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Abstract: This paper reports investigation on the use of fractional order calculus to
analytically estimate the influence of skin and proximity effects in the short circuit
impedance of power transformers. The aim is to better characterize the medium frequency
range behavior of leakage inductances of power transformer models, which include terms to
represent the magnetic field diffusion process in the windings. Comparisons between
calculated and measured values are shown and discussed. Copyright © 2004 IFAC
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1. INTRODUCTION

Neglecting displacement currents, electromagnetic
field in conductive media is described by a diffusion
type equation. In power transformers, a non-linear
diffusion is considered to occur within their core,
whereas a linear diffusion is supposed to occur in the
windings and usually modeled by leakage impedances.
The precise estimation of these leakage impedances,
prior to transformer building, is very important to tune
the transformer de-rating K factor and to calculate or
optimize several power supply network characteristics,
such as short-circuit currents, network protection sub-
systems, and assess power quality.

Conductors, like copper or aluminum, standing
diffusion process of magnetic fields at frequency
(0 >0), such as skin and proximity effects, are
supposed to typically show an impedance Z.,.
proportional to the square root of ®, Z.,,q o' ei/4,
(i=(=1)"%). This behavior can be obtained solving the
magnetic field diffusion equations within the
conductor. If measured impedances, including terms
from diffusion phenomena, show arguments different
from n/4 and magnitudes not proportional to ®'"?, the
diffusion process they represent might be described by
a differential equation with non-integer derivatives,
usually called a fractional order differential equation.

This work is supported by FCT POSI/FEDER contract no. POCTI / 1999 / ESE / 33648. W. Malpica Albert thanks “Consejo de
Desarrollo Cientifico y Humanistico” of “Universidad Central de Venezuela” for financial support.




This paper uses the extension of magnetic field
diffusion equations to situations where o, the order of
the time partial derivative in the diffusion equation,
assumes fractional values (Bisquert, Comte, 2001),
leading to conductor impedances taking the form
annd o m /2 €i a/4.

The fractional approach, here proposed, will be shown
to provide a better description of the transformer
short-circuit impedance behavior with frequency.

The magnetic field diffusion at the power transformer
windings is studied, with Maxwell equations extended
with a fractional order Faraday law. Solving the
fractional order differential diffusion equation
obtained, the voltage drops in the frequency domain
and equivalent leakage impedance components, due to
diffusion, are found.

From the relevant Maxwell equations, section 2
proposes a magnetic field fractional order diffusion
model. Section 3 applies the fractional order diffusion
model to power transformers, to calculate the winding
fractional dispersion impedance and section 4 give
suitable high and low frequency approximations.
Section 5 shows some results concerning short-circuit
impedances of power transformers.

2. MAGNETIC FIELD FRACTIONAL ORDER
DIFFUSION

Motionless magnetic field systems, consisting
primarily of magnetizable and conducting materials
with conductivity 1/p, permittivity €, permeability p
and characteristic length /, operated at frequencies
o <<1/[1 (au)”z] (quasi-steady regime), experience
mainly magnetic field diffusion. Assuming all
materials to be electrically linear, homogeneous,
isotropic, negligible charges (Johnk, 1996) and
neglecting displacement currents (1/p >> e®), when
compared to conduction currents, the relevant Maxwell
and material equations (Panofsky, Phillips, 1955;
Perry, 1985), are V~§=0, Vxﬁz], E:pﬁ,
E :pj , where V is the nabla operator, B is the

magnetic flux density vector, H is the magnetic field
vector and J is the electrical current density vector.

2. 1. Fractional Order Faraday’s Law

Fractional order Faraday’s law (Bisquert, Comte,
2001) is expressed as a differential equation with
fractional order a, being an extension of the classical

Electrical field £ Faraday’s law:

VxE=-,D"B, (1)

where ,, D/ represents the time 7 partial derivative of

fractional order o (Samko, ef al., 1993; Kleinz, Osler,
2000; Machado, 2003), defined for # > m (here m = 0),
or:
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forO0<a<2 and t>m (2)

The Riemann-Liouville partial derivative of fractional
order a, applied to function f{x,y), regarding variable x,
for x > m, is calculated as:

L By

al_a ax_n’;!.o:_,tunﬂ

mD;xf()f,y = r(

where 7 is an integer satisfying n—l<a<n; and I’
represents the gamma function (Spiegel,1963).

2. 2. Fractional Order Diffusion Vector Equation for
H Field Inside Conducting Materials

|

Applying the curl
Vx(Vijl):ij, substituting J from E:p

operator to V

>
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Vx(‘}7><[§( =1(V><E), and E from (1), it follows that:
p

vxlyi - o D5 )

As, from V-B=0 and B = 1) H,Band H present

zero  divergence, using the vector identity

V(Y =V(V-i)-V2 in @), (5 is obtained.
vig -k OD,“FI] =0 (5)
p

The above differential equation describes a magnetic
field “diffusion phenomenon” (Perry, 1985). The
equation (5) is an ordinary integer order differential
equation if =1, or a fractional order differential
equation if a# 1. Therefore, (5) is the fractional
extension of the classical diffusion equation

v2 it —(h/p [§i /o =0,

In the following section, (5) will be applied to
transformer windings with cylindrical symmetry, in
order to obtain a better model for the transformer short-
circuit impedance behavior with frequency, specially in
the medium to high frequency range (300-6000 Hz)
which includes most current harmonics when the
transformer supplies non-linear loads.



3. FRACTIONAL ORDER DIFFUSION EQUATION
APPLIED TO POWER TRANSFORMERS

3. 1. Fractional Order Diffusion Vector Equation for

leakage field H in one turn with circular
cylindrical geometry.

This work applies to single-phase transformers, with
coaxial or concentric cylindrical windings, as shown in
fig. 1. The transformer has a ferromagnetic core and
two windings, with current flowing only in winding 1.
The main induced magnetic flux path (shown in dashed
line) is assumed to be all inside the core, and links all
the turns of all windings (unity magnetic coupling).
The leakage flux (shown in solid lines) through the air
or insulators, only partially links the windings turns.
Since, compared to the core, air or insulating material
present constant but much higher reluctance, leakage
inductances can be assumed to be linear.

Figure 2 depicts the magnetic flux lines at the winding
1 head. Line A represents flux linking all the turns of
winding 1, but only partly the turns of winding 2.
Therefore, there is magnetic coupling between
windings due to leakage flux (mutual inductance). Flux
represented by line B links only all the turns of
winding 1, meaning a magnetic coupling between all
turns of winding 1. Flux in line C means magnetic
coupling between some turns of winding 1.

Fig. 3 shows the winding ¢ layers, with m turns in each
layer, together with a leakage flux path. To calculate
the magnetic field H in one turn of layer k, assume the
turn with internal radius 7, and the magnetic field
direction shown in fig. 4. To obtain a closed solution,
consider the magnetic field with cylindrical geometry,
with vector components only in the z-axis direction.
Then, in cylindrical coordinates, H is H = H (b1 -a,.
Its Laplacian, in

V2H =a, VzH(r,t), giving:

cylindrical  coordinates, is

2
v =a| S Hhe + 12 b(r) ©)
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Using (6) into (5), it is obtained:
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Fig. 1. Main (dashed line) and leakage (solid line)
fluxes in the transformer.

Fig. 2. Main (dashed line) and leakage (solid lines)
fluxes

ferromagnetic material
[

00| g

!

=]

0

[ =

l_|:l_|l_|
-

—
[
I
-
o
[
-

.

~ leakage flux

Fig. 3. Winding with ¢ layers, and m turns per layer.
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Fig. 4. Cross-sections of turn k in layer k£ of fig. 3
winding.
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Equation (7) describes, in cylindrical coordinates, the
fractional diffusion phenomenon of the magnetic field
strength H(r,7) in one winding turn.

3. 2. Leakage magnetic field H

Assuming zero initial conditions and applying Laplace
transform (7 is the independent variable) to (7), (8) is
obtained, where H(r) is the magnetic field strength in

the Laplace transform domain.

2
1
Ll - Smh -Eeng -0 ®)
2 rdr P

Multiplying (8) by 7, and using a new variable x:

i

x:gr, 9
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where i = (—1)" and § is the fractional skin depth,

5=+p/ls"u). (10)

Forn=0, (11) is derived:

xzjx—zzH()c +x%H()c +(;}2—n2 H} =0 (1)

The previous identity is a classical Bessel differential
equation (Spiegel, 1963) of order n (n = 0).

For x; +d' > x> x; , (11) has a family of solutions:
H(} = 4Jo(} +B X(x) (12)

In these solutions Jy(x) and Yy(x) are respectively the
zero order first and second kind Bessel functions. The
A and B parameters are calculated using boundary
conditions. The domain of the x variable, in terms of 7,
and d (fig. 4) is:

xkzérk,xk+d':é(rk+d) (13)

Boundary conditions can be obtained using the integral
form of Ampere’s law (Johnk, 1996) and considering
fig. 3 and 4. The magnetic field, at the surface inside
the turn with radius » =ry, with the current i; (in the
Laplace domain), and considering / as the length of the
leakage flux path out of the core (fig. 3), is:

Jf-di = G-d5 =y =m ki, = :M(lﬁt)
S

where F,, is the “magnetomotive force” due to the
currents crossing the surface limited by the integration
contour. Similarly, the magnetic field in the outside
surface of the turn, H(r; + d), is:

H(»k+d :me(%k_"d :m(}l_l Iy (15)

Using (10), (12), (13), (14) and (15), the values 4 and
B of (12) can be determined and substituted in (12), to
obtain the leakage magnetic field strength:

[ E b+ 3ol0) = F i)Yol + )],
G _l{ Jolk +d" Yol )= Jo (e )Y Oy + @ }J ¢ (16)

)_
1 {me(?k Jolx + d')_— From 1 + d)Jo(xk)}Yo(}

1 Jo0 +d" Yolog) = Jo 0o ) Yok + @

/

This equation is difficult to use, since Bessel functions
Jo(x) and Yy(x) are given by infinite series. A possible
simplification, suitable for high-frequency modeling of
leakage inductances, is to use an asymptotic
approximation J,(x) and VY,(x) (Spiegel, 1963) of
Bessel functions for high values of x, since, from (9)
and (10), the argument x of the Bessel functions
increases with increasing frequency.

0= Zcos(x_”“_“j forn=0,1,2,3,..(17)

X 2 4

T

() = ism[x_%_“ﬂ for n=0,1,2,3, ... (18)

n
X

Using (9), (13), (16), (17), (18) and simplifying, the
fractional equation of the leakage magnetic field (in the

H=H(} -a, is
1, <r<r.,,being H(r) given by (19), where sinh is

Laplace domain) obtained for

the hyperbolic sinus:

H( =\/rk(>k+d o
[ sinh (/5 (19)

me(rk+d) . = me(a’k : [r_rk_dj
X]: \/r,{ir smh[ 5 J ﬁ(}k+d sinh 5

After calculating the leakage magnetic field, next the

current density vector J in the winding turns is
determined. Both are needed to estimate leakage
inductances.

3. 3. Current Density Vector J at the Winding Turns

The current density vector J is given from V x H=~J
and (12), giving VijI:Vx[}I JO()C +B Yo()f -, ~J,
which can be solved, in cylindrical coordinates, to
write:

Fo|- Sl B w0 Lxl g o

Differentiating the Bessel equations (Spiegel, 1963),

J

J ==l +B Y ]-ay, and using ©9), (10,
(13), the values 4, B of (12), (17), (18), and
simplifying, in the Laplace domain, J=.J (} “agis
obtained for r, <r<r, +d, being J(r) given by (21),
where cosh is the hyperbolic co-sinus.

IO = V7 O]\ +d

15sinh (/5 (21)

[Fatrl=r) ()

Equations (21) and (19) are useful to calculate the
voltage in each winding turn.

3. 4. Voltage per Winding Turn, Considering the
Conductor Resistivity and Leakage Flux

The transformer is first considered to have a two turn
winding (fig. 5). Vector &; represents the leakage flux
linked by the conductor of turn j, & represents the
leakage flux linked by the conductor of turn &, and @,
is the leakage flux across the insulating layers.



Voltage at k turn due to i) the conductor resistance;
ii) the self leakage flux ®@; The winding voltage of turn
k depends on i) the conductor resistance; ii) the self-
leakage flux @y, iii) the leakage fluxes @; and @,. The
voltage of turn j depends also on #) the conductor
resistance; ii) the self-leakage flux @; but leakage
fluxes @, and @, do not induce a voltage since they do
not link the turn ;.

The magnetic flux density B has zero divergence,
being defined as the curl of an auxiliary vector, a

potential vector A, B=VxA4,or considering (1):
VxE =—o D2V ) (22)

Rewriting the previous equation V x IE +0 Dla;ljz 0
it is shown that the curl of the sum of the two vectors is

zero. Therefore, (E +0 thljl) is a conservative field
and can be defined as the gradient of the scalar

potential function ¥, E+y DX A=-VV .

Integrating
({E'diﬂjoD,a;l-di:—(E[VV-dizo, applying the

the potential along a closed path,

Stokes theorem to vector A
d&-di+ [oppyxi-as=—dvr-di=o,  and
/ S

using B=VxA, it follows that:

4E-di+01),°‘ jé-d:c':—{w-di:o (23)

in the last identity,

From the electromagnetism viewpoint, the previous
equation is the fractional Kirchhoff voltage law along a
closed path. It will be used to calculate the winding
voltage V. of turn k in layer k (fig. 4) of the winding
(fig. 3), due to the conductor resistance and to the self-
flux @, (fig. 5).

Mﬂ
Ly

Two turns
winding

T
IT

Iron

Fig. 5. Transformer with a two-turn winding

The calculation uses Ohm’s law E = p J and (23).
Considering the integration path / embracing the

surface S, shown in fig. 4, the voltage V}; at turn £, in
Laplace domain, is Vj; = '[p J-dl +s* Iu H-ds .

N
Solving Vi for r, <r<n +d:
2n r2m
Vik = -[p rJ- ay dd+s* J.Iu rH- a, dydr  (24)
7 0

Substituting J from 21, H from (19), and the F,,,
value from (14) and (15), (25) is obtained, where coth
is the hyperbolic co-tangent, and csch is the hyperbolic
co-secant. Equation (25) defines the voltage per turn
due to resistance and self-flux.

Vk,k:%{rkkcoth( j [ 1 Jnlp +d) ]csch( H (25)

Next, the voltage per turn due to the leakage flux of the
remaining turns is determined.

Voltage at turn k due to iii) the leakage fluxes ®;. To
calculate the voltage Vj ; of turn & (fig. 5) due to the
flux @; across turn j, start with (23) without the term
for the resistive voltage drop, since it is already
included in (25), to write y . = ¢ I“ b.ds fork=#j.
S

The magnetic flux is evaluated at the surface S; of turn
rj+d on

JJ- wor H-a,dp dr for k#j.
0

rj

J to give yp, ;=
Using H=H () -d, in the previous equation, and the
F, value from (14) and (15), for k # j, Vy; is:

. . d
27tp -1 (-1 “’th[E]‘ fork=j (26)

[(b] L +d csch[;{j '

3. 5. Winding Fractional Dispersion Impedance

The total voltage V), at the winding of fig. 3, is obtained
adding the voltages V; , and Vj ; of all the winding

q q

turns, y, = m z Vi g + Z Vej | giving, from (25) and
k=t j=k 1

(26), V, as:

n k coth( j [(b )| .csch[g},
5= 3 B s ai) coth[ai)_

k=l|  j=k+l

B G )

L J=k+1

27N




Since (25) and (26) do not include the induced voltage
due the main flux (core flux, fig. 1), then, the ratio V}/i
is the winding fractional dispersion impedance Z,, in
the Laplace domain:

nk coth[gﬂ—[(k -1 [r (n+d) csch(g]-#

, (28)
Zy = ZmeZ + Z H/’@j_l +d(j—1) coth j—

q
4 k=1 Jj=k+1
_ Zq: [(bj—l 'V,-Q/+d csch| gj

L J=k+l

SN

TN TN

To simplify (28) Z, is written:

Zg :Pli P, coth d + P, csch d
) 5 )

where & is given by (10), P;, P, and P, are real terms
only dependent on the turn dimensions and

29

conductivity:
2w p m d
=P PZ:Z@‘] 2 +d)+ k. (30)
ad =

P4:Zq:[2 k() -k 1/rk(rk+d)] (31

4. ASYMPTOTIC BEHAVIOR OF THE WINDING
FRACTIONAL DISPERSION IMPEDANCE

4. 1. High Frequency Asymptotic Behavior

Considering the fractional skin depth ¢ of (10) in the
frequency domain,

5 =p/ (ko “ 1.

and frequencies @ high enough to satisfy d>> (9|, the
use in (29) of (30), coth(d/d)~1 for d>>|d| and
cosh(d/d) =0 for d>>|d|, gives the high-frequency
asymptotic behavior (valid for d>>15|) of the
fractional dispersion impedance Z,:

(32)

Zg =du/p [of*/z ei”‘*/“}Pl Py (33)
Observe that Z; is proportional to »“? ™, or, in the

Laplace domain, to §%2. Therefore, even in the classical

diffusion phenomenon (o =1) the high frequency
dispersion impedance Z, shows a fractional derivative
behavior of order 1/2 (Johnk, 1996), being
Zs oc @ ' €™ Moreover, if a given impedance, related
to diffusion phenomena, departs from the behavior

expressed in Zg oc s%2, one can say it might obey a

fractional order differential diffusion equation (5), in
which o # 1.

However, this approximation is only valid for high
frequency. For dc and low frequency, (33) is no longer
valid, as can be seen in the next section.

4. 2. Winding dc Resistance

To obtain the dc resistance, consider the differential
conductance of the dashed path shown in fig. 4 to be
adr

dG =

and integrate to obtain the conductance
p2nr

G, of one turn:

Gy = (34

1 +d a dr u Vk+d

= In|
p2nr p2n 7,

U3

From (34), where In is the natural logarithm, R, = 1/G;
2
R, = p 2n a/ln(rk +d]
ad 7,

The winding resistance R, is obtaining adding the
resistances of all turns:

2 q
R, - P andmz{a/ln[rk:dﬂ_ﬂ P, (36)

I3

(35)

where P is given in (30) and P; is:

w2l

Equation (36) is useful to show that Bessel asymptotic
approximations (17) and (18) lead to low frequency
errors in (27) and (29), since R, should be the limit of
29)asw —0,0r R, = liI_BZs , giving:

. d d d
R, = L})IE}){EL}} {Pz coth{g} + H‘CSCh{gﬂ} =pP,+PRP,(38)

This result does not equal (36), since the originating
equation (29) is not valid for low frequencies, due to
the high frequency Bessel asymptotic approximations.

(37

4. 3. Fractional Transfer Function High and Low
Frequency Approximation for the Winding
Fractional Dispersion Impedance

As seen, the fractional dispersion impedance Z,,
obtained in (29) or (33), is valid only for high
frequencies (Malpica, Chassande, 2001). However, it



would be very convenient to obtain an approximation
to (29) able to describe both the high frequency and
low frequency behavior. To investigate a possible
solution, an equation approximating both the low
frequency and the high frequency behavior, must
contain the contribution of the self and mutual
inductance of the windings, (given in 39), must give
the low frequency term R,. = P; P; when ® — 0, and
the high frequency factor ®*?e™** of (33) when
o — . A useful candidate transfer function contains
one zero and one pole, both fractional (40).

T SR RS

7

l:H( -1 ~ln["‘:dﬂ«()k +d

k

o M 7{1+{2kdn[rky:d]+(}+1 }.h{%]}nz

(39)
Zo =Ry, @+sr1 a2 - AR (1 +srl)“2 (40)
()+s1, ¢ (+s1, ¢
where 1, is:
1 =Ly /Ry )l/a (41)

The constant 7, is calculated for high frequency,
considering iot; >> | and iot, >> 1 in (40):

~RP, ((i}n = (42)

i}n 1, a/2

This equation must equal (33). Thus:

@ + i(l)'fl o

7Z_ = PP,
1 0o, 92

p o 2
zownn Bt A R LR
2

o T

T2 =[Pa Tla/[%‘/dz“]r (“44)
p

Using (41) and (44), the fractional model (40) tries to
reproduce the low frequency behavior, without
disturbing the high frequency validity. The fractional
order a can be estimated using a non-linear regression.

5. RESULTS: EVALUATION OF SHORT-CIRCUIT
IMPEDANCE OF POWER TRANSFORMERS

Data from a single-phase toroidal power transformer of
25 kVA, 7200 V in the high voltage side and 240
V/120 V in the low voltage secondary was used
(Malpica, 2000). The proposed model for the

transformer short-circuit impedance (fig. 6) includes an
equivalent capacitor C, associated with the high
frequency displacement currents, not considered in the
previous analysis, L, the frequency independent
inductance, and Z,, the fractional dispersion impedance
associated with (40).

The values of L and C were calculated in a previous
work (Malpica, Chassande, 2001; Malpica, 2000):

L=45mH (45)
C =890 pF (46)

From the dimensions and short-circuit experimental
data of the transformer (Malpica, Chassande, 2001;
Malpica, Pérez, 2001), R4, 7 and 7, were calculated
and a non-linear regression was used to obtain the
fractional order o that characterizes the Z, impedance
in (40). Table 1 shows the obtained results for
fractional o (fractional order diffusion) and for a=1
(integer order diffusion). The best fit for short-circuit
experimental data was obtained with o = 0.949.

The magnitude, angle and real part values of the
fractional impedance Z,, obtained using (40) and table
1 values, are shown respectively in figures 7, 8 and 9.

It can be seen (fig. 7) that the Z, magnitude does not
show significant variations for the two values of o
(a=1 and a=0.949), both integer and fractional
approximations giving good results.

The Z, angle is slightly better approximated with
o =0.949 (fig. 8, solid curve), mainly in the medium
frequency range (300 Hz to 6000 Hz). The Z, real part
is clearly better approximated taking o = 0.949 (fig. 9,
solid curve), also in the medium frequency range (300
Hz to 6000 Hz), a range of interest for power quality
studies.

Table 1 Parameters of Z; (o obtained by non-linear

regression

Parameter o =0.949 a=1
Ra 20.02 [Q] 20.02[Q]
T 1.59 [ms] 1.44 [ms]
o 5.27 [us] 9.73 [us]

C Frequency

independent

Capacitor —— inductance

associated with
displacement
currents

Fig. 6. Frequency dependent short-circuit impedance
model for the power transformer.

Skin and proximity
effect i mpedance
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Fig. 7. Measured (Zmed) and calculated magnitude of
the dispersion impedance Z, versus frequency,
showing integer (Zcc Nor) and fractional
(Zcc_Frac) approaches.
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Fig. 8. Measured (AngMed) and calculated angle of the
fractional dispersion impedance Z, versus
frequency, showing integer (Ang Zcc Nor) and
fractional (Ang_Zcc_Frac) approaches.
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Fig. 9. Measured (Rcc_Med) and calculated real part
value of the fractional dispersion impedance Z,
versus frequency, showing integer (Rcc Nor) and
fractional (Rcc_Frac) approaches.

6. CONCLUSION

The assumption that electromagnetic fields diffusion
phenomena in conducting media obeys differential
equations of fractional order, can be worked out with
the same mathematics used to solve the problem using
integer derivatives. The analytical results obtained
extend the existing studies, offer an extra degree of
freedom, and enable better diffusion modeling, when
compared to models with integer differential equations.

In the measured power transformer, the obtained
fractional order is very close to unity (o = 0.949),
suggesting that the classical integer approximation is
good enough for most purposes. However, the
fractional zero-pole model, here parameterized, enables
a better approximation, suggesting that this approach
can be used to optimize the design and estimation of
short-circuit transformer resistance, specially in the
medium frequency range (300 Hz to 6000 Hz) where
harmonics, transformer heating and power quality
related problems can be significant.
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