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Abstract: In this paper it is studied the implementation of fractional-order algorithms in

the position/force control of two cooperating robotic manipulators. The performance and

system robustness are analyzed in the time and frequency domains. The effect of backlash

and flexibility at the robot joints is also investigated. Copyright © 2004 IFAC
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1. INTRODUCTION

Two robots carrying a common object are a logical 

alternative for the case in which a single robot is not

able to handle the load. Nevertheless, with two

cooperative robots the resulting interaction forces 

have to be accommodated and consequently, in

addition to position feedback, force control is also 

required (Hogan, 1985 and Siciliano, 1999).

There are two basic methods for force control,

namely the hybrid position/force and the impedance

schemes. The first method (Raibert and Craig, 1981)

requires the separation of the task into two

orthogonal subspaces corresponding to the force and

the position controlled variables. Once established

the subspace decomposition two independent

controllers are designed. The second method (Hogan,

1985) requires a proper choice of the arm mechanical

impedance through which the interaction forces are 

indirectly controlled to obtain an adequate response.

This paper studies the position/force control of two

cooperative manipulators, using fractional-order

(FO) algorithms (Oustaloup, 1995, Podlubny, 1999,

Ferreira and Machado, 2003). In fact, the application

of the fractional calculus is still in a research stage,

but the preliminary results reveal properties that can

be of importance in the scope of robotic control.

In this line of thought the paper is organized as 

follows. Section two presents the controller

architecture for the position/force control of two

robotic arms and section three introduces the

fundamentals of the fractional-order algorithms

based on these concepts. Section four develops

several experiments for the analysis and the

performance evaluation of FO and the PID
controllers, for robots having several types of 

dynamic phenomena at the joints. Finally, section

five outlines the main conclusions.

2. POSITION-FORCE CONTROL OF TWO ARMS 

When two robots grasp an object (Fig. 1), and move

it from one location to another, a coordinated motion

is required. In order to get good performances it is 

necessary to specify no only the desired motion of 

each robot but also the corresponding handling force.

In the system under study the contact of the robot 

gripper with the load is modeled through a linear

system with a mass M, a damping B and a stiffness

K. On the other hand, the dynamics of a robot with n

links interacting with the environment is modeled as: 

(q)FJG(q))qC(q,qH(q)
T (1)

where  is the n 1 vector of actuator torques, q is the

n 1 vector of joint coordinates, H(q) is the n n
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inertia matrix,  is the n  1 vector of

centrifugal/Coriolis terms, G(q) is the n 1 vector of 

gravitational effects, J

)qC(q,

T
(q) is the transpose of the

Jacobian matrix and F is the force that the load exerts

in the robot gripper.
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Fig. 1. Two 2R cooperating robots for the

manipulation of an object with length l0, orientation

0 and center point A. 

We consider 2R manipulators (i.e., n = 2) with

dynamics:

gm

gm

JJ

rm
Crrmrm

Crrm

rm

JJCrrm

rmrmm

22

2
22

2212
2

22

2212

2
22

112212

2
22

2
121

2
qH (2a)

2
12212

212212
2

22212 2

qSrrm

qqSrrmqSrrm
qq,C (2b)

1222

1222112111

Crgm

CrmCrmCrmg
qG (2c)

122122

12211112211

CrSr

CrCrSrSr
qJ

T
(2d)

where Cij = cos(qi + qj) and Sij = sin(qi + qj).

The numerical values adopted for the 2R robots and

the object are m1 = 0.5 kg, m2 = 6.25 kg, r1 = 1.0 m,
r2 = 0.8 m, J1m = J2m = 1.0kgm2, J1g = J2g = 4.0 kgm2

lb = l0 = 1.0 m and 0 = 0, B1 = B2 = 1 Ns.m 1,

K1 = K2 = 103 Nm 1 and A  {0,1}. 

Fig. 2. The position/force controller.

The controller architecture (Fig. 2) is inspired on the 

impedance and compliance schemes. Therefore, we

establish a cascade of force and position algorithms

as internal an external feedback loops, respectively, 

where xd and Fd are the payload desired position

coordinates and contact forces.

3. FRACTIONAL ORDER ALGORITHMS

In this section we present the FO controllers in the 

position and force control loops.y

Robot 1 The mathematical definition of a derivative of 

fractional order  has been the subject of several

different approaches. For example, we can mention

the Laplace and the Grünwald-Letnikov definitions

Robot 2 (x2,y2)

A

D [x(t)] = L {s X(s)} (3a)

1
0 11

111
lim

k

k

h
khtx

kkh
txD (3b)

where  is the gamma function and h is the time

increment.

In this article we consider FO controllers of the type:

sKKsC 0 , 1 <  < 1 (5)

For implementing (5) we adopt discrete-time k = 4 

Padé approximations (K, ai, bi ):

k

i

i
i

k

i

i
i zbzaKzC

00

(6)

both in the position (P) and force (F) loops.

4. CONTROLLER PERFORMANCES

This section analyzes the system performance both 

for robots ideal transmissions and robots with

dynamic phenomena at the joints, such as backlash

and flexibility. Moreover, we compare the response 

of FO and classical PID algorithms. In particular we

adopt a PD and a PI in the position (P) and force (F)

loops, respectively: 

Position-PD algorithm: C(s) = Kp + Kd s (7a)

Force-PI algorithm: C(s) = Kp + Ki s (7b)

Both algorithms were tuned by trial and error having

in mind getting a similar performance in the two

cases. By other words, the parameters were adjusted

not only to get small overshoots and steady-state

errors, but also to have similar performances in the

FO and PID schemes in order to easy their 

comparison.

The resulting parameters were {K0,K , }P  {7.9 104,

190,0.5}, {K0,K , }F  {10.4, 179, 0.2} for the FO

and {Kp,Kd}P  {104,102}, {Kp,Ki}F  {10, 104} for

the PD/PI, in the position and force loops,

respectively.

In order to study the system dynamics we apply,

separately, small amplitude rectangular pulses, at the 

position and force reference, that is, we perturb each

(x1,y1)

x

0

  l0

lb



reference signal at a time with xd = 10 3 m,

yd = 10 3 m, Fxd = 1.0 N and Fyd = 1.0 N.

Afterward, we analyze the system performance both

in the time and the frequency domains.

4.1 Time response

In order to evaluate the performance of the proposed

algorithms we compare the response for robots with 

dynamical phenomena at the joints. 

In all experiments the controller sampling frequency

is fc = 10 kHz for the operating point A of the object

and a contact force of each gripper of

{Fxj,Fyj} {0.5,5} Nm for the jth (j = 1, 2) robot.

In a first phase we consider robots with ideal 

transmissions at the joints. Figures 3 and 4 depict the

time response of the robots 1 and 2, under the action 

of the FO and the PD/PI algorithms.

In a second phase (Fig. 5) we analyze the response of

robots with dynamic backlash at the joints 

(Stepanenko, 1986, and Dubowsky, 1987). For the 

ith joint gear, with clearance hi, the backlash reveals

impact phenomena between the inertias, which obey

the principle of conservation of momentum and the 

Newton law: 

imii

imimimiii
i

JJ

JqJJq
q

1
(8a)

imii

iiimimii
im

JJ

JJqJq
q

1
(8b)

where 0 1 is a constant that defines the type of

impact ( 0 inelastic impact, 1 elastic impact)

and iq  and imq  are the inertias velocities of the ith

joint and motor after the collision, respectively. The

parameter Jii (Jim) stands for the link (motor) inertias 

of joint i. The numerical values adopted are

hi = 1.8 10 4 rad and i 0.8 (i = 1, 2).

In a third phase (Fig. 6) we study the performance of 

robots with compliant joints. For this case the 

dynamic model corresponds to model (1) augmented

by the equations:

qqKqBqJ mmmmmm (9a)

qGqq,CqqJqqK mm (9b)

where Jm, Bm and Km are the n n diagonal matrices

of the motor and transmission inertias, damping and

stiffness, respectively. In the simulations we adopt

Kmi = 2 106 Nm rad 1 and Bmi = 104 Nms rad 1

(i = 1,2).

The time responses (Tables 1 to 4), namely the 

percent overshoot PO%, the steady-state error ess, the 

peak time Tp and the settling time Ts, reveal that, 

although tuned for similar performances in the first

case, the FO is superior to the PD/PI in the cases 

with dynamical phenomena at the robot joints.
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Fig. 3. Time response for the robot 1 under the action of the FO and the PD/PI algorithms, for a pulse

perturbation xd = 10 3m at the robot 1 position reference.
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Fig. 4. Time response for the robot 1 under the action of the FO and the PD/PI algorithms for a pulse perturbation

yd = 10 3m at the robot 1 position reference.
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Fig. 5. Time response for the robot 1 with joints having backlash under the action of the FO and PD/PI algorithms for 

a pulse perturbation yd = 10 3m at the robot 1 position reference.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.8

-0.6

-0.4

-0.2

0
x 10

-3

dx
1
(m)

Time (s)

Reference
PD/PI
FO

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

dy
1
(m)

Time (s)

Reference
PD/PI
FO

Fig. 6. Time response for the robot 1 with joints having flexibility under the action of the FO and PD/PI algorithms

for a pulse perturbation yd = 10 3m at the robot 1 position reference.



Table 1 Parameters of the time response for a

rectangular pulse xd the robot 1 position reference.

Joint C(s) PO% ess Tp Ts

PID 33.75 3.4 10 3 17 10 3 65 10 2

Ideal
FO 33.70 2.5 10 3 9 10 3 25 10 2

PID 0.84 0.5 10 3 20 10 3 20 10 3

Backlash
FO 1.23 0.2 10 3 25 10 3 25 10 3

PID 0.54 0.5 10 2 10 10 3 20 10 3

Flexible
FO 0.37 1.0 10 3 25 10 3 25 10 2

Table 2 Time response parameters for rectangular

pulse yd the robot 1 position reference.

Joint C(s) PO% ess Tp Ts

PID 30.36 4.1 10 4 23 10 3 70 10 2

Ideal
FO 30.61 2.6 10 4 9 10 3 50 10 2

PID 0.11 1.2 10 3 30 10 3 40 10 3

Backlash
FO 0.82 0.2 10 4 30 10 3 40 10 3

PID 0.11 0.9 10 2 40 10 3 45 10 3

Flexible
FO 0.20 0.9 10 3 40 10 3 45 10 2

Table 3 Time response parameters for rectangular

pulse Fxd at the robot 1 force reference.

Joint C(s) PO% ess Tp Ts

PID 36.5 9.2 10 3 15 10 3 75 10 2

Ideal
FO 36.5 8.4 10 58 10 3 55 10 2

PID 13.3 9.2 10 14 10 2 50 10 2

Backlash
FO 7.5 9.2 10 28 10 2 50 10 2

PID 13.3 9.2 10 14 10 2 50 10 2

Flexible
FO 7.5 9.2 10 28 10 2 50 10 2

Table 4 Time response parameters for rectangular

pulse Fyd at the robot 1 force reference.

Joint C(s) PO% ess Tp Ts

PID 58.1 9.2 10 4 15 10 3 75 10 2

Ideal
FO 51.3 8.4 10 58 10 3 55 10 2

PID 52.3 9.2 10 55 10 2 60 10 2

Backlash
FO 6.6 9.2 10 5 10 2 60 10 2

PID 52.3 9.2 10 55 10 2 60 10 2

Flexible
FO 6.6 9.0 10 5 10 2 60 10 2

4.2. Frequency response

In order to compare the robustness of the algorithm,

we analyze the system response for ideal robots and

robots having flexible transmission.

Based on the time response to small perturbations at 

the position and force references we can establish the

frequency response, corresponding to linearized

transfer functions around the operating point A.

Figures 7-8 show the closed-loop transfer functions

|X(j )/Xd(j )|, |Y(j )/Yd(j )|, |Fx(j )/Fxd(j )| and

|Fy(j )/Fyd(j )| (where X(j )=F{ x}, Y(j )=F{ y},

where Fx(j )=F{ Fx} and Fy(j )=F{ Fy}) for the

FO and the PD/PI controllers, in both cases.

The charts reveal that the FO algorithms have a

superior performance, namely a good robustness and

larger bandwidth.

5. SUMMARY AND CONCLUSIONS

This paper compared the position/force control of

two robots working in cooperation using a fractional-

order and integer order control algorithms. The

dynamic performance of two arms holding an object

was analyzed both in the time and the frequency

domains and the manipulators were also tested for

several types of nonlinear phenomena at the joints. 

The results demonstrate that the fractional-order 

algorithm is superior, revealing a good performance

and a high robustness.
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Fig. 7. Closed loop frequency responses for the ideal robot 1, under the action of the FO and PD/PI algorithm,

for pulse perturbations xd, yd, Fxd and Fyd at the robot 1 references.
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Fig. 8. Closed loop frequency responses for the robot 1 with joints having flexibility, under the action of the FO

and PD/PI algorithm, for pulse perturbations xd, yd, Fxd and Fyd at the robot 1 references.


