) defines the voltage per turn

ue to resistance and self-flux.d

 (25) 

Next, the voltage per turn due to the leakage flux of the

remaining turns is determined.

Voltage at turn k due to iii) the leakage fluxes j. To

calculate the voltage Vk j of turn k (fig. 5) due to the

flux j across turn j, start with (23) without the term

for the resistive voltage drop, since it is already

included in (25), to write V  for k j.

The magnetic flux is evaluated at the surface Sj of turn

j to give V  for k j.

Using  in the previous equation, and the

F

k

HH

mm value from (14) and (15), for k j, Vk j is:

 for k j (26) 
sjk i

d

d
r

a
V

csch

coth
2

,

3. 5. Winding Fractional Dispersion Impedance 

The total voltage Vb at the winding of fig. 3, is obtained

adding the voltages Vk k and Vk j of all the winding

turns, V , giving, from (25) and

(26), V

q

k

jb m

b as: 

q

k

s

q

kj

jj

q

kj

j
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b i

d
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d
jdjr

d
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d
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a

m
V

1
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1
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coth112

csch1coth

2
(27)



Since (25) and (26) do not include the induced voltage

due the main flux (core flux, fig. 1), then, the ratio Vb/is

is the winding fractional dispersion impedance Z , in 

the Laplace domain:

q

k

q

kj
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q

kj
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d
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d
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d
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1

csch12

coth112

csch1coth

2
(28)

To simplify (28) Z  is written:

d
P

d
P

d
PZ cschcoth 421  (29) 

where  is given by (10), P1, P2 and P4 are real terms

only dependent on the turn dimensions and

conductivity:

da

m
P

2
1 ;  (30) 

q

k

kk rkdrkP

1

22
2 1

kk drrkk

1

12 (31)
q

k
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4. ASYMPTOTIC BEHAVIOR OF THE WINDING

FRACTIONAL DISPERSION IMPEDANCE

4. 1. High Frequency Asymptotic Behavior

Considering the fractional skin depth  of (10) in the

frequency domain,

i , (32)

and frequencies  high enough to satisfy d >> | , the 

use in (29) of (30), coth(d/ )  1 for d >> |  and 

cosh(d/ )  0 for d >> | , gives the high-frequency

asymptotic behavior (valid for d >> | ) of the 

fractional dispersion impedance Z :

21
4i22 PPedZ (33)

Observe that Z is proportional to /2 ei /4, or, in the 

Laplace domain, to s /2. Therefore, even in the classical 

diffusion phenomenon (  = 1) the high frequency

dispersion impedance Z shows a fractional derivative

behavior of order 1/2 (Johnk, 1996), being

Z 1/2 ei /4. Moreover, if a given impedance, related

to diffusion phenomena, departs from the behavior

expressed in Z s /2, one can say it might obey a 

fractional order differential diffusion equation (5), in

which  1. 

However, this approximation is only valid for high

frequency. For dc and low frequency, (33) is no longer

valid, as can be seen in the next section. 

4. 2. Winding dc Resistance

To obtain the dc resistance, consider the differential

conductance of the dashed path shown in fig. 4 to be

r

rda
dG

2
 and integrate to obtain the conductance

Gk of one turn:

r

k

dr

r

k
r

dra

r

dra
G

k

k

ln
22

 (34) 

From (34), where ln is the natural logarithm, Rk = 1/Gk

r

k
k

r

dr
d

da
R ln

2
 (35) 

The winding resistance Rdc is obtaining adding the

resistances of all turns: 
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d
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m
R

q
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 (36) 

where P1 is given in (30) and P3 is:

q

k r

k

r

dr
dP

1

3 ln  (37) 

Equation (36) is useful to show that Bessel asymptotic

approximations (17) and (18) lead to low frequency

errors in (27) and (29), since Rdc should be the limit of 

(29) as  0, or , giving:ZRdc
0

lim

d
4121421

0
cschcothlim PPPP

d
PP

d
PRdc

(38)

This result does not equal (36), since the originating

equation (29) is not valid for low frequencies, due to

the high frequency Bessel asymptotic approximations.

4. 3. Fractional Transfer Function High and Low

Frequency Approximation for the Winding

Fractional Dispersion Impedance 

As seen, the fractional dispersion impedance Z ,

obtained in (29) or (33), is valid only for high

frequencies (Malpica, Chassande, 2001). However, it



would be very convenient to obtain an approximation

to (29) able to describe both the high frequency and 

low frequency behavior. To investigate a possible

solution, an equation approximating both the low

frequency and the high frequency behavior, must

contain the contribution of the self and mutual

inductance of the windings, (given in 39), must give

the low frequency term Rdc = P1 P3 when  0, and

the high frequency factor /2 ei /4 of (33) when 

. A useful candidate transfer function contains

one zero and one pole, both fractional (40). 
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where 1 is: 

1
1 dcdc RL (41)

The constant 2 is calculated for high frequency,

considering i 1 >> 1 and i 2 >> 1 in (40):

2
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1
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This equation must equal (33). Thus:
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2132
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Using (41) and (44), the fractional model (40) tries to

reproduce the low frequency behavior, without

disturbing the high frequency validity. The fractional

order  can be estimated using a non-linear regression.

5. RESULTS: EVALUATION OF SHORT-CIRCUIT 

IMPEDANCE OF POWER TRANSFORMERS

Data from a single-phase toroidal power transformer of 

25 kVA, 7200 V in the high voltage side and 240

V/120 V in the low voltage secondary was used

(Malpica, 2000). The proposed model for the

transformer short-circuit impedance (fig. 6) includes an

equivalent capacitor C, associated with the high 

frequency displacement currents, not considered in the 

previous analysis, L, the frequency independent

inductance, and Z , the fractional dispersion impedance

associated with (40). 

The values of L and C were calculated in a previous 

work (Malpica, Chassande, 2001; Malpica, 2000):

 L = 45 mH (45)

 C = 890 pF (46)

From the dimensions and short-circuit experimental

data of the transformer (Malpica, Chassande, 2001;

Malpica, Pérez, 2001), Rdc, 1 and 2 were calculated 

and a non-linear regression was used to obtain the

fractional order that characterizes the Z  impedance

in (40). Table 1 shows the obtained results for 

fractional  (fractional order diffusion) and for  = 1 

(integer order diffusion). The best fit for short-circuit

experimental data was obtained with  = 0.949. 

The magnitude, angle and real part values of the

fractional impedance Z , obtained using (40) and table

1 values, are shown respectively in figures 7, 8 and 9. 

It can be seen (fig. 7) that the Z  magnitude does not

show significant variations for the two values of

(  = 1 and  = 0.949), both integer and fractional

approximations giving good results.

The Z  angle is slightly better approximated with

= 0.949 (fig. 8, solid curve), mainly in the medium

frequency range (300 Hz to 6000 Hz). The Z  real part

is clearly better approximated taking  = 0.949 (fig. 9,

solid curve), also in the medium frequency range (300 

Hz to 6000 Hz), a range of interest for power quality

studies.

Table 1 Parameters of Z  (  obtained by non-linear
regression)

Parameter  = 0.949  = 1 

Rdc 20.02 [ ] 20.02[ ]

1 1.59 [ms] 1.44 [ms]

2 5.27 [µs] 9.73 [µs]

Skin and proximity

effect i mpedance

L

Frequency

independent

inductance

C

Capacitor

associated with

displacement

currents
Z

Fig. 6. Frequency dependent short-circuit impedance
model for the power transformer.



Fig. 7. Measured (Zmed) and calculated magnitude of
the dispersion impedance Z  versus frequency,
showing integer (Zcc_Nor) and fractional
(Zcc_Frac) approaches. 

Fig. 8. Measured (AngMed) and calculated angle of the
fractional dispersion impedance Z  versus 
frequency, showing integer (Ang_Zcc_Nor) and
fractional (Ang_Zcc_Frac) approaches. 

Fig. 9. Measured (Rcc_Med) and calculated real part 
value of the fractional dispersion impedance Z
versus frequency, showing integer (Rcc_Nor) and 
fractional (Rcc_Frac) approaches. 

6.  CONCLUSION 

The assumption that electromagnetic fields diffusion

phenomena in conducting media obeys differential

equations of fractional order, can be worked out with

the same mathematics used to solve the problem using

integer derivatives. The analytical results obtained 

extend the existing studies, offer an extra degree of 

freedom, and enable better diffusion modeling, when

compared to models with integer differential equations.

In the measured power transformer, the obtained

fractional order is very close to unity (  = 0.949), 

suggesting that the classical integer approximation is

good enough for most purposes. However, the

fractional zero-pole model, here parameterized, enables

a better approximation, suggesting that this approach

can be used to optimize the design and estimation of

short-circuit transformer resistance, specially in the 

medium frequency range (300 Hz to 6000 Hz) where

harmonics, transformer heating and power quality

related problems can be significant.
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